
When Are Graph Neural Networks Better Than
Structure-Agnostic Methods?

Diana Gomes
AI Lab, VUB

IMEC,
Leuven, Belgium

diana.gomes@imec.be

Frederik Ruelens
IMEC

Leuven, Belgium
frederik.ruelens@imec.be

Kyriakos Efthymiadis
AI Lab, VUB

Brussels, Belgium
kyriakos.efthymiadis@vub.be

Ann Nowe
AI Lab, VUB

Brussels, Belgium
ann.nowe@vub.be

Peter Vrancx
IMEC

Leuven, Belgium
peter.vrancx@imec.be

Abstract

Graph neural networks (GNNs) are commonly applied to graph data, but their
performance is often poorly understood. It is easy to find examples in which a GNN
is unable to learn useful graph representations, but generally hard to explain why. In
this work, we analyse the effectiveness of graph representations learned by shallow
GNNs (2-layers) for input graphs with different structural properties and feature
information. We expand on the failure cases by decoupling the impact of structural
and feature information on the learning process. Our results indicate that GNNs’
implicit architectural assumptions are tightly related to the structural properties of
the input graph and may impair its learning ability. In case of mismatch, they can
often be outperformed by structure-agnostic methods like multi-layer perceptrons.

1 Introduction

Graph neural networks (GNNs) have emerged as the default approach for graph representation learning
in machine learning tasks. Despite this fact, GNN performance is often poorly understood and it is
easy to find examples where a GNN is unable to learn a useful graph representation. In this work, we
focus on analysing the underlying assumptions of GNN architectures that are key to determining their
performance. We consider the problem of semi-supervised node classification. GNNs make class
predictions using two sources of information: the individual node properties described by the feature
vectors associated with each node, and structural information represented by the relationships (edges)
between the different nodes. The main idea behind using graph representations is that relational
information can provide additional information to solve the target task, e.g. friendship links in a
social network can be predictive of a person’s interests. Given that we are augmenting the node
properties with additional information from node relations, one might assume that GNNs always
outperform feature-only methods, such as multi-layer perceptrons (MLPs), that do not exploit any
structural information. However, recent benchmark results [1, 2] show state-of-the-art graph neural
networks performing on-par or worse than basic MLPs on a variety of node classification tasks. These
results hint at the fact that the use of structural information by GNNs is not always helpful and may
even be detrimental to classification performance.

Our goal is to provide a methodical, empiric investigation of the use of structural vs. feature
information by different GNN methods. We aim to show that, due to fundamental limitations,
basic GNNs are unable to learn useful representations when their assumptions are not met, both on

I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.



structure and feature levels, even when their depth is small. Furthermore, we provide evidence that
more advanced GNN architectures can avoid this limitation, but may still fail to exploit structural
information altogether and reduce to feature-only methods.

The main contributions of this work are two-fold: 1) the proposition of an empirical, model-agnostic
method for decoupling feature and structure influence on GNN node classification performance; 2)
the disclosure of new empirical insights on how GNN performance can be hindered by input graph’s
structural properties and node features in cases when oversmoothing does not occur.

2 Methods

Our investigation of the cases when GNNs can and cannot learn useful node representations is
conducted by constructing artificial graphs with certain engineered properties. In particular, we
manipulate homophily and edge density (structural properties) and feature signal-to-noise ratio
(SNR), due to their direct relation with the implicit assumptions of message-passing graph models.

We implement two operations designed to derive a set of mutations for each original graph. These
operations are set to methodically destroy structure and/or feature information while preserving the
remaining graph attributes. With this procedure, we aim to decouple the influence of feature and
structure information in each node classification task and separately violate GNNs’ assumptions of
meaningful underlying structure and features. We finally compare the respective performances with
those of node classification on the original graphs and those of a structure-agnostic baseline model
(MLP). These experiments are further extended by extrapolating our insights to more challenging
settings by means of several real-world datasets, commonly used as benchmarks for machine learning
on graphs. The following subsections elaborate on the implementation details of our approach.

