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Abstract. Variable importance measures (VIMs) aim to quantify the contri-
bution of each input covariate to the predictability of a given output. With
the growing interest in explainable AI, numerous VIMs have been proposed,
many of which are heuristic in nature. This is often justied by the inher-
ent subjectivity of the notion of importance. This raises important questions
regarding usage: What makes a good VIM? How can we compare different
VIMs?
In this paper, we address these questions by: (1) proposing an axiomatic

framework that bridges the gap between variable importance and variable
selection. This framework formalizes the intuitive principle that features pro-
viding no additional information should not be assigned importance. It helps
avoid false positives due to spurious correlations, which can arise with pop-
ular methods such as Shapley values; and (2) introducing a general pipeline
for constructing VIMs, which claries the objective of various VIMs and thus
facilitates meaningful comparisons. This approach is natural in statistics, but
the literature has diverged from it.
Finally, we provide an extensive set of examples to guide practitioners in

selecting and estimating appropriate indices aligned with their specic goals
and data.
Key words and phrases: Variable importance, Variable selection, Scientic
discovery.

1. INTRODUCTION

Global variable importance aims to assign a measure
of relevance to each feature with respect to a target. Since
this relationship can be highly complex, machine learning
(ML) models—proven effective at capturing such com-
plexities in real-world scenarios—are often used as surro-
gates. These models enable the extraction of feature im-
portance in intricate settings, such as genomic data, which
are known for their high dimensionality and correlation
structure. This is at the core of scientic discovery in data-
driven approaches that are currently pervasive.
However, ML models are often opaque. While sim-

ple models like linear regression are fully interpretable
through their coefcients, they rarely reect the true
data-generating process. Hence, there exists a trade-off
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between model complexity and interpretability (Molnar
et al. (2022)). To mitigate this, there has been growing
interest in model-agnostic variable importance measures
(VIMs) (Williamson et al. (2023)).
Controlled variable selection has emerged as a method

for ltering features with statistical guarantees (Candès
et al. (2018)). Although variable selection and variable
importance may appear to pursue the same goal, they
have been treated separately in the literature. For instance,
some variable importance measures aim to equitably dis-
tribute relevance across all features, while variable selec-
tion aims to identify a minimal subset of predictive vari-
ables (Bénard, Da Veiga and Scornet (2022)). One of the
reasons is that some popular variable importance mea-
sures are based on complex combinatorial computations
and game-theoretic axioms that make them hard to in-
terpret and not well suited for this goal (Verdinelli and
Wasserman (2024a)).
The most widely used importance measure is the Shap-

ley value (Shapley (1953)), which, for global variable im-
portance, is approximated by cSAGE (Covert, Lundberg
and Lee (2020)). Figure 1 illustrates this approach in a
simple linear setting with a single relevant covariate. No-
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tably, Shapley values assign nonzero importance to irrele-
vant yet correlated features. This potentially leads to false
discoveries and questions its applicability to scientic dis-
covery.

FIG 1. Bar plot of the estimated importance using SAGE: The input
consists of two Gaussian features correlated by 0.6, with a linear out-
put y = βX0. Left: importance ofX0; Right: importance ofX1. Note
that Shapley values assigns nonzero importance to X1, even though
it does not appear in the true model. Importance was estimated using
Gradient Boosting with n= 10,000 samples over 100 repetitions.

Ideally, we want a denition of importance that con-
siders the impact of missing a feature on predictive per-
formance. This denition should align with the standard
denitions of importance from Covert, Lundberg and Lee
(2020); Molnar (2025). However, this view conicts with
current axiomatic frameworks (Shapley (1953); Verdinelli
and Wasserman (2024a)). In response, we propose amin-
imal axiom: variables that do not provide any exclusive
information should not be assigned importance. It bridges
the gap between variable selection and importance by of-
fering both statistical guarantees and rich information be-
yond binary decisions. It is minimal in the sense that it
corresponds to a necessary condition for null importance,
allowing for exibility to accommodate subjective deni-
tions of importance.
We conduct a comprehensive evaluation of state-of-the-

art VIMs in the light of this axiom. Notably, Shapley val-
ues do not satisfy the proposed axiom, meaning that they
assign importance to unimportant features, as seen in Fig-
ure 1. In contrast, perturbation-based indices do satisfy
it. In particular, we argue that the commonly held be-
lief—that Permutation Feature Importance (PFI, Mi et al.
(2021)) is suited only for marginal importance (Ewald
et al. (2024); Molnar (2025))—is misguided. Instead, we
show that it aligns with conditional importance, and there-
fore the minimal axiom. This is done because an implicit
conditional ltering emerges during the training of the
model.

One substantial challenge in VIMs is the inconsis-
tency across rankings produced by different methods,
making it difcult to assess which features are truly im-
portant. Therefore, it is necessary to classify them to
enable insightful comparisons. Existing categorizations
mainly focus on the inference step—grouping methods
by whether they involve retting, marginalizing, or per-
turbing features (Ewald et al. (2024)). However, this over-
looks the fact that the model is just a surrogate for the
data-generating function, which is unknown in practice
and must be estimated. In practice, it is not any model,
but the minimizer of an empirical loss. Moreover, vari-
able importance estimation often involves quantities like
conditional distributions or expectations, which are of-
ten ignored in the theoretical analysis (Covert, Lundberg
and Lee (2020); Hooker, Mentch and Zhou (2021); Ewald
et al. (2024)). Furthermore, even methods that use the
same estimation procedure can yield different rankings,
as demonstrated in our experiments comparing PFI and
CFI—both perturbation-based—as well as mSAGE and
cSAGE—both marginalization-based.
To enable interpretable comparisons, we introduce a

principled approach for constructing VIMs. This ap-
proach begins by (1) explicitly dening a theoretical
importance index (which should satisfy the minimal ax-
iom) that aligns with user objectives. Then, it focuses on
(2) estimating this index, considering desirable inference
properties such as robustness to model misspecication
(Reyero Lobo, Neuvial and Thirion (2025)). Finally, to
enable reliable scientic discovery, we emphasize (3) re-
covering statistical guarantees, such as type-I error con-
trol. We argue that the uncertainty of the model should
therefore be accounted for only at the last two stages, not
in the denition of the theoretical index itself.
Next, we study existing importance indices in the light

of this three-step approach: we explain their interpreta-
tions, compare different estimation strategies, and outline
the corresponding statistical guarantees to guide practi-
tioners in real-world applications.
The main contributions of this paper are:

• to propose an interpretable, minimal axiom that
unies variable selection and importance.

• to introduce a principled approach for constructing
VIMs and comparing them meaningfully.

• to apply the proposed methodology to an extensive
set of VIMs, providing a new classication, distinct
from recent presentation of the eld.

• to illustrate using extensive numerical experiments
with both real and synthetic datasets that the VIMs
proven to satisfy the minimal axiom assign zero im-
portance to the same null covariates, and the newly
proposed classication is consistent with the ob-
tained importance rankings.
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1.1 Setting and Notation

Let (X,y)∼ P ∈M, where X ∈ X ⊂ Rp is the input,
y ∈ Y ⊂ R is the output and the pair (X,y) is sampled
from a distribution P belonging to a model class denoted
M. Given a set S ⊂ [p], we denote by −S = [p]\S the
subset [p] restricted of S. If S = j, when it is clear from
the context, j (resp. −j) denotes the subset j (resp.
−j). We denote by XS the coordinates of X corre-
sponding to the subset S. Similarly, we denote by Xj the
j-th coordinate of X .
We dene ψ(j,P ) as the importance index of the j-

th covariate Xj for j ∈ 1,    , p. We denote by F an
arbitrary space of functions from X to Y . We denote by
m ∈F the conditional expectation m(X) = E [y X].
We emphasize that no prior assumption is made on the

function space F . Thus, there is complete freedom in
choosing the function m ∈ F . However, in practice, in-
ference challenges may arise when approximating m us-
ing a machine learning model m, motivating the use of a
model-agnostic approach to accommodate complex data-
generating processes. We denote by mn the estimator that
makes explicit the dependence on the training sample size
n. This estimation issue is further discussed in Section 4.
We also make the identiability assumption that no in-

put covariate is an exact function of the others. This en-
sures that the problem of assigning importance is well-
dened—a standard assumption in the variable impor-
tance literature (see Candès et al. (2018); Verdinelli and
Wasserman (2024a)). If necessary, this can be achieved
by prior ltering of repeated features or a choice of a rep-
resentative of the group (Meinshausen (2013)). Under this
assumption, the set of important covariates

S :=

j ∈ 1,    , p

Xj ⊥̸⊥ y X−j


is well dened (Candès et al. (2018)). This is known as
the Markov blanket of y and it is the objective of variable
selection.
In Section 2, we revisit the axiomatic approaches pro-

posed in the literature. In Section 3, we introduce our new
interpretable minimal axiom, designed to close the gap
between variable importance and variable selection. Sec-
tion 4 develops our principled framework for constructing
and comparing Variable Importance Measures (VIMs).
In Section 5, we apply this framework to state-of-the-art
VIMs and discuss whether they satisfy the minimal ax-
iom, with a summary provided in Section 6. Finally, Sec-
tion 7 presents simulations and real data analyses illus-
trating our ndings.

2. RELATED WORK

The notion of importance is inherently subjective, and
formalizing what is desirable from a mathematical per-
spective can be challenging.

In this section, we begin by discussing the main ax-
iomatic foundations that have been proposed in the litera-
ture. In Section 2.1, we review the Shapley value axioms,
and in Section 2.2, we present the critique put forward by
Verdinelli and Wasserman (2024a) along with their newly
proposed axioms.

2.1 Shapley values axioms

Shapley (1953) introduced an axiomatic framework for
the fair allocation of a total payout among players in
a cooperative game, where each player’s share is deter-
mined by their contributions across all possible subsets
of players. Building on this idea, Covert, Lundberg and
Lee (2020) applied the same framework to variable im-
portance, interpreting the features as “players” and the
“game” as the prediction task, where the value corre-
sponds to the model’s predictive performance.
Let V : P([p]) → R be a value function, where P de-

notes the power set operator and S ∈ P([p]) represents a
subset of indices. This value function assigns a measure
of predictive power to each feature set S. It consists of
the building blocks used to dene the importance mea-
sure ψ, which aggregates importance across all subsets.
For instance, Covert, Lundberg and Lee (2020) propose
dening V (S) as the difference in the model loss when
using the covariates in S versus using no covariates (i.e.,
predicting by the mean).
The classical Shapley axioms are as follows:

AXIOM 1 (Efciency). The total importance is fully
distributed among all features:


j ψ(j,P ) = V ([p]).

