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ABSTRACT

Low-Rank Adaptation (LoRA) is a widely adopted parameter-efficient fine-tuning
(PEFT) method for Large Language Models (LLMs), but it still incurs notable
overhead and suffers from parameter interference in complex datasets. While re-
cent works decouple LoRA update matrices to exploit matrix-wise asymmetry,
training costs remain high. We revisit LoRA from the perspective of inter-matrix
and intra-layer parameter redundancy and propose Resource-Efficient Low-Rank
Adaptation, ReLoRA, a lightweight and generalizable approach for language,
multimodal, and diffusion models. ReLoRA employs a unified A matrix across
all transformer layers and introduces a runtime selective B matrices update to dy-
namically trade-off the system resource budget and model performance. ReLoRA
consistently outperforms LoRA across diverse modalities, including common-
sense reasoning, visual instruction tuning, and image generation, demonstrating
improved efficiency and robustness. Anonymous codes are submitted with the
paper and will be publicly available.

1 INTRODUCTION

Large Language Models (LLMs; Brown et al. 2020; Devlin et al. 2019; AI@Meta 2024; Meta Plat-
forms, Inc. 2024) offer impressive generalization capabilities but are exceedingly costly to train from
scratch. Consequently, fine-tuning pretrained LLMs for multiple downstream tasks has emerged as
a prevalent technique to meet domain-specific requirements, effectively balancing performance and
resource efficiency. However, full fine-tuning (FFT)—which updates every parameter in models
consisting of billions of parameters—remains computationally and memory-intensive. To overcome
these limitations, Parameter-Efficient Fine-Tuning (PEFT) methods have been proposed, including
LoRA (Zhang et al., 2023b; Hu et al., 2022; Liu et al., 2024b), adapters (Rebuffi et al., 2017; Houlsby
et al., 2019; Karimi Mahabadi et al., 2021), and various derivatives (Li & Liang, 2021; Lester et al.,
2021; Deng et al., 2022; He et al., 2021). PEFT selectively tunes only a subset of model parame-
ters or incorporates specialized modules tailored to specific tasks. By maintaining most of the base
model parameters frozen and fine-tuning only a limited number of task-specific parameters, PEFT,
like LoRA, substantially decreases computational and memory overhead during both adaptation and
deployment phases, thus extending the practical applicability of LLMs. Current research efforts
largely aim at enhancing the efficiency of LoRA further, particularly by minimizing the number of
trainable parameters (Zhang et al., 2023a; Tian et al., 2024). Nevertheless, excessively aggressive
parameter reduction may hinder convergence (Yeh et al., 2023), while overly cautious approaches
risk overfitting. Moreover, PEFT methods (Kaplan et al., 2020; Liu et al., 2024b) inherently under-
perform compared to FFT due to the limited parameter updates, highlighting an essential trade-off
between efficiency and performance. This performance gap becomes particularly evident in com-
plex domains characterized by diverse sub-domains and intricate task distributions (Dou et al., 2024;
Li et al., 2024). This situation presents a compelling research question:

How to achieve high performance and efficient fine-tuning across heterogeneous domains within
tight resource constraints?

Recent studies reveal significant parameter redundancy in low-rank adaptation. This redundancy
manifests at both the matrix-wise (Zhang et al., 2023a; Song et al., 2024; Kopiczko et al., 2023) and
layer-wise (Yao et al., 2024; Lin et al., 2024a; Renduchintala et al., 2023; Pan et al., 2024) levels,
as similar adaptation patterns often recur across different modules, leading to inflated parameter
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counts. Initial approaches to mitigate this issue involve sharing (Song et al., 2024) or freezing
(Zhang et al., 2023a) low-rank matrices across layers. While these techniques reduce parameter
overhead, they often do so at the cost of model expressiveness and generality. The tension between
efficiency and performance is particularly acute in complex task learning, where one must balance
task interference against cross-task synergy. To address this, recent work has explored Mixture-of-
Experts (MoE) frameworks (Gao et al., 2024; Tang et al., 2025; Li et al., 2024) or has decoupled
adapters into shared and task-specific components (Tian et al., 2024; Hayou et al., 2024). However,
such modular designs typically increase the total number of tunable parameters, highlighting an
ongoing need for a more efficient trade-off between adaptation capacity and parameter efficiency.

To address these challenges, we introduce Resource-Efficient Low-Rank Adaptation, ReLoRA, a
lightweight and generalizable framework designed to mitigate both parameter redundancy and inter-
ference. In particular, ReLoRA tackles redundancy by employing a single, unified low-rank matrix
A across all transformer layers. This design enforces a common adaptation subspace, thereby elim-
inating repetitive per-layer parameters. Meanwhile, ReLoRA introduces a selective B matrices up-
date to enhance both efficiency and robustness, further reducing parameter overhead. For complex
settings, ReLoRA deploys parallel, task-specific “B-heads” that learn distinct transformations while
leveraging the shared subspace defined by A. This modular architecture effectively reduces poten-
tially conflicting task objectives, mitigating interference and promoting shared knowledge transfer.
The resulting design strikes a principled balance between parameter efficiency and model expres-
siveness, enabling scalable fine-tuning under stringent resource constraints. Across diverse natural
language, multimodal, and diffusion tasks, ReLoRA consistently outperforms strong baselines, es-
tablishing it as a robust and efficient framework for fine-tuning in complex, heterogeneous scenarios.