Artificial graphs generation Artificial graphs are generated using the stochastic block model
(SBM) as implemented by Palowitch et al. [3], which enables control of certain graph properties,
namely edge density, homophily, and feature SNR (a metric of feature homogeneity between classes,
which equals to 1 in homogeneous scenarios and increases with heterogenity, i.e. as features become
more separable). We generate graphs with 1000 nodes. Each node is assigned a label to create a
class-balanced binary node classification problem, i.e., each graph comprises 500 nodes of each class.
All artificially generated graphs are available as supplementary material1 for repeatability.

Benchmarks Four real-world datasets with different properties are also selected to extend our
experiments and for benchmarking purposes. Cora [4] and CiteSeer [4] are homophilic citation
networks with 7 and 6 classes, respectively; Chameleon [5] and Texas [6] are heterophilic graphs,
with 5 classes each, where nodes correspond to web pages and edges to hyperlinks between them. A
summary of these datasets’ properties can be found in the Appendix.

Graph mutations Each artificial and real-world graph is also submitted to transformations on the
structural and feature levels: 1) random connectivity - shuffle columns of graph connectivity matrix;
2) random feature assignment - randomize the attribution of feature vectors across all nodes. With
these operations, we conceive up to three mutations for each original graph whenever appropriate:
a mutation with random connectivity but same feature distribution; another with same structural
information but random feature assignment; and a final one with both transformations.

Models We consider the Graph Convolutional Networks (GCN) [7] as a base for all experiments.
More complex layer and model types are also used to extend our analyses: reversible GCN (RevGCN)
[8], due to its robustness to oversmoothing even for deep GNNs; APPNP [9] and FiLM convolution
[10] which seem to perform adequately for input graphs that belong to different parts of the graph
properties spectrum proposed in [3], where vanilla-GCNs do not.

All neural network architectures consist of a single linear layer for feature transformation into 8
channels, followed by 2 message-passing layers (or fully connected layers for the MLP baseline),
and a node classification head (linear layer). We use the PyG library [11] and all experiments are run
using GraphGym framework [12]. Reported results refer to performance (accuracy) on the test sets
(best epoch on the validation set, averaged over 10 runs). No hyperparameter tuning is performed to

1https://github.com/dsg95/decoupling-graph-info

2



Table 1: Node classification performance (accuracy) of GCN and MLP models on an artificial graph G
with highly informative structure and features, and the mutations of G with random connectivity (un-
informative structure), random feature assignment (uninformative features), and both (uninformative
structure and features). Standard deviation values are shown in Table 6 of the Appendix.

Structure

Informative Uninformative

Features
Informative GCN 0.96 GCN 0.69

MLP 0.92 MLP 0.90

Uninformative GCN 0.61 GCN 0.48
MLP 0.50 MLP 0.50

facilitate the comparison of approaches. Configuration files are available as supplementary material
for repeatability. Further implementation details can be found in the Appendix.

3 Results

3.1 Does structure encoding always contribute to learning useful node representations?

Let us consider the simple case of binary node classification in a graph with both highly informative
features (SNR = 1.5) and structure (homophily = 0.95; edge density = 0.06). Table 1 compares the
performance of a 2-layer vanilla-GCN with that of a structure-agnostic model (MLP) on the original
version of this graph and its mutations (uninformative versions).

While GCN exhibits adequate performance (superior to the MLP) when both structural and feature
information are present, results show its evident drop when they lose either. Despite the fact that
features are highly informative, GCN does not seem able to fully leverage them when the structure of
the input graph was meaningless towards its inherent assumptions, leading to a significant loss of
performance even relatively to its structure-agnostic counterpart. A similar drop is verified in the
scenario where structure is preserved but feature information is lost, as GCNs are not able to aggregate
neighborhood information in meaningful node representations, despite the highly informative structure
of the input graph. We verify this behavior using shallow models of 2 message-passing layers, for
which graph oversmoothing does not occur, as the appropriate performance in the informative scenario
corroborates.

These results suggest that GCN models need both feature and structural information to be meaningful
in order to learn useful node representations. When only one of these is present the model does not
seem to be able to separate the useful from meaningless information. This result makes sense given
the intuition of GCN as a smoothing operator [13]. Blindly aggregating either features of dissimilar
nodes due to lack of structural information or combining non-informative features of similar nodes
does not extract useful node descriptions.

