A principled approach for comparing

Variable Importance

Angel Reyero Lobo, Pierre Neuvial and Bertrand Thirion

Abstract. Variable importance measures (VIMs) aim to quantify the contri-
bution of each input covariate to the predictability of a given output. With
the growing interest in explainable Al, numerous VIMs have been proposed,
many of which are heuristic in nature. This is often justified by the inher-
ent subjectivity of the notion of importance. This raises important questions
regarding usage: What makes a good VIM? How can we compare different
VIMs?

In this paper, we address these questions by: (1) proposing an axiomatic
framework that bridges the gap between variable importance and variable
selection. This framework formalizes the intuitive principle that features pro-
viding no additional information should not be assigned importance. It helps
avoid false positives due to spurious correlations, which can arise with pop-
ular methods such as Shapley values; and (2) introducing a general pipeline
for constructing VIMs, which clarifies the objective of various VIMs and thus
facilitates meaningful comparisons. This approach is natural in statistics, but
the literature has diverged from it.

Finally, we provide an extensive set of examples to guide practitioners in
selecting and estimating appropriate indices aligned with their specific goals
and data.

Key words and phrases: Variable importance, Variable selection, Scientific

discovery.

1. INTRODUCTION

Global variable importance aims to assign a measure
of relevance to each feature with respect to a target. Since
this relationship can be highly complex, machine learning
(ML) models—proven effective at capturing such com-
plexities in real-world scenarios—are often used as surro-
gates. These models enable the extraction of feature im-
portance in intricate settings, such as genomic data, which
are known for their high dimensionality and correlation
structure. This is at the core of scientific discovery in data-
driven approaches that are currently pervasive.

However, ML models are often opaque. While sim-
ple models like linear regression are fully interpretable
through their coefficients, they rarely reflect the true
data-generating process. Hence, there exists a trade-off
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between model complexity and interpretability (Molnar
et al. (2022)). To mitigate this, there has been growing
interest in model-agnostic variable importance measures
(VIMs) (Williamson et al. (2023)).

Controlled variable selection has emerged as a method
for filtering features with statistical guarantees (Candes
et al. (2018)). Although variable selection and variable
importance may appear to pursue the same goal, they
have been treated separately in the literature. For instance,
some variable importance measures aim to equitably dis-
tribute relevance across all features, while variable selec-
tion aims to identify a minimal subset of predictive vari-
ables (Bénard, Da Veiga and Scornet (2022)). One of the
reasons is that some popular variable importance mea-
sures are based on complex combinatorial computations
and game-theoretic axioms that make them hard to in-
terpret and not well suited for this goal (Verdinelli and
Wasserman (2024a)).

The most widely used importance measure is the Shap-
ley value (Shapley (1953)), which, for global variable im-
portance, is approximated by cSAGE (Covert, Lundberg
and Lee (2020)). Figure 1 illustrates this approach in a
simple linear setting with a single relevant covariate. No-



2

tably, Shapley values assign nonzero importance to irrele-
vant yet correlated features. This potentially leads to false
discoveries and questions its applicability to scientific dis-
covery.
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FIG 1. Bar plot of the estimated importance using SAGE: The input
consists of two Gaussian features correlated by 0.6, with a linear out-
puty = Xq. Left: importance of X, Right: importance of X1. Note
that Shapley values assigns nonzero importance to X1, even though
it does not appear in the true model. Importance was estimated using
Gradient Boosting with n = 10,000 samples over 100 repetitions.

Ideally, we want a definition of importance that con-
siders the impact of missing a feature on predictive per-
formance. This definition should align with the standard
definitions of importance from Covert, Lundberg and Lee
(2020); Molnar (2025). However, this view conflicts with
current axiomatic frameworks (Shapley (1953); Verdinelli
and Wasserman (2024a)). In response, we propose a min-
imal axiom: variables that do not provide any exclusive
information should not be assigned importance. It bridges
the gap between variable selection and importance by of-
fering both statistical guarantees and rich information be-
yond binary decisions. It is minimal in the sense that it
corresponds to a necessary condition for null importance,
allowing for flexibility to accommodate subjective defini-
tions of importance.

We conduct a comprehensive evaluation of state-of-the-
art VIMs in the light of this axiom. Notably, Shapley val-
ues do not satisfy the proposed axiom, meaning that they
assign importance to unimportant features, as seen in Fig-
ure 1. In contrast, perturbation-based indices do satisfy
it. In particular, we argue that the commonly held be-
lief—that Permutation Feature Importance (PFI, Mi et al.
(2021)) is suited only for marginal importance (Ewald
et al. (2024); Molnar (2025))—is misguided. Instead, we
show that it aligns with conditional importance, and there-
fore the minimal axiom. This is done because an implicit
conditional filtering emerges during the training of the
model.

One substantial challenge in VIMs is the inconsis-
tency across rankings produced by different methods,
making it difficult to assess which features are truly im-
portant. Therefore, it is necessary to classify them to
enable insightful comparisons. Existing categorizations
mainly focus on the inference step—grouping methods
by whether they involve refitting, marginalizing, or per-
turbing features (Ewald et al. (2024)). However, this over-
looks the fact that the model is just a surrogate for the
data-generating function, which is unknown in practice
and must be estimated. In practice, it is not any model,
but the minimizer of an empirical loss. Moreover, vari-
able importance estimation often involves quantities like
conditional distributions or expectations, which are of-
ten ignored in the theoretical analysis (Covert, Lundberg
and Lee (2020); Hooker, Mentch and Zhou (2021); Ewald
et al. (2024)). Furthermore, even methods that use the
same estimation procedure can yield different rankings,
as demonstrated in our experiments comparing PFI and
CFI—both perturbation-based—as well as mSAGE and
¢SAGE—both marginalization-based.

To enable interpretable comparisons, we introduce a
principled approach for constructing VIMs. This ap-
proach begins by (1) explicitly defining a theoretical
importance index (which should satisfy the minimal ax-
iom) that aligns with user objectives. Then, it focuses on
(2) estimating this index, considering desirable inference
properties such as robustness to model misspecification
(Reyero Lobo, Neuvial and Thirion (2025)). Finally, to
enable reliable scientific discovery, we emphasize (3) re-
covering statistical guarantees, such as type-I error con-
trol. We argue that the uncertainty of the model should
therefore be accounted for only at the last two stages, not
in the definition of the theoretical index itself.

Next, we study existing importance indices in the light
of this three-step approach: we explain their interpreta-
tions, compare different estimation strategies, and outline
the corresponding statistical guarantees to guide practi-
tioners in real-world applications.

The main contributions of this paper are:

* to propose an interpretable, minimal axiom that
unifies variable selection and importance.

* to introduce a principled approach for constructing
VIMs and comparing them meaningfully.

* to apply the proposed methodology to an extensive
set of VIMs, providing a new classification, distinct
from recent presentation of the field.

* to illustrate using extensive numerical experiments
with both real and synthetic datasets that the VIMs
proven to satisfy the minimal axiom assign zero im-
portance to the same null covariates, and the newly
proposed classification is consistent with the ob-
tained importance rankings.
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1.1 Setting and Notation

Let (X,y) ~ P € M, where X € X C RP? is the input,
y € Y C R is the output and the pair (X,y) is sampled
from a distribution P belonging to a model class denoted
M. Given a set S C [p]|, we denote by —S = [p]\S the
subset [p] restricted of S. If S = {j}, when it is clear from
the context, j (resp. —j) denotes the subset {j} (resp.
—{j}). We denote by X* the coordinates of X corre-
sponding to the subset S. Similarly, we denote by X7 the
j-th coordinate of X.

We define (j, P) as the importance index of the j-
th covariate X7 for j € {1,...,p}. We denote by F an
arbitrary space of functions from & to ). We denote by
m € F the conditional expectation m(X) =E[y | X].

We emphasize that no prior assumption is made on the
function space F. Thus, there is complete freedom in
choosing the function m € F. However, in practice, in-
ference challenges may arise when approximating m us-
ing a machine learning model m, motivating the use of a
model-agnostic approach to accommodate complex data-
generating processes. We denote by m,, the estimator that
makes explicit the dependence on the training sample size
n. This estimation issue is further discussed in Section 4.

We also make the identifiability assumption that no in-
put covariate is an exact function of the others. This en-
sures that the problem of assigning importance is well-
defined—a standard assumption in the variable impor-
tance literature (see Candes et al. (2018); Verdinelli and
Wasserman (2024a)). If necessary, this can be achieved
by prior filtering of repeated features or a choice of a rep-
resentative of the group (Meinshausen (2013)). Under this
assumption, the set of important covariates

S={je{l,....p}|XT Ly| X}

is well defined (Candes et al. (2018)). This is known as
the Markov blanket of y and it is the objective of variable
selection.

In Section 2, we revisit the axiomatic approaches pro-
posed in the literature. In Section 3, we introduce our new
interpretable minimal axiom, designed to close the gap
between variable importance and variable selection. Sec-
tion 4 develops our principled framework for constructing
and comparing Variable Importance Measures (VIMs).
In Section 5, we apply this framework to state-of-the-art
VIMs and discuss whether they satisfy the minimal ax-
iom, with a summary provided in Section 6. Finally, Sec-
tion 7 presents simulations and real data analyses illus-
trating our findings.

2. RELATED WORK

The notion of importance is inherently subjective, and
formalizing what is desirable from a mathematical per-
spective can be challenging.

In this section, we begin by discussing the main ax-
iomatic foundations that have been proposed in the litera-
ture. In Section 2.1, we review the Shapley value axioms,
and in Section 2.2, we present the critique put forward by
Verdinelli and Wasserman (2024a) along with their newly
proposed axioms.

2.1 Shapley values axioms

Shapley (1953) introduced an axiomatic framework for
the fair allocation of a total payout among players in
a cooperative game, where each player’s share is deter-
mined by their contributions across all possible subsets
of players. Building on this idea, Covert, Lundberg and
Lee (2020) applied the same framework to variable im-
portance, interpreting the features as “players” and the
“game” as the prediction task, where the value corre-
sponds to the model’s predictive performance.

Let V : P([p]) — R be a value function, where P de-
notes the power set operator and S € P([p]) represents a
subset of indices. This value function assigns a measure
of predictive power to each feature set S. It consists of
the building blocks used to define the importance mea-
sure v, which aggregates importance across all subsets.
For instance, Covert, Lundberg and Lee (2020) propose
defining V'(.S) as the difference in the model loss when
using the covariates in S versus using no covariates (i.e.,
predicting by the mean).

