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ABSTRACT

Human-object interaction (HOI) detection has traditionally been approached with
task-specific models, sometimes augmented by early vision-language models
(VLMs) such as CLIP. With the rise of large, generative VLMs, however, a nat-
ural question emerges: can standalone VLMs effectively perform HOI detec-
tion, and how do they compare to specialized HOI methods? Addressing this
requires a benchmarking dataset and protocol that support both paradigms. Ex-
isting benchmarks such as HICO-DET were developed before modern VLMs and
rely on exact label matching. This clashes with generative outputs, which may
yield multiple equally valid interpretations. For example, in a single image, a
person mid-motion with a frisbee might plausibly be described as “throwing” or
“catching,” yet only one is annotated as correct. Such rigid evaluation penalizes
valid predictions from both VLMs and HOI-specific methods, but disproportion-
ately underestimates VLM performance because their outputs are less constrained.
We introduce a new benchmarking dataset that reformulates HOI detection as a
multiple-answer multiple-choice task. It emphasizes challenging scenarios by (i)
including a higher proportion of multi-person scenes where individuals perform
different interactions, (ii) removing overly simple cases, and (iii) curating hard
negative choices. This makes the benchmark more challenging than prior HOI
datasets, while still supporting systematic evaluation of both standalone VLMs
and HOI-specific under a unified protocol. Our results show that large VLMs
already surpass state-of-the-art HOI-specific methods across most metrics, while
analysis further uncovers key limitations: VLMs often misattribute surrounding
people’s interactions to the target person and struggle in complex multi-person or
occluded scenarios.

1 INTRODUCTION

Human-object interaction (HOI) detection is a long-standing problem in computer vision, tradition-
ally addressed with task-specific models. Recent works have incorporated early vision-language
models (VLMs) such as CLIP Radford et al.| (2021)) and BLIP Li et al.| (2022a) as encoders to pro-
vide aligned image—text features within HOI frameworks |Liao et al.[(2022); Ning et al.[(2023); Mao
et al.| (2024); |Cao et al.| (2024); [Yuan et al.| (2023). In parallel, the rapid progress of large, gener-
ative VLMs (e.g., Qwen2.5-VL Bai et al.| (2025), InternVL3 [Zhu et al.| (2025)) has demonstrated
that they can directly interpret complex visual scenes, often producing fluent descriptions that in-
clude human—object interactions |Bai et al.| (2025); |Shahriar et al.| (2024); (Chen et al.| (2024)); |Yang
et al.| (2023). This contrast between HOI-specific pipelines and general-purpose standalone VLMs
highlights the need to reconsider how HOI detection is evaluated across these two paradigms.

Unlike earlier approaches that use VLMs merely as encoders within HOI-specific pipelines, in this
paper we focus on VLMs as standalone models (unless otherwise noted). This distinction raises
a central question: can general-purpose VLMs, applied directly in an end-to-end manner, perform
HOI detection on par with or even better than specialized HOI methods |Lei et al.| (2025); [Li et al.
(20244a); Kim et al.|(2025))? The answer is crucial for understanding the true state of progress in HOI
detection and for clarifying how future research should position HOI-specific methods relative to
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Figure 1: (a) Existing benchmarks require exact matches with ground-truth annotations (e.g., “board
airplane”), but these annotations are often incomplete, missing plausible interactions such as “exit
airplane” or omitting human-object pairs altogether (e.g., the person in the blue box and the air-
plane). (b) Comparison of state-of-the-art VLMs (InternVL3 [Zhu et al.| (2025), Qwen2.5-VL-
32B [Bai et al. (2025)) and HOI-specific methods (ADA-CM [Lei et al.| (2023), CMMP |Lei et al.
(2024c), HOLa|Lei et al.|(2025))). Results are shown using Instance-F1 in our benchmark ( Setting
3) versus mean Average Precision (mAP) in the HICO-DET benchmark, highlighting the perfor-
mance gap caused by current evaluation protocols.

general-purpose VLMs. Addressing this question requires a new benchmark that can fairly evaluate
both paradigms under a unified protocol.

At first glance, existing HOI benchmarks such as HICO-DET |Chao et al.| (2018) may appear suf-
ficient for comparing VLMs and HOI-specific methods, since both can ultimately output bounding
boxes and HOI classes. In practice, however, these benchmarks were designed before modern VLMs
and enforce strict evaluation criteria that require exact matches with annotated HOI classes, reject-
ing any alternative interpretation. Such evaluation criteria align with HOI-specific models, which
operate on a fixed label space, but they are poorly suited to VLMs, whose generative outputs can
naturally produce multiple equally valid descriptions. For example, as shown in Fig.[I[a), a person
mid-motion with an airplane might reasonably be described as “boarding” or “exiting.” Yet when
only one label is annotated, the other, though equally valid, is counted as an error. This incomplete
annotation practice penalizes correct predictions and systematically underestimates model capabil-
ity, especially for VLMs.

A further limitation lies in the sparsity of HOI annotations, which becomes especially severe in
multi-person and multi-object scenes. Because HOI tasks involve combinations of actions and ob-
jects, the annotation space grows exponentially, making comprehensive labeling infeasible Hou et al.
(2020; 2021); [Lei et al.| (2024azc). As illustrated in Fig. a), the person in the blue box interacting
with the airplane is not annotated in the ground truth, so any valid prediction involving this pair is
incorrectly penalized as an error. This problem affects both VLMs and HOI-specific methods, since
all models are judged against incomplete ground truths, leading to underestimated performance.
Fig. [[[b) highlights the impact: HOI-specific methods remain below 50% mAP, while general-
purpose VLMs drop to around 15%. This striking gap underscores the inadequacy of current HOI
benchmarks and the need for new protocols that can fairly evaluate both paradigms.

To overcome these limitations, we introduce a new benchmark that reformulates HOI detection as a
multiple-answer, multiple-choice task. Each question includes annotated ground-truth interactions
as positive choices and a curated set of negatives. We begin with a multi-stage filtering process
using several state-of-the-art VLMs to eliminate plausible false negatives. To further enhance the
difficulty, we refine the dataset by excluding overly simple scenarios, such as a single person in
a clean background performing an unambiguous action or multiple people engaging in the same
interaction without ambiguity. From the remaining images, we construct hard negatives, drawing
on interactions performed by surrounding people and fine-grained visually similar actions, thereby
making the benchmark challenging.

While the multiple-choice reformulation with curated negatives helps address the issue of missing
interaction labels, the sparsity of HOI annotations remains a challenge. To mitigate this, our bench-
mark introduces three complementary evaluation settings. In some settings, evaluation is restricted
to the target person, ensuring that unannotated interactions involving other individuals are excluded.
In others, the scope is broadened to multi-person interaction recognition and detection, capturing



more complex scenarios. Together, these settings provide a more comprehensive assessment of HOI
understanding across different levels of difficulty.