2 BACKGROUND AND MOTIVATION

2.1 LOW-RANK ADAPTATION

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is an efficient fine-tuning technique for large pre-
trained models, introducing small low-rank matrices (A and B) that can be applied to arbitrary linear
layers. Formally, for a linear transformation h = Wx with input x ∈ Rdi and weight W ∈ Rdo×di ,
LoRA learns a low-rank decomposed update:

y′ = y +∆y = Wx+BAx, (1)

where y ∈ Rdo is the output, and A ∈ Rr×di , B ∈ Rdo×r are low-rank matrices with r ≪
min(do, di) as the chosen rank. Typically, B is initialized to zeros, while A follows a Gaussian
matrix. During fine-tuning, only A and B are updated, keeping the original model parameters frozen,
thus significantly reducing computational overhead.

2.2 OBSERVATIONS

In this subsection, we revisit LoRA to analyze the trade-off between expressiveness and parameter
efficiency and conduct systematic experiments that shed light on its underlying mechanisms.

Observation I: LoRA exhibits significant parameter redundancy at both the inter-matrix and intra-
layer level. Inter-matrix: for a single LoRA adapter with matrices A and B, recent studies (Tian
et al., 2024; Hayou et al., 2024) observe that that the down-projection matrix A converges to a
strikingly similar subspace across different layers. Consequently, strategies like freezing (Zhang
et al., 2023a) and sharing (Song et al., 2024) the A matrix after initialization can effectively capture
this common basis while eliminating redundant parameters. As shown in Figure 1, both approaches
perform comparably to—and sometimes slightly better than—vanilla LoRA, confirming the high
degree of inter-matrix redundancy. Intra-layer: Prior work has established that different layers in
an LLM contribute unequally to fine-tuning, with adaptation often concentrated in a small subset of
layers (Yao et al., 2024; Lin et al., 2024a; Renduchintala et al., 2023; Pan et al., 2024). Building
on this insight, we find that the LoRA matrices themselves exhibit a similar pattern of varying
importance. To demonstrate this, we adopt a shared-A design and randomly prune N layer-specific
B matrices. For a 32-layer model, this reduces the parameter budget from (A + B) × 32 to A +
B × (32 − N). As illustrated in Figure 2, experiments on Llama-3-8B show that discarding 50%
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Figure 1: Matrix-wise optimization of LoRA.
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Figure 2: Impact of dropping dif-
ferent numbers of B modules.

of the B matrices degrades performance by a mere 2.4%. This result indicates a long-tailed utility
distribution, where a large fraction of layer-specific adapters are expendable and can be pruned with
minimal impact on performance.
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Figure 3: Performance comparison on heterogeneous data on LLaVA-7B (Liu et al., 2023a), evalu-
ated on the VizWiz dataset (Bigham et al., 2010).

Observation II: Fine-tuning on heterogeneous data reveals a tension between task-specific con-
flicts and latent cross-domain commonalities. We illustrate this tension by fine-tuning LLaVA-v1.5-
7B (Liu et al., 2023a) on a mixed dataset from two distinct domains: Visual Question Answering
(VQA) (Antol et al., 2015) and open-ended Generation (Gen) (Liu et al., 2023a; Mostafazadeh et al.,
2016). As detailed in Figure 3, evaluating on the VizWiz benchmark (Bigham et al., 2010) reveals
that naively combining these domains forces a single set of adapter parameters to learn conflicting
objectives, leading to significant performance degradation and optimization interference. This sug-
gests that domain signals must be modulated carefully. A Mixture-of-Experts (MoE) approach,
which routes inputs to specialized LoRA adapters, can mitigate task conflicts and even exceed
single-domain performance on some metrics (e.g., 82.15% on Yes/No questions). However, this
hard partitioning can fail to leverage shared knowledge, causing it to underperform on others (e.g.,
Unanswerable). One more balanced strategy like HydraLoRA (Tian et al., 2024), which shares a
global down-projection matrix A while maintaining task-specific up-projection matrices B, better
captures both commonalities and specializations. This architecture achieves the highest mean score
(38.10%), surpassing both MoE-LoRA (37.44%) and vanilla LoRA (36.00%). Nevertheless, its re-
liance on separate per-task B matrices substantially increases the parameter budget. This leaves open
the challenge of achieving cross-task synergy without the high overhead of explicit expert modules.

3 RELORA

Resource-Efficient Low-Rank Adaptation (ReLoRA) is designed to address the parameter redun-
dancy and high training costs inherent in standard LoRA. As illustrated in Figure 4, ReLoRA
achieves this through two core innovations: (1) a Unified Asymmetric Architecture that maxi-
mizes parameter efficiency through cross-layer sharing, and (2) a dynamic training Reducer that
intelligently and selectively updates parameters during training to balance model performance with
computational resources.
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Figure 4: Architecture and workflow of ReLoRA. Given a base model and a target dataset, the Con-
figurator generates a shared-asymmetric-head LoRA structure, where a global low-rank matrix A is
reused across layers while each Bi,j remains layer- and head-specific. A Reducer then prunes re-
dundant B heads under resource and performance constraints, yielding an optimized low-parameter
LoRA configuration that balances efficiency and effectiveness.