The classical Shapley axioms are as follows:

AxioM 1 (Efficiency). The total importance is fully
distributed among all features: 3, (j, P) =V ([p]).

AXIOM 2 (Symmetry). If two features j and k con-
tribute equally to every subset, i.e., V(SU{j})=V(SU
{k}) for all S, then 1(j, P) = (k, P).

AXIOM 3 (Dummy). Ifafeature j does not contribute
to any subset, i.e., V(S U {j}) =V (S) for all S, then

¥(j,P)=0.

AXIOM 4 (Linearity). If two value functions V and
V' yield values 1 (j, P) and )'(j, P) respectively, then
the value of V. + V" is (4, P) +9'(j, P).

This framework led to the now well-known Shapley
values, which are the unique fulfilling this axiomatic
framework. A common criticism of Shapley values is
their computational burden due to the need to evaluate
all possible feature subsets. However, in this work, we
focus on conceptual critiques rather than computational
concerns.

Verdinelli and Wasserman (2024a) criticized Shapley
values from both inferential and conceptual perspectives.
Inferentially, many combinations of features may lead to
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poor estimation, making it questionable to rely on all pos-
sible subsets. Conceptually, due to the complex weighted
combinations, these values are difficult to interpret, as
their numerical magnitudes cannot be directly associated
with a tangible property, such as the percentage of ex-
plained variance or the effect of a feature within the
model.

Moreover, the efficiency axiom (1) imposes an addi-
tivity constraint, which may be undesirable when vari-
ables are correlated or interact non-linearly (Kumar et al.
(2020)). Such assumptions may distort the attribution of
importance.

Due to the strict nature of the dummy axiom (3), when
using the value function proposed by Covert, Lundberg
and Lee (2020), a feature is assigned zero importance
only in the very specific case where it is completely in-
dependent of both the target and all other features. Hence,
Shapley values may assign nonzero importance to irrele-
vant covariates, as seen in Figure 1. This undermines their
use in feature selection, and therefore scientific discovery.

2.2 Verdinelli & Wasserman axioms

Verdinelli and Wasserman (2024a) tackled the issue of
correlation distortion—the phenomenon where the im-
portance of a feature is underestimated due to its corre-
lation with other inputs. They proposed a new axiomatic
foundation for regression settings, explicitly aligning with
the interpretation of importance as predictive power and
aiming to mitigate the effects of correlation:

AX10M 5 (Functional Dependence). ‘
and only if m(X) is not a function of X7.

AXIOM 6 (Correlation-Free). ¢ (j,P) = ¥ (j,p(y |
X)pj(X7)p—j(X77)), where p; and p_; denote the
marginals of X7 and X 7, respectively.

¥, P)=0if

AXI0M 7 (Linear Agreement). Ifm(X)=>_, B; X7,
then v (j, P) = ﬁf

The first axiom is intuitive: a feature is important if
the prediction function m(X)(:=E[y | X]) depends on
it. The second axiom aims to eliminate correlation dis-
tortion by requiring that importance depends only on the
marginals of X7 and X/, and not on their joint depen-
dence structure. The third axiom ensures agreement with
the coefficients in a linear model, grounding the measure
in familiar settings.

In Section 3, we propose a generalization of the func-
tional dependence axiom and argue that the correlation-
free axiom may not be universally appropriate, as its ne-
cessity depends on one’s subjective view on what variable
importance should capture.

Additionally, Verdinelli and Wasserman (2024a) intro-
duced several more loosely defined axioms motivated by

computational and inferential considerations. However,
these are not fully satisfied by their proposed VIM, a point
we further discuss in Section 5.3.

3. AXIOMATIC FRAMEWORK FOR VARIABLE
IMPORTANCE MEASURES

The notion of variable importance is inherently sub-
jective. Consequently, an axiomatic framework—such as
those previously proposed—can be overly restrictive or
tailored to specific goals, making it difficult to gener-
alize. For instance, in predicting house prices, features
like the number of rooms, surface area, and neighbor-
hood may exhibit complex interdependencies. While the
first two may be correlated and suffer from correlation
distortion, one could argue that either is sufficient on its
own, or that the neighborhood offers specific information
not captured by the others. This highlights that axioms
like the correlation-free requirement (Axiom 6) may not
be universally desirable. Note that this remark no longer
applies in very high-dimensional settings, where extreme
correlations can make the notion of individual feature im-
portance ill-defined, and grouping features may become
preferable (e.g. Chamma, Engemann and Thirion (2024)).

However, there is a consensus in the literature that
feature importance should be at least related to a fea-
ture’s predictive power Covert, Lundberg and Lee (2020);
Verdinelli and Wasserman (2024a); Ewald et al. (2024).
Notably, Covert, Lundberg and Lee (2020) explicitly de-
fine variable importance as follows:

Feature importance should correspond to how
much predictive power it provides to the model.
We can then define “important” features as
those whose absence degrades m’s perfor-
mance.

In this section, we introduce a minimal axiom, which for-
malizes this intuitive and widely accepted notion. We pro-
pose it as a minimal requirement for any variable impor-
tance measure (VIM). This axiom captures the idea that
a feature should be considered important only if it pro-
vides unique predictive information—i.e., if its absence
degrades the model’s performance.

AXIOM 8 (Minimal Axiom).
if X7 1l y| X,

¥(4, P) =0 if and only

This axiom aligns with the goal of identifying features
that are conditionally informative for prediction. Under
standard conditions, it relates to the functional depen-
dence axiom (5). For instance, when performing regres-
sion, it is standard to assume an additive, independent,
centered noise:

ASSUMPTION la (Additive noise). y = m(X) + €
with € 1L X and E[e] = 0, for some m € F.
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Note that m is indeed the conditional expectation func-
tion, since E[y | X] =E[m(X) + ¢ | X] =m(X).

Similarly, in classification, we assume a model on the
probability of belonging to the class:

ASSUMPTION 1b (Classification). Py =1 | X) =
o(m(X)) for some m € F and o : R — [0, 1] bijective.

For example, taking the logistic function as o shows
that it generalizes the logistic regression model.

Under either of these assumptions, the conditional de-
pendence in the minimal axiom is related with the func-
tional dependence:

PROPOSITION 3.1 (Conditional and Functional Inde-
pendence). Under Assumption la or 1b, X7 1l y | X7
if and only if m(X) is not a function of X7.

These assumptions are necessary to obtain an equiva-
lence. For instance, in regression, if Assumption lais vio-
lated, functional independence does not imply conditional
independence. This is demonstrated by a counterexam-
ple from Ewald et al. (2024), where y ~ N'(X1, X?) and
X! 1l X2, In this case, E[y | X] = X!, implying that y is
functionally independent of X 2. However, y 4. X2 | X!,
so conditional independence does not hold. Nevertheless,
Assumptions la and 1b are both standard and sufficiently
general, and any statistical selection procedure involving
models implicitly relies on these assumptions. In what
follows, we assume that the equivalence in Proposition
3.1 holds.

This minimal axiom is thus more general and helps
bridge the gap between variable importance and variable
selection—two concepts often treated separately in the lit-
erature. The former typically distributes predictive contri-
bution heuristically, while the latter focuses on identifying
a minimal subset of predictive features (Bénard, Da Veiga
and Scornet (2022)). By unifying both under a shared sta-
tistical foundation, the minimal axiom allows these fields
to benefit from one another. On the one hand, controlled
variable selection offers rigorous statistical guarantees,
such as control over Type-I error or the False Discovery
Rate (Candes et al. (2018); Tansey et al. (2022)). On the
other hand, variable importance provides more nuanced
information than a simple yes/no decision. Both aspects
are essential for advancing scientific understanding, as
they enable interpretable, statistically sound conclusions
about the roles of different variables.

Importantly, this approach is flexible enough to accom-
modate various interpretations of variable importance, de-
pending on the inferential or practical objective. This will
be illustrated in Section 5, where we examine several
widely used VIMs and assess whether they satisfy the
minimal axiom.

4. PRINCIPLED APPROACH TO DEFINE A VIM
4.1 Pitfalls of inference-based classification of VIM

Historically, many variable importance measures have
emerged as heuristics for interpreting black-box mod-
els. As such, they often focus on quantifying the effects
of perturbations or modifications to the information pro-
vided by a specific feature. However, since many of these
measures are closely tied to particular estimation proce-
dures, the literature has introduced several ad hoc cate-
gorizations that can obscure the core statistical objective.
For example, it is common to distinguish between VIMs
that rely on a single model via perturbations and those that
require refitting new models. Some claim that such mea-
sures are inherently incomparable. For instance, Molnar
(2025) stated that Leave-One-Covariate-Out (LOCO, Lei
et al. (2018)) and PFI (Mi et al. (2021)) cannot be com-
pared:

LOCO differs from the other methods [...]
since most of the other methods don’t require
retraining the model. However, due to retrain-
ing the model, the interpretation shifts from
only interpreting that one single model to in-
terpreting the learner and how model training
reacts to changes in the features.

Similarly, they claimed that conditional PFI (CFI,
Hooker, Mentch and Zhou (2021)) and LOCO are not
directly comparable:

But since conditional PFI and LOCO work
differently, they differ in their interpretations.
Conditional PFI is an interpretation that only
involves the model at hand. LOCO importance
focuses more on the machine learning algo-
rithm, since it involves retraining the model,
and the interpretation now involves multiple
models trained differently.

Yet, this perspective overlooks a crucial point: the mod-
els used are surrogates for the true data-generating pro-
cess, and most variable importance measures ultimately
aim to estimate some underlying population-level index.
For example, in (5) in Section 5.3, we show that condi-
tional PFI coincides with the LOCO asymptotically. We
propose reframing the development of VIMs by first fo-
cusing on the theoretical index they intend to estimate.
That is, instead of starting from a model-specific heuris-
tic, we advocate for a general structured approach for gen-
erating and interpreting VIMs.

4.2 Proposed approach

Our proposed method consists of three steps: first,
defining the theoretical index; then, estimating it; and fi-
nally, providing statistical guarantees for the important
covariates.



The starting point in this pipeline is the theoretical
index itself, as it encodes the desired interpretation of
importance. By choosing a meaningful and interpretable
population quantity, one can ensure properties such as
how correlation with other variables influences a feature’s
importance. It is at this stage that one should explicitly de-
cide which axioms the VIM should satisfy, acknowledg-
ing the subjectivity inherent to the notion of importance.
Indeed, we do not expect a single index to suit all use
cases—this aligns with the "Assuming One-Fits-All Inter-
pretability" pitfall identified by Molnar et al. (2022). This
choice will yield an insightful ranking aligned with the
specifically defined goals. Moreover, our minimal axiom
should be verified at this stage, as it represents a minimal
requirement for this theoretical quantity.