Using our benchmarking dataset, we systematically evaluate both standalone VLMs and HOI-
specific methods under a unified protocol, enabling direct comparison between the two paradigms.
Our experiments reveal that large VLMs, even in zero-shot evaluation, already surpass state-of-the-
art HOI-specific methods across most metrics (e.g., achieving up to +16.65% Macro-F1) and remain
competitive in the rest. Smaller VLMs, however, perform only on par with HOI-specific models
and exhibit sharp drops when detection ability is tested. Furthermore, our analysis highlights per-
sistent limitations of VLMs: they frequently misattribute interactions of surrounding people to the
target person and struggle with detection in complex scenarios involving multiple individuals or
occlusions.

In summary, our work makes the following contributions:

* We introduce the first benchmarking dataset that jointly evaluates standalone general-
purpose VLMs and HOI-specific methods. By reformulating HOI detection as a multiple-
answer, multiple-choice task with curated negatives, our dataset resolves the ambiguity
and annotation sparsity that limit existing benchmarks such as HICO-DET. This provides
a foundation for future research on both VLM-based and HOI-specific approaches.

* We conduct a comprehensive benchmarking study of state-of-the-art VLMs and HOI-
specific methods on our dataset, providing the first direct comparison under a unified pro-
tocol. This evaluation clarifies how far large VLMs have advanced relative to specialized
HOI models, while also highlighting the relative strengths and remaining gaps between the
two paradigms.

* Through our analysis, we present several key findings: large VLLMs already establish new
state-of-the-art performance on HOI detection without task-specific training; their errors
often arise from confusing the target person’s interactions with those of nearby people;
and their detection ability degrades in complex multi-person or occluded scenarios. These
findings identify concrete directions for advancing HOI detection, especially regarding the
role of VLMs.

2 NEW BENCHMARK

2.1 PRELIMINARY

We construct our benchmark on top of HICO-DET Chao et al.| (2018), one of the most widely used
datasets for HOI detection [Tamura et al.| (2021); 'Wu et al.| (2023)); Hou et al.| (2020); [Yuan et al.
(2022); Tu et al.[ (2023). HICO-DET consists of 47,774 images, split into 38,118 for training and
9,658 for testing, spanning 600 HOI classes. The dataset is long-tailed, with many rare classes Hou
et al.| (2021)); [Wang et al.[(2022a); Yang et al.| (2024), and its training and testing distributions are
almost identical. We quantify this overlap by computing the KL divergence between the two splits,
which is only 0.088. Such similarity risks encouraging models to rely on dataset priors rather than
true visual understanding, a phenomenon also observed in related tasks /Agrawal et al.[(2018)).

In addition, HICO-DET presents two further challenges. First, 68 of the 600 HOI classes are in-
herently ambiguous in static images because temporal dynamics are absent (e.g., distinguishing be-
tween “boarding” and “exiting” in Fig. [I). A detailed discussion and the full class list are provided
in Appendix |Al Second, 4,800 out of the 9,658 test images contain multiple people, as identified
using a VLM |Bai et al.| (2025). In such cases, exhaustive HOI annotation is infeasible due to the
quadratic growth of possible human—object pairs [Hou et al.| (2020); Lei et al.[(2024c). This leads
to sparse labeling, a phenomenon also reported in previous multi-person vision tasks |Gupta et al.
(2019a); Niitani et al.| (2019); |Zhang et al.[(2019); Suri et al.[(2023). These issues make evaluation
protocols that require exact matches to annotated HOI classes problematic, since the annotations are
often ambiguous or incomplete.

Table [T] compares the distribution of single-person and multi-person cases across existing HOI
benchmarks. Our dataset contains a substantially larger proportion of multi-person scenes involv-
ing different HOIs (38.9%), supporting our claim that the selected test cases are more challenging.



Dataset ‘ Singlel-Person Single Obj | ‘ Multi-Person Diff. HOI | ‘ Applicable to HOI methods | Applicable to VLMs ‘ Multi-Class HOI Prediction

HICO-DET 60.2% 7.5% v X v
V-COCO 51.2% 22.5% v X v
SWiG-HOI 62.2% 0.0% v X v
Bongard-HOI 100.0% 0.0% v v X
Ours 33.3% 38.9% v v v

Table 1: Comparison between existing HOI benchmarks and ours.

At the same time, simpler cases are reduced. For instance, the proportion of single-person single-
object HOIs decreases from 60.2% in the HICO-DET test set to 33.3% in ours. Within the multi-
person subset, same-HOI scenes account for 76.0% of the HICO-DET test set but only 28.8% in our
benchmark, highlighting the increased diversity of interactions. Unlike HICO-DET, V-COCO, and
SWiG-HOI, our benchmark is explicitly designed to support both HOI-specific methods and VLMs,
providing the first evaluation setting that enables direct comparison across the two paradigms.

2.2 DATASET CONSTRUCTION

Task Reformulation To address the limitations of exact-match evaluation, we reformulate HOI
detection as a multiple-answer, multiple-choice task. For each human-object pair in an image, we
construct a question with four candidate options, and the model must identify all correct ones. Since
a person may simultaneously engage in multiple valid interactions (e.g., hold knife and cut with
knife), a question can include more than one positive answer. In our benchmark, positive choices are
taken from ground-truth annotations in HICO-DET, while negative choices are curated to exclude
plausible but unannotated interactions. This reformulation reduces the likelihood of penalizing valid
predictions and provides a consistent basis for evaluating both VLMs and HOI-specific methods.

Negative Choice Construction For each human-object pair in an image, we first build a candidate
pool by collecting all plausible actions for the object and removing its ground-truth labels. To
reduce false negatives caused by incomplete annotations in HICO-DET, we apply a multi-stage
VLM-based pipeline. Because a single VLM often struggles with negative choice judgments, we
combine multiple VLMs in sequence to improve robustness and quality. GPT-4.1 |OpenAl| (2023)
initially separates candidates into semantically consistent or inconsistent with the image, and we
retain only the inconsistent ones. The retained pool is then refined using Qwen2.5-VL-32B Bai et al.
(2025). Since Qwen2.5-VL is also one of our evaluation baselines, directly adopting its judgments
could bias the benchmark. To avoid this, negatives rejected by Qwen2.5-VL are cross-checked with
GPT-40|Hurst et al.|(2024)), ensuring that semantically plausible but challenging cases are preserved
rather than mistakenly discarded. Each question follows a fixed four-choice format with randomized
option order, allowing multiple correct answers. Randomization prevents positional bias, as large
language models are known to be sensitive to option ordering [Pezeshkpour & Hruschkal (2024);
Zheng et al.|(2024)).

Hard Case Refinement Although the multi-stage filtering ensures valid negatives, it often removes
difficult cases, leaving the benchmark clean but not sufficiently challenging. To address this, we
introduce a manual refinement stage, performing manual checks on every question (i.e., every im-
age in the benchmark). We exclude visually unambiguous and simple cases, such as images with
only one person and one salient object against a clean background where the interaction is obvi-
ous at a glance (e.g., riding a motorcycle), and scenes in which multiple people clearly perform the
same interaction. From the remaining images, we strengthen the benchmark in two ways. First,
we include harder positives by allowing multiple temporally plausible actions to be correct (e.g.,
both boarding and exiting like in Fig. [I). Second, we add hard negatives, including interactions
of surrounding people that differ from those of the target person, and fine-grained distinctions be-
tween visually similar actions, such as holding a person versus hugging a person. This refinement
increases the difficulty of the dataset while maintaining the validity of negative choices, ensuring
that the benchmark captures the complexity of real-world HOI understanding.

