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Abstract

Contrastive learning methods can be applied to deep regression by enforcing label
distance relationships in feature space. However, these methods are limited to
labeled data only unlike for classification, where unlabeled data can be used for
contrastive pretraining. In this work, we extend contrastive regression methods
to allow unlabeled data to be used in a semi-supervised setting, thereby reducing
the reliance on manual annotations. We observe that the feature similarity matrix
between unlabeled samples still reflect inter-sample relationships, and that an
accurate ordinal relationship can be recovered through spectral seriation algorithms
if the level of error is within certain bounds. By using the recovered ordinal
relationship for contrastive learning on unlabeled samples, we can allow more data
to be used for feature representation learning, thereby achieve more robust results.
The ordinal rankings can also be used to supervise predictions on unlabeled samples,
which can serve as an additional training signal. We provide theoretical guarantees
and empirical support through experiments on different datasets, demonstrating that
our method can surpass existing state-of-the-art semi-supervised deep regression
methods. To the best of our knowledge, this work is the first to explore using
unlabeled data to perform contrastive learning for regression. Code is available at
https://github.com/xmed-1ab/CLSS.

1 Introduction

Contrastive learning is an effective technique for improving feature representations in deep neural
networks (DNNs) [31 14,119, [33 [10]. These methods involve identifying positive and negative sample
pairs based on feature similarity, where positive pairs are usually defined as augmented samples from
the same input or samples from the same class. Early works such as SImCLR [3]], MoCo [4]], and
SupCon [19]], showed that pretraining DNNs through contrastive learning can lead to state-of-the-art
classification results due to improved feature representations. These techniques have since been
extended to segmentation [33}43]], video recognition [10]], multi-modality learning [28], as well as
deep regression [8l 142, |37]] to great effect.

It is possible to perform contrastive learning for classification in an unsupservised manner, which
allows large amounts of unlabeled data to be used [3} 4} 28]]. Unsupervised contrastive learning is not
possible for deep regression tasks however, because in order for feature representations to be effective
for regression, they must reflect label distance relationships in feature space [8, 142} 37]]. Contrastive
regression loss functions ensure that sample pairs with smaller label distances have features that are
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Figure 1: Obtaining rankings from feature similarity. (a) Given labeled samples with well trained
features, the ranking of an unlabeled sample can be easily inferred to be between the two with the
highest similarity values. (b) The correct ranking can still be inferred with noisy features, as long
as the noise levels are within certain thresholds. (c) Given a feature similarity matrix of unlabeled
samples, the correct ranking can still be obtained if noise levels are within certain bounds.

more similar, compared to those with greater label distance. Because of this, existing methods can
only be used on fully labeled datasets, which can be a limiting factor when annotations are costly to
obtain. This is especially true for medical imaging analysis, where deep regression is important for
estimating real-number medical indicators but often require expert knowledge for manual annotation
(8, 120, 40].

In this work, we extend contrastive learning for deep regression such that unlabeled data can also
be used. We consider a semi-supervised setting where only a small portion of the training dataset
is labeled, and the majority of samples are unlabeled. We observe that by enforcing supervised
contrastive learning on labeled samples, the feature similarity matrix of unlabeled samples will also
learn to reflect label distance [8]. Although the unlabeled feature similarity matrix will be inaccurate
and noise corrupted, it is still possible to infer the relative ordering of samples if errors are within
certain bounds. To give an intuitive example, it is easy to infer the relative ranking of an unlabeled
sample based on its pair-wise feature similarity against labeled samples, assuming that features are
well-trained (see Fig. [Th). Even in the presence of noisy features, it is still possible to infer the correct
ranking if most of the similarity values are reliable (Fig. [Ib). Similarly, given a feature similarity
matrix for a batch of unlabeled samples, it is still possible to infer their relative ordering even with
some degree of noise present (Fig. [Tf).

To this end, we propose a novel semi-supervised contrastive regression method by making use of
ordinal rankings recovered from the unlabeled feature similarity matrix. We make use of the spectral
seriation algorithm proposed by Atkins et al. [2] for ranking recovery, which can then be used
to construct a distance matrix for supervising contrastive learning on the unlabeled samples. The
spectral seriation algorithm is based on an error-minimization approach and allows for some degree
of error correction when extracting rankings from the feature similarity matrix. Thus, the ordinal
rankings can also be used to supervise predictions on unlabeled samples, which we demonstrate leads
to further improvements for semi-supervised regression. We term our method Contrastive Learning
with Spectral Seriation (CLSS). Fig. [2]illustrates our overall framework.

