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ABSTRACT

Most of the existing methods for estimating the local intrinsic dimension of a
data distribution do not scale well to high dimensions because they rely on in-
vestigating the nearest neighbors structure, which may cause problems due to the
curse of dimensionality. We attempt to address that challenge by proposing a
new method for Local Intrinsic Dimension estimation using approximate Likeli-
hood (LIDL) which makes use of the recent progress in likelihood estimation in
high dimensions—the normalizing flow methods. We empirically show that on
standard benchmarks for this problem, our method yields more accurate estimates
than previous algorithms and that, unlike other methods, it scales well to problems
with thousands of dimensions. What is more, we anticipate this new approach to
improve further with continuing advances in the density estimation literature.

1 INTRODUCTION

Figure 1: Comparison of LIDL and
methods from Kleindessner & Luxburg
(2015). Based on Table 1.

One of the important problems in representation learning
is estimating the intrinsic dimensionality (ID) of lower-
dimensional data embedded in a higher-dimensional ob-
served space (Ansuini et al., 2019; Li et al., 2018; Ruben-
stein et al., 2018), which we will refer to as IDE. It is
a well-studied problem in the context of dimensional-
ity reduction, clustering, and classification problems (Ca-
mastra & Staiano, 2016; Kleindessner & Luxburg, 2015;
Vapnik, 2013). ID is also relevant for some prototype-
based clustering algorithms (Claussen & Villmann, 2005;
Struski et al., 2018). ID estimation can be used as a pow-
erful analytical tool to study the process of training and
representation learning in deep neural networks (Li et al.,
2018; Ansuini et al., 2019). Also in the context of rep-
resentation learning, Rubenstein et al. (2018) show how
the mismatch between the latent space dimensionality and
the dataset ID may hurt the performance of auto-encoder-
based generative models like VAE (Kingma & Welling,
2014), WAE (Tolstikhin et al., 2017), or CWAE (Knop et al., 2020).

IDE methods can be divided into two broad categories: global and local (Camastra & Staiano, 2016).
Global methods aim to give a single estimate of the dimensionality of the entire dataset. However,
reducing the description of a dataset’s ID structure to just a single number might discard the nuanced
structure, such as when the data lies on a union of manifolds with different numbers of dimensions
(which is the case for real-world datasets). On the contrary, the local methods (Carter et al., 2009)
try to estimate the local intrinsic dimensionality (LID) of data manifold in the neighborhood of an
arbitrary point on that manifold. This approach gives more insight into the nature of the dataset and
provides more options to summarize the dimensionality of the manifold from the global perspective
– similarly to how the estimate of the density of a random variable provides richer information than
just the estimates of its summary statistics. Studying the local dimensionality allows to reason on
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the level of single samples, which can lead to new insights e.g. by looking at single datapoints and
how their properties are related to their LID estimates. A good review and comparison of a wide
range of methods for global and local ID estimation can be found in (Camastra & Staiano, 2016).

Most of the existing methods for LID estimation (Kleindessner & Luxburg, 2015; Levina & Bickel,
2004; Hino et al., 2017; Camastra & Staiano, 2016; Rozza et al., 2012; Ceruti et al., 2014; Camastra
& Vinciarelli, 2002) tend to analyze the local structure of the data manifold by investigating data
point’s nearest neighbours structure or pairwise distances. Unfortunately, such approaches generally
do not scale well to high dimensions. To address this problem, we propose a new method for
Local Intrinsic Dimension estimation using approximate Likelihood (LIDL), which circumvents
that challenge by making use of the recent progress in normalizing flows (NF) (Dinh et al., 2014;
Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018). Our method makes use of the observation
that the local dimensionality of the manifold can be estimated using approximate likelihood of the
data distribution perturbed with a small Gaussian noise of varying magnitude.

Our contributions are: we introduce a new way of local intrinsic dimension estimation, that uses ap-
proximate likelihood instead of a nearest neighbour approach; we show that our method outperforms
other approaches on standard benchmark problems for this task (see Fig. 1); we demonstrate that
our method scales to high-dimensional settings (see Table 2) and works on image datasets (Fig. 4).