3.1.1 Graphs with different properties

Given the empirical verification that GCN performance can be tightly related to feature information
and structural properties of the input graph, we consider these attributes in separate methodical
studies. Let us take a base graph with fixed characteristics (homophily = 0.8; edge density = 0.03;
feature SNR = 1.2). Table 2 presents the node classification results on several versions of this graph
that correspond to assigning it different connectivity matrices (and respective mutations). These
matrices define structures of different homophily, while keeping density constant (and vice-versa).
Analogously, Table 3 displays node classification results for versions of the base graph with different
feature information, measured by its SNR; results for the respective random connectivity mutations
are also shown.

Homophily The inspection of GCN’s response to different homophily conditions reveals its ade-
quate performance on the most and least homophilic original graphs. While adequate performance in
the most heterophilic scenario might seem surprising at first glance, as GCN’s limitations in dealing
with such settings are well-know, it is not unexpected in our experiment. This behavior relates to

3



Table 2: Node classification performance (accuracy) of GCN and MLP (baseline) models on artificial
graphs with fixed features (SNR = 1.2) and different structural attributes: homophily (H), edge
density (De). Results are shown for each original graph G and the respective mutations of G with
random connectivity, random feature assignment, and both. A single MLP (feature-only) result is
shown per feature transformation. Standard deviation values are shown in Table 7 of the Appendix.

H
Structure

De
Structure MLP

(baseline)
Original Random Original Random

Original
Features

0.2 0.78 0.58 0.003 0.78 0.63
0.710.5 0.60 0.61 0.03 0.81 0.59

0.8 0.81 0.59 0.15 0.79 0.57

Random
Feature
Assignment

0.2 0.51 0.48 0.003 0.49 0.48
0.490.5 0.53 0.50 0.03 0.49 0.49

0.8 0.49 0.49 0.15 0.52 0.49

Table 3: Node classification performance (accuracy) of GCN and MLP (baseline) models on artificial
graphs with fixed structure (homophily = 0.8; edge density = 0.03) and different feature signal-to-
noise ratio (SNR). Results are shown for each original graph G and the respective mutations of G
with random connectivity. Standard deviation values are shown in Table 8 of the Appendix.

SNR
Structure MLP

(baseline)
Original Random

1.0 0.57 0.51 0.51
1.2 0.81 0.59 0.71
1.5 0.92 0.68 0.91
2.0 0.99 0.72 1.00

the fact that our learning problem only considers two distinguishable types of nodes and has also
been recently reported in other works [14]. Nodes are able to encode meaningful representations
through neighborhood aggregation, despite most of their neighbors belonging to a different class,
due to its consistency. While this outcome may not hold under different conditions (such as some
multi-class problems), it also draws attention to the potential insufficiency of solely resorting to
homophily-related assumptions to steer GNN architecture research endeavors, as discussed by recent
works [14]. Similar to the previous highly informative artificial graph, we verify a significant loss of
performance when structure and/or feature information of original graphs are destroyed, except for
when homophily is close to 0.5 (mediocre performance on the original graph, on-par with the random
structure mutation). This means that being as connected to nodes of a different class as to those of the
same class produces an uninformative structure based on which GCN will perform local smoothing
operations that will decrease feature expressivity and lead to poor node representations. These results
verify that simply attributing a GCN’s poor performance to graph heterophily may be insufficient, as
some heterophilous graphs can encode relevant structure information while others do not.

Edge density If we inspect the impact of edge density in node classification performance, our
results hint at the fact that when structure information is meaningless, the most sparsely connected
structure leads to the best results. Though this conclusion must be further validated, since standard
deviations overlap to a certain extent (see Table 7 of the Appendix), this outcome is coherent with the
architectural assumptions of message-passing approaches: if structural information is irrelevant, we
should expect better node representations from the structures with fewer connections, as these lead
to a minimal smoothing effect. Furthermore, it provides evidence that feature/structure trade-offs
associated with graph-related tasks can pose particular learning challenges for GNNs.