We provide theoretical proofs and empirically show that our method can achieve state-of-the-art
performance on multiple datasets. Our method is highly beneficial for critical applications such
as medical imaging analysis, where annotations can be expensive to obtain. To the best of our
knowledge, CLSS is the first to extend contrastive learning for deep regression to unlabeled data. To
summarize, our main contributions are: (1) we propose CLSS, a novel semi-supervised contrastive
learning method that is the first to use unlabeled data for contrastive regression; (2) we demonstrate
that spectral seriation can be used to extract robust rankings from the feature similarity matrix of
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Figure 2: Framework for Contrastive Learning with Spectral Seritation (CLSS). Unlike existing
works for contrastive learning that are only able to use labeled data, we make use of spectral seriation
to obtain ordinal rankings for unlabeled samples. This can then be used for constrative learning and
ranking supervision for unlabeled samples.

unlabeled samples for supervision; (3) we demonstrate that our method can outperform existing
state-of-the-art alternatives on different deep regression tasks using multiple datasets.

2 Related Work

Contrastive Learning

Contrastive learning for classification involves identifying positive and negative sample pairs based
on feature similarity, which allows similar samples to be grouped closer together in feature space
[3L[19L[15]. These methods can be performed supervised or unsupervised depending on how positive
pairs are defined. SimCLR [3] and MoCo [[15] defines positive pairs as augmented samples from
the same input data, which means labels are not required. Supervised methods such as SupCon [[19]]
define positive pairs as samples belonging to the same class.

Contrastive learning for deep regression requires features to reflect label distance relationships in
feature space. Dai et al. propose AdaCon, which uses adaptive margins in the SupCon loss function to
encourage similarity values to reflect pair-wise label distance [8]]. Xue et al. [37]] find that determining
positive and negative pairs based on distance thresholds can be effective for regression tasks. Zhang
et al. introduce ordinal entropy, which also encourages features to be spread out depending on their
pair-wise label distance [42]. Results from these methods show that improving feature learning is a
highly effective way to improve deep regression model performance. Because label information is
required for these existing contrastive regression loss functions, they cannot be used with unlabeled
data however. Our method, CLSS, is the first to extend contrastive learning for regression to allow
unlabeled data to also be used for training.

Semi-Supervised Regression

Semi-supervised learning allows unlabeled data to be used with labeled data for model training.
It is an effective way of reducing reliance on manual annotations and is particularly valuable for
applications where labeled data is costly to obtain [9, 22} [23] 39| 21]]. Semi-supervised classification
methods are well studied [29, 41]], but semi-supervised deep regression problems receive significantly
less attention [7]]. Early works such as COREG [44]] propose using co-trained KNN neural networks
to enforce consistency between two models. Consistency based methods have also been explored
in [36l 134]. Iterative approaches for generating pseudo-labels [12]], deep kernel learning methods
(25,1351 18], and graph based methods [31] have been proposed for semi-supervised learning in more
recent works. A major limitation of these methods is that they are primarily designed for structured
tabular data however, and cannot be trained end-to-end with a deep feature extractor for unstructured
1nputs.

Dai et al. proposed UCVME [7], which enforces consistent uncertainty predictions between co-
trained models, and can be used for unstructured inputs such as images and videos. Although this



method achieves good performance, it ignores potential improvements that can be made on the feature
level, which is critical to the performance of deep regression models [} 42]. In this work, we are the
first to address the challenge of performing contrastive learning for deep regression by making use of
unlabeled data.

3 Method

3.1 Overview

Our novel method allows contrastive learning to be performed with unlabeled data under a semi-
supervised framework. We denote D = {(z;, yl)}f\;l as the labeled dataset consisting of /N samples,

where z; is the input data and y; is its corresponding label in IR. We denote D’ := {x, }fyzl as the
unlabeled dataset consisting of input data only. We denote the feature extractor as f(-) and the feature
vector as z for labeled data, such that z; = f(x;). Similarly, we denote features for unlabeled data
as z}. Contrastive learning is performed on the L2 normalized feature vector, with some methods
also performing feature projection onto a lower dimension [8, 42} 3]. We denote the transformed,
normalized feature vector for labeled data as Z such that Z; = HZZW We use Z’ for unlabeled data.

The feature similarity matrix for labeled and unlabeled samples are denoted as S and S’ respectively.

We denote the regression head as g(-). The overall deep regression model can be expressed as:
Y =g(f(X))+e; e~ N(0,0%). e

The model can be trained through supervised regression by minimizing mean squared error (MSE)

loss, which we denote as £5%:
N

£ = %Z(yi — 1) @
i=1
Supervised contrastive learning can be performed on the normalized feature vectors for labeled
samples 7 using different contrastive regression losses, which we denote as £5¢. Spectral seriation
can then be used to extract the ordinal rankings R’ from S’ for supervising contrastive learning and
predictions on labeled samples. We describe our method in detail below.