3.1 UNIFIED ASYMMETRIC ARCHITECTURE FOR PARAMETER EFFICIENCY

The foundation of ReLoRA is its novel parameter-sharing structure, designed to tackle both intra-
layer and inter-matrix redundancy. This architecture is established by a Configurator responsible for
initializing the model’s low-rank matrices.

Global Knowledge Sharing via a Unified Matrix A. The Configurator first initializes a single,
globally shared low-rank matrix A ∈ Rd×r that is reused across all Transformer layers. Unlike
traditional LoRA, which allocates unique A and B matrices for each layer, our approach drastically
reduces the total number of trainable parameters. This shared matrix A is designed to capture and
encode generalizable, model-wide knowledge, forming a highly parameter-efficient backbone for
adaptation.

Input-Specific Adaptation with a Dynamic Router and Expert Matrices B. Complementing the
shared matrix A, the Configurator initializes a set of multiple low-rank “expert” matrices {B(n)

i }mi=1

for each Transformer layer n. These expert matrices, Bn
i ∈ Rd×r, are designed to capture fine-

grained, specialized knowledge specific to each layer.

To enable dynamic, input-aware adaptation, we introduce a lightweight Router network. The
Router’s role is to dynamically select which experts to activate for each input token during both
training and inference. Its architecture includes a dense layer with a trainable weight matrix
Wg ∈ Rr×N . For an intermediate input token representation x, the router performs a linear trans-
formation z = WT

g x and applies a softmax function to convert the output z into normalized gating
scores wi(x). These scores modulate the contribution of each expert. The weight update ∆Wn for
layer n is thus defined as:

∆W (n) =

(
m∑
i=1

w
(n)
i B

(n)
i

)
·A, (2)

The final adapted weight is given by W ′(n) = W (n) + ∆W (n). This asymmetric design, a static,
shared A and a dynamic mixture of expert B matrices, enables both expressive adaptation and pa-
rameter efficiency.

3.2 REDUCER FOR RESOURCE-AWARE TRAINING

On top of this efficient architecture, we introduce the Reducer, a dynamic training mechanism that
minimizes computational overhead by freezing specific B matrices during training. Crucially, this
is not a post-training pruning method but a dynamic freezing strategy applied during the training
process itself. This online adaptation adaptively reduces the number of active parameters, differing
fundamentally from static pruning techniques. The Reducer’s core is an importance score vector
s, which is updated iteratively to reflect each layer’s contribution to the task objective. The scores
are calculated through the following process: 1) Layer Suppression: In each update step, we select
a fixed number of layers (e.g., n-layers-suppressed=16) with the lowest current importance scores.
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These layers are temporarily ”suppressed” by scaling their outputs to near-zero. 2) Loss Evaluation:
We then compute the loss on a mini-batch of validation data. A larger increase in loss relative to
the baseline (without suppression) indicates that the suppressed layers are more important, as their
temporary removal significantly harms performance. 3) Score Update: The importance scores of the
suppressed layers are updated proportionally to the magnitude of the observed loss increase. This
process repeats periodically, refining the scores to reflect each layer’s evolving contribution.

At each training step, these importance scores guide the parameter updates. The vector is passed
through a Sigmoid function to create a sampling distribution:

p = σ(−s)

which biases selection towards higher-importance layers. A subset of K layers is then sampled, and
only the B

(n)
i matrices within these selected layers are updated:

B
(n)
i ←

{
B

(n)
i − η∇

B
(n)
i
L, if layer n is sampled

frozen, otherwise
(3)

The hyperparameter K is a critical control knob that allows users to flexibly trade off performance
against computational resources. The impact of K is systematically investigated in the experiments
(see Figure 5) that demonstrate the robustness.

4 EXPERIMENTS AND ANALYSIS

In this section, we detail the principal experiments. To evaluate the effectiveness and robustness of
ReLoRA, we test it in different modalities—commonsense reasoning (Section 4.1), visual instruc-
tion tuning (Section 4.2), and image generation (Section 4.3). We then summarize the key results
and provide a concise interpretation.

4.1 COMMONSENSE REASONING

4.1.1 EXPERIMENT SETTING

Model and Dataset. We fine-tune the LLaMA3-8B model (AI@Meta, 2024) for commonsense
reasoning tasks. We first fine-tune the model on Commonsense-170k samples from Hu et al. (2023),
and subsequently evaluated on eight widely used benchmarks: ARC (Clark et al., 2018), OBQA (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), and Winog. (Sakaguchi et al., 2021). A detailed description of the
dataset can be found in Appendix A.1.