Given that the data-generating process is unknown in
practice, the next step is to estimate the theoretical in-
dex. This step can involve a variety of estimation pro-
cedures, each with distinct statistical and computational
properties. Some estimators aim for nonparametric ef-
ficiency (Williamson et al. (2023)), others focus on re-
ducing variance (Paillard et al. (2025)), achieving robust-
ness to model misspecification (Reyero Lobo, Neuvial
and Thirion (2025)), or ensuring computational feasibil-
ity (Verdinelli and Wasserman (2024a)). For example, as
we will discuss in the context of the Total Sobol Index,
one may estimate the index by refitting multiple models
or, alternatively, by estimating the input conditional distri-
bution. The choice of estimation method may depend on
the application—for instance, in scenarios with abundant
unlabeled data, one might assume complex relationships
between features and the response, but simpler relation-
ships among features themselves, as in model-X methods
(Candes et al. (2018)). Moreover, since many estimation
procedures involve models, alternative approaches can be
considered to account for multiple models, such as the
Rashomon set Donnelly et al. (2023).

Because the estimation step introduces approximation
error, the final estimator may not perfectly reflect the the-
oretical index. Consequently, to support reliable scien-
tific discovery, it is crucial to provide statistical guar-
antees for the selected features. Depending on the con-
text, these guarantees might take the form of asymp-
totic (Williamson et al. (2023); Reyero Lobo, Neuvial and
Thirion (2025)) or finite-sample (Liu et al. (2021)) type-I
error control, or False Discovery Rate control when con-
ducting multiple testing (Candes et al. (2018)). This final
step is important for ensuring reliable discoveries. Indeed,
Tansey et al. (2022) presented real-world examples where
statistically grounded selected features correlated poorly
with the rankings given by heuristic importance scores.

5. APPLICATION OF THE FRAMEWORK

The framework defined in Section 4 is intended to guide
practitioners not only in selecting an index aligned with

their goals, but also in choosing an estimation procedure
that balances statistical robustness, computational con-
straints, and inferential guarantees. In this section, we
provide an extensive study of theoretical indices, discuss
their interpretability and whether they satisfy the mini-
mal axiom, and examine different estimation strategies
adapted to the data at hand along with their statistical
properties. This principled approach sheds some light on
the interpretation of classical indices.

In particular, we argue that the commonly held be-
lief—that Permutation Feature Importance (PFI, Mi et al.
(2021)) is suited only for marginal importance (Ewald
et al. (2024); Molnar (2025))—is misguided. Instead,
we show that PFI aligns with conditional importance,
and therefore the minimal axiom. This common mis-
understanding arises from a lack of clarity about the
null hypothesis underlying PFI. It is also caused by no-
tation, especially since a conditional counterpart exists
(Hooker, Mentch and Zhou, 2021). Additional notation-
related misunderstandings will be discussed below, where
we show that the marginal versions of SAGE are in
fact suitable for conditional importance, while the con-
ditional SAGE, which is the standard Shapley values, is
not—contrary to previous claims Ewald et al. (2024).

All the proofs can be found in Appendix C.

5.1 Coefficients of a generalized linear model

The first, most intuitive importance index relies on the
coefficients of a linear model. It is simple to interpret
because the effect of each variable can be directly in-
ferred from the magnitude of its coefficient. Moreover, the
same reasoning applies to logistic regression and, more
broadly, to generalized linear models (GLMs). These
models are often favored for their interpretability (Rudin
(2019); Molnar et al. (2022)) and have been advocated
over black-box models, especially in sensitive applica-
tions such as hate speech detection (Reyero Lobo et al.
(2023)). In this section, we argue that this simple variable
importance measure, along with some modifications, sat-
isfies the minimal axiom.

We begin by stating the standard generalized linear
model (GLM) assumption:

ASSUMPTION 2 (GLM assumption). Given a link

function g, we assume

g(Ey| X)) =X"61+ ...+ XPB,.

Under this assumption, as introduced in McCullagh
(1989), a natural variable importance measure for covari-
ate j is given by the magnitude of the coefficient. Thus,
the theoretical index is given by:

DEFINITION 5.1 (GLM indices).
M, Yarm(j, P) is defined as

veLm(j, P) = 5.

Given j € [p], P €
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The square is used to ignore whether the effect is pos-
itive or negative; what matters is simply that there is an
effect. Also, we implicitly assume that the input features
have been standardized. This measure, clearly aligned
with Axiom 7, can be useful in some settings due to
its simplicity and the direct interpretability of the coeffi-
cients, which represent the contribution of each covariate
to the predictive function. This simple VIM satisfies the
minimal axiom:

PROPOSITION 5.2. Under the GLM assumption (2),
YoM satisfies the minimal axiom.

However, even if this minimal axiom is fulfilled for
this importance index, in practice there may be esti-
mation complications due to high dimensionality and/or
collinearity between input variables. These are issues of
inference rather than interpretation problems with the the-
oretical index. For this reason, many penalization strate-
gies have been introduced, such as the Akaike Informa-
tion Criterion (AIC, Bozdogan (1987)) or the ¢ penal-
ization used in the Lasso (Tibshirani (1996)). We observe
that all these strategies still satisfy the minimal axiom, as
the theoretical index continues to assign zero importance
to unimportant coordinates. Moreover, there are numer-
ous results on bounding the number of false discoveries
made by the inference procedures used in these meth-
ods (see, for example, Corollary 5.3 from Giraud (2021),
which provide bounds in probability).

Many variable selection procedures with their respec-
tive statistical guarantees can be derived from this vari-
able importance index. For instance, to control the type-I
error using Conditional Randomization Tests (CRT, Can-
des et al. (2018)), the most effective procedures are based
on the difference of coefficients from a Lasso model
trained on the original data versus conditional indepen-
dent data (Liu et al. (2021)). One can easily observe that
the sum over the conditional samplings tends to the Lasso
index, as the coefficients of the conditional independent
generated input coordinates will tend to zero. Therefore,
the minimal axiom of the given theoretical index is sat-
isfied with finite sample guarantees on the selected co-
ordinates. Similarly, this approach can be applied to the
Knockoffs framework with the popular Lasso Coefficient
Difference (LCD, Candes et al. (2018)), which provides
False Discovery Rate control on the selected set. Finally,
additional guarantees on p-values or on the familywise
error rate can be obtained from corrected versions of the
Lasso or Ridge (Biihlmann (2013); Dezeure et al. (2015)).

5.2 Perturbation indices

In the general case, assuming a linear model is often
unrealistic, and we may want to adapt to more complex
settings. Moreover, if the model does not generalize well,

there may be no reliable scientific inference, as the model
acts merely as a surrogate for the data-generating process.
Thus, we are unable to provide interesting insights on
feature importance with a model that does not represent
the underlying distribution. This relates to the poor model
generalization pitfall described by Molnar et al. (2022).
Therefore, there is a need for model-agnostic theoretical
indices. In the sequel, we present model-agnostic VIMs
that use the loss to measure the predictability of the model
when incorporating the information of the j-th coordinate
versus when it is not used. Consequently, a data-splitting
step is required, which may decrease the power of the pro-
cedure.

The first approach we present involves reusing the same
model while perturbing the inputs to observe the effect of
each coordinate on the model’s output. Specifically, the
model’s performance with the j-th coordinate perturbed
is compared to its performance with the original input.
They appear to fall outside the principled proposed ap-
proach. Indeed, they are often presented as heuristics for
model interpretation rather than as theoretically grounded
indices with a well-defined estimand. It is unclear what is
estimated, and therefore, the corresponding null hypothe-
sis. To tackle this, we proceed with the proposed princi-
pled approach.

We begin by defining the theoretical index:

DEFINITION 5.3 (Perturbation indices).
[p], P € M, Ypertur (4, P) is defined as

wperturb(j7p) =K [£(y7m(5€]))} —E [g(y7m(X))] )

Given j €

where X7 is a perturbed version of X that preserves the
—j coordinates (i.e., X/=9 = X—7), but the j-th coor-
dinate is perturbed, and therefore the joint distribution
changes, i.e., £(X,y) # L(X7y).

Therefore, all the coordinates are preserved except for
the j-th coordinate, which is sampled in a way that alters
the joint distribution, making it different from the original
one.

Now, we present several examples of perturbations
along with their corresponding estimation procedures,
showing, in particular, that for any perturbation, the min-
imal axiom is satisfied because the model acts as a first
filter for conditional independence.

The most popular perturbation-based index is the per-
mutation feature importance (PFI, Breiman (2001); Mi
et al. (2021)) due to its simple estimation. This ap-
proach relies on a perturbation denoted by X ) such that:
the j-th coordinate preserves the marginal distribution
(L(XWI) = £(X7)), and it is independently distributed
(X @I 1| X9 and X7 1 y). However, the theoretical
index associated to PFI was studied by Bénard, Da Veiga
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and Scornet (2022), who showed that it is not always de-
sirable, as it can lead to misleading conclusions in the
presence of correlation. This reinforces our proposal to
study the theoretical index carefully, since otherwise, we
risk misunderstanding what is considered important.

Regarding its estimation, the simplest method consists
of permuting the value across observations. However, this
approach also suffers from inference issues because it in-
duces extrapolation (Hooker, Mentch and Zhou (2021)).
Indeed, due to permutation, the model attempts to predict
in low-density regions where it was not trained, resulting
in unpredictable behavior.

To address this estimation issue, Hooker, Mentch and
Zhou (2021) and Chamma, Engemann and Thirion (2023)
proposed permuting the j-th coordinate conditionally on
the other ones, leading to the Conditional Permutation Im-
portance (CPI). This method was primarily introduced to
tackle the inferential problem, without thoroughly study-
ing the theoretical quantity to which it converges. This
theoretical aspect was analyzed in Reyero Lobo, Neuvial
and Thirion (2025), where it was shown that the condi-
tional permutation step corresponds to sampling from the
conditional distribution; then, CPI corresponds to Con-
ditional Feature Importance (CFI, Strobl et al. (2008)).
We denote this conditional perturbation by X ). CFI as-
sumes that the j-th coordinate is independent of the out-
put given the other inputs, i.e., X6 1 y | X7, and
preserves the conditional distribution, £(X7 | X~7) =
L(XWi | X~7). Moreover, Reyero Lobo, Neuvial and
Thirion (2025) showed that for the quadratic loss, CFI co-
incides up to a explicit universal constant with the Total
Sobol Index, presented below.