3.2 Using ordinal ranking from spectral seriation for supervision

3.2.1 Spectral seriation for retrieving ordinal ranking from similarity matrix

Contrastive learning for deep regression aims to ensure that feature representations reflect label
distance relationships in feature space [8, 42, 37]. If y; and y; are closer together than y; and y;;, than
the distance between features z; and z; should be closer together than z; and 2. Thus:

[12i — Zjll2 < [|Zi — Zxll2 for |yi —y;l < |yi — ywl- 3)

Alternatively, because we use L2 normalized feature vectors,

Y(Zi, Z5) > (&, Z) for |yi —y;| < lyi — yl, “4)

where +y is the cosine similarity function, and v(Z;, Z;) and y(%;, Z) correspond to entries in similarity
matrix S. By performing supervised contrastive learning on labeled samples, we can also expect
entries in S’ to also approximate Eq. E] with noise, as they have been trained to reflect distance
relationships in feature space.

To retrieve the ordinal ranking R’ of samples in an unlabeled batch, we can make use of the spectral
seriation algorithm originally proposed by Atkins et al. [2]. The algorithm is designed to recover an
ordinal ranking given a correlation matrix, where higher correlation values indicate closer proximity
in ranking. The algorithm is especially useful for when it is easy to determine the similarity between
sample pairs but difficult to obtain a direct ordering. Cosine similarity is equivalent to correlation
after L2 normalization. Therefore spectral seriation can also be used to recover R’ from S’.

The seriation problem can be formulated as a loss minimizing function:

: 2
argermn;S{J(R; - R})?, Q)



where S;, 5 =%, Z;). Since sample pairs closer together in ranking have higher correlation values,
minimizing this loss encourages these samples to have R; and R; that are closer together. As per
spectral seriation, the solution to R’ can be derived from the Fiedler vector, as stated in Theorem 1.

Theorem 1 Given similarity matrix 8" such that S| ; > S} . for |yi — y;| < |yi — yk|, the ordinal
ranking that best satisfies observed S’ is the ranking of the values in the Fiedler vector of L, where L

is the Laplacian of S| ;.

Intuitively, the proof of this theorem can be obtained by approximating discrete rankings R’ with
real-number values 7’ and expressing Eq. |5|in the form of:

min rTLr . (6)
T‘/TEZO,T‘/TT'/:l

r’ can be solved by computing the Fiedler vector, which is the eigenvector corresponding with the
smallest non-zero eigenvalue. The relative rankings of 7’ then give us R’. We refer interested readers
to [2] for detailed derivations.

3.2.2 Unlabeled contrastive learning with seriation rankings

Spectral seriation gives us rank R’ of unlabeled samples within a batch. From this, we can obtain
rankings on the distances between sample pairs for some anchor sample i. The distance ranking can
be used to supervise contrastive learning on unlabeled samples by ensuring that the feature similarity
values are consistent with the rankings. We define the unlabeled contrastive learning loss with respect
to some subset 3 as:

|B|

LY = "0 (rk(S]; ), tk(—=|R = Rpy|); \), %
=1

where [7,:] denotes the ith row in the matrix, [¢| denotes the ith value of a vector, rk denotes the
ranking operator, and / is the ranking similarity function. This loss function ensures that the ranking
of the feature similarity values with anchor sample ¢ are consistent with that of the distances between
derived rankings obtained from seriation. For the differentiable ranking similarity loss function ¢,
we directly use the differential combinatorial solver proposed in [27]], which takes an additional
parameter A. On a high level, the function makes use of interpolation methods to allow combinatorial
inputs to be differentiable, although detailed explanations can be found in the original work.

3.2.3 Ranking supervision of unlabeled predictions with seriation rankings

Given R’ for unlabeled samples, we can also perform supervision on the prediction output §. The
spectral seriation algorithm is inherently robust to error, which we show in section which means
pair-wise distance rankings from seriation are likely to be more accurate than the predicted output.
We define the unlabeled prediction ranking loss with respect to some subset 5 as:
|B|
LU= "0 k(=3 — iy]), rk(=|R' = R{]); V), ®)

i=1

where [¢] denotes the ith value of a vector. This serves as an additional supervision for unlabeled data.

3.2.4 Overall framework
The total loss function £ of our method is:
L£=L"+wsc L5 +wycl? +wyrlY, ©))

where L8, £5C £UC and LURE represent the loss values of supervised regression, supervised
contrastive loss, unsupervised contrastive loss, and unsupervised ranking loss. wsc, wy e, and wy r
are the corresponding loss weights. £Y¢ and LU% are calculated using unlabeled data with the
ordinal rankings recovered through spectral seriation. Fig. [2{ shows the overall framework.



3.3 Robustness analysis of spectral seriation

Because spectral seriation is based on a loss minimization approach, the algorithm itself is robust to
noisy inputs. In this section, we provide theoretical proofs to formally show that spectral seriation is
robust to two different types of noise: noisy similarity matrices, and noisy feature representations.
We derive approximate bounds to analytically demonstrate that spectral seriation can be a reliable
method for recovering ordinal rankings from noisy similarity values of unlabeled samples. Additional
derivations are also included in the supplementary materials for more technical readers.