AXIOM 2 (Symmetry). If two features j and k con-
tribute equally to every subset, i.e., V (S ∪ j) = V (S ∪
k) for all S, then ψ(j,P ) = ψ(k,P ).

AXIOM 3 (Dummy). If a feature j does not contribute
to any subset, i.e., V (S ∪ j) = V (S) for all S, then
ψ(j,P ) = 0.

AXIOM 4 (Linearity). If two value functions V and
V ′ yield values ψ(j,P ) and ψ′(j,P ) respectively, then
the value of V + V ′ is ψ(j,P ) + ψ′(j,P ).

This framework led to the now well-known Shapley
values, which are the unique fullling this axiomatic
framework. A common criticism of Shapley values is
their computational burden due to the need to evaluate
all possible feature subsets. However, in this work, we
focus on conceptual critiques rather than computational
concerns.
Verdinelli and Wasserman (2024a) criticized Shapley

values from both inferential and conceptual perspectives.
Inferentially, many combinations of features may lead to
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poor estimation, making it questionable to rely on all pos-
sible subsets. Conceptually, due to the complex weighted
combinations, these values are difcult to interpret, as
their numerical magnitudes cannot be directly associated
with a tangible property, such as the percentage of ex-
plained variance or the effect of a feature within the
model.
Moreover, the efciency axiom (1) imposes an addi-

tivity constraint, which may be undesirable when vari-
ables are correlated or interact non-linearly (Kumar et al.
(2020)). Such assumptions may distort the attribution of
importance.
Due to the strict nature of the dummy axiom (3), when

using the value function proposed by Covert, Lundberg
and Lee (2020), a feature is assigned zero importance
only in the very specic case where it is completely in-
dependent of both the target and all other features. Hence,
Shapley values may assign nonzero importance to irrele-
vant covariates, as seen in Figure 1. This undermines their
use in feature selection, and therefore scientic discovery.

2.2 Verdinelli & Wasserman axioms

Verdinelli and Wasserman (2024a) tackled the issue of
correlation distortion—the phenomenon where the im-
portance of a feature is underestimated due to its corre-
lation with other inputs. They proposed a new axiomatic
foundation for regression settings, explicitly aligning with
the interpretation of importance as predictive power and
aiming to mitigate the effects of correlation:

AXIOM 5 (Functional Dependence). ψ(j,P ) = 0 if
and only if m(X) is not a function of Xj .

AXIOM 6 (Correlation-Free). ψ(j,P ) = ψ(j, p(y 
X)pj(X

j)p−j(X
−j)), where pj and p−j denote the

marginals of Xj and X−j , respectively.

AXIOM 7 (Linear Agreement). Ifm(X) =


j βjX
j ,

then ψ(j,P ) = β2
j .

The rst axiom is intuitive: a feature is important if
the prediction function m(X)(:= E [y X]) depends on
it. The second axiom aims to eliminate correlation dis-
tortion by requiring that importance depends only on the
marginals of Xj and X−j , and not on their joint depen-
dence structure. The third axiom ensures agreement with
the coefcients in a linear model, grounding the measure
in familiar settings.
In Section 3, we propose a generalization of the func-

tional dependence axiom and argue that the correlation-
free axiom may not be universally appropriate, as its ne-
cessity depends on one’s subjective view on what variable
importance should capture.
Additionally, Verdinelli and Wasserman (2024a) intro-

duced several more loosely dened axioms motivated by

computational and inferential considerations. However,
these are not fully satised by their proposed VIM, a point
we further discuss in Section 5.3.

3. AXIOMATIC FRAMEWORK FOR VARIABLE
IMPORTANCE MEASURES

The notion of variable importance is inherently sub-
jective. Consequently, an axiomatic framework—such as
those previously proposed—can be overly restrictive or
tailored to specic goals, making it difcult to gener-
alize. For instance, in predicting house prices, features
like the number of rooms, surface area, and neighbor-
hood may exhibit complex interdependencies. While the
rst two may be correlated and suffer from correlation
distortion, one could argue that either is sufcient on its
own, or that the neighborhood offers specic information
not captured by the others. This highlights that axioms
like the correlation-free requirement (Axiom 6) may not
be universally desirable. Note that this remark no longer
applies in very high-dimensional settings, where extreme
correlations can make the notion of individual feature im-
portance ill-dened, and grouping features may become
preferable (e.g. Chamma, Engemann and Thirion (2024)).
However, there is a consensus in the literature that

feature importance should be at least related to a fea-
ture’s predictive power Covert, Lundberg and Lee (2020);
Verdinelli and Wasserman (2024a); Ewald et al. (2024).
Notably, Covert, Lundberg and Lee (2020) explicitly de-
ne variable importance as follows:

Feature importance should correspond to how
much predictive power it provides to the model.
We can then dene “important” features as
those whose absence degrades m’s perfor-
mance.

In this section, we introduce a minimal axiom, which for-
malizes this intuitive and widely accepted notion. We pro-
pose it as a minimal requirement for any variable impor-
tance measure (VIM). This axiom captures the idea that
a feature should be considered important only if it pro-
vides unique predictive information—i.e., if its absence
degrades the model’s performance.

AXIOM 8 (Minimal Axiom). ψ(j,P ) = 0 if and only
if Xj ⊥⊥ y X−j .

This axiom aligns with the goal of identifying features
that are conditionally informative for prediction. Under
standard conditions, it relates to the functional depen-
dence axiom (5). For instance, when performing regres-
sion, it is standard to assume an additive, independent,
centered noise:

ASSUMPTION 1a (Additive noise). y = m(X) + ϵ
with ϵ ⊥⊥ X and E[ϵ] = 0, for some m ∈F .
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Note thatm is indeed the conditional expectation func-
tion, since E[y X] = E[m(X) + ϵ X] =m(X).
Similarly, in classication, we assume a model on the

probability of belonging to the class:

ASSUMPTION 1b (Classication). P(y = 1  X) =
σ(m(X)) for some m ∈F and σ :R→ [0,1] bijective.

For example, taking the logistic function as σ shows
that it generalizes the logistic regression model.
Under either of these assumptions, the conditional de-

pendence in the minimal axiom is related with the func-
tional dependence:

PROPOSITION 3.1 (Conditional and Functional Inde-
pendence). Under Assumption 1a or 1b,Xj ⊥⊥ y X−j

if and only if m(X) is not a function of Xj .

These assumptions are necessary to obtain an equiva-
lence. For instance, in regression, if Assumption 1a is vio-
lated, functional independence does not imply conditional
independence. This is demonstrated by a counterexam-
ple from Ewald et al. (2024), where y ∼N (X1,X2) and
X1 ⊥⊥X2. In this case, E[y X] =X1, implying that y is
functionally independent of X2. However, y ⊥̸⊥X2 X1,
so conditional independence does not hold. Nevertheless,
Assumptions 1a and 1b are both standard and sufciently
general, and any statistical selection procedure involving
models implicitly relies on these assumptions. In what
follows, we assume that the equivalence in Proposition
3.1 holds.
This minimal axiom is thus more general and helps

bridge the gap between variable importance and variable
selection—two concepts often treated separately in the lit-
erature. The former typically distributes predictive contri-
bution heuristically, while the latter focuses on identifying
a minimal subset of predictive features (Bénard, Da Veiga
and Scornet (2022)). By unifying both under a shared sta-
tistical foundation, the minimal axiom allows these elds
to benet from one another. On the one hand, controlled
variable selection offers rigorous statistical guarantees,
such as control over Type-I error or the False Discovery
Rate (Candès et al. (2018); Tansey et al. (2022)). On the
other hand, variable importance provides more nuanced
information than a simple yes/no decision. Both aspects
are essential for advancing scientic understanding, as
they enable interpretable, statistically sound conclusions
about the roles of different variables.
Importantly, this approach is exible enough to accom-

modate various interpretations of variable importance, de-
pending on the inferential or practical objective. This will
be illustrated in Section 5, where we examine several
widely used VIMs and assess whether they satisfy the
minimal axiom.

4. PRINCIPLED APPROACH TO DEFINE A VIM

4.1 Pitfalls of inference-based classication of VIM

Historically, many variable importance measures have
emerged as heuristics for interpreting black-box mod-
els. As such, they often focus on quantifying the effects
of perturbations or modications to the information pro-
vided by a specic feature. However, since many of these
measures are closely tied to particular estimation proce-
dures, the literature has introduced several ad hoc cate-
gorizations that can obscure the core statistical objective.
For example, it is common to distinguish between VIMs
that rely on a single model via perturbations and those that
require retting new models. Some claim that such mea-
sures are inherently incomparable. For instance, Molnar
(2025) stated that Leave-One-Covariate-Out (LOCO, Lei
et al. (2018)) and PFI (Mi et al. (2021)) cannot be com-
pared:

LOCO differs from the other methods [...]
since most of the other methods don’t require
retraining the model. However, due to retrain-
ing the model, the interpretation shifts from
only interpreting that one single model to in-
terpreting the learner and how model training
reacts to changes in the features.

Similarly, they claimed that conditional PFI (CFI,
Hooker, Mentch and Zhou (2021)) and LOCO are not
directly comparable:

But since conditional PFI and LOCO work
differently, they differ in their interpretations.
Conditional PFI is an interpretation that only
involves the model at hand. LOCO importance
focuses more on the machine learning algo-
rithm, since it involves retraining the model,
and the interpretation now involves multiple
models trained differently.

Yet, this perspective overlooks a crucial point: the mod-
els used are surrogates for the true data-generating pro-
cess, and most variable importance measures ultimately
aim to estimate some underlying population-level index.
For example, in (5) in Section 5.3, we show that condi-
tional PFI coincides with the LOCO asymptotically. We
propose reframing the development of VIMs by rst fo-
cusing on the theoretical index they intend to estimate.
That is, instead of starting from a model-specic heuris-
tic, we advocate for a general structured approach for gen-
erating and interpreting VIMs.