Other types of perturbations can also be considered,
such as relational perturbations (Konig et al. (2021)),
which operate similarly to the CFI but condition on a
smaller subset of coordinates. However, each perturba-
tion gives rise to a different theoretical index, and thus
it is not meaningful to compare them directly, as they pur-
sue different objectives and consequently yield different
rankings of importance.

In any case, these indices satisfy the minimal axiom
for any kind of perturbation defined according to Defi-
nition 5.3. In addition, under the following assumption
from Reyero Lobo, Neuvial and Thirion (2025), the es-
timated index is also able to correctly identify the null
coordinates.

ASSUMPTION 3 (Asymptotic relevance). Denote by
gj(x, s) the vector obtained from x by replacing the j-th
component of x by s € R. For ¢ > 0,z € X,s € R and
X7 ALy | X, there exists an n large enough such that

(@) — i (g5 (,5))| <  as.

We observe that this assumption explicitly requires the
model to be independent of the null coordinates, and it can
be obtained under standard assumptions on the model. In
particular, there is no extrapolation under the null hypoth-
esis (see Reyero Lobo, Neuvial and Thirion (2025)).

PROPOSITION 5.4 (¢perturh, Satisfies the minimal ax-
iom). Under additive noise assumption (la) or classifi-
cation assumption (1b), Ypervurt, Satisfies the minimal ax-
iom for any strictly convex loss {. Moreover, under asymp-
totic relevance assumption (3), if X7 1L y | X7, then
Yperturb — 0 almost surely for any continuous loss .

The first part of the proposition indicates, in particular,
that PFI is also suitable for detecting conditional indepen-
dence. This result contrasts with the existing literature,
where there is a common misconception: since the per-
turbation in PFI is marginal—also with respect to the rest
of the input—it is often assumed that PFI is only suited
for detecting marginal independence, not conditional in-
dependence (see Ewald et al. (2024)). In general, Ewald
et al. (2024) first showed that if a method is suited for
marginal independence, then it cannot be suited for con-
ditional independence. Then, under strong assumptions,
they related PFI to marginal independence and therefore
claimed that it could not be used for conditional indepen-
dence. In Appendix C.2.1, we prove that, under the as-
sumptions of Ewald et al. (2024), marginal independence
does in fact imply conditional independence.

It is important to note that this key result comes from a
form of equivalence between functional and conditional
independence (see Proposition 3.1). Consequently, the
trained model m is not just any model; it is a loss min-
imizer that approximates the data-generating process and
thus serves as an initial filter for conditional indepen-
dence.

Regarding the second part of Proposition 5.4, for in-
ference purposes, when using a consistent estimator,
the estimated importance of irrelevant coordinates van-
ishes asymptotically. This follows from Theorem 3.4 in
Reyero Lobo, Neuvial and Thirion (2025), which also
states that when using CFI—that is, when the perturba-
tion is conditional—there is a double robustness prop-
erty. Specifically, it suffices for only one of the models
involved to be consistently estimated in order to detect
the null hypothesis, which provides a valuable inference
guarantee.

Finally, regarding the statistical properties of such
methods, the extrapolation inherent to PFI makes it chal-
lenging to derive theoretical guarantees. While some cen-
tral limit theorems have been established, allowing for the
derivation of asymptotic type-I error control, these results
are not model-agnostic (Foge et al. (2024)). Some asymp-
totic results for the CFI on the type-I error have been es-
tablished by Reyero Lobo, Neuvial and Thirion (2025)
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based on Markov inequality using the vanishing influ-
ence function. This result could be extended to any per-
turbation index. Moreover, similarly to the case of Lasso
coefficients, certain CRT-based methods can be adapted
to provide finite-sample type-I error control, for example
by using the Holdout Randomization Test from Tansey
et al. (2022). Following the ideas of Watson and Wright
(2021), other nonparametric tests such as the sign test or
the Wilcoxon test can also be considered to obtain finite-
sample type-I error control. The null hypothesis for such
tests is that the mean of the original loss distribution co-
incides with that of the perturbed one.

5.3 Generalized Total Sobol Index

In this section, we begin by defining the theoretical in-
dex and then present several equivalent reformulations,
each leading to a distinct plug-in estimator. These rep-
resentations contrast with the previous categorizations of
VIMs, as the index can alternatively be expressed through
variance, model refitting, perturbation, or marginalization
procedures. Finally, we discuss the associated statistical
inference.

The Total Sobol Index (TSI) was originally introduced
in the context of sensitivity analysis by Homma and
Saltelli (1996) as the proportion of output variance at-
tributed to a specific input coordinate when the remain-
ing inputs are known. This notion can be extended beyond
variance to accommodate any loss function ¢ (Williamson
et al. (2023)). The theoretical index is given by:

DEFINITION 5.5 (Generalized Total Sobol Index (TSI)).
Given j € [p], P € M and a loss function ¢, the General-
ized Total Sobol Index is defined as

¢TSI(j7P) =E [E (m—j(X_j)vy)] —E [E(m(X),y)] ’
wherem_j(X /) :=E[y| X 7] andm(X) :=E[y | X].

This index is a widely used measure of variable impor-
tance (see, e.g., Lei et al. (2018); Rinaldo, Wasserman and
G’Sell (2019); Hooker, Mentch and Zhou (2021); Bénard,
Da Veiga and Scornet (2022); Williamson et al. (2023)).
It is termed generalized because, when the loss function
{ is the squared error, the expression recovers the unnor-
malized TSI definition. Notably, with the quadratic loss,
TSI can also be rewritten in several equivalent forms:

(1)
Yrsi =E [Var(y | X /)]

@) |
=E[(m_j(X™7) —=m(X))’]

variance

(3)
=E [(m5(X )~ )| ~E [(m(X) - y)?]
loss/refitting

(4)
—E[(& [n(X)| X~7] - y)°] ~E [(m(X) - y)*
marginalization

(%)
= 5 [ | (m&@) = 4)'] - £ om0 - 011
perturbation

(6)

=0*(R*; — R?).

From these equalities, we first note the richness of the
Total Sobol Index (TSI): it admits multiple interpretations
and computational forms. This highlights the value of the
general estimation pipeline—despite differences in how
the index is computed, each formulation targets the same
underlying quantity. Yet, the current literature often cat-
egorizes these methods into distinct, seemingly incom-
patible families, claiming that they are not comparable
(see Ewald et al. (2024); Molnar (2025); Fumagalli et al.
(2025)).

We observe that it can be estimated as a direct plug-in
using any of these equivalent formulations. First, from (1)
to (3), we observe that the distinction between variance-
based and loss-based approaches is artificial. Although
variance-based methods do not explicitly use the output y
in estimation (2), they nonetheless target the same quan-
tity as loss-based methods based on (3), because the de-
pendence in y is hidden in the models m and m_;.

Equation (3) presents the Total Sobol Index using the
squared loss based on two different models m and m_;.
Equation (4) corresponds to a marginalization-based ap-
proach, similar to that of Covert, Lundberg and Lee
(2020). The plug-in in this formulation is often labeled
a one-function variable importance measure (VIM), since
the same estimated model m is used on both sides of the
comparison, without retraining a separate m_; for each j,
which provides an advantage in terms of computation.

However, this perspective overlooks a critical chal-
lenge: the conditional expectation E[m(X) | X ~/] is gen-
erally unknown and must itself be estimated. This re-
quires both estimating the conditional distribution and
the conditional expectation. This estimation framework
was formalized in the Sobol-CPI method proposed by
Reyero Lobo, Neuvial and Thirion (2025), who also
demonstrated that not having an infinite number of condi-
tional samples introduces bias.

Equation (5) falls under the class of perturbation meth-
ods, since it uses a fixed model m and perturbs the j-th
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coordinate by drawing from the conditional distribution—
a normalized version of the Conditional Feature Impor-
tance (CFI) (Strobl et al. (2008)). From (6), we note that
this index can also be interpreted as the difference in non-
parametric R? (Williamson et al., 2021).

Taken together, these results reveal that the usual cate-
gorization into refitting, perturbing, and marginalizing is
misleading: in this example, all approaches aim to esti-
mate the same functional. As such, they share the same
interpretation and comparing them is meaningful. Their
differences lie in inference properties rather than concep-
tual targets. For example, Williamson et al. (2021) stud-
ied the difference between plug-in estimators used in (2)
and (3), showing that the former requires a one-step cor-
rection to achieve nonparametric efficiency, while the lat-
ter does not. The method in (3) corresponds to Leave-
One-Covariate-Out (LOCOQO). Furthermore, the Permute-
and-Relearn and Condition-and-Relearn importances of
Hooker, Mentch and Zhou (2021), which consist of ei-
ther marginally or conditionally permuting a feature be-
fore relearning the model, also fall within this category,
since they aim to estimate

E [y | X*j,if} —E[y| X 7] =m_;(X 7).

If a plug-in method is applied to (4), the resulting
method is known as Sobol-CPI (Reyero Lobo, Neu-
vial and Thirion (2025)), which was shown to be non-
parametrically efficient. It also corresponds to the con-
ditional SAGE value function (Covert, Lundberg and
Lee (2020)). Using the estimator in (5) leads to Sobol-
CPI(1) (Reyero Lobo, Neuvial and Thirion (2025)), also
known as 0.5xCFI (Strobl et al., 2008). Importantly,
Reyero Lobo, Neuvial and Thirion (2025) proved that
this estimator is double robust, meaning that it can
reliably identify null covariates as long as either the
predictive model or the conditional sampler is well-
specified—thereby reducing the risk of false positives and
making it a strong candidate for scientific discovery.

Another insightful interpretation of the Total Sobol In-
dex arises when using the cross-entropy loss. In this case,
it becomes directly connected to information-theoretic
quantities such as mutual information (denoted by I) and
the Kullback-Leibler (KL) divergence, as discussed by
Covert, Lundberg and Lee (2020). Specifically, we have

(7 rsi(f, P)=1(y; X7 | X77)

= Dkr (P xs|x-1

Pyjx-Pxs|x-1),

which quantifies the conditional mutual information be-
tween y and X7 given X /. Intuitively, this measures the
reduction in uncertainty about y obtained by adding X7
to the already known covariates X ~/.

Finally, we note that the Total Sobol Index satisfies the
minimal axiom.