Test Set Redistribution Our benchmark is constructed from the HICO-DET test set, which is
widely used for evaluating HOI detection methods and ensures compatibility with models trained
on HICO-DET. However, as shown in Sec. @ the training and test distributions of HICO-DET are
highly similar, which risks inflating performance by allowing HOI-specific models to exploit dataset



Setting 1:
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Setting 3:
Figure 2: Example questions in our new HOI benchmark, illustrated under three evaluation settings.

priors rather than demonstrating genuine HOI understanding |/Agrawal et al.| (2018). To mitigate this
issue, we redistribute the test set to create a distribution that is less skewed and more distinct from
the training set. The KL divergence between the HICO-DET training and test splits is only 0.088,
whereas the divergence between the training split and our redistributed test set increases to 0.629.
Moreover, when head and tail classes are defined using HICO-DET training frequencies, the ratio
between the top-20 head and bottom-20 tail classes drops from 80.2 (HICO-DET test set) to 7.1
in ours, indicating a substantially reduced long-tail bias. Although this redistribution results in a
smaller test set, it provides a more valid evaluation by discouraging HOI-specific methods from
over-relying on training priors.

Dataset Summary Our benchmark contains 1,274 images selected from the HICO-DET test set.
The size is smaller than the original HICO-DET test set due to the removal of overly simple cases
and the redistribution process, where many rare classes contribute only a few samples. We do
not expand the dataset by merging multiple HOI benchmarks, since our goal is to support both
VLMs and HOI-specific methods, and the latter cannot be consistently evaluated across datasets
with different predefined HOI classes. All three evaluation settings (Setting 13, introduced in
Sec.[2.3) are constructed from the same set of 1,274 images to ensure comparability across settings.

2.3 BENCHMARK EVALUATION

Evaluation Settings Existing benchmarks face two major issues: missing interaction labels and
unannotated human-object pairs. As discussed in Sec. [2.2] our negative-choice construction alle-
viates the first issue, but the second requires dedicated evaluation protocols. To address this, we
design three evaluation settings that capture different aspects of HOI evaluation, all under the same
multiple-choice format (see Fig. [2] with additional examples in Appendix [C.2). Setting 1 requires
the model to predict interactions for all people in the image. This setting evaluates image-level HOI
recognition while avoiding penalties for unannotated individuals through curated negative choices.
Setting 2 provides the bounding box of a target person, requiring the model to predict only that
individual’s interactions. This isolates individual interaction recognition from person detection and
avoids errors from sparse annotations. Setting 3 requires the model to first detect all persons and
then predict the interactions for the one overlapping with the specified target person (IoU > 0.5),
thereby jointly evaluating detection and recognition. In both Setting 2 and Setting 3, we adopt a
human-centric formulation: only human bounding boxes are provided, and the model must im-
plicitly infer the interacted object from its predicted interaction. This emphasizes reasoning about
human interactions, while general object detection remains outside our scope and is already well
studied with established benchmarks |Deng et al.| (2009b); Shao et al.| (2019); \Gupta et al.| (2019b).

Evaluation Metrics To evaluate multiple-answer, multiple-choice questions, we adopt set-based
metrics that directly compare the predicted and ground-truth label sets. These metrics are widely
used in multi-label classification and question answering|Rajpurkar et al.|(2016); Wu & Zhou!(2017)).
Specifically, we report: Instance-F1, Macro-F1, Micro-F1, and Exact Match Accuracy (EM).

Let @ denote the set of all evaluation questions. For each question ¢ € @, let P, be the set of
predicted interaction labels and G, the ground-truth set of positive choices. Macro-F1 evaluates
performance in a class-balanced manner. Let C denote the set of HOI classes. For each class ¢ € C,
we compute the F1-score over all questions involving ¢, denoted as F1.. Macro-F1 is then obtained
by averaging F1. across all classes so that rare and frequent HOI classes contribute equally:
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where 1[-] is the indicator function, which equals 1 if the condition is true and 0 otherwise.

Instance-F1 measures performance at the question level. For each ¢, we compute the F1-score
between P, and G, and then average over all questions to obtain the overall score:

1 2P, NGy
Instance-F1 = — » Fl(q) (2)
a2 IQIZ\PIHGI
Here | - | denotes set cardinality, and P, N G, is the set of correctly predicted labels for question g.

Micro-F1 measures overall performance by aggregating predictions across all questions and com-
puting a single F1-score from the total number of predicted and ground-truth labels:

Micro-F1 = 22 [Fa 1 Gl . 3)

2 q |Pal + 224Gyl

While F1 scores capture the balance between precision and recall at the global level, it does not
indicate whether variations in performance are driven more by precision or recall. To provide com-
plementary insights, we also report precision and recall averaged across all test questions, enabling
separate examination of these two components.

Exact Match Accuracy (EM). Finally, we adopt Exact Match Accuracy (EM), which checks
whether the predicted interaction set for a question exactly matches the ground-truth set. Unlike
the exact-match mAP metric in traditional HOI benchmarks, which is often undermined by incom-
plete annotations and penalizes unlabeled interactions, our multiple-choice design mitigates this
issue through curated negatives. Thus, EM provides a complementary measure of strict correctness:
it reports how often the model’s predictions are entirely correct.

EM = — Z 1[P, = G,] “4)
\queQ

Together, these four metrics offer a comprehensive evaluation: Macro-F1 balances across classes,
Instance-F1 captures per-question performance, Micro-F1 measures overall aggregate performance,
and EM reflects exact prediction correctness.

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Baselines We evaluate two groups of baselines on our benchmark: general-purpose VLMs and
HOI-specific methods. Recent large VLMs represent the frontier of general-purpose image under-
standing. Although not explicitly trained for HOI detection, they exhibit strong open-vocabulary
grounding as well as visual and spatial reasoning abilities, making them natural candidates for HOI
evaluation. Our VLM baselines include Qwen2/2.5-VL Bai et al.| (2025)), InternVL2.5/3 |Chen et al.
(2024); Wang et al.| (2024b)); |[Zhu et al.| (2025), and LLaVA-OV [Li et al.| (2025). For HOI-specific
methods, we include ADA-CM |Lei et al.| (2023)), CMMP [Lei et al.| (2024c)), LAIN Kim et al.|(2025)),
HOLa Lei et al.|(2025)), and CMD-SE [Lei et al.| (2024b)), which report competitive results on HICO-
DET |Chao et al.| (2018)) and SWiG-HOI |Wang et al.|(2022b). Further implementation details of all
baselines are provided in Appendix