4.2 Proposed approach

Our proposed method consists of three steps: rst,
dening the theoretical index; then, estimating it; and -
nally, providing statistical guarantees for the important
covariates.
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The starting point in this pipeline is the theoretical
index itself, as it encodes the desired interpretation of
importance. By choosing a meaningful and interpretable
population quantity, one can ensure properties such as
how correlation with other variables inuences a feature’s
importance. It is at this stage that one should explicitly de-
cide which axioms the VIM should satisfy, acknowledg-
ing the subjectivity inherent to the notion of importance.
Indeed, we do not expect a single index to suit all use
cases—this aligns with the "Assuming One-Fits-All Inter-
pretability" pitfall identied by Molnar et al. (2022). This
choice will yield an insightful ranking aligned with the
specically dened goals. Moreover, our minimal axiom
should be veried at this stage, as it represents a minimal
requirement for this theoretical quantity.
Given that the data-generating process is unknown in

practice, the next step is to estimate the theoretical in-
dex. This step can involve a variety of estimation pro-
cedures, each with distinct statistical and computational
properties. Some estimators aim for nonparametric ef-
ciency (Williamson et al. (2023)), others focus on re-
ducing variance (Paillard et al. (2025)), achieving robust-
ness to model misspecication (Reyero Lobo, Neuvial
and Thirion (2025)), or ensuring computational feasibil-
ity (Verdinelli and Wasserman (2024a)). For example, as
we will discuss in the context of the Total Sobol Index,
one may estimate the index by retting multiple models
or, alternatively, by estimating the input conditional distri-
bution. The choice of estimation method may depend on
the application—for instance, in scenarios with abundant
unlabeled data, one might assume complex relationships
between features and the response, but simpler relation-
ships among features themselves, as in model-X methods
(Candès et al. (2018)). Moreover, since many estimation
procedures involve models, alternative approaches can be
considered to account for multiple models, such as the
Rashomon set Donnelly et al. (2023).
Because the estimation step introduces approximation

error, the nal estimator may not perfectly reect the the-
oretical index. Consequently, to support reliable scien-
tic discovery, it is crucial to provide statistical guar-
antees for the selected features. Depending on the con-
text, these guarantees might take the form of asymp-
totic (Williamson et al. (2023); Reyero Lobo, Neuvial and
Thirion (2025)) or nite-sample (Liu et al. (2021)) type-I
error control, or False Discovery Rate control when con-
ducting multiple testing (Candès et al. (2018)). This nal
step is important for ensuring reliable discoveries. Indeed,
Tansey et al. (2022) presented real-world examples where
statistically grounded selected features correlated poorly
with the rankings given by heuristic importance scores.

5. APPLICATION OF THE FRAMEWORK

The framework dened in Section 4 is intended to guide
practitioners not only in selecting an index aligned with

their goals, but also in choosing an estimation procedure
that balances statistical robustness, computational con-
straints, and inferential guarantees. In this section, we
provide an extensive study of theoretical indices, discuss
their interpretability and whether they satisfy the mini-
mal axiom, and examine different estimation strategies
adapted to the data at hand along with their statistical
properties. This principled approach sheds some light on
the interpretation of classical indices.
In particular, we argue that the commonly held be-

lief—that Permutation Feature Importance (PFI, Mi et al.
(2021)) is suited only for marginal importance (Ewald
et al. (2024); Molnar (2025))—is misguided. Instead,
we show that PFI aligns with conditional importance,
and therefore the minimal axiom. This common mis-
understanding arises from a lack of clarity about the
null hypothesis underlying PFI. It is also caused by no-
tation, especially since a conditional counterpart exists
(Hooker, Mentch and Zhou, 2021). Additional notation-
related misunderstandings will be discussed below, where
we show that the marginal versions of SAGE are in
fact suitable for conditional importance, while the con-
ditional SAGE, which is the standard Shapley values, is
not—contrary to previous claims Ewald et al. (2024).
All the proofs can be found in Appendix C.

5.1 Coefcients of a generalized linear model

The rst, most intuitive importance index relies on the
coefcients of a linear model. It is simple to interpret
because the effect of each variable can be directly in-
ferred from the magnitude of its coefcient. Moreover, the
same reasoning applies to logistic regression and, more
broadly, to generalized linear models (GLMs). These
models are often favored for their interpretability (Rudin
(2019); Molnar et al. (2022)) and have been advocated
over black-box models, especially in sensitive applica-
tions such as hate speech detection (Reyero Lobo et al.
(2023)). In this section, we argue that this simple variable
importance measure, along with some modications, sat-
ises the minimal axiom.
We begin by stating the standard generalized linear

model (GLM) assumption:

ASSUMPTION 2 (GLM assumption). Given a link
function g, we assume

g (E[y X]) =X1β1 +   +Xpβp

Under this assumption, as introduced in McCullagh
(1989), a natural variable importance measure for covari-
ate j is given by the magnitude of the coefcient. Thus,
the theoretical index is given by:

DEFINITION 5.1 (GLM indices). Given j ∈ [p], P ∈
M, ψGLM(j,P ) is dened as

ψGLM(j,P ) := β2
j 
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The square is used to ignore whether the effect is pos-
itive or negative; what matters is simply that there is an
effect. Also, we implicitly assume that the input features
have been standardized. This measure, clearly aligned
with Axiom 7, can be useful in some settings due to
its simplicity and the direct interpretability of the coef-
cients, which represent the contribution of each covariate
to the predictive function. This simple VIM satises the
minimal axiom:

PROPOSITION 5.2. Under the GLM assumption (2),
ψGLM satises the minimal axiom.

However, even if this minimal axiom is fullled for
this importance index, in practice there may be esti-
mation complications due to high dimensionality and/or
collinearity between input variables. These are issues of
inference rather than interpretation problems with the the-
oretical index. For this reason, many penalization strate-
gies have been introduced, such as the Akaike Informa-
tion Criterion (AIC, Bozdogan (1987)) or the ℓ1 penal-
ization used in the Lasso (Tibshirani (1996)). We observe
that all these strategies still satisfy the minimal axiom, as
the theoretical index continues to assign zero importance
to unimportant coordinates. Moreover, there are numer-
ous results on bounding the number of false discoveries
made by the inference procedures used in these meth-
ods (see, for example, Corollary 5.3 from Giraud (2021),
which provide bounds in probability).
Many variable selection procedures with their respec-

tive statistical guarantees can be derived from this vari-
able importance index. For instance, to control the type-I
error using Conditional Randomization Tests (CRT, Can-
dès et al. (2018)), the most effective procedures are based
on the difference of coefcients from a Lasso model
trained on the original data versus conditional indepen-
dent data (Liu et al. (2021)). One can easily observe that
the sum over the conditional samplings tends to the Lasso
index, as the coefcients of the conditional independent
generated input coordinates will tend to zero. Therefore,
the minimal axiom of the given theoretical index is sat-
ised with nite sample guarantees on the selected co-
ordinates. Similarly, this approach can be applied to the
Knockoffs framework with the popular Lasso Coefcient
Difference (LCD, Candès et al. (2018)), which provides
False Discovery Rate control on the selected set. Finally,
additional guarantees on p-values or on the familywise
error rate can be obtained from corrected versions of the
Lasso or Ridge (Bühlmann (2013); Dezeure et al. (2015)).

5.2 Perturbation indices

In the general case, assuming a linear model is often
unrealistic, and we may want to adapt to more complex
settings. Moreover, if the model does not generalize well,

there may be no reliable scientic inference, as the model
acts merely as a surrogate for the data-generating process.
Thus, we are unable to provide interesting insights on
feature importance with a model that does not represent
the underlying distribution. This relates to the poor model
generalization pitfall described by Molnar et al. (2022).
Therefore, there is a need for model-agnostic theoretical
indices. In the sequel, we present model-agnostic VIMs
that use the loss to measure the predictability of the model
when incorporating the information of the j-th coordinate
versus when it is not used. Consequently, a data-splitting
step is required, which may decrease the power of the pro-
cedure.
The rst approach we present involves reusing the same

model while perturbing the inputs to observe the effect of
each coordinate on the model’s output. Specically, the
model’s performance with the j-th coordinate perturbed
is compared to its performance with the original input.
They appear to fall outside the principled proposed ap-
proach. Indeed, they are often presented as heuristics for
model interpretation rather than as theoretically grounded
indices with a well-dened estimand. It is unclear what is
estimated, and therefore, the corresponding null hypothe-
sis. To tackle this, we proceed with the proposed princi-
pled approach.
We begin by dening the theoretical index:

DEFINITION 5.3 (Perturbation indices). Given j ∈
[p], P ∈M, ψperturb(j,P ) is dened as

ψperturb(j,P ) := E

ℓ(y,m( Xj))


−E [ℓ(y,m(X))] ,

where Xj is a perturbed version of X that preserves the
−j coordinates (i.e., Xj−j = X−j), but the j-th coor-
dinate is perturbed, and therefore the joint distribution
changes, i.e., L(X,y) ̸= L( Xj , y).

Therefore, all the coordinates are preserved except for
the j-th coordinate, which is sampled in a way that alters
the joint distribution, making it different from the original
one.
Now, we present several examples of perturbations

along with their corresponding estimation procedures,
showing, in particular, that for any perturbation, the min-
imal axiom is satised because the model acts as a rst
lter for conditional independence.
The most popular perturbation-based index is the per-

mutation feature importance (PFI, Breiman (2001); Mi
et al. (2021)) due to its simple estimation. This ap-
proach relies on a perturbation denoted byX(j) such that:
the j-th coordinate preserves the marginal distribution
(L(X(j)j) = L(Xj)), and it is independently distributed
(X(j)j ⊥⊥ X−j andX(j)j ⊥⊥ y). However, the theoretical
index associated to PFI was studied by Bénard, Da Veiga
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and Scornet (2022), who showed that it is not always de-
sirable, as it can lead to misleading conclusions in the
presence of correlation. This reinforces our proposal to
study the theoretical index carefully, since otherwise, we
risk misunderstanding what is considered important.
Regarding its estimation, the simplest method consists

of permuting the value across observations. However, this
approach also suffers from inference issues because it in-
duces extrapolation (Hooker, Mentch and Zhou (2021)).
Indeed, due to permutation, the model attempts to predict
in low-density regions where it was not trained, resulting
in unpredictable behavior.
To address this estimation issue, Hooker, Mentch and

Zhou (2021) and Chamma, Engemann and Thirion (2023)
proposed permuting the j-th coordinate conditionally on
the other ones, leading to the Conditional Permutation Im-
portance (CPI). This method was primarily introduced to
tackle the inferential problem, without thoroughly study-
ing the theoretical quantity to which it converges. This
theoretical aspect was analyzed in Reyero Lobo, Neuvial
and Thirion (2025), where it was shown that the condi-
tional permutation step corresponds to sampling from the
conditional distribution; then, CPI corresponds to Con-
ditional Feature Importance (CFI, Strobl et al. (2008)).
We denote this conditional perturbation by X(j). CFI as-
sumes that the j-th coordinate is independent of the out-
put given the other inputs, i.e., X(j) ⊥⊥ y  X−j , and
preserves the conditional distribution, L(Xj  X−j) =

L( X(j)j  X−j). Moreover, Reyero Lobo, Neuvial and
Thirion (2025) showed that for the quadratic loss, CFI co-
incides up to a explicit universal constant with the Total
Sobol Index, presented below.
Other types of perturbations can also be considered,

such as relational perturbations (König et al. (2021)),
which operate similarly to the CFI but condition on a
smaller subset of coordinates. However, each perturba-
tion gives rise to a different theoretical index, and thus
it is not meaningful to compare them directly, as they pur-
sue different objectives and consequently yield different
rankings of importance.
In any case, these indices satisfy the minimal axiom

for any kind of perturbation dened according to De-
nition 5.3. In addition, under the following assumption
from Reyero Lobo, Neuvial and Thirion (2025), the es-
timated index is also able to correctly identify the null
coordinates.