PROPOSITION 5.6.  Let £ be a loss with a unique min-
imizer which is a function of the conditional distribution
of y given X. Under additive noise assumption (la) or
classification assumption (1b), then, V¥rs1(j, P) satisfies
the minimal axiom.

As discussed in Williamson et al. (2023), most com-
monly used losses fulfill the condition stated in Proposi-
tion 5.6, with their Bayes-optimal predictors being func-
tions of the conditional expectation. Examples include the
mean squared error (MSE), deviance, classification accu-
racy, and the area under the ROC curve (AUC).

This makes the Total Sobol Index a suitable criterion
for variable selection, as also supported in the literature
(see Bénard, Da Veiga and Scornet (2022)), who stated
that it is the best quantity for finding the minimal subset
of predictive variables.

Leveraging the relationship with CF]I, it is possible to
directly inherit all the statistical guarantees established
in the previous section, such as the asymptotic Type-I er-
ror control based on Markov’s inequality (Reyero Lobo,
Neuvial and Thirion (2025)) and the finite-sample guar-
antees from the HRT (Tansey et al. (2022)). Further-
more, when analyzing the LOCO version, one can em-
ploy the data-splitting variants proposed by Williamson
et al. (2023) to achieve asymptotic Type-I error control or,
similarly to the CFI, rely on the Markov-based guarantees
(Verdinelli and Wasserman (2024a)). Finally, similarly to
the perturbation indices, nonparametric tests such as the
sign test or the Wilcoxon test can be directly applied by
treating the losses using the j-th coordinate as one popu-
lation and those excluding this information as another. In
this way, we obtain finite-sample type-I error guarantees
(Lei et al., 2018; Watson and Wright, 2021).

5.4 Total Sobol Index Modifications

Verdinelli and Wasserman (2024a) criticized the TSI
due to its tendency to underestimate the importance of
features that are correlated with others. This phenomenon
is known as correlation distortion (see Verdinelli and
Wasserman (2024b)). To mitigate this issue, Verdinelli
and Wasserman (2024a) proposed a normalized decorre-
lated version of the TSI, defined as

E [(m(X) —m—;(X77))?]

E[(X7 —v(X=7))?]
where v_;(X /) := E[X7 | X 7] denotes the conditional
mean of X7 given all other covariates.

The motivation behind this normalization comes from

the behavior of TSI under a linear model (2). In that case,
the TSI can be expressed as

Yrsi(f, P) =B E (X7 —v_j(X77))?],

which shows that the index is scaled by the conditional
variance of X7 given X ~7. Therefore, when this variance

Yarsi(J, P) ==
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is small due to high correlation, the importance decreases.
The proposed normalization corrects this by dividing out
the conditional variance, thereby restoring the importance
of such variables and better aligning with the axioms dis-
cussed in section 2.2.

Verdinelli and Wasserman (2024a) also introduced
other decorrelation-based strategies to address correlation
distortion. However, they also found those alternatives to
suffer from second-order bias and low-density inference
issues. In any case, they satisfy the minimal axiom due to
its alignment with the functional dependence axiom (see
Axiom 5 and Proposition 3.1).

Finally, Du, Roeder and Wasserman (2025) proposed
Disentangled Feature Importance (DFI), which is mainly
based on the total Sobol index computed in a latent space
where input coordinates are rendered independent via a
transport map. However, DFI only satisfies the minimal
axiom in this transformed space—not in the original input
space. As a result, it can inflate the importance of irrele-
vant coordinates and lead to a high rate of false discover-
ies, as seen in their experiments.

5.5 Shapley Additive Global importancE (SAGE)

Shapley values are widely used for local variable im-
portance (Lundberg and Lee, 2017; Spadaccini, Fokkema
and van de Wiel, 2025), and were adapted to global vari-
able importance by Covert, Lundberg and Lee (2020),
who explicitly defined variable importance in terms of the
predictive power a feature provides to the model. How-
ever, in this section, we argue that this performance cri-
terion is in fact not fulfilled by standard Shapley values,
as they do not satisfy the minimal axiom. We begin by
explicitly introducing SAGE:

DEFINITION 5.7 (YsAGE)-
importancE (SAGE) is given by

®) Wsace(,P):= Y wsw(SU{j})—v(9)),
SC—{i}
where v(9) := E[((y,E[y])] — E [¢(y, ms(X®))], with

ms(X):=E[y| X%] andwg == L (") 7.

Shapley Additive Global

Each v(S) denotes the SAGE value function associ-
ated with the subset S C [p], i.e., the change in perfor-
mance relative to the average prediction when incorporat-
ing the information from X . In particular, we denote by
saGEvt the value corresponding to S = {j}.

DEFINITION 5.8 (¥sagevt). SAGE value function
associated with the j-th feature is given by

Ysacevt :=v({7}) =E[l(y, E[y])] - E [£(y, m;(X7))].

Notably, it coincides with the index estimated by the
Leave One Covariate In (LOCI) method. However, these
two approaches were not previously connected—similarly
to the case of LOCO and Sobol-CPI—because SAGE is
based on marginalization, whereas LOCI relies on refit-
ting. Despite this inference difference, both aim to esti-
mate the same underlying quantity. As a result, they will
often lead to the same covariate rankings and selections.

Nonetheless, we emphasize that neither the SAGE
value function (and thus LOCI; see section C.6) nor
SAGE itself satisfies the minimal axiom.

PROPOSITION 5.9. Neither Ysagy nor YsSAGEve Sat-
isfies the minimal axiom.

In particular, Shapley values may assign importance to
features that are not actually used by the model, simply
because they are correlated with truly important features
(see Figure 1). Consequently, the removal of such features
does not degrade model performance, since they do not
directly influence the predictions of the model. Moreover,
the explainability of the method is hindered by the fact
most features are assigned non-null importance: the ex-
planations lack parsimony, and the set of features called
important becomes unmanageable.

5.5.1 Surplus SAGE: Ewald et al. (2024) also pro-
posed to study another quantity, namely the surplus, de-
fined as the difference between the SAGE value function
of all coordinates except the j-th and that of all coordi-
nates.

DEFINITION 5.10 (¢scsacgj). Surplus SAGE value
function associated with the j-th feature is given by

Vsesacej = v(—jUj) —v(=j) =v([p]) — v(-j).

‘We note that this VIM does not introduce a new index, it
exactly coincides with the Total Sobol Index (expanding
the definitions, we recover (4)). Thus, we do not restate
the principled approach, as it has already been applied in
Section 5.3. In particular, this VIM satisfies the minimal
axiom.

PROPOSITION 5.11. Under additive noise assump-
tion (1a) or classification assumption (1b), a strictly con-
vex loss {, YscsAGE; satisfies the minimal axiom.

5.5.2 Marginal extensions: in any case, the inference
of Ygagr is complex due to two main challenges: 1) the
number of subsets to consider grows exponentially with
the number of features, and 2) for each subset S C [p], it
is necessary to estimate the restricted model mg.

To address the first issue, various approaches have been
proposed, ranging from Monte Carlo Covert, Lundberg
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and Lee (2020) to more sophisticated methods such as
importance sampling guided by prior information, for ex-
ample from the structure of random forests Bénard et al.
(2022).

Regarding the second issue, Covert, Lundberg and Lee
(2020) proposed using marginalization instead of refit-
ting. That is, rather than training a new model mg, they
approximate m g by the conditional expectation E[m(X) |
X5]. For the original SAGE estimator, this requires con-
ditional sampling, which is computationally expensive.
To mitigate this, they further proposed using marginal
sampling as a proxy for conditional sampling. Accord-
ingly, they distinguish between two variants: the original
conditional SAGE, and the more computationally efficient
marginal SAGE (with similar distinctions for their value
function counterparts).

However, these variants target different theoretical
quantities and thus have different interpretations. In par-
ticular, while conditional SAGE and conditional SAGEvf
do not satisfy the minimal axiom (as illustrated by Figure
1), marginal SAGE and marginal SAGEvf do.

PROPOSITION 5.12. Let ¢ be a loss with a unique
minimizer which is a function of the conditional distribu-
tion of y given X. Under additive noise assumption (la)
or classification assumption (1b) YmsacE and YmSAGEV
satisfy the minimal axiom.

Similarly to the marginal interpretation of PFI dis-
cussed in Section 5.2, Ewald et al. (2024) related the
marginal SAGE counterpart to marginal independence.
However, Proposition 5.12 shows that this interpretation
is not accurate. In fact, similarly to the perturbation in-
dices, the global model acts as a first filter for conditional
independence due to its functional dependence on the in-
put features (see Proposition 3.1).

Intuitively, since marginal SAGE involves comparing
subsets by altering only coordinate j, if feature j is not
important, it will not influence the model’s output. As a
result, all comparisons involving j yield zero importance.

This confusion between marginal SAGE and marginal

independence partly arises from the terminology “marginal”

and “conditional” SAGE. Conversely, the conditional
SAGE value function, which coincides with LOCI, can
only be employed for marginal testing. This highlights
that the distinction is not merely theoretical but also re-
flects conceptual differences, as the two approaches as-
sess feature importance either conditionally or marginally,
even though both involve marginalization. Consequently,
directly comparing mSAGE and cSAGE is not meaning-
ful.

Finally, note that, as shown in the second part of Propo-
sition 5.4, under the asymptotic relevance assumption
(3), perturbation indices assign vanishing importance to

the null coordinates. The same result can Atherefore be
obtained under this assumption for both ¥y,gagE and

YmSAGEVE-

6. SUMMARY OF THEORETICAL INDICES AND VIM
METHODS

In this section, we present a summary overview of the
definitions of the main theoretical indices, whether they
satisfy the minimal axiom, and the main Variable Impor-
tance Measures (VIMs), detailing what they estimate and
how they are estimated.

We denote the conditional and marginal Shapley value
functions for S C [p] as:

o(S) =E[£(y, Ely))] — E [¢ (3, E[m(X) | X5])],
o™(S) = E [((y, Ely))] — E [¢ (. E[m(X5) | X57)].

The former (v(S)) reflects the intrinsic conditional depen-
dence, while the latter (v™(.S)) involves marginal depen-
dence. Therefore, E[m(X(~%)) | X°] means that the —S
coordinates are averaged without taking into account the
relationship with X, which are fixed. We also recall the
Shapley weighting:

1<p—1>_1
wg == — .
TS|

The main theoretical indices, along with their defini-
tions and whether or not they satisfy the minimal axiom
(MA, Axiom 8), are summarized in table 1.