3.3.1 Robustness to noise in the similarity matrix

We make use of matrix perturbation theory to show that spectral seriation ranking is robust to noisy
values in similarity matrix S’. We give an upper bound for the noisy entries of the similarity matrix,
and show that when the errors of the similarity matrix are bounded, our spectral ranking algorithm
recovers the true ranking, thereby demonstrating the error correcting nature of spectral seriation.

The main result is presented in Theorem 2. We first present two related lemmas to assist with the
proof, where Lemma 1 provides the perturbation bounds for eigenvalues of symmetric matrices, and
Lemma 2 provides the upper bound of the Fiedler value.

Lemma 1l Let A,B € C"*" be Hermitian matrices, \(A) = {\;},A(B) = {ui}, M1 < A2 <
S Ay S pp <o < g, then:

i = Ail < B —All2.
Lemma 2 ) is the Fiedler value of the Laplacian matrix L of the similarity matrix S', then:
/\ S % minlgign {L“}

Theorem 2 For a similarity matrix S', suppose the error matrix of it is AS'. When 2||AS'||r <

inj<i<n 1S .o . . . . .
] - hsis 7;{721:”“ | ”‘}, the seriation obtained by the spectral ranking algorithm using S' is the
same as that obtained by the spectral ranking algorithm using S’ + AS'.

The proof of Theorem 2 relies mainly on the definition of the Fielder vector, Lemma 1 and Lemma 2.
First order approximation is used to approximate changes in the Fielder vector after adding noise to
the similarity matrix, thus allowing us to obtain upper bounds for the noise level. Detailed derivations
are included in the supplementary materials.

3.3.2 Robustness to noise in feature representations

We next consider the case where the feature representation for some given sample Z; is noisy. The
direct consequence of this is that all entries in rows 4 and column j of S’ will be noisy. We can also
use a similar approach to show that the spectral seriation algorithm can recover the correct ranking as
long as the error values are within an upper bound.

Theorem 3 For a similarity matrix S’, suppose rows i and column i are corrupted due to in-

adequate feature representations being learnt for sample i. When ||AS’[1.7:]||2 — ||ASE¢,;}||1 +
maXlSan |ASZ/J| S 1 — mil’llgignﬂ{_zit¢i|sit‘}

algorithm using S' is the same as that obtained by the spectral ranking algorithm using S’ + AS'.

, the seriation obtained by the spectral ranking

The proof for Theorem 3 can be obtained following a similar approach to Theorem 2. We include
detailed derivations in the supplementary materials.

4 Experiments

We evaluate our proposed method using three different types of datasets to demonstrate its effec-
tiveness as a general approach for semi-supervised deep regression. We use a synthetic non-linear
dataset for operator learning, a medical imaging dataset for brain age estimation from MRI scans,
and a natural image dataset for age estimation from photographs.



4.1 Synthetic dataset for non-linear operator learning

We use the non-linear synthetic dataset generated by Lu ef al. in problem 6 of [24]] and train a neural
network to estimate the operator function. The target is the stochastic partial differential equation:

—div(e"@vu(z;w)) = f(z), (10)

where w is stochastic, z € (0,1), and e?®®) is a diffusion coefficient where b(x;w) follows a
random Gaussian process. The Dirichlet boundary conditions are (0) = u(1) = 0, and f(z) = 10.
The input data {z}¥ | are outputs generated by (z;w) and the target label {y}¥ | is the solution of
u(x; w). More details of the data generation process can be found in problem 6 of [24].

We use the same architecture and training scheme following [42], which consists of a two-layer fully
connected neural network with 100 hidden units. We perform 10 separate training runs on 1,000
samples each and test our model on a set of 100,000 samples. Mean and standard deviation of the
10 runs are reported. We use ordinal entropy [42] as the contrastive loss function £°¢, which is
imposed on the feature layer after L2 normalization. Training is performed with a learning rate of
1 x 1073, We use the entire dataset as an input batch and train for 100,000 epochs. Smaller batches
of 10 samples are used to calculate £5¢, £V¢, and LY" to reduce computation time due to the
quadratic scaling of the feature similarity matrix. We set wsc,wyc, and wyg to 1 x 1073 and A to
2. Implementation is done in PyTorch and training is performed on a single V100 Nvidia GPU.

4.1.1 Comparison with state-of-the-art alternatives

We compare with state-of-the-art semi-supervised deep regression methods to demonstrate the
effectiveness of our method, CLSS. We adapt conventional mean-teacher [30] (Mean-teacher) and
cross psuedo-label [S]] supervision (CPS) semi-supervised learning methods for deep regression using
a single output value as the regression prediction. We also compare with the state-of-the-art method,
UCVME, proposed in [7]. For reference, we show results using a supervised naive regression method
using only labeled data. We show in Tableﬂ]results for different settings, where 1/5, 1/4, 1/3, and
172 of available labels are used, and the remaining samples are treated as unlabeled data. Additional
implementation details are provided in the supplementary materials section.

Table 1: Comparison with state-of-the-art methods on synthetic non-linear dataset.