2 LOCAL INTRINSIC DIMENSIONALITY

We often know that a particular dataset comes from some T -dimensional manifold, but we observe
it after it has been embedded into a higher-dimensional space of RM , T < M . While such setting
is common for structured problems, it is also hypothesised to hold to some extent in less structured
settings, e.g., for natural images. This is termed the manifold hypothesis (Fefferman et al., 2016)
and it motivates applying the intrinsic dimension estimation methods to less structured datasets. As
pointed out in the introduction, the data does not necessarily come from a single T -dimensional
manifold, but instead it might lie on a union of manifolds of different dimensions, which might or
might not intersect. Paying particular attention to such settings is important, because they allow to
showcase some advantages of the local over the global ID estimation methods. To give the problem
a more formal framing we adapt a definition from (Kleindessner & Luxburg, 2015) in Appendix A.

3 METHOD

Let us start with building an intuition about the core observation that underpins our method. First, in
the context of the definition of the problem setting from the previous section, note that in the absence
of noise ηi, the probability density of the data in the observed space pD(x) has to be described using
a Dirac delta function. Unfortunately, this makes it impossible for computational methods to express
the probability density onM because the density becomes numerically singular. This is illustrated
in the top row, middle column of Fig. 2 as an example of a 1D set being embedded in a 2D space.

To circumvent this problem, consider perturbing the data points from the original distribution pD(x)
with a small Gaussian noise εδ ∼NM (0, δIM ), such that εδ ∈RM , IM denotes an M -dimensional
identity matrix, δ is a parameter determining the noise magnitude, andNK denotes aK-dimensional
normal distribution. The summation of random variables, the original data and the noise, cor-
responds to a convolution of the probability density functions such that the resulting density is
pδ(x) = pD(x) ∗ NM (x|0, δIM ), which no longer causes numerical issues and can be approxi-
mated using density estimation methods.

Adding the noise not only allows us to approximate the density of the perturbed data, but is also
the key to estimating the local intrinsic dimension. Locally, around every point x, space M can
be divided into two linear subspaces: subspace that is locally tangent to the manifoldMx

T , and the
subspace orthogonal to the manifoldMx

O. The the fact the convolution with a normal distribution
displaces some of the probability mass from the tangent subspace into the orthogonal subspace
decreases the amount of probability mass in the tangent subspace in proportion to the dimensionality
of the orthogonal subspace. See Fig. 2 to build an intuition about this process. We assume that the
density along the locally tangent subspace is locally constant such that the convolution along the
tangent subspace has no effect on the density in that subspace, more discussion in Appendix B.
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Figure 2: Illustrating the intuition of the core mechanism behind our LIDL method. [Top row] Three
example densities pD(x1, x2) on spaceM of different underlying dimensionality of X : T = 2, 1, 0,
respectively. The form of the densities are provided above the figures. [Middle and bottom rows]
The probability density functions after addition of noise: pδ(x) = pD(x) ∗ NM (x|0, δIM ). Middle
and bottom rows correspond to two different noise magnitudes, δ1 and δ2 = 2δ1, respectively. Note
that the symbol δ is overloaded, the Dirac delta term δ(·) should not be confused with δ specifying
the magnitude of the noise. The density colors are consistent per-column (for the middle and bottom
rows), such that the colors in each of the columns are directly comparable, and the maximum value
of the colorbar gives the maximum value of the density on a given plot. Let’s say that our goal
is to determine the local intrinsic dimensionality for the neighbourhood of point (0, 0). The key
observation that will allow us to answer that question is that for different dimensionalities of X (i.e.,
different columns) the difference between densities pδ1(0, 0) and pδ2(0, 0) (i.e., middle and bottom
rows) differs. The precise relationship between those quantities is dictated by Eq. 1 what allows
us to determine the local intrinsic dimension at a particular point on the distribution by evaluating
densities for different values of δ. In this particular case we observe that: for the left column the
density remains constant as the noise increases; for the middle column it is halved when the noise
amplitude is doubled; for the right column the density is quartered. Having access only to the
evaluations pδ1(0, 0) and pδ2(0, 0), by following Eq. 1 we would conclude that T = 2, 1, 0 for the
neighbourhood of point (0,0) for columns left to right, respectively.