Next, we summarize the main methods and how they
are estimated. We use the abbreviations: P for pertur-
bation, M for marginalization, and R for refitting. To
maintain readability in the table, we report the theoretical
quantity rather than the explicit estimation formulas. In
practice, these correspond to plug-in estimators: expecta-
tions are approximated using empirical means over a test
set, and the function m is replaced by a trained machine
learning model.

For the construction of X(7), the j-th column is per-
muted across the dataset. The conditional version, X /),
is obtained via a conditional sampler. In CPI-based meth-
ods, this conditional permutation is used, although any
conditional sampler (as in CFI) is theoretically valid.

To distinguish between marginalization and refitting
when estimating the restricted model mg, we denote
marginalization-based approaches as E[m(X) | X**] (con-
ditional sampling, then we use v), and refitting-based ap-
proaches simply as mg. For marginal sampling, we de-
note E[m (X (%)) | X5] (then, we use v™).

The difference between LOCO (Lei et al. (2018)) and
LOCO-W (Williamson et al. (2023)) lies in the use of
a extra data splitting in the latter. This data splitting



A PRINCIPLED APPROACH FOR COMPARING VARIABLE IMPORTANCE 13

Index Definition MA
181 E[tm_;(x77),9)] ~El(m(X),y)] Yes
UsAcE Ssc—gy ws (B[6w.E[m(X) | X5])] —E [, E [m(x) | x5H43])]) No
¥LoCI E[6(y,E[y])] ~ E [e(y,m; (X7)] No
VimSAGEvt E[(y,Ey)] —E [0y, E [m(x)))] Yes
bmsace  Lsc—iyws (B[, E [m(x D) x5))] — B [ty B [m(x ) | xSHI])]) - Yes
pFI E [tm(X V), 9)| ~E[(m(X),y)] Yes
TABLE 1

Summary of the theoretical indices: Theoretical indices, their target quantities, and whether they satisfy the minimal axiom.

Method Theoretical quantity Index  Estimation
cSAGE 2isc—{jyws (W(SU{j}) —v(S)) YSAGE M
cSAGEVf v({s}) YLoct M
mSAGEvVf v™({5}) UmSAGEVE M
mSAGE Ssc—gjyws WS UG} —v™(S)) YmSAGE M
scCSAGEvf o(—{5tU{s}) —v(={5}) YrsI M
LOCO E [E(m,] (X7, y)} —E[¢(m(X),y)] S R
LOCO-W E [tm_;(xX79),9)] — El6m(X),y)] Ursi R
LOCI E [z(mj(Xj ) y)] —E[e(m(X),y)] Yroct R
PFI E [tm(xY).9)] ~E[e(m(X).y) vpEI P
CFI E [tm(X1)),y)] ~ Eleom(X),y) Yrsi P

Sobol-CPI-cal)  saby (E [e(ks Sopet m(X),0)] ~ Em(X),9)])  wrs PM

TABLE 2
Summary of the VIMs: The theoretical quantity targeted by the variable importance measures, the corresponding index, and the estimation
procedure considered (M for marginalization, R for refitting, and P for perturbation).

avoids using the same training set for both model re-
fittings, which ensures that the variance does not van-
ish and enables asymptotic normality, thereby allowing
for valid type-I error control. However, Reyero Lobo,
Neuvial and Thirion (2025) discuss the inference conse-
quences of such data splitting. Principally, this causes the
variance to explode, which leads to far fewer discoveries.
This is also seen in the experiments (Section 7).
Sobol-CPI(n-cal) can be interpreted as a perturbation
approach. Indeed, for n-cal = 1, it reduces to a normal-
ized CPI/CFIL. However, for larger values of n-cal, then
marginalizing, it accounts for the estimation bias intro-

duced by not having access to the true conditional expec-
tation, which is not addressed by other marginalization-
based methods.

In general, refitting-based approaches incur higher
computational costs, as the models used to represent the
relationship with the output tend to be more complex
than those used for conditional sampling. Additionally,
Shapley-based approaches are often slower, as they in-
volve an exponential number of feature combinations.
These factors should be taken into account when choosing
an estimation procedure.
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7. EXPERIMENTS

In this section, we compare all the presented global
variable importance measures on both simulated and real
datasets to illustrate two main points: (1) whether the the-
oretical index satisfies the minimal axiom—and therefore
whether the estimate tends to zero when a covariate has
no predictive power—and (2) the necessity of the general
pipeline. Indeed, the estimated importance (and in par-
ticular the resulting ranking, which reflects the predictive
power of each feature) remains consistent across estima-
tion approaches, whether based on refitting, perturbation,
or marginalization.

7.1 Methods

We compare Sobol-CPI (1) (a normalization of
the CPI from Chamma, Engemann and Thirion (2023))
and Sobol-CPI (100) from Reyero Lobo, Neuvial
and Thirion (2025), PFI from Breiman (2001), CFI
from Strobl et al. (2008), marginal / conditional SAGE
(m/c SAGE) and their respective value function vari-
ants (m/c SAGEvf) from Covert, Lundberg and Lee
(2020), scSAGE] from Ewald et al. (2024), LOCO
from Lei et al. (2018), LOCO-W from Williamson et al.
(2023), and 1L.OCTI (Leave One Covariate In). To en-
able comparison across all methods, the importance
scores have been normalized. Most methods were com-
puted using the Python package fippy (https://github.
com/geskoenig/fippy). Code to reproduce these exper-
iments is available at https://github.com/AngelReyero/
Principled- VIM-comparison.

The model used is a Gradient Boosting, but in section
D, we present the same experiments using a Random For-
est to show that, with a less accurate model, the results
are similar—albeit with less precise inference. All exper-
iments were repeated at least 50 times using different ran-
dom seeds.

7.2 Simulated data

For our simulated data, we did not replicate the exact
setup from Ewald et al. (2024), in which the unimportant
coordinates X; and X5 are nearly identical. Indeed, this
induces collinearity, which prevents accurate estimation
of the linear model and results in a model that includes
the term 0.36.X; — 0.36X5.

As a consequence, Ewald et al. (2024) argue that PFI
incorrectly assigns importance to these uninformative co-
variates. However, this is actually an estimation issue,
since the linear model is not consistent in cases of per-
fect correlation; in contrast, the theoretical PFI does not
attribute any importance to such features. Furthermore,
this setup violates the identifiability assumption, which
requires that no coordinate be a deterministic function of
the others.

We generate the input X as a Gaussian vector with zero
mean and a Toeplitz covariance matrix defined by ¥; ; =
0.6/"=71, with dimension p = 10. The output is defined as
y=Xo+2X; — XZ + X7 X5g. We use n = 5000 samples
for the main experiments.

In Figure 2, we plot the estimated importances across
all methods. For clarity, we present only one important
and one unimportant feature, while the full set of esti-
mated importances—from which similar conclusions can
be drawn—is provided in Appendix D.1.

On the left of Figure 2, for an important covariate, we
observe that even though the quantities have been es-
timated using different inference methods, those corre-
sponding to the same theoretical index yield similar im-
portance values. On the right, there is the importance es-
timated to a not important coordinate. We observe that all
the VIMs that satisfy the minimal axiom, represented by
plain boxplots, provide a null importance. For instance,
this illustrates that PFI is suited for conditional testing,
contrary to what was said before.

In Section D.1.1, we examine how the estimation varies
as n ranges from 100 to 5000. The conclusions remain
similar: numerical comparisons should be made between
estimates of the same index to assess different inference
properties, while conceptual comparisons should rely on
their theoretical counterparts.

7.3 Real data

Following Ewald et al. (2024), we use the bike dataset
from Fanaee-T and Gama (2014). In Figure 3, we plot
the estimated importance of the variable year across all
the discussed VIMs. We argue that this covariate is not
important, i.e., it does not contribute predictive power to
the model. Nevertheless, we observe that VIMs that do
not satisfy the minimal axiom assign importance to this
irrelevant covariate. Specifically, ¥)sagr (estimated by
¢SAGE) and ¢,ocr (estimated by cSAGEvVf via marginal-
ization and LOCI via refitting) both assign a nonzero im-
portance.

The claim of Ewald et al. (2024) that PFI can assign
high FI values to features even if they are not associated
with the target but with other features that are associated
with the target does not appear to be supported by the re-
sults of this experiment. In fact, we observe in Figure 3
that PFI, which satisfies the minimal axiom, assigns zero
importance to the variable year. This indicactes that the
model acts as a filter for conditional independence. As a
result, PFI assigns different importance scores (and there-
fore different rankings) to the relevant covariates com-
pared to methods like LOCO; however, both approaches
identify the same set of important covariates.

In Figure 4, we present boxplots of all features using
only the VIMs that aim to estimate the total Sobol in-
dex. We omit LOCO-W due to its high variability, which
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Feature importance for y = Xy + 2X; — X2 + X7Xg, R2=10.99
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FIG 2. Boxplot of estimated VIMs for an important and an unimportant variable: Methods not satisfying theoretically the minimal axiom have
boxes filled with diagonal hatch lines. The left panel shows an important covariate, while the right panel shows an unimportant one. Only con-
ditional SAGE (vf) and LOCI fail to satisfy the minimal axiom, assigning non-zero importance to the unimportant variable. Sobol-CPI (1),
Sobol-CPI(100), CFI, scSAGEj, LOCO, and LOCO-W aim to estimate {TgJ.
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FIG 3. Boxplots of the VIMs for the year feature: Methods not satisfying theoretically the minimal axiom have boxes filled with diagonal hatch
lines. All methods that estimate an importance index satisfying the minimal axiom assign no importance to this variable.
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compromises readability. The complete figure—including
additional methods and results based on a Random For-
est—is provided in Appendix D.2.

We observe that all displayed methods produce sim-
ilar importance values and rankings, even on real data,
regardless of whether they rely on marginalization, refit-
ting, or perturbation. This similarity arises because they
target the same underlying quantity. However, their es-
timation properties differ. For instance, refitting-based
methods exhibit greater variability (Paillard et al. (2025)),
which can lead to inaccurate variable importance esti-
mates that are highly sensitive to the data and the opti-
mization procedure. Consequently, the resulting rankings
tend to be less reliable in practice compared to those ob-
tained via marginalization or perturbation. Furthermore,
perturbation methods possess a double robustness prop-
erty (Reyero Lobo, Neuvial and Thirion (2025)), which in
practice translates into greater robustness to model mis-
specification under the null hypothesis, leading to faster
convergence rates and reduced variance, as observed for
variables such as month and holiday.