Implementation Details For general-purpose VLMs, we provide each question as a prompt to-
gether with explicit answer-format instructions. Model outputs are parsed accordingly and evaluated
against the ground truth. For HOI-specific methods, we follow a top-k matching strategy. Specif-
ically, we take the top-5 predictions for each question and check whether any match the provided
choices, consistent with the standard top-5 evaluation used in ImageNet Deng et al.| (2009a). We
adopt top-5 rather than top-1 to account for multiple correct answers per question, while top-10
would be unnecessarily permissive. Further implementation details are provided in Appendix [D.T]

3.2 QUANTITATIVE RESULTS

Finding 1: Difficulty in Disentangling Target Person Interactions for VLMs Both small and
large VLMs consistently struggle to separate the interactions of the target person from those of sur-
rounding individuals. This limitation is evident when comparing Setting I (Table |2)) and Setting 2



Method ‘ Macro-F1 (%) ‘ Instance-F1 (%) ‘ Micro-F1 (%) ‘ EM (%) ‘ Avg. Prec. (%) ‘ Avg. Rec. (%)
HOI-specific methods

ADA-CM 45.89 56.23 67.49 11.85 83.16 56.78
CMMP 46.07 55.42 67.16 10.83 82.54 56.61
LAIN 44.27 53.87 65.06 10.52 80.61 54.54
HOLa 46.37 55.91 67.06 11.54 81.88 56.78
CMD-SE 46.51 57.25 66.49 14.13 83.05 55.44
VLM zero-shot evaluation

InternVL2.5-38B 51.96 51.81 55.31 17.27 84.47 41.11
InternVL3-38B 58.23 63.17 63.28 22.68 87.06 49.71
Qwen2.5-VL-32B 63.16 67.19 68.82 23.16 77.83 61.68
LLaVA-OV-7B 46.47 54.05 52.18 12.95 85.28 37.59
InternVL3-8B 55.52 61.17 61.57 20.41 83.51 48.76
Qwen2-VL-7B 41.92 36.91 41.64 7.14 82.75 27.82
Qwen2.5-VL-7B 51.29 56.04 56.03 14.84 80.15 43.06

Table 2: Setting 1 experiment results comparison. Results are reported for VLMs and HOI-specific
methods. Best performance within each group is highlighted in bold. “Avg. Prec.” means the
precision averaged across test set and “Avg. Rec.” means the recall averaged across test set.

Method ‘ Macro-F1 (%) ‘ Instance-F1 (%) ‘ Micro-F1 (%) ‘ EM (%) ‘ Avg. Prec. (%) ‘ Avg. Rec. (%)
VLM zero-shot evaluation

InternVL2.5-38B 48.43 46.43 51.56 20.64 77.52 38.63
InternVL3-38B 58.94 67.41 67.81 35.64 81.90 57.85
Qwen2.5-VL-32B 62.90 69.52 70.69 35.01 75.30 66.61
LLaVA-OV-7B 47.76 56.53 54.80 25.12 77.43 42.40
InternVL3-8B 49.88 52.35 55.54 23.86 74.41 44.31
Qwen2-VL-7B 46.90 53.93 53.61 23.23 76.84 41.16
Qwen2.5-VL-7B 48.93 57.25 57.53 25.98 74.49 46.87

Table 3: Setting 2 experiment results comparison. Best performance within each group is highlighted
in bold. “Avg. Prec.” means the precision averaged across test set and “Avg. Rec.” means the recall
averaged across test set.

(Table[3), which use the same images but differ in scope: Setting I requires recognizing interactions
for all people, whereas Setting 2 isolates the target individual. Across models, we observe clear per-
formance drops when moving from Setting 1 to Setting 2 (e.g., average precision decreases by 9.1%
for InternVL3-8B, 5.7% for Qwen2.5-VL-7B, 5.2% for InternVL3-38B, and 2.5% for Qwen2.5-
VL-32B). Error analysis confirms that 20-25% of mispredictions stem from attributing interactions
of surrounding people to the target person (e.g., 21.6% for InternVL3-8B, 24.6% for Qwen2.5-
VL-7B, 22.3% for InternVL2.5-38B, 24.2% for InternVL3-38B, and 22.0% for Qwen2.5-VL-32B).
These results highlight a persistent weakness of VLMs in disentangling individual-level interac-
tions in multi-person scenarios. Additional discussion and qualitative examples are provided in

Appendix

Finding 2: Detection Limitations of VLMs The performance drop from Setting 2 to Setting 3
highlights that VLMs are far weaker at detection than at HOI recognition (e.g., Qwen2.5-VL-32B
drops 16.6% Instance-F1). When ground-truth boxes are provided in Setting 2, VLMs can recog-
nize interactions effectively, but performance drops significantly in Serting 3, where detection must
be performed by the model itself (Table ). HOI-specific methods, in contrast, integrate detection
within their pipelines and therefore cannot directly exploit ground-truth boxes, but under Setting 3
they often perform competitively, sometimes surpassing even large VLMs (e.g., ADA-CM achieves
13.6% higher Micro-F1 than InternVL3-38B and 0.3% higher than Qwen2.5-VL-32B). This indi-
cates that detection remains a major bottleneck for VLMs, while HOI-specific models strike a more
balanced trade-off between detection and recognition. Error analysis further shows VLMs particu-



Method ‘ Macro-F1 (%) ‘ Instance-F1 (%) ‘ Micro-F1 (%) ‘ EM (%) ‘ Avg. Prec. (%) ‘ Avg. Rec. (%)
HOI-specific methods

ADA-CM 43.02 47.76 61.69 19.15 76.25 51.80
CMMP 43.06 46.62 60.85 18.84 75.06 51.16
LAIN 41.28 45.64 59.09 19.31 73.42 49.44
HOLa 43.61 47.12 61.29 19.78 74.31 52.15
CMD-SE 47.49 44.66 58.71 20.33 78.33 46.96
VLM zero-shot evaluation

InternVL2.5-38B 43.31 19.97 29.05 9.18 85.18 17.51
InternVL3-38B 50.98 38.68 48.08 20.33 84.72 33.56
Qwen2.5-VL-32B 57.25 52.94 61.41 26.06 75.03 51.97
LLaVA-OV-7B - - - - - -
InternVL3-8B 31.89 4.96 8.51 2.04 76.09 4.51
Qwen2-VL-7B - - - - - -
Qwen2.5-VL-7B 42.96 30.53 37.49 14.29 75.92 24.89

Table 4: Setting 3 experiment results comparison. Results are grouped by VLM and HOI-specific
methods. Best performance within each group is highlighted in bold. “Avg. Prec.” means the
precision averaged across test set and “Avg. Rec.” means the recall averaged across test set.