Consider how the probability density is displaced by the act of convolution at x(n), which is the nth

point in the dataset. Three distinct effects take place: 1. The probability density from point x(n) is
displaced into neighbouring points in the tangent subspace, 2. The probability density from point
x(n) is displaced into neighbouring points in the orthogonal subspace, 3. The probability density
from the neighbouring points in the tangent subspace is displaced onto the point x(n). By the
assumption above and the symmetry of the isotropic normal distribution as the convolution kernel,
the effects 1 and 3 cancel out. This implies that the amount of mass displaced from any point
x(n) in the tangent subspace will depend on the dimensionality of the local tangent and orthogonal
subspaces. This implies that the density pδ(x(n)) for a point x(n) can be expressed as a product
of two independent probability distributions, one for each subspace we are considering. The first
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term is the original density with support on the tangent space which is an integral of pD over the
orthogonal subspace pT (x(n)) =

∫
pD(x(n))dMx(n)

O . To define the second term first let O(n) =

M − T (n) be the dimensionality of the orthogonal subspace at point x(n). Now, the second term
is the probability density of the component of the noise εδ in the O(n)–dimensional orthogonal
subspace, i.e., NO(n)(0, δIO(n)). Then, pδ(x(n)) = pT (x(n)) · NO(n)(0|0, δIO(n)) = pT (x(n)) ·
(2πδ2)−O

(n)/2, leading to

log pδ(x
(n)) = log pT (x(n))− O(n)

2
log 2πδ2 = −O(n) log δ + (const w.r.t. δ). (1)

If we are able to evaluate pδ(x(n)) for at least two different values of δ, then we can use this rela-
tionship to estimate the value of O(n) for a datapoint x(n). Since we know M we obtain an estimate
of the local intrinsic dimension T (n).

LIDL Algorithm
Now, let us consider how to use the method proposed above in practice. To evaluate the probabilities
pδ(x) we use NF, which these days can scale even to high-dimensional data like images. We learn
qδ(x): a model that approximates pδ(x). NF are trained on the data points from the dataset with a
Gaussian noise of appropriate magnitude δ added to them. For each datapoint in every new batch,
we sample a new noise perturbation εδ . When we learn separate models for different values δi we
can use linear regression to obtain an estimate of O(n) at some particular point x(n). This estimate
can then be used to calculate T (n), the LID.

To estimate LID for a set of N points S = {x(1), ...,x(n), ...,x(N)} in the dataset D we have to fit
d > 1 models Fi (i = 1, ..., d) to d datasets Di. Each Di is perturbed version of the original D
with different noise NM (0, δiIM ) added to the whole dataset. The probability density for the same
coordinates is different when estimated by different Fi and it decreases monotonically as the value
of δi increases. If we then calculate the values log qi(x

(n)) for the same point x(n), we can use the
linear regression to fit Eq. 1, where the slope is equal to O(n) = M − T (n). The full algorithm is
presented in detail in Algorithm 1 in Appendix C.

4 EXPERIMENTS

Figure 3: Lollipop dataset
used in our experiments.

We ran a series of experiments to verify LIDL, to compare it with
other state-of-the-art algorithms for LID estimation and to analyze
how it behaves on real-world datasets.

4.1 LOLLIPOP DATASET

For the first experiment, we used an synthetic 1D/2D dataset shown
in Fig. 3. We trained the MAF (Papamakarios et al., 2017) model
to fit 8 models and estimated the average density per model for the
points from ”head” and ”stick” parts of the dataset. Than we fitted
regression to those averages. Calculated LID estimate for points in
the ”head” of the lollipop was 1.96, and for points from the ”stick”
part estimated LID was 1.00.

4.2 COMPARISON WITH OTHER ALGORITHMS ON SYNTHETIC DATASETS

We collated LIDL with other LID estimation algorithms (Levina & Bickel, 2004; Kleindessner &
Luxburg, 2015) for intrinsic dimension estimation by comparing it with estimates in Table 1 from
Kleindessner & Luxburg (2015). Each algorithm in Kleindessner & Luxburg (2015) was tested on
a dataset of size 1000, so we used the data set of the same size for LIDL training (we used 750
examples from this set for training and 250 for validation). We used MAF and RQ-NSF (Durkan
et al., 2019) for this experiments. The results of this comparison (each one with a standard deviation
calculated using 10 experiments) are presented in Table 1 and in Fig. 1. From this experiments we
can clearly see, that LIDL yields result close to the original dimensionality for low-dimensional
datasets and gives better estimates in higher dimensions.
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Table 1: LIDL comparison with algorithms from Table 1 in (Kleindessner & Luxburg, 2015).