MAE]
Type Method 1/5 labels 1/4 labels 1/3 labels 1/2 labels
Supervised | Regression 0.098 £0.095 0.056 £0.016 0.041 £0.015 0.032 £ 0.009
Mean-teacher [30] | 0.080 + 0.089 0.047 £0.021 0.043 £ 0.019  0.029 £ 0.011
Semi- CPS [5] 0.057 £0.012 0.045£0.016 0.041 £0.015 0.028 £ 0.007
supervised | UCVME [] 0.040 £ 0.008  0.033 £0.008 0.027 & 0.007  0.028 £ 0.021
CLSS (Ours) 0.033 £ 0.008  0.027 = 0.009  0.020 = 0.007  0.016 £ 0.007
R*1
Type Method 1/5 labels 1/4 labels 1/3 labels 1/2 labels
Supervised | Regression 66.9% £ 394  83.8% £17.7 88.5% £ 8.0 90.9% £ 5.1
Mean-teacher [30] | 69.4% =+ 40.1 86.9% + 8.4 90.7% £ 7.6 92.5% £ 7.2
Semi- CPS [3] 84.5% + 8.8 88.8% £ 8.5 88.5% £ 8.0 93.3% £ 5.3
supervised | UCVME [7] 92.2% £ 3.6 94.2% + 2.8 95.0% £ 3.0 95.6% + 4.3
CLSS (Ours) 96.4% + 1.7 97.3% + 2.4 984% +1.3  99.3% + 0.5

We can see that semi-supervised methods generally outperform naive supervised regression. Our
proposed method, CLSS, convincingly outperforms alternative methods however and consistently
improves R? by 3-4% over the next best alternative across all settings. Computational and memory
costs for each method are also provided in Section S3.1.5 of the supplementary materials for reference.

4.1.2 Ablation Study

To analyse the effect of different components in our methodology, namely the use of £°¢, £LVC and
LUE, we perform training with the loss functions added separately to study their impact. We plot
the results in Fig. 3| for easier visualization. We can see that each individual component leads to



significant contributions in improved performance across all settings. This provides further empirical
support of the effectiveness of CLSS.
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Figure 3: Ablation results from adding £5¢, £YC and LUF separately. Using £LV¢ and LYF to
supervise unlabeled samples consistently leads to better predictions.

4.1.3 Quality of ordinal rankings from spectral seriation

CLSS uses the ordinal rankings recovered from S’ to supervise predictions on unlabeled samples.
This is based on the observation that the spectral seriation algorithm is robust to errors and more
likely to provide accurate supervision. To validate this, we compare with results using rankings
derived from predictions ¢ instead of from spectral seriation. We formulate a new loss £LV¢7:
|B]
Ucp RS
LYCE =34 (vk(Sp; )s vk(=[3' = 7y]) » (11)
i=1

and train the model using loss function £ = £ + wgcL5¢ + wycpLYCT. We do not include
LU since predictions 7 are already used to derive the ranking. Results are shown in Table

Table 2: Results using different rankings for supervision

MAE | /R%*t
Method 1/5 labels 1/4 Tabels 1/3 labels 172 Tabels
Regression+£°C+L£YCT | 0.039/92.4%  0.030/95.8% 0.024/96.8% 0.016/98.5%
CLSS (Ours) 0.033/96.4% 0.027/97.3% 0.020/98.4% 0.016/99.3%

We can see that CLSS consistently performs better than using rankings derived from predictions
7/’. This validates the observation that rankings obtained through spectral seriation are more robust,
leading to better supervision on unlabeled samples.

4.2 Validation on Brain Age estimation from MRI Scans

Semi-supervised deep regression problems are particularly valuable for medical applications, as
real-number medical indicators are common for disease tracking [8, 26, [17], and labeled data are
usually costly to obtain [20, 21} 9]. We validate CLSS on the IXI brain MRI dataset for brain age
estimation [13]]. Brain age estimation involves training a model to learn relevant phenotypes from
MRI scans associated with brain health and has important applications in detection of diseases
such as Alzeimer’s [6}14]. Typically, a model is trained using brain MRIs from healthy patients to
predict chronological age, and then used to make predictions for unhealthy patients to estimate their
biological brain age for disease screening [1]]. This process assumes that patients used for training
have similar chronological and biological ages however, which requires data from healthy individuals
to be used. By making use of unlabeled data, we can make training more robust since chronological
age is not strictly enforced as the ground truth for these samples. This also reduces the reliance on
healthy patients for training.

The IXI dataset consists of 588 MRI brain scans with corresponding ages between 20 and 86 [[13]].
Out of these, we use 88 samples as the test set and 80 samples as the validation set. A 3D ResNet-18
[32] is used as our model. We use a learning rate of 1 x 10~3 with 0.1 decay every 10 epochs and



train for a total of 30 epochs. We use a batch size of 16 for labeled samples and a batch size of 8
for unlabeled samples. We set wsc = 1, wyc = 0.05, wyr = 0.01, and A\ = 2, which were chosen
based on the validation set. To account for unstable training, all experiments were run separately 10
times using different random seeds. Mean and standard deviation of the 10 runs are reported. We use
PyTorch for implementation and train on a single V100 Nvidia GPU.