Feature SNR Table 3 shows the impact of considering different levels of separability of node
features when structure encodes useful information and when it does not. The results indicate a
significant loss of performance for the random connectivity mutation in comparison with the original
version, even in scenarios when base features are easily separable by a feature-only method. This

4



Table 4: Node classification performance (accuracy) of different GNN architectures and MLP
(baseline) models on real-world benchmarks. Results are shown for each original graph G and the
respective mutations of G with random connectivity, random feature assignment, and both. A single
MLP (feature-only) result is shown per feature transformation. Standard deviation values are shown
in Table 9 of the Appendix.

Original Structure Random Connectivity

GCN RevGCN APPNP FiLM GCN RevGCN APPNP FiLM MLP

Original
Features

Informative∗ 0.96 0.96 0.95 0.96 0.69 0.92 0.70 0.92 0.92
Cora 0.78 0.72 0.79 0.67 0.43 0.67 0.48 0.64 0.64
CiteSeer 0.73 0.72 0.74 0.68 0.45 0.68 0.49 0.67 0.66
Chameleon 0.39 0.39 0.41 0.40 0.41 0.42 0.46 0.44 0.43
Texas 0.53 0.54 0.56 0.72 0.49 0.66 0.56 0.73 0.69

Random
feature
assignment

Informative∗ 0.61 0.68 0.54 0.65 0.48 0.49 0.49 0.50 0.50
Cora 0.57 0.45 0.64 0.39 0.23 0.19 0.25 0.20 0.19
CiteSeer 0.56 0.40 0.61 0.37 0.20 0.19 0.20 0.20 0.20
Chameleon 0.23 0.22 0.21 0.21 0.23 0.22 0.22 0.22 0.22
Texas 0.49 0.51 0.54 0.57 0.51 0.43 0.52 0.54 0.54

∗ Artificial graph with informative features (SNR=1.5) and structure (homophily=0.95; edge density=0.06)

outcome supports that GNNs should not be treated as a one-size-fits-all approach for machine learning
on graphs, as they demand careful inspection of all levels of graph information prior to their use.

3.2 Can advanced GNN architectures cope with poor feature or structure information?

Table 4 aims to extend the insights of the previous section by bringing forward the results of applying
the same methodology to more advanced GNN architectures and real-world benchmarks.

The trend in homophilic graphs (Informative, Cora, CiteSeer) supports that all models perform
adequately on the original graph versions. In these versions, RevGCN and FiLM are however
associated with lower performance; contrastively, these are the models that can better cope with
structure information loss, being the only ones that can reach the performance of the feature-only
model in the random connectivity scenario. These models are also the ones which recovered the
least information from structure only for Cora and CiteSeer, as the results for the random feature
assignment mutations corroborate. This outcome suggests that RevGCN and FiLM do not leverage
these graphs’ structure information as effectively as the vanilla GCN and the APPNP, ultimately
refraining from fully exploiting it and resorting to a more feature-preserving encoding method.

Looking into Chameleon and Texas, one can find evidence of how different architectures can
respond differently to input graph’s structure. None of the studied models appears suitable to exploit
Chameleon’s structure to their benefit. However, FiLM exhibits feature-only level performance for
the original Texas graph, while all other models appear to be hindered by such structure to the point of
losing base feature expressiveness. In fact, for some models, random connectivity seems to be easier
to handle than the original graph structures of Chameleon and Texas. This can indicate that there are
several level of structure impact on GNN performance: there are structures that help, structures that
hinder, and structures that are ultimately irrelevant for the classification outcome.

The coherence of results with respect to the ability of models to preserve feature information and/or
exploit structure information in different application scenarios is also an indication of the effectiveness
of our method. By randomizing feature and structural information, we are able to provide consistent
insights on GNNs learning behavior by considering how much each model can learn from features vs.
structure for each learning task. This can be an important outcome for GNN explainability. Moreover,
it can provide a measure of how meaningful are the features and graph structure for a certain GNN
architecture and explicitly assist the identification of learning bottlenecks.