8. DISCUSSION

In this article, we have proposed a new categorization
of variable importance measures (VIMs). In doing so, we
aim to provide practitioners with more insight into how
to proceed when working with real datasets. We argue
that comparing VIMs only based on their inference pro-
cedures it is not meaningful, and can be misleading. In-
stead, it is crucial to clearly define the theoretical index
corresponding to the intended goal, and then select an ap-
propriate estimation method. In particular, we emphasize
that comparing methods aimed at estimating different in-
dices is not meaningful, as each method yields a different
ranking aligned with its own objectives.

This principled framework acknowledges that global
variable importance aims to capture information about the
true underlying distribution, with the model acting as a
surrogate that simplifies this information. Furthermore,
establishing a connection between variable importance
and variable selection is essential for making insightful
discoveries with statistical guarantees. Since the index is
a theoretical quantity that must be estimated from data,
it is crucial to provide statistical guarantees for the se-
lected covariates. This connection is formalized through
the minimal axiom, highlighting that both fields pursue
the same objective.

The proposed axiom not only formalizes the notion of
importance as predictive power but also generalizes it by
relating it to the conditional independence testing frame-
work under the established assumptions. We note that
some notions of importance do not fall within this defini-
tion; for example, a feature may influence the output only

through its variance without providing any predictive sig-
nal. However, we argue that when performing scientific
inference using an ML model to explain the X—y rela-
tionship, no stronger notion can be achieved, since such
alternative forms of importance are not captured by the
predictive model.

While the presented work offers a rigorous framework
for the development of VIMs, there remains a need for
further research on this subject. On the one hand, new
theoretical indices should be developed to capture alter-
native notions of importance, with explicit articulation of
the axioms they are designed to satisfy. On the other hand,
more work is needed on the estimation side, particularly
for challenging indices such as the decorrelated LOCO,
whose inference bias complicates accurate estimation.

APPENDIX A: NOTATION GLOSSARY

The notation used in this paper is gathered in Ta-
ble 3. Some notation can be combined; for instance,

Description

X eRP Input

Jj€p] Feature of interest

XieR j-th input covariate

X—JeRrp1 X with the j-th covariate ex-
cluded

X5 erp—15l S-th input covariates for
S Cp]

yeR Output

PeM Distribution of (X,y)

x () Marginal perturbation

XU Conditional perturbation

m(X) (resp. m_;(X 7)) Ely | X] (resp.E [y | X 7]

mg(X) Ely| X®] =
E [m(X) | X*]

m (resp. m_;) Estimation of m (resp. of
m_ j)

14 Loss function

F Generic space of functions

U(4, P) Importance index of j under
P

Neal Size of calibration set

TABLE 3

Notation used in the paper.

X! denotes the I-th coordinate of X ). Also, we re-
call that marginal perturbation means X @i = X7,
L(XUI)y = £(XI) and XU 1 X7V, and condi-
tional is X7 = X3 X0 1| y| X7 and £L(X) =
L(X).



A PRINCIPLED APPROACH FOR COMPARING VARIABLE IMPORTANCE

17

Feature importance for bike dataset, R? =0.89
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FIG 4. Boxplots of the VIMs estimating g for all features: All methods aim to estimate the same theoretical quantity. While their estimates are
generally close, the refitting-based approaches exhibit poorer inference properties.

APPENDIX B: CONDITIONAL AND FUNCTIONAL
INDEPENDENCE

In this section, we prove that, under certain standard as-
sumptions, it is possible to establish the equivalence be-
tween conditional independence and functional indepen-
dence, i.e., between y 1L X7 | X7 and m(X) € F_;.

First, under the standard additive noise assumption (1a),
Reyero Lobo, Neuvial and Thirion (2025) proved this
equivalence in Lemma I.1 of the appendix, which is based
on proving that m(X) is o(X ~/)-measurable.

For classification, we will establish the result under the
general classification assumption (1b).

First, if y 1L X7 | X7, we have that

o(m(X))=Py=1[X)
(using that y 1L X7 | X ~7)

(using Assumption 1b)
=P(y=1|X7)
= f-j(X7),

for some f_; € F_j, as P(y = 1| X7) belongs to the
o-algebra generated by X 7.
Then, if m € F_;, then we have that

(using the tower rule)
Ply=1|X7)=E[P(y=1|X)|X"]

=E [o(m(X)) | X ]
(using that m € F_) =K [U(m—j(X_j>) | X_j]

(0(m—;j(X~7)) is (X ~/)-measurable)
=o(m_j(X™7))

(using Assumption 1b)

(using definition of m_)

=o(m(X))
=Py=1]X).

Therefore, as y binary and P(y =1 | X ) =Ply=1|
X), theny 1L X7 | X7,

APPENDIX C: MINIMAL AXIOM PROOFS

In this section, we study whether the theoretical indices
presented in the main text satisfy the minimal axiom.

C.1 Generalized Linear Models ¥ g1,

PROOF OF PROPOSITION 5.2. On the one hand, as-
sume that X7 Il g | X 7. Then, we have that g(X'3; +
4+ XPB)=Ely| X]=E[y| X 7], thenitis o (X J)-
measurable. However, as X7 is not o(X ~/)-measurable
by identifiability assumption, then 3; = 0.

On the other hand, assume that $; = 0. Then, in partic-
ular using the GLM likelihood assumption (McCullagh

(1989)):
py(y;0,¢) = exp (WT;)(H) +c(y; d>)> :

we have that the canonical parameter does not depend on
X7 because 5; =0, thenpy(y | X) =py,(y | X~7). O
C.2 Perturbation vperturb

PROOF OF PROPOSITION 5.4. First, we prove it in

particular for the quadratic loss. For any perturbation X7,
using Assumption la we have that

wperturb(jap) =K (y_m()?]))2:| —E [(y_m(X))Z]
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—F [(y - m(X—j,)?jj))Q] —E[(y —m(X))?]
= E [(m(X) + ¢~ m(x~, Z9))?]
~E [(m(X) +e—m(X))?]
B [(m(x) - m(x 3, Z)y?].

Thus, using the strict convexity of the quadratic loss, we
have that m(X) — m(X 7, X99) = 0 almost surely if and
only if m € F_;. Therefore, we can conclude by applying
Proposition 3.1.

More generally, for any strictly convex loss ¢, we have

that E [e(y, m()?j))} —E[l(y,m(X))] = 0 if and only if

m(X) — m(X?) = 0 almost surely. Then, we conclude
using Proposition 3.1.

For the second part of the proposition, it suffices to ap-
ply Theorem 3.4 from Reyero Lobo, Neuvial and Thirion
(2025). Indeed, this result follows from one of the double
robustness properties of CFI: for any perturbation, using
the asymptotic relevance of 7, the importance vanishes.

O

C.2.1 PFI is not suitable for marginal testing. In the
literature, there is a common misconception that PFI is
suitable for marginal testing (see Ewald et al. (2024)), due
to the fact that the permutation is performed marginally.
However, in this section, we show that this is not the
case. First, using Proposition 5.4, we show that if PFI is
nonzero, then X7 is dependent on the output given the
rest of the input. Then, we demonstrate that the assump-
tions made in Ewald et al. (2024) to draw conclusions
about marginal independence implies conditional inde-
pendence.

C.2.1.1 PFI different than 0: In Ewald et al. (2024),
they claim that if vppi(j, P) # 0 and X7 1L X7 |y,
then X7 1L y. In this section we argue that indeed, if
Ypr1(j, P) # 0 then we have that X7 1L y | X /. More
generally, this applies to any perturbation index as seen
in Proposition 5.4. The problem arises from the fact that
the model used in the index is not an arbitrary model, but
rather an estimate of the data-generating process. Under
standard assumptions, this model acts as a filter for con-
ditional independence. Consequently, if the difference in
loss is nonzero, it implies that the model relied on the co-
variate, and therefore, the covariate is important—i.e., it
is conditionally dependent.

C.2.1.2 PFI equal to 0: In Ewald et al. (2024) they
claimed that if vpp1(j, P) = 0, X7 1L X~/ and X7 1L
X7 |y, then X; 1L y. However, this also implies that
XJ 1l y| X~J. Indeed, we have that

p(X7,y, X7)

p(Xj7y|X_j): p(X_j)

_ pp(X7 [y)p(X 7 |y)
p(X )
_ pp(Xp(X 7 |y)
p(X )
(X )p(X )
p(X )
_ p(X)ply | X )p(x )
p(X )
=p(X/)p(y | X77)
=p(X7 [ X )p(y | X7).

Therefore, we conclude that X7 1L y | X 7.

In general, as shown in Proposition 5.4, there is no need
to impose such restrictive assumptions to draw conclu-
sions about conditional independence. We present this de-
velopment because Ewald et al. (2024) first showed that if
a method is suited for detecting marginal independence,
then it is not suited for detecting conditional indepen-
dence. Second, they showed that under this restrictive set-
ting, PFI is appropriate for marginal independence. We
therefore demonstrate that, in this particular case, it also
implies conditional independence, thus aligning with our
more general result.

C.3 General Total Sobol Index st

PROOF OF PROPOSITION 5.6. Covert, Lundberg and
Lee (2020) established this result in the context of the
cross-entropy loss. Specifically, they showed that

I(y; X9 | X ) =0 <= X/ 1lly|X,

which corresponds precisely to the minimal axiom using
.

For the quadratic loss, we can directly use the CFI for-
mulation of the TSI and apply Proposition 5.4.

Under the assumptions of the proposition, this equiva-
lence follows directly. Since the loss £ is strictly convex,
it admits a unique minimizer, which by definition is the
Bayes predictor, a function of m € F. Hence, we have
that

E[((y, m(X))] =E[((y,m_;(X7))]
= mX)=m_;(X ) as.

This condition implies that X7 provides no additional pre-
dictive power beyond X 7, i.e., m is functionally inde-
pendent of X7 given X 7. By the equivalence between
functional and conditional independence under these as-
sumptions, we conclude that g1 (7, P) satisfies the min-
imal axiom.

O



A PRINCIPLED APPROACH FOR COMPARING VARIABLE IMPORTANCE 19

C.4 Shapley Additive Global importancE (SAGE,
PYSAGE)

PROOF OF PROPOSITION 5.9. We begin by showing
that ¥)gagEvr does not satisfy the minimal axiom, as there
exists a spurious correlation between the j-th coordi-
nate and an important coordinate. Similarly, since ¥)sagE
combines multiple terms—including those reflecting this
spurious importance—it also fails to satisfy the minimal
axiom. Finally, we prove that 1s.sacg;j coincides with
1rst and, in particular, as established in the previous sec-
tion, satisfies the minimal axiom.