Baselines. First, we compare ReLoRA with different LoRA variants, including 1) LoKr (Yeh
et al., 2023) which employs Kronecker products for matrix decomposition of AB; 2) NoRA (Lin
et al., 2024a) which introduces a dual-layer nested structure with SVD-based initialization, freezing
outer LoRA weights, and training an inner LoRA layer. 3) AdaLoRA (Zhang et al., 2023b) which
parameterizes the incremental updates of the pre-trained weight matrices in the form of singular
value decomposition; Second, we extend the experiments exploring ReLoRA with multi-LoRA op-
timization approaches, including: 4) HydraLoRA (Tian et al., 2024): Introduces an asymmetric
LoRA architecture with a shared matrix A and multiple distinct B matrices, combined through a
trainable MoE router to dynamically adapt to different tasks without requiring domain expertise. 5)
MoLA (Gao et al., 2024): A parameter-efficient tuning method that integrates LoRA and Mixture-
of-Experts (MoE) with layer-wise expert allocation. 6) LoRAMoE (Dou et al., 2024): A parameter-
efficient fine-tuning method combining LoRA and MoE, freezing the backbone model and introduc-
ing experts. 7) MixLoRA (Li et al., 2024): A resource-efficient parameter tuning method combining
LoRA and MoE with independent attention-layer adapters and load balancing, enhancing multi-task
performance and reducing computation and memory costs. 8) GraphMoE (Tang et al., 2025): A
novel MoE-based architecture that enhances language model reasoning through a self-rethinking
mechanism and recurrent routing on a pseudo graph of expert nodes. A detailed description of the
baselines and hyperparameter settings can be found in Appendix B.1.
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Table 1: Comparative performance of various methods fine-tuning LLaMA3-8B on the common-
sense reasoning tasks. * denotes results from the original paper; 1 from (Wu et al., 2024); 2

from(Tang et al., 2025).
Schemes ARC-e OBQA SIQA ARC-c WinoG. PIQA BoolQ HellaS Avg. Param.

LoRA (Hu et al., 2022) 84.2 79.0 79.9 71.2 84.3 85.2 70.8 91.7 80.8 0.35%

LoRA-FA (Zhang et al., 2023a) 86.1 81.0 79.5 73.4 83.8 84.2 69.0 93.4 81.3 0.17%
ShareLoRA (Song et al., 2024) 87.5 83.1 80.2 75.0 84.0 85.5 71.0 96.1 82.8 0.18%

LoKr1 (Yeh et al., 2023) 89.2 81.8 78.7 76.7 82.1 81.6 65.1 92.0 80.9 0.01%
NoRA* (Lin et al., 2024a) 88.2 85.0 79.1 77.5 84.3 86.4 73.3 94.1 83.1 0.09%

AdaLoRA1 (Zhang et al., 2023b) 90.4 85.0 76.7 79.1 83.3 86.4 75.1 75.4 81.4 0.35%

ReLoRA (Single B) 89.8 86.6 80.5 79.9 84.4 88.3 72.7 94.7 84.6 0.18%
HydraLoRA (Tian et al., 2024) 92.4 87.0 82.6 81.9 87.8 88.0 73.6 96.2 86.1 0.93%

MoLA2 (Gao et al., 2024) 86.4 84.4 76.4 77.9 83.3 86.7 74.0 93.9 82.9 2.70%
LoRAMoE2 (Dou et al., 2024) 87.8 85.0 74.8 79.5 83.4 87.1 72.4 94.8 83.5 3.20%

MixLoRA* (Li et al., 2024) 86.5 84.8 78.8 79.9 82.1 87.6 75.0 93.3 83.5 3.00%
GraphMoE* (Tang et al., 2025) 90.3 88.2 79.4 80.6 83.7 88.8 75.9 95.3 85.3 5.90%

ReLoRA (Multiple B) 92.9 87.0 81.7 81.8 88.4 89.6 74.1 95.8 86.4 0.53%
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Figure 5: Performance of different drop ratios.

Method Average Acc. (%)
1B 81.3
2B 82.7
3B 85.1
4B 86.4

Figure 6: Effect of different numbers of B ma-
trices on model performance

4.1.2 PERFORMANCE ANALYSIS.

As shown in Table 1, ReLoRA with multiple B achieves an average accuracy of 86.4% on common-
sense reasoning tasks while updating only 0.53% of the backbone parameters. This result surpasses
other strong methods like HydraLoRA (86.1%, 0.93%) and GraphMoE (85.3%, 5.90%). Notably,
compared to HydraLoRA, ReLoRA achieves a 0.3% higher accuracy with nearly 43% fewer tunable
parameters (0.53% vs. 0.93%). Even a more parameter-efficient version, ReLoRA (Single B), main-
tains a competitive average accuracy of 84.6% using only 0.18% of the parameters. These results
highlight the strong parameter efficiency of ReLoRA, validating that significant redundancy exists
across layers and can be exploited without sacrificing performance. Specifically, the shared low-rank
matrix A across all layers captures global, task-agnostic representations, while the layer-specific Bi

heads concentrate expressive capacity where needed. Additionally, the probabilistic layer sampling
mechanism ensures that updates are dynamically allocated to the most contributive layers, coun-
teracting the adverse effects of aggressive parameter reduction. Notably, ReLoRA achieves this
without altering vanilla LoRA’s internal architecture. This synergy between architectural asymme-
try and adaptive update allocation enables ReLoRA to extend the existing LoRA variants of PEFT,
offering a principled balance between expressiveness and compression.

4.1.3 FRAMEWORK ANALYSIS

Impact of different drop ratios. Figure 5 illustrates the performance degradation under vary-
ing drop ratios of the trainable LoRA B matrices. For this, we compare two strategies: random
dropping and a proposed importance-based dropping. The results clearly show that the importance-
based method consistently outperforms random dropping across all sparsity levels. Notably, with
importance-based pruning, ReLoRA maintains stable accuracy even as up to 75% of the B matrices
are removed. This robustness confirms the long-tailed utility distribution of layer-wise LoRA up-
dates—only a small subset of layers contribute disproportionately to downstream performance. The
observed resilience stems from two design principles of ReLoRA: first, the shared global matrix
A effectively preserves core semantic representations even as layer-specific parameters are pruned;
second, the selective update mechanism adaptively concentrates updates on high-importance layers,
mitigating the adverse effects of aggressive parameter reduction.