ASSUMPTION 3 (Asymptotic relevance). Denote by
gj(x, s) the vector obtained from x by replacing the j-th
component of x by s ∈ R. For ϵ > 0, x ∈ X , s ∈ R and
Xj ⊥⊥ y X−j , there exists an n large enough such that

mn(x)− mn(gj(x, s)) ≤ ϵ a.s

We observe that this assumption explicitly requires the
model to be independent of the null coordinates, and it can
be obtained under standard assumptions on the model. In
particular, there is no extrapolation under the null hypoth-
esis (see Reyero Lobo, Neuvial and Thirion (2025)).

PROPOSITION 5.4 (ψperturb satises the minimal ax-
iom). Under additive noise assumption (1a) or classi-
cation assumption (1b), ψperturb satises the minimal ax-
iom for any strictly convex loss ℓ. Moreover, under asymp-
totic relevance assumption (3), if Xj ⊥⊥ y  X−j , then
ψperturb → 0 almost surely for any continuous loss ℓ.

The rst part of the proposition indicates, in particular,
that PFI is also suitable for detecting conditional indepen-
dence. This result contrasts with the existing literature,
where there is a common misconception: since the per-
turbation in PFI is marginal—also with respect to the rest
of the input—it is often assumed that PFI is only suited
for detecting marginal independence, not conditional in-
dependence (see Ewald et al. (2024)). In general, Ewald
et al. (2024) rst showed that if a method is suited for
marginal independence, then it cannot be suited for con-
ditional independence. Then, under strong assumptions,
they related PFI to marginal independence and therefore
claimed that it could not be used for conditional indepen-
dence. In Appendix C.2.1, we prove that, under the as-
sumptions of Ewald et al. (2024), marginal independence
does in fact imply conditional independence.
It is important to note that this key result comes from a

form of equivalence between functional and conditional
independence (see Proposition 3.1). Consequently, the
trained model m is not just any model; it is a loss min-
imizer that approximates the data-generating process and
thus serves as an initial lter for conditional indepen-
dence.
Regarding the second part of Proposition 5.4, for in-

ference purposes, when using a consistent estimator,
the estimated importance of irrelevant coordinates van-
ishes asymptotically. This follows from Theorem 3.4 in
Reyero Lobo, Neuvial and Thirion (2025), which also
states that when using CFI—that is, when the perturba-
tion is conditional—there is a double robustness prop-
erty. Specically, it sufces for only one of the models
involved to be consistently estimated in order to detect
the null hypothesis, which provides a valuable inference
guarantee.
Finally, regarding the statistical properties of such

methods, the extrapolation inherent to PFI makes it chal-
lenging to derive theoretical guarantees. While some cen-
tral limit theorems have been established, allowing for the
derivation of asymptotic type-I error control, these results
are not model-agnostic (Föge et al. (2024)). Some asymp-
totic results for the CFI on the type-I error have been es-
tablished by Reyero Lobo, Neuvial and Thirion (2025)
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based on Markov inequality using the vanishing inu-
ence function. This result could be extended to any per-
turbation index. Moreover, similarly to the case of Lasso
coefcients, certain CRT-based methods can be adapted
to provide nite-sample type-I error control, for example
by using the Holdout Randomization Test from Tansey
et al. (2022). Following the ideas of Watson and Wright
(2021), other nonparametric tests such as the sign test or
the Wilcoxon test can also be considered to obtain nite-
sample type-I error control. The null hypothesis for such
tests is that the mean of the original loss distribution co-
incides with that of the perturbed one.

5.3 Generalized Total Sobol Index

In this section, we begin by dening the theoretical in-
dex and then present several equivalent reformulations,
each leading to a distinct plug-in estimator. These rep-
resentations contrast with the previous categorizations of
VIMs, as the index can alternatively be expressed through
variance, model retting, perturbation, or marginalization
procedures. Finally, we discuss the associated statistical
inference.
The Total Sobol Index (TSI) was originally introduced

in the context of sensitivity analysis by Homma and
Saltelli (1996) as the proportion of output variance at-
tributed to a specic input coordinate when the remain-
ing inputs are known. This notion can be extended beyond
variance to accommodate any loss function ℓ (Williamson
et al. (2023)). The theoretical index is given by:

DEFINITION 5.5 (Generalized Total Sobol Index (TSI)).
Given j ∈ [p], P ∈M and a loss function ℓ, the General-
ized Total Sobol Index is dened as

ψTSI(j,P ) := E

ℓ

m−j(X

−j), y


−E [ℓ(m(X), y)] ,

wherem−j(X
−j) := E


y X−j


andm(X) := E [y X].

This index is a widely used measure of variable impor-
tance (see, e.g., Lei et al. (2018); Rinaldo, Wasserman and
G’Sell (2019); Hooker, Mentch and Zhou (2021); Bénard,
Da Veiga and Scornet (2022); Williamson et al. (2023)).
It is termed generalized because, when the loss function
ℓ is the squared error, the expression recovers the unnor-
malized TSI denition. Notably, with the quadratic loss,
TSI can also be rewritten in several equivalent forms:

ψTSI = E

Var(y X−j)


(1)

= E

(m−j(X

−j)−m(X))2
(2)

variance

= E

m−j(X

−j)− y
2−E


(m(X)− y)2


(3)

lossrefitting

= E

E

m(X) X−j


− y

2−E

(m(X)− y)2


(4)

marginalization

=
1

2


E


m( X(j))− y
2


−E


(m(X)− y)2


(5)

perturbation

= σ2(R2
−j −R2)

(6)

From these equalities, we rst note the richness of the
Total Sobol Index (TSI): it admits multiple interpretations
and computational forms. This highlights the value of the
general estimation pipeline—despite differences in how
the index is computed, each formulation targets the same
underlying quantity. Yet, the current literature often cat-
egorizes these methods into distinct, seemingly incom-
patible families, claiming that they are not comparable
(see Ewald et al. (2024); Molnar (2025); Fumagalli et al.
(2025)).
We observe that it can be estimated as a direct plug-in

using any of these equivalent formulations. First, from (1)
to (3), we observe that the distinction between variance-
based and loss-based approaches is articial. Although
variance-based methods do not explicitly use the output y
in estimation (2), they nonetheless target the same quan-
tity as loss-based methods based on (3), because the de-
pendence in y is hidden in the models m and m−j .
Equation (3) presents the Total Sobol Index using the

squared loss based on two different models m and m−j .
Equation (4) corresponds to a marginalization-based ap-
proach, similar to that of Covert, Lundberg and Lee
(2020). The plug-in in this formulation is often labeled
a one-function variable importance measure (VIM), since
the same estimated model m is used on both sides of the
comparison, without retraining a separatem−j for each j,
which provides an advantage in terms of computation.
However, this perspective overlooks a critical chal-

lenge: the conditional expectation E[m(X) X−j ] is gen-
erally unknown and must itself be estimated. This re-
quires both estimating the conditional distribution and
the conditional expectation. This estimation framework
was formalized in the Sobol-CPI method proposed by
Reyero Lobo, Neuvial and Thirion (2025), who also
demonstrated that not having an innite number of condi-
tional samples introduces bias.
Equation (5) falls under the class of perturbation meth-

ods, since it uses a xed model m and perturbs the j-th
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coordinate by drawing from the conditional distribution—
a normalized version of the Conditional Feature Impor-
tance (CFI) (Strobl et al. (2008)). From (6), we note that
this index can also be interpreted as the difference in non-
parametric R2 (Williamson et al., 2021).
Taken together, these results reveal that the usual cate-

gorization into retting, perturbing, and marginalizing is
misleading: in this example, all approaches aim to esti-
mate the same functional. As such, they share the same
interpretation and comparing them is meaningful. Their
differences lie in inference properties rather than concep-
tual targets. For example, Williamson et al. (2021) stud-
ied the difference between plug-in estimators used in (2)
and (3), showing that the former requires a one-step cor-
rection to achieve nonparametric efciency, while the lat-
ter does not. The method in (3) corresponds to Leave-
One-Covariate-Out (LOCO). Furthermore, the Permute-
and-Relearn and Condition-and-Relearn importances of
Hooker, Mentch and Zhou (2021), which consist of ei-
ther marginally or conditionally permuting a feature be-
fore relearning the model, also fall within this category,
since they aim to estimate

E

y X−j , Xj


= E


y X−j


=m−j(X

−j)

If a plug-in method is applied to (4), the resulting
method is known as Sobol-CPI (Reyero Lobo, Neu-
vial and Thirion (2025)), which was shown to be non-
parametrically efcient. It also corresponds to the con-
ditional SAGE value function (Covert, Lundberg and
Lee (2020)). Using the estimator in (5) leads to Sobol-
CPI(1) (Reyero Lobo, Neuvial and Thirion (2025)), also
known as 05×CFI (Strobl et al., 2008). Importantly,
Reyero Lobo, Neuvial and Thirion (2025) proved that
this estimator is double robust, meaning that it can
reliably identify null covariates as long as either the
predictive model or the conditional sampler is well-
specied—thereby reducing the risk of false positives and
making it a strong candidate for scientic discovery.
Another insightful interpretation of the Total Sobol In-

dex arises when using the cross-entropy loss. In this case,
it becomes directly connected to information-theoretic
quantities such as mutual information (denoted by I) and
the Kullback–Leibler (KL) divergence, as discussed by
Covert, Lundberg and Lee (2020). Specically, we have

ψTSI(j,P ) = I(y;Xj X−j)(7)

=DKL


Py,Xj X−j

PyX−jPXj X−j


,

which quanties the conditional mutual information be-
tween y and Xj given X−j . Intuitively, this measures the
reduction in uncertainty about y obtained by adding Xj

to the already known covariates X−j .
Finally, we note that the Total Sobol Index satises the

minimal axiom.

PROPOSITION 5.6. Let ℓ be a loss with a unique min-
imizer which is a function of the conditional distribution
of y given X . Under additive noise assumption (1a) or
classication assumption (1b), then, ψTSI(j,P ) satises
the minimal axiom.