(a) Pre-trained (b) SFT on our train set (c) SFT on V-COCO-based dataset
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Figure 3: Comparison among pre-trained Qwen2.5-VL-7B Bai et al| (2025), SFT finetuned
Qwen2.5-VL-7B on our train set and SFT finetuned Qwen2.5-VL-7B on V-COCO |Lin et al.|(2014).
The blue histograms indicate the binned class frequency in our training dataset, while the red his-
tograms present the recall rate. Head and tail classes are defined by HOI class frequency in our
training set, and all HOI classes are ordered accordingly.

larly struggle in multi-person scenes, where they often miss or incompletely detect individuals, and
in highly occluded cases. Qualitative examples are provided in Appendix [D.3]

Tables[2] 3] and[]together provide a comprehensive view of baseline performance. For HOI-specific
methods (Tables [2] and [)), their Instance-F1 and Micro-F1 scores are comparable to those of small
VLMs, but their Macro-F1 remains low, indicating poor balance across classes. Against large VLMs,
they perform worse overall. For VLMs, performance shows a clear downward trend when mov-
ing from recognition-only (Setting I) to specified-individual prediction (Setting 2) and further to
detection-based evaluation (Setting 3). This progression demonstrates the strong recognition ability
of large VLMs, while revealing their weakness once accurate localization or detection is required.
Detailed quantitative discussions are included in Appendix [D.2]

Small Training Set Fine-tuning We construct a training set from HICO-DET, yielding 111,459
training questions in total. This scale is modest compared to the massive datasets used in the pretrain-
ing of generative VLMs (details in Appendix [C.3). When fine-tuned on our training set (Fig. [3(b)),
recall (red bins) decreases steadily from head to tail classes, revealing a clear head-class bias. Fine-
tuning on a different dataset (V-COCO), which follows a different distribution, produces a milder
head-class bias than training on our set (Fig. 3[c)). In contrast, the VLM without fine-tuning shows
no obvious head-class bias, as recall remains relatively flat across classes (Fig.[3[a)). Overall, while
class imbalance has long been recognized as a challenge for HOI-specific methods, our benchmark



demonstrates that fine-tuned VLMs also inherit this limitation. Additional experimental results are
provided in Appendix

4 RELATED WORK

HOI Detection Methods HOI detection methods are commonly divided into two-stage and one-
stage approaches. Two-stage methods first detect humans and objects, then classify interactions
between paired boxes [Zhang et al.| (2021} 2022); [Park et al.| (2023)); [Hou et al.| (2022). One-stage
methods instead predict (human, object, verb) triplets directly in an end-to-end manner Zou et al.
(2021);|Qu et al.| (2022); [Tu et al.[(2023); |Li et al.| (2024b). Despite these advances, existing bench-
marks still depend on exact matches with annotated HOIs, implicitly assuming exhaustive labeling of
all human—object pairs. In practice, annotations are often incomplete, particularly in multi-person
scenes. As a result, plausible but unlabeled interactions are penalized, leading to underestimated
performance (e.g., below 50% mAP on HICO-DET for SOTA HOI methods). Our benchmark ad-
dresses this limitation by reformulating evaluation as a multiple-choice task with curated negatives,
reducing the penalty on valid but unannotated predictions.

Existing HOI Benchmarks HICO-DET provides HOI annotations across 600 classes (117 verbs
and 80 objects) |Chao et al.[(2018)), with evaluation reported as mAP over all classes. V-COCO fol-
lows a similar protocol with 29 HOI classes defined on COCO images [Lin et al.| (2014). More
recently, SWiG-HOI expands this setup to over 5,500 HOI classes for open-vocabulary evalua-
tion |Wang et al.[(2022b). Although these benchmarks differ in label space, they all adopt exact-
match evaluation, which requires predictions to align strictly with annotated HOI classes. This
design is problematic: annotations are incomplete in temporally ambiguous scenarios and sparse in
multi-person images, leaving many valid interactions unlabeled. Consequently, correct predictions
are often penalized.

Vision—Language Models for HOI Large VLMs have recently become the frontier of general-
purpose image understanding |Bai et al.| (2025); Zhu et al.[ (2025)); |[Liu et al.[ (2024)); Shahriar et al.
(2024); OpenAll (2023)); |[Yang et al.| (2023). Although not explicitly trained for HOI detection, they
exhibit strong open-vocabulary grounding as well as spatial and visual reasoning abilities, making
them natural candidates for HOI understanding. However, their performance has not been system-
atically evaluated in HOI detection. Directly applying traditional benchmarks such as HICO-DET
or V-COCO with exact-match mAP is unsuitable: VLMs can generate multiple valid interpretations
beyond incomplete labels, and sparse annotations in multi-person scenes leave many pairs unla-
beled. Both factors lead to underestimated performance. Our benchmark addresses these challenges
by reformulating HOI detection as a multiple-choice task with curated negatives, and by introducing
complementary evaluation settings that capture different aspects of HOI understanding.

5 CONCLUSION

In this work, we revisit the evaluation of HOI detection in the era of large VLMs. We showed
that existing benchmarks such as HICO-DET suffer from incomplete annotations in two perspec-
tives: missing interaction labels and sparse annotations in multi-person scenes, both of which lead
to underestimated performance, particularly for VLMs. To address these issues, we introduced a
benchmark that reformulates HOI detection as a multiple-answer, multiple-choice task with care-
fully curated negatives, ensuring that valid but unlabeled interactions are not penalized. Further-
more, we designed three complementary evaluation settings to assess different aspects of HOI tasks
while mitigating the impact of sparse annotations. Our experiments demonstrate that large VLMs
already surpass state-of-the-art HOI-specific methods on most metrics, even in zero-shot evaluation.
Small VLMs are only on par with HOI-specific models and exhibit noticeable drops once detection
ability is required. At the same time, VLMs show consistent shortcomings: misattributing the in-
teractions of surrounding people to the target person, and weaker detection performance in complex
multi-person or occluded cases. Overall, this benchmark establishes a foundation for advancing
HOI detection in the era of VLMs and provides a unified protocol that encourages progress in both
specialized HOI methods and general-purpose vision-language models.
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Time-sensitive HOI Classes

boarding an airplane breaking a baseball bat  catching a frisbee catching a sports ball
controlling a tv controlling a mouse directing an airplane directing a bus
dragging a suitcase dragging a surfboard dribbling a sports ball exiting an airplane
flipping a skateboard hitting a sports ball hopping on a bicycle hopping on a horse
hopping on a motorcycle hopping on an elephant  kicking a sports ball launching a boat
launching a kite lifting a fork losing an umbrella moving a refrigerator
opening a backpack opening a book opening a bottle opening a fire hydrant
opening a laptop opening a microwave opening a refrigerator opening a scissors
opening a suitcase opening a toilet opening an oven opening an umbrella
packing a suitcase picking a banana picking an apple picking an orange
picking up a cake picking up a donut picking up a pizza picking up a skateboard
picking up a skis picking up a sports ball ~ picking up a suitcase pulling a kite

pulling a tie releasing a bird serving a sports ball setting a clock

setting an umbrella sliding a pizza squeezing an orange swinging a baseball bat
swinging a tennis racket ~ swinging a remote throwing a baseball bat  throwing a frisbee
throwing a sports ball turning a motorcycle tying a boat tying a tie

waving a bus wielding a baseball bat ~ wielding a knife zipping a suitcase

Table 5: List of 68 HOI classes in HICO-DET that are closely related to time information and often
ambiguous in static images, while videos can disambiguate the temporal process.