Distribution ID ECAP (V ) EDP (V ) MLE CorrDim RegDim LIDL
uniform on a helix in R3 1 1.00±.05 0.88±.01 1.00±.01 1.00±.11 0.99±.01 0.97±.15

Swiss roll in R3 2 2.14±.05 1.44±.01 1.94±.02 1.99±.23 1.87±.04 2.68±.35

N5(0, I) ⊆ R5 5 5.33±.07 2.47±.01 5.00±.04 4.91±.56 4.86±.05 5.00±.02

uniform on sphere S7 ⊆ R8 7 5.88±.06 2.82±.01 6.53±.07 6.85±.66 6.23±.09 7.02±.18

uniform on [0, 1]12 in R12 12 7.74±.08 3.04±.01 9.32±.10 10.66±1.18 8.78±.10 11.55±.33

Table 2: LIDL estimated ID compared with CorrDim estimate in higher dimensions.

Distribution ID CorrDim LIDL
N1(0, I) ⊆ R2 1 1.00±.001 1.02±.04

N10(0, I) ⊆ R20 10 7.45±.02 10.14±.08

N100(0, I) ⊆ R200 100 30.18±.13 100.92±.62

N1000(0, I) ⊆ R2000 1000 102.64±.85 1048.42±21.52

4.3 HIGH-DIMENSIONAL SYNTHETIC DATASETS

We compared LIDL with CorrDim on four datasets of size 10K with Gaussian distribution embedded
in higher dimensional space with ID equals 1, 10, 100, and 1000 dimensions. Results are presented
in Table 2 and show, that LIDL scales to higher dimensions unlike CorrDim algorithm.

4.4 IMAGE DATASETS

Figure 4: At the first 3 rows we show MNIST im-
ages with low, medium and high LID estimates
from LIDL. 3 middle rows show the same for FM-
NIST and 3 bottom show the same for Celeb-A.

We ran LIDL on MNIST (image size 32x32x1)
(LeCun & Cortes, 2010), FMNIST (32x32x1)
(Xiao et al., 2017) and Celeb-A (64x64x3) (Liu
et al., 2015) datasets using Glow (Kingma &
Dhariwal, 2018) as a density model. Before
training all images were normalized to have
pixel values between (−0.5, 0.5). Estimated di-
mensionalities for MNIST images span roughly
from 40 to 250, for FMNIST those numbers
are 100 and 900, and for Celeb-A we estimated
dimensionalities between 2500 and 6500. Af-
ter sorting the dataset according to the local
intrinsic dimension of individual data points,
we observed that visually more complicated ex-
amples have higher estimated dimensionalities.
Some small, medium and high dimensional im-
ages from those datasets are shown in Fig. 4 and
7. More details about experiments can be found
in Appendix D and E.

5 CONCLUSIONS

We introduced the algorithm for LID estimation based on NF as density estimators, provided the
theoretical justification for it, and showed that it can scale to datasets of thousands of dimensions.
Our approach, however, is limited by the ability of NF models to scale to even higher dimensions.
For now, we are not able to cope with datasets of images consisting of millions of pixels. We
hope that current intensive research on NF models will make them able to scale to those datasets
eventually and automatically make LIDL to be able to estimate LID for them as well.
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Appendices
A PROBLEM DEFINITION

Let us assume the data manifold is a union of J separate manifolds, and we will use a discrete
indexing variable e, 1 ≤ e ≤ J . Let Xe ⊆ RTe be a set of low-dimensional sets of dimensionality
Te, ϕe : Xe →M⊆ RM a set of smooth embeddings of Xe into a high-dimensional spaceM, pXe

a probability density function supported on Xe, and pe a probability mass function over the indexing
variable e. Assume that a datapoint x̃(n) is drawn by first sampling a random variable E(n) ∼ pe
which decides which of the submanifolds the datapoint will drawn from, and then drawing the
sample from an appropriate distribution x̃(n) ∼ pX

E(n)
. Next, the samples x̃(n) are embedded

into the observation space RM via a corresponding ϕE(n) , possibly disturbed by noise η(n) ∈ RM ,
resulting in the samples x(n) = ϕE(n)

(
x̃(n)

)
+ η(n). The resulting probability density function

supported onM is denoted as pD(x). Given a dataset of samples x(n), the task of LID estimation
is to infer the corresponding values TE(n) .