As discussed in Williamson et al. (2023), most com-
monly used losses fulll the condition stated in Proposi-
tion 5.6, with their Bayes-optimal predictors being func-
tions of the conditional expectation. Examples include the
mean squared error (MSE), deviance, classication accu-
racy, and the area under the ROC curve (AUC).
This makes the Total Sobol Index a suitable criterion

for variable selection, as also supported in the literature
(see Bénard, Da Veiga and Scornet (2022)), who stated
that it is the best quantity for nding the minimal subset
of predictive variables.
Leveraging the relationship with CFI, it is possible to

directly inherit all the statistical guarantees established
in the previous section, such as the asymptotic Type-I er-
ror control based on Markov’s inequality (Reyero Lobo,
Neuvial and Thirion (2025)) and the nite-sample guar-
antees from the HRT (Tansey et al. (2022)). Further-
more, when analyzing the LOCO version, one can em-
ploy the data-splitting variants proposed by Williamson
et al. (2023) to achieve asymptotic Type-I error control or,
similarly to the CFI, rely on the Markov-based guarantees
(Verdinelli and Wasserman (2024a)). Finally, similarly to
the perturbation indices, nonparametric tests such as the
sign test or the Wilcoxon test can be directly applied by
treating the losses using the j-th coordinate as one popu-
lation and those excluding this information as another. In
this way, we obtain nite-sample type-I error guarantees
(Lei et al., 2018; Watson and Wright, 2021).

5.4 Total Sobol Index Modications

Verdinelli and Wasserman (2024a) criticized the TSI
due to its tendency to underestimate the importance of
features that are correlated with others. This phenomenon
is known as correlation distortion (see Verdinelli and
Wasserman (2024b)). To mitigate this issue, Verdinelli
and Wasserman (2024a) proposed a normalized decorre-
lated version of the TSI, dened as

ψdTSI(j,P ) :=
E

(m(X)−m−j(X

−j))2


E [(Xj − ν−j(X−j))2]
,

where ν−j(X
−j) := E[Xj X−j ] denotes the conditional

mean of Xj given all other covariates.
The motivation behind this normalization comes from

the behavior of TSI under a linear model (2). In that case,
the TSI can be expressed as

ψTSI(j,P ) = β2
j E


(Xj − ν−j(X

−j))2

,

which shows that the index is scaled by the conditional
variance of Xj givenX−j . Therefore, when this variance
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is small due to high correlation, the importance decreases.
The proposed normalization corrects this by dividing out
the conditional variance, thereby restoring the importance
of such variables and better aligning with the axioms dis-
cussed in section 2.2.
Verdinelli and Wasserman (2024a) also introduced

other decorrelation-based strategies to address correlation
distortion. However, they also found those alternatives to
suffer from second-order bias and low-density inference
issues. In any case, they satisfy the minimal axiom due to
its alignment with the functional dependence axiom (see
Axiom 5 and Proposition 3.1).
Finally, Du, Roeder and Wasserman (2025) proposed

Disentangled Feature Importance (DFI), which is mainly
based on the total Sobol index computed in a latent space
where input coordinates are rendered independent via a
transport map. However, DFI only satises the minimal
axiom in this transformed space—not in the original input
space. As a result, it can inate the importance of irrele-
vant coordinates and lead to a high rate of false discover-
ies, as seen in their experiments.

5.5 Shapley Additive Global importancE (SAGE)

Shapley values are widely used for local variable im-
portance (Lundberg and Lee, 2017; Spadaccini, Fokkema
and van de Wiel, 2025), and were adapted to global vari-
able importance by Covert, Lundberg and Lee (2020),
who explicitly dened variable importance in terms of the
predictive power a feature provides to the model. How-
ever, in this section, we argue that this performance cri-
terion is in fact not fullled by standard Shapley values,
as they do not satisfy the minimal axiom. We begin by
explicitly introducing SAGE:

DEFINITION 5.7 (ψSAGE). Shapley Additive Global
importancE (SAGE) is given by

ψSAGE(j,P ) :=


S⊂−j
wS(v(S ∪ j)− v(S)),(8)

where v(S) := E [ℓ(y,E [y])] − E

ℓ(y,mS(X

S))

, with

mS(X
S) := E


y XS


and wS := 1

p

p−1
S

−1
.

Each v(S) denotes the SAGE value function associ-
ated with the subset S ⊂ [p], i.e., the change in perfor-
mance relative to the average prediction when incorporat-
ing the information from XS . In particular, we denote by
ψSAGEvf the value corresponding to S = j.

DEFINITION 5.8 (ψSAGEvf ). SAGE value function
associated with the j-th feature is given by

ψSAGEvf := v(j) = E [ℓ(y,E [y])]−E

ℓ(y,mj(X

j))



Notably, it coincides with the index estimated by the
Leave One Covariate In (LOCI) method. However, these
two approaches were not previously connected—similarly
to the case of LOCO and Sobol-CPI—because SAGE is
based on marginalization, whereas LOCI relies on ret-
ting. Despite this inference difference, both aim to esti-
mate the same underlying quantity. As a result, they will
often lead to the same covariate rankings and selections.
Nonetheless, we emphasize that neither the SAGE

value function (and thus LOCI; see section C.6) nor
SAGE itself satises the minimal axiom.

PROPOSITION 5.9. Neither ψSAGE nor ψSAGEvf sat-
ises the minimal axiom.

In particular, Shapley values may assign importance to
features that are not actually used by the model, simply
because they are correlated with truly important features
(see Figure 1). Consequently, the removal of such features
does not degrade model performance, since they do not
directly inuence the predictions of the model. Moreover,
the explainability of the method is hindered by the fact
most features are assigned non-null importance: the ex-
planations lack parsimony, and the set of features called
important becomes unmanageable.

5.5.1 Surplus SAGE: Ewald et al. (2024) also pro-
posed to study another quantity, namely the surplus, de-
ned as the difference between the SAGE value function
of all coordinates except the j-th and that of all coordi-
nates.

DEFINITION 5.10 (ψscSAGEj). Surplus SAGE value
function associated with the j-th feature is given by

ψscSAGEj := v(−j ∪ j)− v(−j) = v([p])− v(−j)

We note that this VIM does not introduce a new index, it
exactly coincides with the Total Sobol Index (expanding
the denitions, we recover (4)). Thus, we do not restate
the principled approach, as it has already been applied in
Section 5.3. In particular, this VIM satises the minimal
axiom.

PROPOSITION 5.11. Under additive noise assump-
tion (1a) or classication assumption (1b), a strictly con-
vex loss ℓ, ψscSAGEj satises the minimal axiom.

5.5.2 Marginal extensions: in any case, the inference
of ψSAGE is complex due to two main challenges: 1) the
number of subsets to consider grows exponentially with
the number of features, and 2) for each subset S ⊂ [p], it
is necessary to estimate the restricted model mS .
To address the rst issue, various approaches have been

proposed, ranging from Monte Carlo Covert, Lundberg
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and Lee (2020) to more sophisticated methods such as
importance sampling guided by prior information, for ex-
ample from the structure of random forests Bénard et al.
(2022).
Regarding the second issue, Covert, Lundberg and Lee

(2020) proposed using marginalization instead of ret-
ting. That is, rather than training a new model mS , they
approximatemS by the conditional expectation E[m(X) 
XS ]. For the original SAGE estimator, this requires con-
ditional sampling, which is computationally expensive.
To mitigate this, they further proposed using marginal
sampling as a proxy for conditional sampling. Accord-
ingly, they distinguish between two variants: the original
conditional SAGE, and the more computationally efcient
marginal SAGE (with similar distinctions for their value
function counterparts).
However, these variants target different theoretical

quantities and thus have different interpretations. In par-
ticular, while conditional SAGE and conditional SAGEvf
do not satisfy the minimal axiom (as illustrated by Figure
1), marginal SAGE and marginal SAGEvf do.

PROPOSITION 5.12. Let ℓ be a loss with a unique
minimizer which is a function of the conditional distribu-
tion of y given X . Under additive noise assumption (1a)
or classication assumption (1b) ψmSAGE and ψmSAGEvf

satisfy the minimal axiom.

Similarly to the marginal interpretation of PFI dis-
cussed in Section 5.2, Ewald et al. (2024) related the
marginal SAGE counterpart to marginal independence.
However, Proposition 5.12 shows that this interpretation
is not accurate. In fact, similarly to the perturbation in-
dices, the global model acts as a rst lter for conditional
independence due to its functional dependence on the in-
put features (see Proposition 3.1).
Intuitively, since marginal SAGE involves comparing

subsets by altering only coordinate j, if feature j is not
important, it will not inuence the model’s output. As a
result, all comparisons involving j yield zero importance.
This confusion between marginal SAGE and marginal

independence partly arises from the terminology “marginal”
and “conditional” SAGE. Conversely, the conditional
SAGE value function, which coincides with LOCI, can
only be employed for marginal testing. This highlights
that the distinction is not merely theoretical but also re-
ects conceptual differences, as the two approaches as-
sess feature importance either conditionally or marginally,
even though both involve marginalization. Consequently,
directly comparing mSAGE and cSAGE is not meaning-
ful.
Finally, note that, as shown in the second part of Propo-

sition 5.4, under the asymptotic relevance assumption
(3), perturbation indices assign vanishing importance to

the null coordinates. The same result can therefore be
obtained under this assumption for both ψmSAGE and
ψmSAGEvf .