A  TIME-SENSITIVE HOI CLASSES IN HICO-DET

Out of the 600 pre-defined HOI classes in HICO-DET, we identified 68 classes that are closely
related to time information, where static images can be inherently ambiguous and may not fully
capture the temporal dynamics of the interaction. This finding shows that the examples highlighted
in our paper (e.g., a frisbee interaction that could be interpreted as either “throwing” or “catching.”)
are not isolated incidents, but rather representative of a broader issue that affects a substantial portion
of the benchmark. All these classes are listed in Table 3

B HOI BENCHMARKING DATASET COMPARISON

Table [T provides a systematic comparison of our benchmark with existing HOI datasets across mul-
tiple dimensions. In HICO-DET |Chao et al.| (2018)), the majority of cases (60.2%) involve a sin-
gle person interacting with a single object, which often results in relatively easy recognition. Our
benchmark reduces this proportion to 33.3%, thereby shifting the focus toward more diverse and
challenging scenarios. A key strength of our benchmark is the inclusion of multi-person images
with different interactions. While only 7.5% of HICO-DET and 22.5% of V-COCO [Lin et al.|(2014)
fall into this category, our dataset raises this to 38.9%, providing a richer evaluation of compositional
reasoning across individuals. SWiG-HOI |Wang et al.| (2022b)) and Bongard-HOI Jiang et al.| (2022)
contain no such cases, because they only provide one annotated person for each image, further dis-
tinguishing our benchmark.

Moreover, similar to existing HOI datasets, our dataset can be applied to HOI-specific methods,
which ensures backward compatibility and allows direct comparison with existing HOI approaches.
However, unlike HICO-DET, V-COCO, and SWiG-HOI, our dataset is explicitly designed to support
general-purpose VLMs. This is achieved by framing the task as multiple-choice question answering,
naturally aligning with the input—output format of modern VLMs. Bongard-HOI, although relevant
for HOI recognition, is limited to binary classification tasks (i.e., “is this interaction present or
not?”). Our dataset instead requires multi-class, multi-label prediction, reflecting the true complexity
of HOI understanding in realistic images.

Taken together, our benchmarking dataset uniquely combines the strengths of previous HOI datasets
while addressing their shortcomings. First, our datasets reduces over-simplified single-person cases,
emphasizes multi-person cases with different interactions, remains compatible with HOI-specific
methods, introduces explicit support for VLM evaluation, and requires full multi-class HOI pre-
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diction. This makes it the first benchmark to emphasize challenging cases and enable comparison
across both specialized HOI models and general-purpose VLMs.

C DATASET DETAILS

C.1 DATASET LICENSES AND RELEASE

Licenses We use the HICO-DET dataset|Chao et al.|(2018)), which is publicly released under a CCO:
Public Domain license.

Data Release and Ethical Considerations We do not release data beyond the original HICO-DET
dataset. Instead, our benchmark release will contain evaluation questions constructed on top of
HICO-DET. Each question is associated with the corresponding image index in HICO-DET, and the
ground-truth HOI annotations used in our evaluation. No images or raw annotations are redistributed
and users are required to obtain HICO-DET separately under its original license. As our release only
provides derived question—answer pairs and image index mappings, the risk of exposing personally
identifiable information or offensive content is minimal. Consent considerations follow those of the
original HICO-DET release, and we do not conduct an independent investigation of consent beyond
the original dataset.

C.2 DATASET EXAMPLES

Examples in Fig. |4|illustrate the main challenges our benchmark emphasizes. In multi-person sce-
narios (e.g., the bus, frisbee, and cell phone related examples), different individuals perform distinct
interactions, which can confuse VLMs and lead to misattributing actions across people. At the same
time, certain single-person cases are difficult due to either contactless interactions (e.g., peel apple)
or visually similar categories (e.g., hold person vs. hug person). As a result, our benchmark creates
a demanding evaluation of HOI understanding.

C.3 OUR HOI TRAINING DATASET

We provide a training dataset with images selected from the HICO-DET training set. Since a model
is expected to address all three settings, the training dataset combines the three types of questions:
(i) a Setting 1 question covering interactions of all annotated people in the image, (ii) a Setting 2
question focusing on the interaction of the target person, and (iii) an additional detection question
for Setting 3. This results in 111,459 training questions overall, which is relatively small comparedd
to the billions of samples used in the pretraining of generative VLMs.

Inherent Long-tailed Training Data in HOI Since we observed the class imbalance problem after
fine-tuning on HOI specific datasets, as shown in Fig. [3] a natural concern is why we do not re-
balance our training set. Our data is constructed from HICO-DET, which is inherently long-tailed
and serves as the standard benchmark in HOI detection. This imbalance is hard to remove because
rare HOI classes are genuinely difficult to collect in the real world. Supporting this point, even when
fine-tuned on V-COCO-based data with different HOI class definitions, models still show stronger
performance on the head classes in our training set, shown in Fig. [3] These results indicate that
long-tailed distributions are not unique to our training data but rather a common phenomenon that
naturally arises in HOI due to the scarcity of rare interactions |Yang et al.| (2024); [Li et al.| (2022b));
Hou et al.|(2021).

D EXPERIMENTS

D.1 IMPLEMENTATION DETAILS

Baseline Details We evaluate two groups of baselines on our benchmark: general-purpose VLMs
and HOI-specific methods. Recent large VLMs represent the frontier of general-purpose image un-
derstanding. Qwen2-VL and Qwen2.5-VL (7B / 32B) Bai et al.| (2025)) are selected as they excel
in fine-grained spatial localization and visual reasoning, making them suitable for HOI tasks. In-
ternVL2.5 and InternVL3 (8B / 38B) (Chen et al.| (2024); [Wang et al.| (2024b); |Zhu et al.| (2025)
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yﬂ Setting 1:
e Select interactions for all persons in the image from choices [GT: A,B,C]
Choices: (A) carry sheep; (B) ride bus; (C) load bus; (D) herd sheep

Setting 2:
Select interactions for the target person (box given) from choices [GT: A,C]
Choices: (A) carry sheep; (B) ride bus; (C) load bus; (D) no interaction with sheep

Setting 3:
First detect all persons, then Select interactions for the target person from choices [GT: A,C]
Choices: (A) carry sheep; (B) ride bus; (C) load bus; (D) no interaction with sheep

Setting 1:
Select interactions for all persons in the image from choices [GT: A,B,C]
Choices: (A) catch frisbee; (B) block frisbee; (C) throw frisbee; (D) spin frisbee

Setting 2:
Select interactions for the target person (box given) from choices [GT: A,C,D]
Choices: (A) catch frisbee; (B) block frisbee; (C) throw frisbee; (D) hold frisbee

Setting 3:
First detect all persons, then Select interactions for the target person from choices [GT: A,C,D]
Choices: (A) catch frisbee; (B) block frisbee; (C) throw frisbee; (D) hold frisbee

Setting 1:
Select interactions for all persons in the image from choices [GT: A,B]
Choices: (A) hold surfboard; (B) lie on surfboard; (C) stand on surfboard; (D) drag surfboard