4.2.1 Comparison with state-of-the-art alternatives and ablation studies
We compare results from using CLSS with alternative state-of-the-art semi-supervised methods and

show results in Table@ We use settings where 1/5, 1/4, 1/3, and 1/2 of the dataset is treated as labeled
data and remaining samples are treated as unlabeled data.

Table 3: Comparison with state-of-the-art methods on IXI brain age dataset.

MAE|
Type Method 1/5 labels 1/4 labels 1/3 labels 1/2 labels
Supervised | Regression 995+141 1193+£140 11.76 £1.75 1093 +1.60
Mean-teacher [30] | 11.23 +£2.31 1027 £1.57 10.52+£3.12 12.01 £2.03
Semi- CPS [3] 1023 £ 141 1027+ 1.19 9.64 =127  9.69 + 1.01
supervised | UCVME [7] 9.83+132 1086+1.67 9.65+131 10.06+1.19
CLSS (Ours) 958 +148 9.68+122 972+129 937+1.17

We can see from the results that our method, CLSS, performs the best under all semi-supervised
settings except 1/3 labels. CLSS therefore can be used as an effective way of reducing reliance on
labeled data for medical imaging analysis applications. Additional ablation experiments are included
in the supplementary materials and demonstrate the importance of each component in CLSS.

4.3 Validation on Age-Estimation from photographs

We also validate our method on a natural image dataset to provide further empirical support. We use
the AgeDB-DIR dataset [38] for performing age-estimation from photographs, a common benchmark
task for deep regression. Although photographs of people can easily be obtained online, accurate
age labels are not always available due to privacy issues. This challenge can be addressed through
semi-supervised deep regression methods to reduce reliance on labeled data. AgeDB-DIR consists of
16,488 images of people with ages ranging between 1 and 101. The dataset has fewer tail samples to
reflect real-world label imbalance settings. We use the same data splits provided by the dataset for
training, validation, and testing.

We use a ResNet50 network [16]] pretrained on ImageNet [11]] as our deep regression model. We use
a learning rate of 5 x 10~* with decay of 0.1 every 10 epochs and train for 30 epochs. We use a
batch size of 32 for labeled samples and a batch size of 8 for unlabeled samples. We set wgc = 1,
wye = 0.05, wyr = 0.01, and A\ = 2, which were chosen based on the validation set. To account
for unstable training, all experiments were run separately 10 times using different random seeds.
Mean and standard deviation of the 10 runs are reported. We use PyTorch for implementation and
train on a single V100 Nvidia GPU.

4.3.1 Comparison with state-of-the-art alternatives and ablation studies

We compare results from using CLSS with alternative state-of-the-art semi-supervised methods and
show results in Table@ We use settings where 1/30, 1/25, 1/20, and 1/15 of the dataset is treated as
labeled data and remaining samples are treated as unlabeled data.

We can see from the results that CLSS outperforms alternative methods for all settings. Overall, the
experiments demonstrate that CLSS can also be applied effectively to natural image datasets. We
also include ablation experiments in the supplementary materials to highlight the effect of different
components.



Table 4: Comparison with state-of-the-art methods on AgeDB-DIR dataset.

MAE|
Type Method 1/30 labels 1/25 labels 1/20 labels 1/15 labels
Supervised | Regression 10.14 £025 9.99+0.11 9.10+0.15 8.58+0.10
Somi- Mean-teacher [30] | 10.05+0.29 999+0.13 9.05+0.12 8.62+0.09
supervised CPS [5] 9.99+0.12 9.83+£0.10 899+0.14 8.47+£0.08
Ours 9.95+0.18 9.59+0.12 888+0.09 845+£0.11

5 Conclusion

In this work, we propose a novel approach, CLSS, that allows unlabeled data to be used for contrastive
learning on deep regression tasks. We make use of the observation that the feature similarity matrix of
unlabeled samples also reflect label distance between samples, and that a robust ordinal ranking can
be extracted from the matrix using spectral seriation. We derive theoretical bounds for error values in
the similarity matrix for which the derived ordinal ranking remains correct, thereby demonstrating
the robustness of our method. We validate our method empirically on a synthetic dataset and two real-
world datasets and show that our method can outperform alternative state-of-the-art semi-supervised
deep regression methods. Overall, CLSS is a useful technique for improving the performance of
semi-supervised deep regression models.

6 Acknowledgements

This research is supported by grants from the National Natural Science Foundation of China/HKSAR
Research Grants Council Joint Research Scheme under Grant N_HKUST627/20, by the Project of
Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-
2020083), by the Hong Kong Innovation and Technology Commission (Project no. ITS/030/21 &
Project no. PRP/041/22FX), and by Foshan HKUST Projects under FSUST21-HKUST10E and
FSUST21-HKUST11E.