5



4 Discussion and Related work

Many authors have investigated poor GNN performance due to apparent oversmoothing or loss of
expressivity in deeper GNNs [13, 15, 16, 17, 2]. Others have argued that it is not oversmoothing,
but rather the training difficulty of GNNs that leads to poor results [18, 19, 20]. Our experiments
indicate that performance loss can also result from the smoothing operation itself being ill-suited to
certain types of graphs. New GNN architectures that allow deeper models without oversmoothing
have been proposed in [8, 9, 21]. Our evaluations suggest that some of these advanced methods
are able to rely more on basic node features rather than on network structure. While they preserve
feature information, they do not remedy the fact that GCN-like operations may not extract more
useful features. This suggests a need for more expressive graph operations, as also noted in several
recent papers [22, 23].

Decoupling feature and structure impact in GNNs has recently been investigated for transfer learning
and graph generation purposes [24]. However, the authors assume node homophily and do not explore
the cases where this condition is not met, which is where our work differs. Other works also explore
homo-/heterophilic settings and create advanced architectures to handle challenging scenarios [25].
Nevertheless, it is not clear whether these architectures lead to more useful node representations or
if they solely overcome its performance hindering impact, as we can see in recent benchmarks [1].
Our work intends to complement these efforts by providing insights on how structure can not only be
harmful but also simply uninformative, leading to local smoothing operations that decrease feature
expressivity, in which case one might simply resort to feature-only methods.

Limitations Our results suggest that we should not only explore feature/structure co-dependence
but also how models respond to certain combinations of graph properties. This scenario was not
explored, despite its potential influence in some of our analyses, thus posing a limitation of this
work. Our method also relied on artificial graphs for which we occasionally make an assumption of
how meaningful is their information based on our own, theoretically-based criteria. This procedure
can limit the conclusions drawn upon those graphs. Furthermore, our method for losing structure
information through random connectivity does not destroy all structural properties (e.g. graph density
remains the same); however, this transformation does destroy the original encoding of real, intelligible
links for the real-world benchmarks. As such, results for artificial graphs may not present direct
correspondence with benchmark observations. These limitations are tied to the fact that we only
experimented with extreme scenarios. Conducting more experiments could further validate our
assumptions by considering more demanding and diverse conditions, for both artificial graphs and
benchmarks. Finally, we did not perform hyperparameter tuning for any model to facilitate the
comparison of approaches; this, however, makes it harder to compare our results with those of other
works. We expect that by making the used hyperparameters available in our configuration files we
can diminish the impact of this limitation.

Future work As future work, we must deepen our insights on how models respond to graph
properties by extending our method to more complex scenarios, including combinations of structural
properties (e.g. simultaneous variation of sets of properties) and feature information. We shall also
explore the potential of the feature/structure decoupling method as an empirical indication of how
informative graph structures are to a certain network architecture, as such methods are still in demand.

5 Conclusion

This work expanded on the cases when GNNs may not be better than feature-only methods for node
classification on graphs. We propose a method that provides new insights on GNN learning behavior
by decoupling how much we can learn from features vs. structure for each task. This can be an
important outcome towards GNN explainability and effectively assist the identification of learning
bottlenecks. Our results suggest that GNNs may lead to poor node representations when the input
graph does not fit the inherent assumptions of their architectures, even without oversmoothing. While
some advanced architectures can avoid this limitation, we verify that when they cannot leverage
structural information, these mostly refrain from exploiting it and ultimately resort to a feature-
preserving encoding, similar to feature-only methods. This conclusion supports that GNNs should
not be considered a one-size-fits-all approach for machine learning on graphs, but rather demand
careful inspection of all levels of graph information prior to their application.

6



References
[1] Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich,

and Michael M Bronstein. Graph neural networks as gradient flows. arXiv preprint
arXiv:2206.10991, 2022.

[2] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of
the same coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv
preprint arXiv:2102.06462, 2021.

[3] John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs
bring real insights for gnns. arXiv preprint arXiv:2203.00112, 2022.

[4] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016.

[5] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2):cnab014, 2021.

[6] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

[7] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[8] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural
networks with 1000 layers. In International conference on machine learning, pages 6437–6449.
PMLR, 2021.