Setting 2:
Select interactions for the target person (box given) from choices [GT: A]
Choices: (A) hold surfboard; (B) lie on surfboard; (C) stand on surfboard; (D) drag surfboard

Setting 3:
First detect all persons, then Select interactions for the target person from choices [GT: A]
Choices: (A) hold surfboard; (B) lie on surfboard; (C) stand on surfboard; (D) drag surfboard

Setting 1:
Select interactions for all persons in the image from choices [GT: A,B,D]
Choices: (A) read cell phone; (B) hold cell phone; (C) repair cell phone; (D) talk on cell phone

Setting 2:
Select interactions for the target person (box given) from choices [GT: A,B]
Choices: (A) read cell phone; (B) hold cell phone; (C) repair cell phone; (D) talk on cell phone

Setting 3:
First detect all persons, then Select interactions for the target person from choices [GT: A,B]
Choices: (A) read cell phone; (B) hold cell phone; (C) repair cell phone; (D) talk on cell phone

Setting 1:
Select interactions for all persons in the image from choices [GT: A,B]
Choices: (A) hold person; (B) carry person; (C) hug person; (D) kiss person

Setting 2:
Select interactions for the target person (box given) from choices [GT: A,B]
Choices: (A) hold person; (B) carry person; (C) hug person; (D) kiss person

Setting 3:
First detect all persons, then Select interactions for the target person from choices [GT: A,B]
Choices: (A) hold person; (B) carry person; (C) hug person; (D) kiss person

Setting 1:
Select interactions for all persons in the image from choices [GT: C]
Choices: (A) hold apple; (B) cut apple; (C) peel apple; (D) eat apple

Setting 2:
Select interactions for the target person (box given) from choices [GT: C]
Choices: (A) hold apple; (B) cut apple; (C) peel apple; (D) no interaction with apple

Setting 3:
First detect all persons, then Select interactions for the target person from choices [GT: C]
Choices: (A) hold apple; (B) cut apple; (C) peel apple; (D) no interaction with apple

Figure 4: Example questions in our benchmark under the three evaluation settings.

are included because they achieve leading performance across diverse multimodal benchmarks and
emphasize high-resolution perception, which is relevant for recognizing human—object interactions.
LLaVA-OV-7B (2025) is an instruction-tuned VLM designed for open-vocabulary under-
standing demonstrating versatility and strong performance across multiple vision—language tasks,
making it a relevant baseline for HOI evaluation.

Beyond VLM baselines, we also evaluate recent HOI detection methods. ADA-CM Lei et al.| (2023),
CMMP (2024c), LAIN and HOLa [Lei et al/ (2025)) demonstrate com-
petitive performance on the existing HICO-DET benchmark [Chao et al.|(2018). In addition, CMD-
SE (2024D) is a recent open-vocabulary HOI detection method emphasizing generaliza-
tion ability, achieving competitive performance on SWiG-HOI|[Wang et al.| (2022b) and HICO-DET
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benchmarks. We use best-performing pre-trained checkpoints when available, and otherwise repro-
duce results with the authors’ code under the closest available configurations. Specifically, ADA-
CM, CMMP, and HOLa are evaluated with the ViT-L vision backbone, while CMD-SE and LAIN
are based on ViT-B.

Prompts for VLMs For general-purpose VLMs, we provide the question prompt together with
explicit answer-format instructions.

In Setting 1, the prompt is

Question: Which of the following properly describes the interactions in the image (image)?
Choices: (A) ...,(B) ...,(C) ...,(D)... IMPORTANT: Reply with the letter(s) ONLY, separated by com-
mas if multiple (e.g. A,B). For example, if correct answers are (A) and (B), your output must be: A,B
Do NOT include any brackets or other symbols.

In Setting 2, the prompt is

Context: You are given an image (image) and a target person with a bounding box ( human box
). Question: Which of the following describes the interactions between the target person and any
object in the image? Choices: (A) ...,(B) ...,(C) ...(D)... IMPORTANT: Reply with the letter(s)
ONLY, separated by commas if multiple (e.g. A,B). For example, if correct answers are (A) and (B),
your output must be: A,B Do NOT include any brackets or other symbols.

In Setting 3, we first obtain detection results with the following prompt:

Provide the bounding box coordinates for every single person in the input image. The box coor-
dinates represent as [x1, yl, x2, y2], where x is the horizontal pixel coordinate from the left edge,
and y is the vertical pixel coordinate from the top edge. Return the detection results in JSON format
strictly. For example: { “boxes”: [[32, 109, 644, 418], [517, 0, 644, 23], [100, 50, 160, 200]]}.

The subsequent question in Setting 3 is identical to that in Setting 2, except that the ground-truth
bounding box is replaced by the detected one. Therefore, we do not repeat the prompt here.

Bounding Box Process for VLMs In Setting 2 and Setting 3, the input requires bounding boxes of
the target person. Since different VLMs preprocess images in different ways, we adapt the bounding
boxes accordingly to ensure consistency with the model input. Specifically, Qwen2/2.5-VL resizes
input images such that both height and width are multiples of 28. We therefore resize the bounding
boxes proportionally to the resized image coordinates. InternVL2.5/3 does not fix the image size
but internally normalizes it. To align with its view of the image, we first query the model with a
prompt asking for the perceived input resolution: “Please provide the coordinates for the bottom-
right point of the input image. Assume the coordinate system origin is at the top-left of the image,
with x increasing to the right and y increasing downward. Return the coordinates as [width, height]
in JSON format strictly. For example: [638, 415].” Based on its returned size, we then rescale
the bounding boxes into that coordinate system. LLaVA-OV takes the original image size directly
as input. In this case, we use the original bounding boxes without additional processing. This
preprocessing ensures that the bounding boxes we provide are always aligned with how each model
internally processes the input image.

D.2 ADDITIONAL QUANTITATIVE RESULTS AND DISCUSSION

In the following, we provide a detailed analysis of the results in Tables and[4]

In Table 2] Serting 1 evaluates image-level HOI recognition. HOI-specific methods achieve compet-
itive Instance-F1 and Micro-F1 compared to small VLMs, but their Macro-F1 is noticeably lower,
reflecting limited class balance since Macro-F1 weights each HOI class equally regardless of fre-
quency. Large VLMs (e.g., Qwen2.5-VL-32B, InternVL3-38B) outperform HOI-specific methods
across all metrics, demonstrating strong generalization ability even without task-specific training,
while smaller VLMs remain less robust.