B THE ASSUMPTION OF CONSTANT DENSITY ALONG THE TANGENT
SUBSPACE

Let us revisit the assumption we made in the previous section about the density along the tangent
subspace pT being constant, e.g., as per Fig. 5a.

Naturally, in general the density pT will not be constant and so we need to question ourselves how
much of an error will that introduce to our LID estimates. To answer that question, consider that
the degree of violation of our assumption is a product of two factors: the magnitudes of δ1, δ2 used
to make the LID estimates, and the rate of change of pT which worst case could be analyzed by

7
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considering by Lipschitz constants of the distributions pXe
and the associated functions ϕe. The

smaller the δ values, the larger the rate of change of pT can be while keeping the degree of violation
of our assumption fixed. This means that we can alleviate this violation by using small values of δ
(as much as numerical precision allows), but it does introduce limitations on the smoothness of pXe

and ϕe—we will be able to perform better LID estimation for smoother densities.
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(a) Constant density
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(b) Varying density

Figure 5: Comparison of the two possible scenarios of density along the tangent subspace pT : (a)
constant density, which corresponds to the top middle panel in Fig. 2, and (b) varying density. Note
that even though the densities pD are singular, as described in the caption of Fig. 2, the values of pT
are finite since defined over the tangent subspace.

C ALGORITHM

LIDL algorithm is written out in details in Algorithm 1.

Algorithm 1: LIDL: Local Intrinsic Dimension estimation using approximate Likelihood.
Input: Dataset D;

d – number of models to estimate;
M – dimensionality of the data space;
∆ = (δ1, ..., δd) – list of values of δi;
Set S of N points from RM , at which we want to estimate LID;

Result: List of Tj’s – LID estimates for points in S;
for δi in ∆ do

initialize model Fi;
while Fi not converged do

Sample batch b from D;
Sample noise ni from N (0, δiI);
bi ← b+ ni;
Make training step on Fi using bi;

end
end
for xj in S do

for Fi in (F1, ...,Fd) do
Estimate likelihood qij at point xj using model Fi;

end
Calculate regression coefficient Oj for a list of d pairs:
((log q1j , log δ1), ..., (log qdj , log δd));
Tj ←M −Oj ;

end

8
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Figure 6: Empirical cumulative distribution function (CDF) of 5000 examples from MNIST dataset.
Each line represents CDF for separate class in the dataset. Class number (which also is a represented
digit in this case) can be found in the legend.

D MORE ON LIDL ESTIMATES ON MNIST

We also used LIDL estimates for MNIST dataset to analyse how the LID distribution looks for
different classes. Empirical CDFs of those values for each digit separately are presented in Fig. 6.
Classes 1s and 7s have the lowest LIDs and 8s and 0s have the highest dimensionalities, which is
consistent with the visual complexity of those classes.

We can ask a question: how LIDL estimates are close to underlying LID? The estimated IDs reported
for some MNIST digits in Table 1 in (Kleindessner & Luxburg, 2015) are between 3.07 and 18. On
the other hand Cavallari et al. (Cavallari et al., 2018) and Wang et al. (Wang et al., 2016) used
auto-encoder representation of MNIST as an input to SVN digit classifier and they achieved the best
classification results for an auto-encoder with latent space size greater than 100. This means that we
need more than 100 dimensions to encode an average MNIST digit, which is more consistent with
our result than with (Kleindessner & Luxburg, 2015).

E NF IMPLEMENTATIONS

For non-image datasets we used MAF and RQ-NSF implementations from nflows library (Durkan
et al., 2020). For images we used PyTorch implementation of glow from https://github.
com/rosinality/glow-pytorch.
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Figure 7: Closer look at Fig. 4
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