6. SUMMARY OF THEORETICAL INDICES AND VIM
METHODS

In this section, we present a summary overview of the
denitions of the main theoretical indices, whether they
satisfy the minimal axiom, and the main Variable Impor-
tance Measures (VIMs), detailing what they estimate and
how they are estimated.
We denote the conditional and marginal Shapley value

functions for S ⊂ [p] as:

v(S) := E [ℓ(y,E[y])]−E

ℓ

y,E[m(X) XS ]


,

vm(S) := E [ℓ(y,E[y])]−E

ℓ

y,E[m(X(−S)) XS ]




The former (v(S)) reects the intrinsic conditional depen-
dence, while the latter (vm(S)) involves marginal depen-
dence. Therefore, E[m(X(−S)) XS ] means that the −S
coordinates are averaged without taking into account the
relationship with XS , which are xed. We also recall the
Shapley weighting:

wS :=
1

p


p− 1

S

−1



The main theoretical indices, along with their deni-
tions and whether or not they satisfy the minimal axiom
(MA, Axiom 8), are summarized in table 1.
Next, we summarize the main methods and how they

are estimated. We use the abbreviations: P for pertur-
bation, M for marginalization, and R for retting. To
maintain readability in the table, we report the theoretical
quantity rather than the explicit estimation formulas. In
practice, these correspond to plug-in estimators: expecta-
tions are approximated using empirical means over a test
set, and the function m is replaced by a trained machine
learning model.
For the construction of X(j), the j-th column is per-

muted across the dataset. The conditional version, X(j),
is obtained via a conditional sampler. In CPI-based meth-
ods, this conditional permutation is used, although any
conditional sampler (as in CFI) is theoretically valid.
To distinguish between marginalization and retting

when estimating the restricted model mS , we denote
marginalization-based approaches as E[m(X) XS ] (con-
ditional sampling, then we use v), and retting-based ap-
proaches simply as mS . For marginal sampling, we de-
note E[m(X(−S)) XS ] (then, we use vm).
The difference between LOCO (Lei et al. (2018)) and

LOCO-W (Williamson et al. (2023)) lies in the use of
a extra data splitting in the latter. This data splitting
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Index Denition MA

ψTSI E

ℓ(m−j(X

−j), y)

− E [ℓ(m(X), y)] Yes

ψSAGE


S⊂−jwS


E

ℓ(y,E


m(X) XS


)

− E


ℓ(y,E


m(X) XS∪j)


No

ψLOCI E [ℓ(y,E [y])]− E

ℓ(y,mj(X

j))


No

ψmSAGEvf E [ℓ(y,E [y])]− E

ℓ(y,E


m(X(−j))


)


Yes

ψmSAGE


S⊂−jwS


E

ℓ(y,E


m(X(−S)) XS


)

− E


ℓ(y,E


m(X(−S)) XS∪j)


Yes

ψPFI E

ℓ(m(X(j)), y)


− E [ℓ(m(X), y)] Yes

TABLE 1
Summary of the theoretical indices: Theoretical indices, their target quantities, and whether they satisfy the minimal axiom.

Method Theoretical quantity Index Estimation

cSAGE


S⊂−jwS (v(S ∪ j)− v(S)) ψSAGE M

cSAGEvf v(j) ψLOCI M

mSAGEvf vm(j) ψmSAGEvf M

mSAGE


S⊂−jwS

vm(S ∪ j)− vm(S)


ψmSAGE M

scSAGEvf v(−j ∪ j)− v(−j) ψTSI M

LOCO E

ℓ(m−j(X

−j), y)

− E [ℓ(m(X), y)] ψTSI R

LOCO-W E

ℓ(m−j(X

−j), y)

− E [ℓ(m(X), y)] ψTSI R

LOCI E

ℓ(mj(X

j), y)

− E [ℓ(m(X), y)] ψLOCI R

PFI E

ℓ(m(X(j)), y)


− E [ℓ(m(X), y)] ψPFI P

CFI E

ℓ(m( X(j)), y)


− E [ℓ(m(X), y)] ψTSI P

Sobol-CPI(n-cal) ncal
ncal+1


E

ℓ( 1

ncal

ncal
k=1m( X(j)

k ), y)

− E [ℓ(m(X), y)]


ψTSI P/M

TABLE 2
Summary of the VIMs: The theoretical quantity targeted by the variable importance measures, the corresponding index, and the estimation

procedure considered (M for marginalization, R for retting, and P for perturbation).

avoids using the same training set for both model re-
ttings, which ensures that the variance does not van-
ish and enables asymptotic normality, thereby allowing
for valid type-I error control. However, Reyero Lobo,
Neuvial and Thirion (2025) discuss the inference conse-
quences of such data splitting. Principally, this causes the
variance to explode, which leads to far fewer discoveries.
This is also seen in the experiments (Section 7).
Sobol-CPI(n-cal) can be interpreted as a perturbation

approach. Indeed, for n-cal = 1, it reduces to a normal-
ized CPI/CFI. However, for larger values of n-cal, then
marginalizing, it accounts for the estimation bias intro-

duced by not having access to the true conditional expec-
tation, which is not addressed by other marginalization-
based methods.
In general, retting-based approaches incur higher

computational costs, as the models used to represent the
relationship with the output tend to be more complex
than those used for conditional sampling. Additionally,
Shapley-based approaches are often slower, as they in-
volve an exponential number of feature combinations.
These factors should be taken into account when choosing
an estimation procedure.
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7. EXPERIMENTS

In this section, we compare all the presented global
variable importance measures on both simulated and real
datasets to illustrate two main points: (1) whether the the-
oretical index satises the minimal axiom—and therefore
whether the estimate tends to zero when a covariate has
no predictive power—and (2) the necessity of the general
pipeline. Indeed, the estimated importance (and in par-
ticular the resulting ranking, which reects the predictive
power of each feature) remains consistent across estima-
tion approaches, whether based on retting, perturbation,
or marginalization.

7.1 Methods

We compare Sobol-CPI(1) (a normalization of
the CPI from Chamma, Engemann and Thirion (2023))
and Sobol-CPI(100) from Reyero Lobo, Neuvial
and Thirion (2025), PFI from Breiman (2001), CFI
from Strobl et al. (2008), marginal / conditional SAGE
(m/c SAGE) and their respective value function vari-
ants (m/c SAGEvf) from Covert, Lundberg and Lee
(2020), scSAGEj from Ewald et al. (2024), LOCO
from Lei et al. (2018), LOCO-W from Williamson et al.
(2023), and LOCI (Leave One Covariate In). To en-
able comparison across all methods, the importance
scores have been normalized. Most methods were com-
puted using the Python package ppy (https://github.
com/gcskoenig/ppy). Code to reproduce these exper-
iments is available at https://github.com/AngelReyero/
Principled-VIM-comparison.
The model used is a Gradient Boosting, but in section

D, we present the same experiments using a Random For-
est to show that, with a less accurate model, the results
are similar—albeit with less precise inference. All exper-
iments were repeated at least 50 times using different ran-
dom seeds.

7.2 Simulated data

For our simulated data, we did not replicate the exact
setup from Ewald et al. (2024), in which the unimportant
coordinates X1 and X2 are nearly identical. Indeed, this
induces collinearity, which prevents accurate estimation
of the linear model and results in a model that includes
the term 036X1 − 036X2.
As a consequence, Ewald et al. (2024) argue that PFI

incorrectly assigns importance to these uninformative co-
variates. However, this is actually an estimation issue,
since the linear model is not consistent in cases of per-
fect correlation; in contrast, the theoretical PFI does not
attribute any importance to such features. Furthermore,
this setup violates the identiability assumption, which
requires that no coordinate be a deterministic function of
the others.

We generate the inputX as a Gaussian vector with zero
mean and a Toeplitz covariance matrix dened by Σi,j =

06i−j, with dimension p= 10. The output is dened as
y =X0 +2X1 −X2

4 +X7X8. We use n= 5000 samples
for the main experiments.
In Figure 2, we plot the estimated importances across

all methods. For clarity, we present only one important
and one unimportant feature, while the full set of esti-
mated importances—from which similar conclusions can
be drawn—is provided in Appendix D.1.
On the left of Figure 2, for an important covariate, we

observe that even though the quantities have been es-
timated using different inference methods, those corre-
sponding to the same theoretical index yield similar im-
portance values. On the right, there is the importance es-
timated to a not important coordinate. We observe that all
the VIMs that satisfy the minimal axiom, represented by
plain boxplots, provide a null importance. For instance,
this illustrates that PFI is suited for conditional testing,
contrary to what was said before.
In Section D.1.1, we examine how the estimation varies

as n ranges from 100 to 5000. The conclusions remain
similar: numerical comparisons should be made between
estimates of the same index to assess different inference
properties, while conceptual comparisons should rely on
their theoretical counterparts.

7.3 Real data

Following Ewald et al. (2024), we use the bike dataset
from Fanaee-T and Gama (2014). In Figure 3, we plot
the estimated importance of the variable year across all
the discussed VIMs. We argue that this covariate is not
important, i.e., it does not contribute predictive power to
the model. Nevertheless, we observe that VIMs that do
not satisfy the minimal axiom assign importance to this
irrelevant covariate. Specically, ψSAGE (estimated by
cSAGE) and ψLOCI (estimated by cSAGEvf via marginal-
ization and LOCI via retting) both assign a nonzero im-
portance.
The claim of Ewald et al. (2024) that PFI can assign

high FI values to features even if they are not associated
with the target but with other features that are associated
with the target does not appear to be supported by the re-
sults of this experiment. In fact, we observe in Figure 3
that PFI, which satises the minimal axiom, assigns zero
importance to the variable year. This indicactes that the
model acts as a lter for conditional independence. As a
result, PFI assigns different importance scores (and there-
fore different rankings) to the relevant covariates com-
pared to methods like LOCO; however, both approaches
identify the same set of important covariates.
In Figure 4, we present boxplots of all features using

only the VIMs that aim to estimate the total Sobol in-
dex. We omit LOCO-W due to its high variability, which
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FIG 2. Boxplot of estimated VIMs for an important and an unimportant variable: Methods not satisfying theoretically the minimal axiom have
boxes lled with diagonal hatch lines. The left panel shows an important covariate, while the right panel shows an unimportant one. Only con-
ditional SAGE (vf) and LOCI fail to satisfy the minimal axiom, assigning non-zero importance to the unimportant variable. Sobol-CPI(1),
Sobol-CPI(100), CFI, scSAGEj, LOCO, and LOCO-W aim to estimate ψTSI.

FIG 3. Boxplots of the VIMs for the year feature: Methods not satisfying theoretically the minimal axiom have boxes lled with diagonal hatch
lines. All methods that estimate an importance index satisfying the minimal axiom assign no importance to this variable.
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compromises readability. The complete gure—including
additional methods and results based on a Random For-
est—is provided in Appendix D.2.
We observe that all displayed methods produce sim-

ilar importance values and rankings, even on real data,
regardless of whether they rely on marginalization, ret-
ting, or perturbation. This similarity arises because they
target the same underlying quantity. However, their es-
timation properties differ. For instance, retting-based
methods exhibit greater variability (Paillard et al. (2025)),
which can lead to inaccurate variable importance esti-
mates that are highly sensitive to the data and the opti-
mization procedure. Consequently, the resulting rankings
tend to be less reliable in practice compared to those ob-
tained via marginalization or perturbation. Furthermore,
perturbation methods possess a double robustness prop-
erty (Reyero Lobo, Neuvial and Thirion (2025)), which in
practice translates into greater robustness to model mis-
specication under the null hypothesis, leading to faster
convergence rates and reduced variance, as observed for
variables such as month and holiday.