References

[1] Karim Armanious, Sherif Abdulatif, Wenbin Shi, Shashank Salian, Thomas Kiistner, Daniel Weiskopf,
Tobias Hepp, Sergios Gatidis, and Bin Yang. Age-net: An mri-based iterative framework for brain
biological age estimation. IEEE Transactions on Medical Imaging, 40(7):1778-1791, 2021.

[2] Jonathan E Atkins, Erik G Boman, and Bruce Hendrickson. A spectral algorithm for seriation and the
consecutive ones problem. SIAM Journal on Computing, 28(1):297-310, 1998.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In /ICML, pages 1597-1607. PMLR, 2020.

[4] X Chen, S Xie, and K He. An empirical study of training self-supervised vision transformers. in 2021 ieee.
In CVF International Conference on Computer Vision (ICCV), pages 9620-9629.

[5] Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong Wang. Semi-supervised semantic segmentation
with cross pseudo supervision. In CVPR, pages 2613-2622, 2021.

[6] James H Cole and Katja Franke. Predicting age using neuroimaging: innovative brain ageing biomarkers.
Trends in neurosciences, 40(12):681-690, 2017.

[7] Weihang Dai, Xiaomeng Li, and Kwang-Ting Cheng. Semi-supervised deep regression with uncertainty
consistency and variational model ensembling via bayesian neural networks. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6):7304-7313, Jun. 2023.

[8] Weihang Dai, Xiaomeng Li, Wan Hang Keith Chiu, Michael D Kuo, and Kwang-Ting Cheng. Adaptive
contrast for image regression in computer-aided disease assessment. [EEE Transactions on Medical
Imaging, 41(5):1255-1268, 2021.

[9] Weihang Dai, Xiaomeng Li, Xinpeng Ding, and Kwang-Ting Cheng. Cyclical self-supervision for semi-

supervised ejection fraction prediction from echocardiogram videos. IEEE Transactions on Medical
Imaging, 2022.

10



(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

[27]

Ishan Dave, Rohit Gupta, Mamshad Nayeem Rizve, and Mubarak Shah. Tclr: Temporal contrastive
learning for video representation. Computer Vision and Image Understanding, 219:103406, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248-255.
Ieee, 2009.

Nikos Fazakis, Stamatis Karlos, Sotiris Kotsiantis, and Kyriakos Sgarbas. A multi-scheme semi-supervised
regression approach. Pattern Recognition Letters, 125:758-765, 2019.

Katja Franke, Gabriel Ziegler, Stefan Kloppel, Christian Gaser, Alzheimer’s Disease Neuroimaging
Initiative, et al. Estimating the age of healthy subjects from t1-weighted mri scans using kernel methods:
exploring the influence of various parameters. Neuroimage, 50(3):883-892, 2010.

Christian Gaser, Katja Franke, Stefan Kloppel, Nikolaos Koutsouleris, Heinrich Sauer, and Alzheimer’s
Disease Neuroimaging Initiative. Brainage in mild cognitive impaired patients: predicting the conversion
to alzheimer’s disease. PloS one, 8(6):e67346, 2013.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In CVPR, pages 9729-9738, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

Chen-I Hsieh, Kang Zheng, Chihung Lin, Ling Mei, Le Lu, Weijian Li, Fang-Ping Chen, Yirui Wang,
Xiaoyun Zhou, Fakai Wang, et al. Automated bone mineral density prediction and fracture risk assessment
using plain radiographs via deep learning. Nature communications, 12(1):5472, 2021.

Neal Jean, Sang Michael Xie, and Stefano Ermon. Semi-supervised deep kernel learning: Regression with
unlabeled data by minimizing predictive variance. Advances in Neural Information Processing Systems,
31, 2018.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural information processing
systems, 33:18661-18673, 2020.

Xiaomeng Li, Lequan Yu, Hao Chen, Chi-Wing Fu, and Pheng-Ann Heng. Semi-supervised skin lesion
segmentation via transformation consistent self-ensembling model. In BMVC, 2018.

Xiaomeng Li, Lequan Yu, Hao Chen, Chi-Wing Fu, Lei Xing, and Pheng-Ann Heng. Transformation-
consistent self-ensembling model for semisupervised medical image segmentation. /EEE Transactions on
Neural Networks and Learning Systems, 32(2):523-534, 2020.

Yi Li, Yiduo Yu, Yiwen Zou, Tianqi Xiang, and Xiaomeng Li. Online easy example mining for weakly-
supervised gland segmentation from histology images. In Medical Image Computing and Computer
Assisted Intervention—-MICCAI 2022: 25th International Conference, Singapore, September 18-22, 2022,
Proceedings, Part IV, pages 578-587. Springer, 2022.