6
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Table 2: Overhead analysis of fine-tuning with different LoRA approaches.
Method Param. Train time Relative FLOPs Performance
LoRA (rank=16) 28.3M 8.0h 1.00 80.8
LoRA (rank=32) 56.6M 14.6h 3.63 83.3
LoRA (rank=64) 113.2M 30.4h 15.11 82.7

ReLoRA (rank=16 × 4) 42.8M 12.8h 2.86 85.7

Impact of B matrices number. Table 1 shows the results of an ablation study on the number of
task-specific B matrices used from the start. The data reveals a clear positive correlation between
the number of B-heads and model performance. The model’s average accuracy steadily increases
from 81.3% with a single B-head (1B) to 82.7% (2B), 85.1% (3B), and finally 86.4% with four B-
heads (4B). While performance consistently rises, the incremental gains suggest diminishing returns
as more heads are added. This trend suggests that while adding B-heads increases the model’s
expressive capacity, the most impactful task knowledge is acquired by the first few heads, with later
additions contributing more marginally.

Impact of Configurator. As shown in Table 1, disabling the Configurator and using only
importance-based selective updates, ReLoRA (single B), yields lower performance (84.6%) despite
training 0.18% of the model. This highlights a key limitation of purely importance-driven spar-
sity: it lacks architectural asymmetry and fails to capture shared structure across tasks. In contrast,
ReLoRA’s asymmetric design, with a globally shared A matrix and specialized Bi heads, explicitly
disentangles generalizable semantics from task-specific variation, enabling joint learning of cross-
task commonality and local specialization.

Impact of Reducer. We evaluated the benefit of structured parameter dropping via our Reducer
component. In contrast to HydraLoRA, which utilizes a full set of 32 down-projection A matrices,
ReLoRA employs a single shared A matrix and further prunes the multi-head B matrices using an
importance-based strategy. This combined reduction method lowers the tunable parameter count
from 0.70% to 0.53% while yielding a 0.3% increase in accuracy. Further analysis, presented in
Figure 5, validates our approach by showing that importance-guided dropping consistently outper-
forms random dropping at all sparsity levels. This confirms the effectiveness of our scoring strategy
in preserving the most contributive parameters during compression.

Overhead Analysis As shown in Table 2, ReLoRA demonstrates superior efficiency, outperforming
the equivalent-rank LoRA (rank=64) with a performance score of 85.7 (vs. 82.7), despite requir-
ing only 42.8M parameters (just 38% of LoRA-64) and 12.8h of training time (a 58% reduction).
Furthermore, compared to the parameter-similar LoRA (rank=32), it reduces relative FLOPs (Woo
et al., 2025) by 21.2% (2.86 vs. 3.63) while also achieving higher performance. This establishes
ReLoRA as a highly efficient and scalable fine-tuning solution that strikes a superior performance-
to-cost trade-off.

Table 3: Comparative performance of various methods fine-tuning LLaVA-v1.5-7B.
Methods Dataset MMBench MMVet MME AI2D DocVQA MathVista Avg

LoRA
General 55.90 35.00 66.38 - - - -

Doc - - - 50.26 31.59 - -
Math - - - - - 16.80 -

LoRA All 51.40 32.90 48.52 48.83 30.71 17.70 38.34
MoLE All 59.70 31.90 66.05 52.78 31.42 18.30 43.35

HydraLoRA All 56.70 35.70 62.89 52.78 31.67 19.10 43.14

ReLoRA All 58.10 34.40 68.01 52.82 32.08 19.60 44.18

4.2 VISUAL INSTRUCTION TUNING

Experiment Setting. Model and Dataset. To evaluate performance on multimodal tasks, we fine-
tune the LLaVA1.5-7B (Liu et al., 2023a) using the subset of LLaVA-OneVision single-image (Liu
et al., 2024a) dataset, which includes general, document, and math tasks. Square sampling is applied
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A cartoon butterfly with a 
sad look on its face.

A cartoon pikachu with 
big eyes and big ears.

Base LoRA HydraLoRA ReLoRA

Figure 7: Comparison of text-to-image generation results. ReLoRA demonstrates superior prompt
fidelity over the base model, LoRA, and HydraLoRA

Table 4: Comparative performance of fine-tuning Diffusion.
Scheme Quality Detail Theme Creativity Style Emotion Tech Avg.
LoRA 8.24 6.97 8.72 6.95 8.07 6.84 7.66 7.63

HydraLoRA 8.22 6.93 8.81 7.12 8.10 6.95 7.66 7.68
ReLoRA 8.32 7.03 8.86 7.14 8.16 7.00 7.81 7.76

Table 5: HPS v2 Scores.
Method Avg. HPS v2 (↑)
LoRA 24.08
HydraLoRA 24.29
ReLoRA 24.80

to ensure balanced coverage across subsets, promoting better generalization and task diversity. After
fine-tuning, we evaluate the model on several benchmarks spanning three categories: general-related
(MMBench (Liu et al., 2023c), MMVet (Yu et al., 2024), MME (Fu et al., 2024)), document-related
(AI2D (Kembhavi et al., 2016), DocVQA (Mathew et al., 2021)), and math-related (MathVista (Lu
et al., 2024)). To mitigate varying score ranges, we are bringing all datasets to a 0–100 scale. A
detailed description of the dataset can be found in Appendix A.2.