In Table[3] Setting 2 evaluates interaction prediction for a specified individual using the ground-truth
bounding box. Large VLMs achieve notably higher EM accuracy (e.g., +12.96% for InternVL3-
38B) compared to Setting 1, suggesting that predicting all interactions in Setting I remains chal-
lenging. At the same time, other metrics decline, as models tend to predict more interactions from
surrounding people, instead of focusing on the target person interactions. Nevertheless, large VLMs
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Method Macro-F1 (%) ‘ Instance-F1 (%) ‘ Micro-F1 (%) ‘ EM (%) ‘ Avg. Prec. (%) ‘ Avg. Rec. (%)

VLM zero-shot evaluation

InternVL2.5-38B 48.12 46.69 52.26 21.04 78.25 39.23
InternVL3-38B 59.33 66.13 67.38 33.20 82.20 57.08
Qwen2.5-VL-32B 61.59 67.29 69.48 31.79 74.65 64.98
LLaVA-OV-7B 47.03 55.55 54.68 24.18 78.43 41.97
InternVL3-8B 51.81 53.47 57.05 24.25 76.77 45.41
Qwen2-VL-7B 46.06 51.85 52.71 21.51 77.28 40.00
Qwen2.5-VL-7B 49.56 56.91 57.98 25.35 75.22 4717

Table 6: Setting 3 experiment results comparison with off-the-shelf detector (DETR) (Carion et al.
(2020). Results are grouped by VLM size (small vs. large). Best performance within each group
is highlighted in bold. “Avg. Prec.” means the precision averaged across test set and “Avg. Rec.”
means the recall averaged across test set.

Train set ‘ Setting ‘ Macro-F1 (%) ‘ Instance-F1 (%) ‘ Micro-F1 (%) ‘ EM (%) ‘ Avg. Prec. (%) ‘ Avg. Rec. (%)
Ours 1 69.98 75.14 78.28 32.26 77.27 79.32
V-COCO-based 1 64.00 68.74 70.85 22.61 75.98 66.38
Ours 2 63.89 68.66 72.27 26.69 66.11 79.70
V-COCO-based 2 60.65 64.77 67.46 26.92 68.43 66.52
Ours 3 62.63 59.82 69.65 24.88 68.48 70.86
V-COCO-based 3 58.21 54.87 63.54 22.53 70.03 58.15

Table 7: Experiment results comparison when Qwen2.5-VL-7B is fine-tuned on HOI datasets|Carion
et al.[(2020) using Supervised Fine-Tuning (SFT). “Avg. Prec.” means the precision averaged across
test set and “Avg. Rec.” means the recall averaged across test set.

consistently outperform smaller ones. HOI-specific methods are not directly comparable in this
setting, since they cannot take ground-truth bounding boxes as input and typically rely on detector
intermediate features.

As shown in Table[d} once detection is required in Serting 3, VLMs face notable drops in Instance-F1,
Micro-F1 and EM compared to Setting 2, reflecting their inferior detection capability. HOI-specific
methods, although less strong in the previous setting, become competitive here, with some even
surpassing large VLMs in Micro-F1 and average recall. This indicates that detection remains a bot-
tleneck for VLMs, while HOI-specific pipelines retain a more balanced trade-off between detection
and recognition.

Since VLMs often struggle with reliable person detection, we follow the two-stage HOI detection
paradigm |Lei et al| (2023); Wang et al.| (2024a)); Zhang et al| (2022)) and leverage a widely used
off-the-shelf object detector, a DETR model |Carion et al.| (2020) pre-trained on HICO-DET. Ta-
ble[6]shows that incorporating DETR helps improve performance in the Setting 3 evaluation, though
remains lower than in Setting 2 due to detection errors. Among small models, Qwen2.5-VL-7B
achieves the best overall performance among most evaluation metrics, except for Macro-F1 and av-
erage precision metrics. For large models, Qwen2.5-VL-32B outperforms InternVL3-38B most of
the time, except for EM and average precision. By comparing Table [6] and Table @] we observe
a clear performance drop when VLMs perform detection on their own, as opposed to relying on
off-the-shelf detectors (i.e., +6.6% Macro-F1 for Qwen2.5-VI1-7B, +4.34% for Qwen2.5-VL-32B,
+19.92% for InternVL-8B and +8.35% for InternVL-38B). This highlights that the detection capa-
bility of current VLMs still lags behind that of specialized object detectors.

Table[7|compares Qwen2.5-VL-7B fine-tuned on our dataset versus a V-COCO-based dataset across
the three evaluation settings. A clear trend emerges in the precision—recall balance. Before fine-
tuning, VLMs typically exhibit much higher average precision than recall, reflecting a conservative
prediction style that favors fewer outputs, shown in Table [2] [3|and[d] After training on our dataset,
however, the model learns to adjust its strategy: recall surpasses precision across settings. This
shift indicates that the model adapts to the multi-answer structure of our benchmark by predicting
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Target person HOI: Target person HOI:
ride boat; sit on boat push bicycle
Other people HOI: Other people HOI:
row boat ) straddle bicycle
Predictions from VLM: Predictions from VLM:
sit on boat; push bicycle;
row boat (x) straddle bicycle (x)
Target person HOI: Target person HOI:
: ride bicycle; hold bicycle hold skateboard

i Other people HOI: Other people HOI:
hold umbrella ride skateboard
Predictions from VLM: Predictions from VLM:
ride bicycle; hold skateboard;
hold umbrella (x) ride skateboard (x)
Target person HOI: Target person HOI:
hold cell phone g ride bicycle; sit on bicycle
Other people HOI: Other people HOI:

£ text on cell phone wear backpack

Predictions from VLM: Predictions from VLM:
hold cell phone; ride bicycle;

text on cell phone (x) wear backpack (x)

Figure 5: Illustration of failure cases of the Qwen2.5-VL-32B model in Setting 2, where they misat-
tribute other people’s interactions to the target person (in the red box).

Multi-person Scenario

Figure 6: Failure detection cases of the Qwen2.5-VL-32B model in Setting 3. The red box marks
the target person specified in the question. The first row shows failures in multi-person scenarios,
while the second row shows failures under occlusion.

more for each question, which increases the chance of covering all correct answers. Although this
comes at the cost of lower precision, it reflects an important bias learned from our dataset design,
which emphasizes diverse and challenging cases where multiple valid answers frequently occur. In
contrast, training on V-COCO-based data maintains a more conservative balance, but still acheive
much higher recall than pre-trained VLMs.

D.3 QUALITATIVE RESULTS

Failure Cases on Distinguishing Target Person Interactions for VLM Figure [5|provides concrete
examples of the failure cases we discussed in the main text, where VLMs often misattribute inter-
actions of surrounding people to the specified target person. In these cases, the target individual
performs one action (e.g., ride boat or hold cell phone), while other people nearby perform different
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actions (e.g., row boat or text on cell phone). The model incorrectly assigns these surrounding ac-
tions to the target person, leading to false positives. Such errors are more common when the target
person shares the same object (e.g., bicycle, skateboard, cell phone) with others, or when nearby
actions are visually salient but semantically irrelevant to the target. These examples confirm that
individual interaction understanding in multi-person scenes pose a systematic challenge for VLMs,
reinforcing our Finding 1 in the main paper.

Failure Detection Cases for VLM We use Qwen2.5-VL-32B model for the failure analysis, which
achieves the highest performance in Setfing 3 among baselines in Table f] As shown in Fig. [6]
failures mainly occur in multi-person scenes, where the detector struggles to correctly localize in-
dividuals in crowded settings, and in occluded scenes, where heavy blockage of the person leads to
missed or inaccurate bounding boxes. These cases show that complex layouts and occlusions remain
key challenges for detection.
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