Yiqun Lin, Huifeng Yao, Zezhong Li, Guoyan Zheng, and Xiaomeng Li. Calibrating label distribution
for class-imbalanced barely-supervised knee segmentation. In Medical Image Computing and Computer
Assisted Intervention—-MICCAI 2022: 25th International Conference, Singapore, September 18-22, 2022,
Proceedings, Part VIII, pages 109—118. Springer, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature machine
intelligence, 3(3):218-229, 2021.

Ankur Mallick, Chaitanya Dwivedi, Bhavya Kailkhura, Gauri Joshi, and T Yong-Jin Han. Deep kernels
with probabilistic embeddings for small-data learning. In Uncertainty in Artificial Intelligence, pages
918-928. PMLR, 2021.

David Ouyang, Bryan He, Amirata Ghorbani, Neal Yuan, Joseph Ebinger, Curtis P Langlotz, Paul A
Heidenreich, Robert A Harrington, David H Liang, Euan A Ashley, et al. Video-based ai for beat-to-beat
assessment of cardiac function. Nature, 580(7802):252-256, 2020.

Marin Vlastelica Poganci¢, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differentiation
of blackbox combinatorial solvers. In International Conference on Learning Representations, 2020.

11



(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748-8763. PMLR,
2021.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus
Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in neural information processing systems, 33:596-608, 2020.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. Advances in neural information processing systems,

30, 2017.

Mohan Timilsina, Alejandro Figueroa, Mathieu d’ Aquin, and Haixuan Yang. Semi-supervised regression
using diffusion on graphs. Applied Soft Computing, 104:107188, 2021.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at
spatiotemporal convolutions for action recognition. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 6450-6459, 2018.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning for
self-supervised visual pre-training. In CVPR, pages 30243033, 2021.

Sebastian J Wetzel, Roger G Melko, and Isaac Tamblyn. Twin neural network regression is a semi-
supervised regression algorithm. arXiv preprint arXiv:2106.06124, 2021.

Lu Xu, Chen Hu, and Kuizhi Mei. Semi-supervised regression with manifold: A bayesian deep kernel
learning approach. Neurocomputing, 497:76-85, 2022.

Shuo Xu, Xin An, Xiaodong Qiao, Lijun Zhu, and Lin Li. Semi-supervised least-squares support vector
regression machines. Journal of information & computational science, 8(6):885-892, 2011.

Tengfei Xue, Fan Zhang, Leo R Zekelman, Chaoyi Zhang, Yuqian Chen, Suheyla Cetin-Karayumak,
Steve Pieper, William M Wells, Yogesh Rathi, Nikos Makris, et al. A novel supervised contrastive
regression framework for prediction of neurocognitive measures using multi-site harmonized diffusion mri
tractography. arXiv preprint arXiv:2210.07411, 2022.

Yuzhe Yang, Kaiwen Zha, Yingcong Chen, Hao Wang, and Dina Katabi. Delving into deep imbalanced
regression. In International Conference on Machine Learning, pages 11842-11851. PMLR, 2021.

Huifeng Yao, Xiaowei Hu, and Xiaomeng Li. Enhancing pseudo label quality for semi-supervised domain-
generalized medical image segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 3099-3107, 2022.

Lequan Yu, Shujun Wang, Xiaomeng Li, Chi-Wing Fu, and Pheng-Ann Heng. Uncertainty-aware self-
ensembling model for semi-supervised 3d left atrium segmentation. In MICCAI, pages 605-613. Springer,
2019.

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. Advances in
Neural Information Processing Systems, 34:18408-18419, 2021.

Shihao Zhang, Linlin Yang, Michael Bi Mi, Xiaoxu Zheng, and Angela Yao. Improving deep regression
with ordinal entropy. In The Eleventh International Conference on Learning Representations.

Xiangyun Zhao, Raviteja Vemulapalli, Philip Andrew Mansfield, Boqing Gong, Bradley Green, Lior
Shapira, and Ying Wu. Contrastive learning for label efficient semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 10623-10633, 2021.

Zhi-Hua Zhou, Ming Li, et al. Semi-supervised regression with co-training. In IJCAI volume 5, pages
908-913, 2005.

12



	Introduction
	Related Work
	Method
	Overview
	Using ordinal ranking from spectral seriation for supervision
	Spectral seriation for retrieving ordinal ranking from similarity matrix
	Unlabeled contrastive learning with seriation rankings
	Ranking supervision of unlabeled predictions with seriation rankings
	Overall framework

	Robustness analysis of spectral seriation
	Robustness to noise in the similarity matrix
	Robustness to noise in feature representations


	Experiments
	Synthetic dataset for non-linear operator learning
	Comparison with state-of-the-art alternatives
	Ablation Study
	Quality of ordinal rankings from spectral seriation

	Validation on Brain Age estimation from MRI Scans
	Comparison with state-of-the-art alternatives and ablation studies

	Validation on Age-Estimation from photographs
	Comparison with state-of-the-art alternatives and ablation studies


	Conclusion
	Acknowledgements