Baselines. We compare ReLoRA against the following baselines: 1) Single LoRA, which fine-tunes a
single LoRA on each individual dataset. 2) Multi-LoRA fine-tunes a LoRA on the combined mixture
dataset. 3) LLaVA-MoLE (Chen et al., 2024), which integrates lightweight LoRA experts via the
MoE framework across different datasets and configurations. 4) HydraLoRA (Tian et al., 2024),
trained on the combined mixture dataset.

Performance Analysis. As shown in Table 3, vanilla LoRA fine-tuned on single data sources
yields reasonable performance—achieving 50.26 on AI2D and 31.59 on DocVQA when trained
solely on document data, and 16.80 on MathVista when trained only on math data. However, joint
training across all modalities causes a pronounced performance collapse, with the average score
dropping to 38.34, reflecting substantial cross-task interference. In contrast, ReLoRA boosts the
joint average to 44.18 and achieves consistent gains across most tasks (e.g., 58.10 on MMBench,
68.01 on MME, and 52.82 on AI2D), demonstrating superior conflict mitigation. These improve-
ments arise from the asymmetric adapter design: a globally shared low-rank matrix A captures
universal semantic patterns, while input-conditioned Bi matrices provide localized task-specific ca-
pacity. This decoupling suppresses redundancy and enables ReLoRA to maintain both generality
and adaptability, ensuring robust performance in multi-task fine-tuning scenarios.

4.3 DIFFUSION GENERATION

Experiment Setting. Model and Dataset. To evaluate performance on image generation tasks, we
adopt Stable Diffusion v1.5 (Rombach et al., 2022) as the base model. We fine-tuned the model
on the pokemon-blip-captions dataset (ModelScope, 2024). For evaluation, we sample 100
prompts to generate images and assess their quality using GPT-as-judge. A detailed description of
the dataset and evaluation protocol are provided in Appendix A.3 and Appendix B.3, respectively.

Performance Analysis. As demonstrated in Table 4, ReLoRA achieves a top-tier average score of
7.76 when fine-tuning Diffusion v1.5, decisively outperforming both LoRA and HydraLoRA base-
lines. It delivers consistent improvements across key dimensions, including image quality (8.32),
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theme relevance (8.86), and creativity (7.14). This quantitative superiority is further corroborated by
the HPS v2 benchmark (Wu et al., 2023) (Table 5), where ReLoRA again attains the highest score
(24.80), confirming its state-of-the-art image generation quality. These strong empirical results are
highlighted in qualitative comparisons (Figure 7), where ReLoRA more faithfully renders nuanced
details—such as a cartoon butterfly with a sad expression—compared to competing methods. These
comprehensive performance gains stem directly from ReLoRA’s architectural innovations. The
asymmetric adapter design leverages a globally shared low-rank matrix A to encode common gen-
erative structures, while dynamically combining input-specific Bi matrices to inject instance-level
variability. This separation of concerns allows the model to generalize effectively while retaining
expressiveness, minimizing redundancy and enhancing efficiency without sacrificing output quality.

5 RELATED WORK

LoRA and its Variants. Low-Rank Adaptation (LoRA) (Hu et al., 2022) reduces fine-tuning costs
by injecting trainable low-rank matrices into pre-trained weights. Follow-up work (Hayou et al.,
2024; Lin et al., 2024b; Valipour et al., 2023; Zhang et al., 2023b; Liu et al., 2024b; Yao et al., 2024)
improves either optimization or compression: (1) Training-centric variants improve optimization
via adaptive learning rates (Hayou et al., 2024) or stochastic regularization (Lin et al., 2024b). (2)
Capacity-centric variants adjust rank on the fly—e.g., DyLoRA and AdaLoRA dynamically al-
locate dimensions to balance expressiveness and compactnessValipour et al. (2023); Zhang et al.
(2023b). (3) Structure-centric variants redesign the decomposition itself: Kronecker (LoKr) and
Hadamard (LoHa) (Yeh et al., 2023) factorizations, Tucker cores (FLoRA) (Si et al., 2024), and
magnitude–direction splits (DoRA)(Liu et al., 2024b) yield tighter compressions. Complementary
efforts share or freeze matrices to curb redundancy—ShareLoRA (Song et al., 2024) flexibly ties A
and B across layers, whereas LoRA-FA (Yao et al., 2024) freezes W and A, updating only B for
minimal memory use. Collectively, these efforts underscore a shift toward highly compact, modular
PEFT frameworks that balance expressiveness with stringent resource constraints.