[9] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[10] Marc Brockschmidt. Gnn-film: Graph neural networks with feature-wise linear modulation. In
International Conference on Machine Learning, pages 1144–1152. PMLR, 2020.

[11] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[12] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33:17009–17021, 2020.

[13] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

[14] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

[15] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[16] Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,
and Paul Honeine. Analyzing the expressive power of graph neural networks in a spectral
perspective. In Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

[17] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947, 2019.

[18] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Training matters: Unlocking
potentials of deeper graph convolutional neural networks. arXiv preprint arXiv:2008.08838,
2020.

[19] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

7



[20] Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in
training graph convolutional networks. Advances in Neural Information Processing Systems,
34:9936–9949, 2021.

[21] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal
Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph
neural networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
19665–19679. Curran Associates, Inc., 2021.

[22] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 3950–3957, 2021.

[23] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and
Michael M Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and
oversmoothing in gnns. arXiv preprint arXiv:2202.04579, 2022.

[24] Duong Chi Thang, Hoang Thanh Dat, Nguyen Thanh Tam, Jun Jo, Nguyen Quoc Viet Hung,
and Karl Aberer. Nature vs. nurture: Feature vs. structure for graph neural networks. Pattern
Recognition Letters, 159:46–53, 2022.

[25] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33:7793–7804, 2020.

A Appendix

A.1 Benchmarks’ properties

Table 5: Graph properties of benchmark datasets.

Dataset # Nodes # Edges # Classes Homophily Edge density

Cora [4] 2485 10138 7 0.81 0.002
CiteSeer [4] 2120 7358 6 0.74 0.002
Chameleon [5] 2277 65019 5 0.23 0.013
Texas [6] 183 558 5 0.11 0.017

A.2 Training details

We used the PyG library [11] and all experiments were run using GraphGym framework [12], which
we extended to include more advanced architectures (new layer types or models) when needed. We
performed mini-batch training using neighbourhood sampling (batch size of 32) and considered
a train-validation-test split of 80%-10%-10%. Further information can be found in the disclosed
configuration files, which easily map to GraphGym documentation.

8



A.3 Detailed tables of results

Table 6: Node classification performance (mean accuracy ± standard deviation) of GCN and MLP
models on an artificial graph G with highly informative structure and features, and the mutations of
G with random connectivity (uninformative structure), random feature assignment (uninformative
features), and both (uninformative structure and features).

Structure

Informative Uninformative

Features

Informative GCN 0.96 ± 0.02 GCN 0.69 ± 0.02
MLP 0.92 ± 0.02 MLP 0.90 ± 0.04

Uninformative GCN 0.61 ± 0.04 GCN 0.48 ± 0.03
MLP 0.50 ± 0.05 MLP 0.50 ± 0.03

Table 7: Node classification performance (mean accuracy ± standard deviation) of GCN and MLP
(baseline) models on artificial graphs with fixed features (SNR = 1.2) and different structural attributes:
homophily (H), edge density (De). Results are shown for each original graph G and the respective
mutations of G with random connectivity, random feature assignment, and both. Given its feature-only
nature, a single MLP result is shown per feature transformation.

H
Structure

De
Structure MLP

(baseline)
Original Random Original Random

Original
Features

0.2 0.78 0.58 0.003 0.78 0.63

0.71
± 0.03

± 0.08 ± 0.03 ± 0.03 ± 0.05
0.5 0.60 0.61 0.03 0.81 0.59

± 0.02 ± 0.03 ± 0.03 ± 0.03
0.8 0.81 0.59 0.15 0.79 0.57

± 0.03 ± 0.03 ± 0.02 ± 0.02

Random
Feature
Assignment

0.2 0.51 0.48 0.003 0.49 0.48

0.49
± 0.03

± 0.05 ± 0.04 ± 0.06 ± 0.05
0.5 0.53 0.50 0.03 0.49 0.49

± 0.04 ± 0.03 ± 0.03 ± 0.02
0.8 0.49 0.49 0.15 0.52 0.49

± 0.03 ± 0.02 ± 0.04 ± 0.04

Table 8: Node classification performance (mean accuracy ± standard deviation) of GCN and MLP
(baseline) models on artificial graphs with fixed structure (homophily = 0.8; edge density = 0.03) and
different feature signal-to-noise ratio (SNR). Results are shown for each original graph G and the
respective mutations of G with random connectivity.