8. DISCUSSION

In this article, we have proposed a new categorization
of variable importance measures (VIMs). In doing so, we
aim to provide practitioners with more insight into how
to proceed when working with real datasets. We argue
that comparing VIMs only based on their inference pro-
cedures it is not meaningful, and can be misleading. In-
stead, it is crucial to clearly dene the theoretical index
corresponding to the intended goal, and then select an ap-
propriate estimation method. In particular, we emphasize
that comparing methods aimed at estimating different in-
dices is not meaningful, as each method yields a different
ranking aligned with its own objectives.
This principled framework acknowledges that global

variable importance aims to capture information about the
true underlying distribution, with the model acting as a
surrogate that simplies this information. Furthermore,
establishing a connection between variable importance
and variable selection is essential for making insightful
discoveries with statistical guarantees. Since the index is
a theoretical quantity that must be estimated from data,
it is crucial to provide statistical guarantees for the se-
lected covariates. This connection is formalized through
the minimal axiom, highlighting that both elds pursue
the same objective.
The proposed axiom not only formalizes the notion of

importance as predictive power but also generalizes it by
relating it to the conditional independence testing frame-
work under the established assumptions. We note that
some notions of importance do not fall within this deni-
tion; for example, a feature may inuence the output only

through its variance without providing any predictive sig-
nal. However, we argue that when performing scientic
inference using an ML model to explain the X–y rela-
tionship, no stronger notion can be achieved, since such
alternative forms of importance are not captured by the
predictive model.
While the presented work offers a rigorous framework

for the development of VIMs, there remains a need for
further research on this subject. On the one hand, new
theoretical indices should be developed to capture alter-
native notions of importance, with explicit articulation of
the axioms they are designed to satisfy. On the other hand,
more work is needed on the estimation side, particularly
for challenging indices such as the decorrelated LOCO,
whose inference bias complicates accurate estimation.

APPENDIX A: NOTATION GLOSSARY

The notation used in this paper is gathered in Ta-
ble 3. Some notation can be combined; for instance,

Description

X ∈Rp Input
j ∈ [p] Feature of interest
Xj ∈R j-th input covariate
X−j ∈Rp−1 X with the j-th covariate ex-

cluded
XS ∈Rp−S S-th input covariates for

S ⊂ [p]
y ∈R Output
P ∈M Distribution of (X,y)

X(j) Marginal perturbation
X(j) Conditional perturbation
m(X) (resp. m−j(X

−j)) E [y X] (resp. E

y X−j


)

mS(X) E

y XS


=

E

m(X) XS



m (resp. m−j) Estimation of m (resp. of
m−j)

ℓ Loss function
F Generic space of functions
ψ(j,P ) Importance index of j under

P
ncal Size of calibration set

TABLE 3
Notation used in the paper.

X(j)l denotes the l-th coordinate of X(j). Also, we re-
call that marginal perturbation means X(j)−j = X−j ,
L(X(j)j) = L(Xj) and X(j)j ⊥⊥ X−j , Y , and condi-
tional is X(j)−j = X−j , X(j)j ⊥⊥ y  X−j and L( X) =
L(X).
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FIG 4. Boxplots of the VIMs estimating ψTSI for all features: All methods aim to estimate the same theoretical quantity. While their estimates are
generally close, the retting-based approaches exhibit poorer inference properties.

APPENDIX B: CONDITIONAL AND FUNCTIONAL
INDEPENDENCE

In this section, we prove that, under certain standard as-
sumptions, it is possible to establish the equivalence be-
tween conditional independence and functional indepen-
dence, i.e., between y ⊥⊥ Xj X−j and m(X) ∈F−j .
First, under the standard additive noise assumption (1a),

Reyero Lobo, Neuvial and Thirion (2025) proved this
equivalence in Lemma I.1 of the appendix, which is based
on proving that m(X) is σ(X−j)-measurable.
For classication, we will establish the result under the

general classication assumption (1b).
First, if y ⊥⊥ Xj X−j , we have that

σ(m(X)) = P(y = 1 X)(using Assumption 1b)

= P(y = 1 X−j)(using that y ⊥⊥ Xj X−j)

= f−j(X
−j),

for some f−j ∈ F−j , as P(y = 1  X−j) belongs to the
σ-algebra generated by X−j .
Then, if m ∈F−j , then we have that

P(y = 1 X−j) = E

P(y = 1 X) X−j

(using the tower rule)

= E

σ(m(X)) X−j


(using Assumption 1b)

= E

σ(m−j(X

−j)) X−j


(using that m ∈F−j)

= σ(m−j(X
−j))

(σ(m−j(X
−j)) is σ(X−j)-measurable)

= σ(m(X))(using denition of m−j)

= P(y = 1 X)

Therefore, as y binary and P(y = 1  X−j) = P(y = 1 
X), then y ⊥⊥ X−j X−j .

APPENDIX C: MINIMAL AXIOM PROOFS

In this section, we study whether the theoretical indices
presented in the main text satisfy the minimal axiom.

C.1 Generalized Linear Models ψGLM

PROOF OF PROPOSITION 5.2. On the one hand, as-
sume that Xj ⊥⊥ y X−j . Then, we have that g(X1β1 +
  +Xpβp) =: E [y X] = E


y X−j


, then it is σ(X−j)-

measurable. However, as Xj is not σ(X−j)-measurable
by identiability assumption, then βj = 0.
On the other hand, assume that βj = 0. Then, in partic-

ular using the GLM likelihood assumption (McCullagh
(1989)):

py(y; θ,ϕ) = exp


yθ− b(θ)

a(ϕ)
+ c(y;ϕ)


,

we have that the canonical parameter does not depend on
Xj because βj = 0, then py(y X) = py(y X−j).

C.2 Perturbation ψperturb

PROOF OF PROPOSITION 5.4. First, we prove it in
particular for the quadratic loss. For any perturbation Xj ,
using Assumption 1a we have that

ψperturb(j,P ) = E

(y −m( Xj))2


−E


(y −m(X))2


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= E

(y −m(X−j , Xjj))2


−E


(y −m(X))2



= E

(m(X) + ϵ−m(X−j , Xjj))2



−E

(m(X) + ϵ−m(X))2



= E

(m(X)−m(X−j , Xjj))2




Thus, using the strict convexity of the quadratic loss, we
have thatm(X)−m(X−j , Xjj) = 0 almost surely if and
only ifm ∈F−j . Therefore, we can conclude by applying
Proposition 3.1.
More generally, for any strictly convex loss ℓ, we have

that E

ℓ(y,m( Xj))


−E [ℓ(y,m(X))] = 0 if and only if

m(X) − m( Xj) = 0 almost surely. Then, we conclude
using Proposition 3.1.
For the second part of the proposition, it sufces to ap-

ply Theorem 3.4 from Reyero Lobo, Neuvial and Thirion
(2025). Indeed, this result follows from one of the double
robustness properties of CFI: for any perturbation, using
the asymptotic relevance of m, the importance vanishes.

C.2.1 PFI is not suitable for marginal testing. In the
literature, there is a common misconception that PFI is
suitable for marginal testing (see Ewald et al. (2024)), due
to the fact that the permutation is performed marginally.
However, in this section, we show that this is not the
case. First, using Proposition 5.4, we show that if PFI is
nonzero, then Xj is dependent on the output given the
rest of the input. Then, we demonstrate that the assump-
tions made in Ewald et al. (2024) to draw conclusions
about marginal independence implies conditional inde-
pendence.
C.2.1.1 PFI different than 0: In Ewald et al. (2024),

they claim that if ψPFI(j,P ) ̸= 0 and Xj ⊥⊥ X−j  y,
then Xj ⊥⊥ y. In this section we argue that indeed, if
ψPFI(j,P ) ̸= 0 then we have that Xj ⊥⊥ y  X−j . More
generally, this applies to any perturbation index as seen
in Proposition 5.4. The problem arises from the fact that
the model used in the index is not an arbitrary model, but
rather an estimate of the data-generating process. Under
standard assumptions, this model acts as a lter for con-
ditional independence. Consequently, if the difference in
loss is nonzero, it implies that the model relied on the co-
variate, and therefore, the covariate is important—i.e., it
is conditionally dependent.
C.2.1.2 PFI equal to 0: In Ewald et al. (2024) they

claimed that if ψPFI(j,P ) = 0,Xj ⊥⊥ X−j and Xj ⊥⊥
X−j  y, then Xj ⊥⊥ y. However, this also implies that
Xj ⊥⊥ y X−j . Indeed, we have that

p(Xj , y X−j) =
p(Xj , y,X−j)

p(X−j)

=
p(y)p(Xj  y)p(X−j  y)

p(X−j)

=
p(y)p(Xj)p(X−j  y)

p(X−j)

=
p(Xj)p(X−j , y)

p(X−j)

=
p(Xj)p(y X−j)p(X−j)

p(X−j)

= p(Xj)p(y X−j)

= p(Xj X−j)p(y X−j)

Therefore, we conclude that Xj ⊥⊥ y X−j .
In general, as shown in Proposition 5.4, there is no need

to impose such restrictive assumptions to draw conclu-
sions about conditional independence. We present this de-
velopment because Ewald et al. (2024) rst showed that if
a method is suited for detecting marginal independence,
then it is not suited for detecting conditional indepen-
dence. Second, they showed that under this restrictive set-
ting, PFI is appropriate for marginal independence. We
therefore demonstrate that, in this particular case, it also
implies conditional independence, thus aligning with our
more general result.

C.3 General Total Sobol Index ψTSI

PROOF OF PROPOSITION 5.6. Covert, Lundberg and
Lee (2020) established this result in the context of the
cross-entropy loss. Specically, they showed that

I(y;Xj X−j) = 0 ⇐⇒ Xj ⊥⊥ y X−j ,

which corresponds precisely to the minimal axiom using
(7).
For the quadratic loss, we can directly use the CFI for-

mulation of the TSI and apply Proposition 5.4.
Under the assumptions of the proposition, this equiva-

lence follows directly. Since the loss ℓ is strictly convex,
it admits a unique minimizer, which by denition is the
Bayes predictor, a function of m ∈ F . Hence, we have
that

E[ℓ(y,m(X))] = E[ℓ(y,m−j(X
−j))]

⇐⇒ m(X) =m−j(X
−j) a.s.

This condition implies thatXj provides no additional pre-
dictive power beyond X−j , i.e., m is functionally inde-
pendent of Xj given X−j . By the equivalence between
functional and conditional independence under these as-
sumptions, we conclude that ψTSI(j,P ) satises the min-
imal axiom.
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C.4 Shapley Additive Global importancE (SAGE,
ψSAGE)

PROOF OF PROPOSITION 5.9. We begin by showing
that ψSAGEvf does not satisfy the minimal axiom, as there
exists a spurious correlation between the j-th coordi-
nate and an important coordinate. Similarly, since ψSAGE

combines multiple terms—including those reecting this
spurious importance—it also fails to satisfy the minimal
axiom. Finally, we prove that ψscSAGEj coincides with
ψTSI and, in particular, as established in the previous sec-
tion, satises the minimal axiom.
We recall the notationmS(X

S) = E[y XS ] = E[m(X) 
XS ] for S ⊆ [p]. In particular, for S = j, we denote it
simply as mj .
We start with the SAGE value function. Indeed, it is

given by

ψSAGEvf(j,P ) := E [ℓ(E [y] , y)]−E

ℓ(mj(x

j), y)

,

withmj(x
j) := E


m(Xj ,X−j) Xj = xj


= E[y Xj =

xj ]. Therefore, it is easy to construct the following general
counterexample: for y =m−j(X

−j)+ ϵ, with ϵ ⊥⊥ X , we
observe that y ⊥⊥ Xj X−j , but if Xj⊥⊥X−j , it will not
be 0 as E


y Xj


̸= E [y].