Multi-LoRA Architecture. Building on LoRA’s success, recent work has moved from a single
adapter to collections of LoRAs that can be composed or routed on demand, aiming to retain low-
rank efficiency while boosting flexibility. Early efforts such as LoraHub(Huang et al., 2023) pre-
train a pool of domain-specialized adapters and select the best subset at inference time, whereas
Multi-LoRA(Wang et al., 2023) “horizontally” slices each LoRA along the rank dimension and
equips the slices with learnable scaling factors, increasing expressiveness without inflating param-
eters. To curb the memory surge that accompanies broad instruction tuning, the Mixture-of-LoRA
framework (Zadouri et al., 2023) mixes lightweight adapters to achieve a better accuracy–efficiency
trade-off. Subsequent work incorporates explicit expert routing: LoRAMoE (Dou et al., 2024)
and MOELoRA(Liu et al., 2023b) place LoRA experts in a Mixture-of-Experts scaffold to shield
pre-trained knowledge from conflicting instructions, with the latter targeting medical NLP tasks.
From a deployment standpoint, S-LoRA (Sheng et al., 2023) proposes a serving framework that
caches and composes multiple adapters with minimal overhead. Most recently, HydraLoRA(Tian
et al., 2024) removes the need for manual domain assignment by introducing an asymmetric de-
sign—a single shared down-projection matrix and per-expert up-projections—thereby pushing pa-
rameter efficiency beyond symmetric multi-LoRA baselines. Collectively, these advances demon-
strate that carefully orchestrated ensembles of low-rank adapters can deliver scalable, conflict-aware,
and resource-friendly adaptation for large language models across diverse scenarios.

6 CONCLUSION

In this paper, we introduced ReLoRA, a resource-efficient low-rank adaptation framework designed
to reduce parameter overhead and mitigate task interference. By revisiting LoRA from the perspec-
tive of parameter redundancy, ReLoRA employs a unified cross-layer A matrix complemented by
a dynamic, selective update mechanism for the B matrices. This architecture not only achieves
substantial parameter savings but also enhances model performance and robustness. Extensive
experiments across diverse modalities—including language, vision-language, and diffusion mod-
els—demonstrate that ReLoRA consistently outperforms standard LoRA in both task accuracy and
efficiency. More discussion about limitations is available in Appendix C.
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tributes. All datasets and pretrained weights used are publicly available and were accessed and used
in accordance with their licenses and terms of use; no data scraping outside the providers’ terms
was performed. We disclose our use of LLM-based writing assistance in a separate LLM-usage sec-
tion in Appendix D. Potential risks include lowering the computational barrier for deploying more
capable models in resource-constrained settings; to mitigate misuse concerns, we evaluate only on
standard public benchmarks, refrain from releasing domain-specific models for sensitive applica-
tions, and provide documentation to support responsible use. The authors take full responsibility for
the integrity and accuracy of the reported results.

REPRODUCIBILITY STATEMENT

We place strong emphasis on the transparency and reproducibility of our work. To facilitate inde-
pendent verification, the complete implementation has been provided in the supplementary materi-
als, allowing readers to directly reproduce the reported experiments. In addition, Section 4 of the
main text outlines the experimental pipeline, including dataset preparation, model configurations,
and training procedures. For further clarity, Appendix B documents the full set of hyperparame-
ter choices and auxiliary details. Together, these resources ensure that our results can be reliably
replicated and extended in future research.
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A DATASETS

A.1 COMMONSENE REASONING

Table 6 presents detailed information about the datasets used in our experiments, including their task
names, respective domains, the number of training and test sets, and task types. The details of the
benchmarks are as follows:

• BoolQ (Clark et al., 2019): yes/no questions which are naturally occurring and generated
in unprompted and unconstrained settings. There are 3270 questions in the test set.

• PIQA (Bisk et al., 2019): questions with two solutions requiring physical commonsense.
There are 1830 questions in the test set.

• HellaSwag (Zellers et al., 2019): commonsense NLI questions including a context and
several endings which complete the context. There are 10042 questions in the test set.

• WinoGrande (Sakaguchi et al., 2021): fill-in-a-blank task with binary options to choose the
right option for a given sentence, which requires commonsense reasoning. There are 1267
questions in the test set.

• ARC-easy (Clark et al., 2018) & ARC-challenge (Clark et al., 2018): the Challenge Set and
Easy Set of ARC dataset of genuine grade-school level, containing 2376/1172 multiple-
choice science questions in the test set, respectively.

• OpenbookQA (Mihaylov et al., 2018): questions requiring multi-step reasoning, use of
additional commonsense knowledge, and rich text comprehension. There are 500 questions
in the test set.

Table 6: Description of Datasets used in experiments.
Task Name Domain # Train # Test Task Type
BoolQ Wikipedia 9,427 3,270 Text Classification
ARC-E Natural Science 2,250 2,380 Question Answering
ARC-C Natural Science 1,120 1,170 Question Answering
OpenBookQA Science Facts 4,957 500 Question Answering
PIQA Physical Interaction 16,100 1,840 Question Answering
SIQA Social Interaction 33,410 1,954 Question Answering
HellaSwag Video Caption 39,905 10,042 Sentence Completion
WinoGrande Winograd Schemas 9,248 1,267 Fill in the Blank

A.2 VISUAL INSTRUCTION TUNING

Table 7 shows the details of the LLaVA training dataset. Table 8 shows the details of the test datasets.