We recall the notation mg(X®) = E[y | X°] = E[m/(X) |
X5 for S C [p]. In particular, for S = {;}, we denote it
simply as m;.

We start with the SAGE value function. Indeed, it is
given by

wSAGEVf(.j7 P) =E [K(E [y] 7y>] -E V(m] (xj)vy)] 5

withm;(z?) :=E [m(X’, X 7) | XI =27 =E[y| X7 =
x7]. Therefore, it is easy to construct the following general
counterexample: for y =m_;(X /) +e, withe 1L X, we
observe that y 1l X7 | X7, but if X7 X7, it will not
beOasE [y | X7] £E[y].

For the SAGE, it is given by

Ysace(j, P) :é >

Sc—{j}

with v(S) = E[{(y,E[y])] — E [¢(y, ms(z®)]. In partic-
ular, using the same counterexample as for the SAGE
value function, we observe that for S = () the difference is
strictly positive as v(0U{j}) —v(0) =v({j}) > 0. There-
fore, Yesacr(j, P) > 0, since it is a combination of dif-
ferences that are either positive or zero, with at least one
strictly positive. However, since X7 1L y| X 7, the min-
imal axiom is not satisfied.

For the 1s.saGE;j, we note that it is exactly the total
Sobol Index:

Usesacr; = v(={j} U{j}) —v(={j})

=E[(y,E[y])] - E [f(y, m_ g {j}(x—{j}u{j}ﬂ

~E[l(y,Ely))] +E |y, m_; (=)
—E [t(y,m_jy (™) - Elt(y, m()]

=1rsi(f, P).

In particular, it satisfies the minimal axiom (see Proposi-
tion 5.6). O

-l
("5 ) @sUEn-).

C.5 Marginal SAGE ¥,,sAGE

PROOF OF PROPOSITION 5.12. For the notation, we
denote

m(X9) = Efm(X (%)) | X9,

This means, in particular, that the coordinates in X (=95)5 .=
XS are fixed, and the expectation is taken over the re-
maining coordinates, which are independent from X due
to marginal permutation.

We observe that, for this proof, there is no need to pre-
serve any specific distribution over the variables on which
the expectation is taken (i.e., X (=8)-8 ); it suffices to have
independence. In this way, the coordinates over which we
take the expectation are not influenced by the others, and
thus the conditional filtering of the trained function re-
mains valid—unlike in the original SAGE.

To make this point more explicit, note that by indepen-
dence,

mg (2%) :=E[m(X ) | X* =27
—E[m(X97% 2%) | X% =29
=E[m(X 9% 2%)].

Therefore, the information provided by the coordinates
in S does not influence the distribution of the remaining
coordinates.

If the sampling is done marginally, we have in particu-
lar that m% (z%) = E[m/(X 9, 2%)].

We start with the marginal SAGE value function. It is
defined as

meAGEVf(j7 P) =K [E(E [y] ) y)] —E [E(m;n(x])? y)] .
Note that m" (27) :==E [m(z?, X7)]. Under the null hy-
pothesis, m € F_;, and therefore

mT(:):J) =E[m(z/, X 7)) =E [m_j(X_j)] =E[y].

Thus, its value is O if and only if 27 is conditional indepen-
dent. Similarly, for the marginal SAGE, it can be written
as

1 d—1\""
wmssce=y 3 (5] @ sUGH-m).
Sc—{j}

with v™(S) = E[((y,E[y])] — E [¢(y,m (z”)]. Thus,
we just need to note that v™ (S U {j}) = v™(S) for all
S C —{j}. To see this, similarly as before, using the
equivalence between conditional dependence and func-
tional dependence, we observe that

m?u{]}(:USU{]}) = _m(.jUSU{j},X_(SU{j}))]

=F [m_;(«", X%su{j}))}

=E —m(acs, XﬁSU{j})}

=mg(zs).
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Then, we have that

(S U} =E[l Sui|

B Efy])] — E [€ly, mGy (@
E

C.6 Leave One Covariate In (LOCI, ¥)r,0c1)

PROPOSITION C.1.
mal axiom.

Yroci does not satisfy the mini-

PROOF OF PROPOSITION C.1. Similarly to the (con-
ditional) SAGE value function for the subset {; }, we have
that it is given by

E[E(va[yD] - E[E(yamJ(Xj»]v

except that the index j appears as a refitting index for the
estimation rather than a marginalization index. Neverthe-
less, the index remains the same, and the same counterex-
ample applies to show that this difference is non-zero,
even under conditional independence.

O

APPENDIX D: ADDITIONAL EXPERIMENTS

In this section, we present the remaining results on vari-
able importance and additional convergence behaviors.
This provides a more complete view of the experiments.

D.1 Simulated data

From Figure 5, where we used a Random Forest, we
observe the same overall pattern as in Figure 2, where
the main model is a Gradient Boosting machine. We also
note that the Gradient Boosting model is more accurate
(achieving a better R?), but its estimated importance val-
ues exhibit higher variability. Therefore, even though both
models are expected to converge to the same quantity,
some inference methods may be more desirable than oth-
ers.

For instance, Sobol-CPI (and similarly, CFI) benefits
from a double robustness property (see Reyero Lobo,
Neuvial and Thirion (2025)), which enhances its ability
to detect null covariates and leads to better performance
on X? compared to PFI. Additionally, we observe that
LOCI not only fails to satisfy the minimal axiom—by as-
signing importance to uninformative covariates—but also
assigns negative importance to important covariates, ex-
hibiting behavior that is clearly undesirable. This could
be sign of a strong model overfitting.

For completeness, in Figures 6 and 7 we present the
estimated importance for all the features, using a Gra-
dient Boosting and a Random Forest respectively. From
these figures, we observe that the VIMs satisfying the

minimal axiom do not assign any importance to the red
(uninformative) features. We also note the equivalence
between Sobol-CPI (1), Sobol-CPI(100), CFI,
ScSAGEJ, LOCO, and LOCO-W, even though they rely
on different estimation approaches and models.

From Figure 7, we first observe that the estimation qual-
ity is slightly lower due to the reduced performance of
the model. Notably, LOCI exhibits highly undesirable be-
havior: it not only assigns importance to uninformative
covariates, violating the minimal axiom, but also assigns
negative importance to important covariates. This is likely
a consequence of the variability in the optimization pro-
cess. Overall, Sobol-CPI demonstrates more reliable in-
ference results (see Paillard et al. (2025)).

D.1.1 Convergence In Figure 8, we illustrate that the
behavior observed in the boxplots from Figure 2 is not
specific to a fixed sample size n, but rather remains stable
across different values of n. On the left panel, which cor-
responds to an important covariate, we observe that sev-
eral distinct trends emerge early in the sampling process
and remain consistently separated as n increases. On the
right panel, we observe that both SAGE and LOCI assign
importance to features that are, in fact, not important. This
suggests that these methods may fail to satisfy the mini-
mal axiom, as they can attribute relevance to covariates
that have no true impact on the outcome.

In Figure 9, we focus exclusively on VIMs that tar-
get the total Sobol index. As such, this figure does not
aim to compare different theoretical importance indices,
but rather to assess the inference properties of estimators
targeting the same quantity—making it a purely method-
ological comparison. On the left, we observe that for
the important covariate, the CPI-based methods exhibit
lower variance compared to refitting-based approaches
(LOCO (—W) ), consistent with findings from Paillard et al.
(2025). On the right, we report the mean bias across null
covariates. Again, CPI-based methods show more favor-
able behavior due to their double robustness property, as
discussed in Reyero Lobo, Neuvial and Thirion (2025).

D.2 Real data

In Figure 10, we reproduce the same figure as in Fig-
ure 4, but using a Random Forest instead of Gradient
Boosting. We observe that the results and rankings remain
essentially unchanged, assigning the highest importance
to temperature and humidity, and consistently identifying
the same covariates as unimportant.

Finally, for completeness, we present all the VIMs
across all methods for both Gradient Boosting and Ran-
dom Forest in Figure 11 and Figure 12, respectively.

We first observe that although LOCO-W targets the
same quantity as the other TSI methods, it exhibits sub-
stantial variability due to the data-splitting and refitting
steps required to ensure valid type-I error control. While
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FIG 5. Boxplot of estimated VIMs for an important and an unimportant variable using a Random Forest: Methods not satisfying theoretically
the minimal axiom have boxes filled with diagonal hatch lines. The left panel shows an important covariate, while the right panel shows an
unimportant one. Only conditional SAGE (vf) and LOCI fail to satisfy the minimal axiom, assigning non-zero importance to the unimportant
variable. Sobol-CPI (1), Sobol-CPI (100), CFI, scSAGE j, LOCO, and LOCO-W aim to estimate \gy.
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FIG 6. Boxplot of estimated VIMs for all features using Gradient Boosting: Methods not satisfying theoretically the minimal axiom have boxes
filled with diagonal hatch lines. Important covariates are shown in green, and unimportant ones in red. Only conditional SAGE (vf) and LOCI fail to
satisfy the minimal axiom by assigning non-zero importance to uninformative variables. Sobol—-CPI (1), Sobol—-CPI (100), CFI, scSAGE],
LOCO, and LOCO-W aim to estimate g7
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Feature importance for y = Xg + 2X; — X2 + X7Xg, R2 = 0.92
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with diagonal hatch lines. Important covariates are shown in green, and unimportant ones in red. Only conditional SAGE (vf) and LOCI fail to
satisfy the minimal axiom by assigning non-zero importance to uninformative variables. Sobol—-CPI (1), Sobol-CPI (100), CFI, scSAGE],
LOCO, and LOCO~-W aim to estimate gJ.
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FI1G 8. Convergence of VIMs for an important and an unimportant covariate: Methods not satisfying theoretically the minimal axiom have
discontinuous lines. The left panel shows the convergence behavior of various VIMs for an important covariate, highlighting different trends as
each method targets distinct indices with different objectives. The right panel illustrates the behavior for an unimportant covariate, where we can
observe which VIMs satisfy the minimal axiom by assigning negligible or zero importance.

this approach provides formal statistical guarantees, we
argue that its high variability limits its practical useful-
ness.

Additionally, we note that VIM methods satisfying the
minimal axiom do not consistently assign importance to
the same set of variables.
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