SNR
Structure MLP

(baseline)
Original Random

1.0 0.57 ± 0.05 0.51 ± 0.03 0.51 ± 0.05
1.2 0.81 ± 0.03 0.59 ± 0.03 0.71 ± 0.03
1.5 0.92 ± 0.02 0.68 ± 0.02 0.91 ± 0.02
2.0 0.99 ± 0.01 0.72 ± 0.01 1.00 ± 0.00

9



Table 9: Node classification performance (mean accuracy ± standard deviation) of different GNN
architectures and MLP (baseline) models on real-world benchmarks. Results are shown for each
original graph G and the respective mutations of G with random connectivity, random feature
assignment, and both. Given its feature-only nature, a single MLP result is shown per feature
transformation.

Original Structure Random Connectivity

GCN RevGCN APPNP FiLM GCN RevGCN APPNP FiLM MLP

Original
Features

Informative∗ 0.96 0.96 0.95 0.96 0.69 0.92 0.70 0.92 0.92
± 0.02 ± 0.01 ± 0.02 ± 0.01 ± 0.02 ± 0.03 ± 0.02 ± 0.03 ± 0.04

Cora 0.78 0.72 0.79 0.67 0.43 0.67 0.48 0.64 0.64
± 0.02 ± 0.02 ± 0.03 ± 0.02 ± 0.03 ± 0.04 ± 0.04 ± 0.03 ± 0.04

CiteSeer 0.73 0.72 0.74 0.68 0.45 0.68 0.49 0.67 0.66
± 0.02 ± 0.02 ± 0.03 ± 0.03 ± 0.02 ± 0.03 ± 0.03 ± 0.02 ± 0.03

Chameleon 0.39 0.39 0.41 0.40 0.41 0.42 0.46 0.44 0.43
± 0.05 ± 0.03 ± 0.02 ± 0.04 ± 0.05 ± 0.04 ± 0.04 ± 0.05 ± 0.04

Texas 0.53 0.54 0.56 0.72 0.49 0.66 0.56 0.73 0.69
± 0.09 ± 0.12 ± 0.12 ± 0.14 ± 0.12 ± 0.06 ± 0.13 ± 0.10 ± 0.12

Random
feature
assignment

Informative∗ 0.61 0.68 0.54 0.65 0.48 0.49 0.49 0.50 0.50
± 0.04 ± 0.04 ± 0.05 ± 0.07 ± 0.03 ± 0.03 ± 0.04 ± 0.06 ± 0.05

Cora 0.57 0.45 0.64 0.39 0.23 0.19 0.25 0.20 0.19
± 0.02 ± 0.04 ± 0.03 ± 0.04 ± 0.02 ± 0.02 ± 0.02 ± 0.04 ± 0.04

CiteSeer 0.56 0.40 0.61 0.37 0.20 0.19 0.20 0.20 0.20
± 0.03 ± 0.04 ± 0.02 ± 0.06 ± 0.02 ± 0.02 ± 0.02 ± 0.03 ± 0.03

Chameleon 0.23 0.22 0.21 0.21 0.23 0.22 0.22 0.22 0.22
± 0.02 ± 0.03 ± 0.04 ± 0.03 ± 0.05 ± 0.04 ± 0.03 ± 0.03 ± 0.04

Texas 0.49 0.51 0.54 0.57 0.51 0.43 0.52 0.54 0.54
± 0.13 ± 0.10 ± 0.12 ± 0.10 ± 0.13 ± 0.12 ± 0.12 ± 0.11 ± 0.11

∗ Artificial graph with informative features (SNR=1.5) and structure (homophily=0.95; edge density=0.06)

10


	Introduction
	Methods
	Results
	Does structure encoding always contribute to learning useful node representations?
	Graphs with different properties

	Can advanced GNN architectures cope with poor feature or structure information?

	Discussion and Related work
	Conclusion
	Appendix
	Benchmarks' properties
	Training details
	Detailed tables of results