Table 7: Detail of LLaVA-OneVision Dataset
Datasets Weight Domain Task Type
General 36.1% General Various
Doc/Chart/Screen 20.6% Document Question Answering, Chart Analysis
Math/Reasoning 20.1% Mathematics Problem Solving, Reasoning
General OCR 8.9% OCR Text Extraction, Recognition
Pure Language 14.3% Language Text Generation, Language Modeling

A.3 DIFFUSION GENERATION

Dataset Composition Each entry in the dataset consists of two keys: image and text. The
image field contains a JPEG image loaded as a PIL object with variable dimensions, while the
text field provides a descriptive caption corresponding to the image content. Only a train split
is provided, indicating that the dataset is primarily intended for training purposes.
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Table 8: Description of LLaVA test datasets
Task Name Domain Task Type
MMBench Vision-Language Fine-grained ability evaluation
MMVet Multimodal Integrated capability evaluation
MME Multimodal Comprehensive evaluation
ChartQA Vision-Language Question Answering about Charts with Visual and Logical Reasoning
AI2D Vision-Language Diagram Understanding and Question Answering
DocVQA Vision-Language Visual Question Answering on Document Images
MathVista Vision-Language Mathematical Reasoning in Visual Contexts

Caption Generation with BLIP To enrich the textual descriptions and improve the semantic
alignment between images and captions, the original Pokémon images were processed through a
pre-trained BLIP model. This model is capable of generating rich, context-aware captions that accu-
rately describe the visual content. These generated captions serve as the textual conditioning input
for training diffusion-based text-to-image models.

B EXPERIMENTAL SETUP

B.1 COMMONSENE REASONING

Table 9 shows the detailed hyperparameters for commonsense reasoning tasks when fine-tuning the
LLaMA3-8B.

Table 9: The hyperparameters for various methods on the commonsense reasoning tasks.
Hyperparameter LoRA LoKr AdaLoRA HydraLoRA ReLoRA MoLA LoRAMoE MixLoRA

Rank r 16

α 32

Dropout 0.05

Target module q, k, v, up, down q, k, v, o, gate, up, down

#Experts - 4 8

Top-K - dense 2

B.2 VISUAL INSTRUCTION TUNING

Table 10 shows the detailed hyperparameters for Visual Instruction Tuning when fine-tuning the
LLaVA1.5-7B.

Table 10: The hyperparameters for various methods on the Visual Instruction Tuning tasks.
Hyperparameter Single-LoRA MoLE HydraLoRA ReLoRA

Rank r 32

α 64

Batch size 1

Epochs 1

Learning rate 2e-4

Target module q, k, v, o, gate, up, down

#Experts 3

B.3 DIFFUSION GENERATION

Table 11 shows the detailed hyperparameters for the Diffusion Generation task when fine-tuning the
stable-diffusion v1.5. For GPT evaluation, refer to 12 and 13.
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Table 11: The hyperparameters for various methods on the Diffusion Generation tasks.
Hyperparameter Single-LoRA HydraLoRA ReLoRA

Rank r 4

α 8

Batch size 1

Steps 20000

Learning rate 1e-4

Target module q, k, v, o

#Experts 3

Table 12: Image Evaluation Criteria
Criteria Description

Overall Quality

• Is the image clear and complete without obvious blur, noise or
errors?

• Are the colors natural and harmonious, fitting the theme and
scene?

Detail Richness

• Does the image have rich details in the subject and back-
ground?

• Are the details realistic and logically consistent with reality (if
the theme is a real-life scene)?

Theme Consistency

• Does the image accurately reflect the given theme or descrip-
tion?

• Is there any deviation from the theme or unexpected content?

Creativity & Uniqueness
• Does the image show unique creativity or perspective?
• Are there novel elements or composition methods?

Style Matching

• Does the image match the specified style (such as realism, car-
toon, oil painting, etc.)?

• Is it consistent with the target style?

Emotional Expression
• Can the image convey a certain emotion or atmosphere?
• Does it resonate with the audience?

Technical Performance

• Does the image demonstrate good generation technology, such
as lighting and perspective?

• Are there any obvious generation errors or flaws?

Table 13: Scoring Criteria
Score Description
10 points Perfect, almost flawless, exceeding expectations.
8-9 points Excellent, with a few minor flaws, but overall outstanding.
6-7 points Good, meeting expectations but with room for improvement.
4-5 points Average, with many problems that need improvement.
2-3 points Poor, not meeting expectations and requiring major adjustments.
1 point Very poor, almost unacceptable.
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C LIMITATION

Although the proposed ReLoRA achieves a good balance between parameter efficiency and model
expressiveness, the current study focuses exclusively on parameter-efficient fine-tuning (PEFT) ap-
proaches, particularly those based on LoRA. While the method demonstrates strong performance
in fine-tuning tasks, its effectiveness has not been evaluated on other efficient adaptation paradigms
such as prompt-tuning, prefix-tuning, or fully frozen training strategies. Additionally, the frame-
work has only been applied in the downstream fine-tuning phase; its potential applicability during
the pre-training stage remains an open question for future exploration. Future work may explore
more efficient routing mechanisms, hybrid PEFT frameworks, and extensions to the pre-training
phase to further improve both efficiency and generalization.

D THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely as a writing-assistance tool to polish our paper (grammar, wording, concision,
and minor LATEX formatting). The LLM did not contribute to research ideation, problem formulation,
method design, experiments, data analysis, results, or conclusions, and it was not used to generate
citations or technical content. All suggestions were reviewed and, when adopted, edited by the au-
thors, who take full responsibility for the paper’s content; no proprietary data beyond the manuscript
text was shared with the tool.
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