For the SAGE, it is given by

ψSAGE(j,P ) =
1

d



S⊂−j


d− 1

S

−1

(v(S ∪ j)− v(S)) ,

with v(S) = E [ℓ(y,E [y])]− E

ℓ(y,mS(x

S)

. In partic-

ular, using the same counterexample as for the SAGE
value function, we observe that for S = ∅ the difference is
strictly positive as v(∅∪j)−v(∅) = v(j)> 0. There-
fore, ψcSAGE(j,P ) > 0, since it is a combination of dif-
ferences that are either positive or zero, with at least one
strictly positive. However, since Xj ⊥⊥ y X−j , the min-
imal axiom is not satised.
For the ψscSAGEj, we note that it is exactly the total

Sobol Index:

ψscSAGEj := v(−j ∪ j)− v(−j)

= E [ℓ(y,E [y])]−E

ℓ(y,m−j∪j(x

−j∪j)


−E [ℓ(y,E [y])] +E

ℓ(y,m−j(x

−j)


= E

ℓ(y,m−j(x

−j)

−E [ℓ(y,m(x)]

= ψTSI(j,P )

In particular, it satises the minimal axiom (see Proposi-
tion 5.6).

C.5 Marginal SAGE ψmSAGE

PROOF OF PROPOSITION 5.12. For the notation, we
denote

mm
S (XS) := E[m(X(−S)) XS ]

This means, in particular, that the coordinates inX(−S)S :=
XS are xed, and the expectation is taken over the re-
maining coordinates, which are independent fromXS due
to marginal permutation.
We observe that, for this proof, there is no need to pre-

serve any specic distribution over the variables on which
the expectation is taken (i.e.,X(−S)−S); it sufces to have
independence. In this way, the coordinates over which we
take the expectation are not inuenced by the others, and
thus the conditional ltering of the trained function re-
mains valid—unlike in the original SAGE.
To make this point more explicit, note that by indepen-

dence,

mm
S (xS) := E[m(X(−S)) XS = xS ]

= E[m(X(−S)−S , xS) XS = xS ]

= E[m(X(−S)−S , xS)]

Therefore, the information provided by the coordinates
in S does not inuence the distribution of the remaining
coordinates.
If the sampling is done marginally, we have in particu-

lar that mm
S (xS) = E[m(X−S , xS)].

We start with the marginal SAGE value function. It is
dened as

ψmSAGEvf(j,P ) := E [ℓ(E [y] , y)]−E

ℓ(mm

j (xj), y)



Note thatmm
j (xj) := E


m(xj ,X−j)


. Under the null hy-

pothesis, m ∈F−j , and therefore

mm
j (xj) = E[m(xj ,X−j)] = E


m−j(X

−j)

= E [y] 

Thus, its value is 0 if and only if xj is conditional indepen-
dent. Similarly, for the marginal SAGE, it can be written
as

ψmSAGE =
1

d



S⊂−j


d− 1

S

−1

(vm(S ∪ j)− vm(S)) ,

with vm(S) = E [ℓ(y,E [y])] − E

ℓ(y,mm

S (xS)

. Thus,

we just need to note that vm(S ∪ j) = vm(S) for all
S ⊂ −j. To see this, similarly as before, using the
equivalence between conditional dependence and func-
tional dependence, we observe that

mm
S∪j(xS∪j) = E


m(xS∪j,X−(S∪j))



= E

m−j(x

S ,X−(S∪j))


= E

m(xS ,X−S∪j)



=mm
S (xS)
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Then, we have that

vm(S ∪ j) = E [ℓ(y,E [y])]−E

ℓ(y,mm

S∪j(x
S∪j)



= E [ℓ(y,E [y])]−E

ℓ(y,mm

S (xS)


= vm(S)

C.6 Leave One Covariate In (LOCI, ψLOCI)

PROPOSITION C.1. ψLOCI does not satisfy the mini-
mal axiom.

PROOF OF PROPOSITION C.1. Similarly to the (con-
ditional) SAGE value function for the subset j, we have
that it is given by

E[ℓ(y,E[y])]−E[ℓ(y,mj(X
j))],

except that the index j appears as a retting index for the
estimation rather than a marginalization index. Neverthe-
less, the index remains the same, and the same counterex-
ample applies to show that this difference is non-zero,
even under conditional independence.

APPENDIX D: ADDITIONAL EXPERIMENTS

In this section, we present the remaining results on vari-
able importance and additional convergence behaviors.
This provides a more complete view of the experiments.

D.1 Simulated data

From Figure 5, where we used a Random Forest, we
observe the same overall pattern as in Figure 2, where
the main model is a Gradient Boosting machine. We also
note that the Gradient Boosting model is more accurate
(achieving a better R2), but its estimated importance val-
ues exhibit higher variability. Therefore, even though both
models are expected to converge to the same quantity,
some inference methods may be more desirable than oth-
ers.
For instance, Sobol-CPI (and similarly, CFI) benets

from a double robustness property (see Reyero Lobo,
Neuvial and Thirion (2025)), which enhances its ability
to detect null covariates and leads to better performance
on X2 compared to PFI. Additionally, we observe that
LOCI not only fails to satisfy the minimal axiom—by as-
signing importance to uninformative covariates—but also
assigns negative importance to important covariates, ex-
hibiting behavior that is clearly undesirable. This could
be sign of a strong model overtting.
For completeness, in Figures 6 and 7 we present the

estimated importance for all the features, using a Gra-
dient Boosting and a Random Forest respectively. From
these gures, we observe that the VIMs satisfying the

minimal axiom do not assign any importance to the red
(uninformative) features. We also note the equivalence
between Sobol-CPI(1), Sobol-CPI(100), CFI,
scSAGEj, LOCO, and LOCO-W, even though they rely
on different estimation approaches and models.
From Figure 7, we rst observe that the estimation qual-

ity is slightly lower due to the reduced performance of
the model. Notably, LOCI exhibits highly undesirable be-
havior: it not only assigns importance to uninformative
covariates, violating the minimal axiom, but also assigns
negative importance to important covariates. This is likely
a consequence of the variability in the optimization pro-
cess. Overall, Sobol-CPI demonstrates more reliable in-
ference results (see Paillard et al. (2025)).

D.1.1 Convergence In Figure 8, we illustrate that the
behavior observed in the boxplots from Figure 2 is not
specic to a xed sample size n, but rather remains stable
across different values of n. On the left panel, which cor-
responds to an important covariate, we observe that sev-
eral distinct trends emerge early in the sampling process
and remain consistently separated as n increases. On the
right panel, we observe that both SAGE and LOCI assign
importance to features that are, in fact, not important. This
suggests that these methods may fail to satisfy the mini-
mal axiom, as they can attribute relevance to covariates
that have no true impact on the outcome.
In Figure 9, we focus exclusively on VIMs that tar-

get the total Sobol index. As such, this gure does not
aim to compare different theoretical importance indices,
but rather to assess the inference properties of estimators
targeting the same quantity—making it a purely method-
ological comparison. On the left, we observe that for
the important covariate, the CPI-based methods exhibit
lower variance compared to retting-based approaches
(LOCO(-W)), consistent with ndings from Paillard et al.
(2025). On the right, we report the mean bias across null
covariates. Again, CPI-based methods show more favor-
able behavior due to their double robustness property, as
discussed in Reyero Lobo, Neuvial and Thirion (2025).

D.2 Real data

In Figure 10, we reproduce the same gure as in Fig-
ure 4, but using a Random Forest instead of Gradient
Boosting. We observe that the results and rankings remain
essentially unchanged, assigning the highest importance
to temperature and humidity, and consistently identifying
the same covariates as unimportant.
Finally, for completeness, we present all the VIMs

across all methods for both Gradient Boosting and Ran-
dom Forest in Figure 11 and Figure 12, respectively.
We rst observe that although LOCO-W targets the

same quantity as the other TSI methods, it exhibits sub-
stantial variability due to the data-splitting and retting
steps required to ensure valid type-I error control. While
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FIG 5. Boxplot of estimated VIMs for an important and an unimportant variable using a Random Forest: Methods not satisfying theoretically
the minimal axiom have boxes lled with diagonal hatch lines. The left panel shows an important covariate, while the right panel shows an
unimportant one. Only conditional SAGE (vf) and LOCI fail to satisfy the minimal axiom, assigning non-zero importance to the unimportant
variable. Sobol-CPI(1), Sobol-CPI(100), CFI, scSAGEj, LOCO, and LOCO-W aim to estimate ψTSI.

FIG 6. Boxplot of estimated VIMs for all features using Gradient Boosting: Methods not satisfying theoretically the minimal axiom have boxes
lled with diagonal hatch lines. Important covariates are shown in green, and unimportant ones in red. Only conditional SAGE (vf) and LOCI fail to
satisfy the minimal axiom by assigning non-zero importance to uninformative variables. Sobol-CPI(1), Sobol-CPI(100), CFI, scSAGEj,
LOCO, and LOCO-W aim to estimate ψTSI.
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FIG 7. Boxplot of estimated VIMs for all features using Random Forest:Methods not satisfying theoretically the minimal axiom have boxes lled
with diagonal hatch lines. Important covariates are shown in green, and unimportant ones in red. Only conditional SAGE (vf) and LOCI fail to
satisfy the minimal axiom by assigning non-zero importance to uninformative variables. Sobol-CPI(1), Sobol-CPI(100), CFI, scSAGEj,
LOCO, and LOCO-W aim to estimate ψTSI.

FIG 8. Convergence of VIMs for an important and an unimportant covariate: Methods not satisfying theoretically the minimal axiom have
discontinuous lines. The left panel shows the convergence behavior of various VIMs for an important covariate, highlighting different trends as
each method targets distinct indices with different objectives. The right panel illustrates the behavior for an unimportant covariate, where we can
observe which VIMs satisfy the minimal axiom by assigning negligible or zero importance.

this approach provides formal statistical guarantees, we
argue that its high variability limits its practical useful-
ness.
Additionally, we note that VIM methods satisfying the

minimal axiom do not consistently assign importance to
the same set of variables.
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