
Published as a conference paper at ICLR 2021

ADVERSARIALLY-TRAINED DEEP NETS TRANSFER
BETTER: ILLUSTRATION ON IMAGE CLASSIFICATION

Francisco Utrera∗
UC Berkeley
utrerf@berkeley.edu

Evan Kravitz∗
UC Berkeley
kravitz@berkeley.edu

N. Benjamin Erichson
ICSI and UC Berkeley
erichson@berkeley.edu

Rajiv Khanna
UC Berkeley
rajivak@berkeley.edu

Michael W. Mahoney
ICSI and UC Berkeley
mmahoney@stat.berkeley.edu

ABSTRACT

Transfer learning has emerged as a powerful methodology for adapting pre-trained
deep neural networks on image recognition tasks to new domains. This pro-
cess consists of taking a neural network pre-trained on a large feature-rich source
dataset, freezing the early layers that encode essential generic image properties,
and then fine-tuning the last few layers in order to capture specific information re-
lated to the target situation. This approach is particularly useful when only limited
or weakly labeled data are available for the new task. In this work, we demonstrate
that adversarially-trained models transfer better than non-adversarially-trained
models, especially if only limited data are available for the new domain task.
Further, we observe that adversarial training biases the learnt representations to
retaining shapes, as opposed to textures, which impacts the transferability of the
source models. Finally, through the lens of influence functions, we discover that
transferred adversarially-trained models contain more human-identifiable seman-
tic information, which explains – at least partly – why adversarially-trained mod-
els transfer better.

1 INTRODUCTION

While deep neural networks (DNNs) achieve state-of-the-art performance in many fields, they are
known to require large quantities of reasonably high-quality labeled data, which can often be ex-
pensive to obtain. As such, transfer learning has emerged as a powerful methodology that can
significantly ease this burden by enabling the user to adapt a pre-trained DNN to a range of new sit-
uations and domains (Bengio, 2012; Yosinski et al., 2014). Models that are pre-trained on ImageNet
(Deng et al., 2009) have excellent transfer learning capabilities after fine-tuning only a few of the
last layers (Kornblith et al., 2019) on the target domain.

Early work in transfer learning was motivated by the observation that humans apply previously
learned knowledge to solve new problems with ease (Caruana, 1995). With this motivation, learning
aims to extract knowledge from one or more source tasks and apply the knowledge to a target
task (Pan & Yang, 2009). The main benefits include a reduction in the number of required labeled
data points in the target domain (Gong et al., 2012; Pan & Yang, 2009) and a reduction in training
costs as compared to training a model from scratch. However, in practice, transfer learning remains
an “art” that requires domain expertise to tune the many knobs of the transfer process. An important
consideration, for example, is which concepts or features are transferable from the source domain
to the target domain. The features which are unique to a domain cannot be transferred, and so an
important goal of transfer learning is to hunt for features shared across domains.

It has recently been shown that adversarially-trained models (henceforth denoted as robust models)
capture more robust features that are more aligned with human perception, compared to the seem-
ingly patternless features (to humans, at least) of standard models (Ilyas et al., 2019). Unfortunately,

∗Equal contribution

1



Published as a conference paper at ICLR 2021

(a) (b)

Figure 1: We demonstrate that adversarially-trained (i.e., robust) DNNs transfer better and faster to
new domains with the process shown in (a): A ResNet50 is trained adversarially or non-adversarially
(i.e., naturally) on the source dataset. Then, we fine-tune both of these source models on the target
dataset. We hypothesize the robust features in robust models that encode more humanly percep-
tible representations, such as textures, strokes and lines, as seen in (b), are responsible for this
phenomenon. See Appendix A.1 for details on how we generated the images in (b).

these models typically have a lower generalization performance on the source domain, as compared
to non-adversarially-trained (henceforth denoted as natural, as in previous works (Tsipras et al.,
2019; Shafahi et al., 2019; Salman et al., 2020)) model. Hence, Ilyas et al. (2019) hypothesize that
non-robust features that are lost during adversarially training may have a significant positive impact
on generalization within a given dataset or domain. This inherently different feature representation
between models constructed with adversarial training and models trained with standard methods
would also explain why accuracy and robustness are at odds (Tsipras et al., 2019). This leads to the
question of whether models that use robust representations generalize better across domains. This
is the main question we address.

In this work, we demonstrate that robust models transfer better to new domains than natural models.
To demonstrate this, we conduct an extensive number of transfer learning experiments across mul-
tiple domains (i.e., datasets), with various numbers of fine-tuned convolutional blocks and random
subset sizes from the target dataset, where the critical variable is the constraint used to adversarially
train the source model. (Described in detail in Sections 3 and Appendix A.3) Importantly, note that
we do not use an adversarial training procedure for the actual transfer learning process. Our findings
indicate that robust models have outstanding transfer learning characteristics across all configura-
tions, where we measure the performance in terms of model accuracy on target datasets for varying
numbers of training images and epochs. Figure 1 provides a summary of our approach.

Our focus in this work is to show that robust source models learn representations that transfer better
to new datasets on image recognition tasks. While adversarial training was proposed to combat
adversarial attacks, our experiments discover an unintended but useful application. Adversarial
training retains the robust features that are independent of the idiosyncrasies present in the source
training data. Thus, these models exhibit worse generalization performance on the source domain,
but better performance when transferred. This observation is novel, and we undertake extensive
empirical studies to make the following contributions:

• We discover that adversarially-trained source models obtain higher test accuracy than natu-
ral source models after fine-tuning with fewer training examples on the target datasets and
over fewer training epochs.

• We notice that the similarity between the source and target datasets affects the optimal
number of fine-tuned blocks and the robustness constraint.

• We show that adversarial training biases the learned representations to retain shapes instead
of textures, impacting the source models’ transferability.

• We interpret robust representations using influence functions and observe that
adversarially-trained source models better capture class-level semantic properties of the
images, consistent with human concept learning and understanding.

2



Published as a conference paper at ICLR 2021

2 RELATED WORKS

ImageNet transfers. Our focus is on studying the transfer of all but the last few layers of trained
DNNs and fine-tuning the last non-transferred layers. For ease of exposition, we restrict our attention
to ImageNet models (Deng et al., 2009). Kornblith et al. (2019) study the transfer of natural models
to various datasets and is thus a prequel to our work. Yosinski et al. (2014) also study transferring
natural models but focus on the importance of individual neurons on transfer learning. Recht et al.
(2019) study the generalization of natural and robust models to additional data generated using a
process similar to that of generating ImageNet. They conclude that models trained on ImageNet
overfit the data. However, they study the models’ generalization as-is without fine-tuning.

Covariate shift. A significant challenge in transfer learning is handling the data distribution change
across different domains, also called covariate shift. It’s widely recognized in successful domain
adaptations (Yosinski et al., 2014; Glorot et al., 2011) that the representations in earlier layers are
more “generic” and hence more transferable than the ones in later layers. This hierarchical disen-
tanglement is attributed to the properties of the data itself, so that the later layers are more closely
associated with the data and do not transfer as well. This motivated studies for shallow transfer
learning (Yosinski et al., 2014; Ghifary et al., 2014) and more general studies to extract features
that remain invariant across different data distributions (Arjovsky et al., 2019). In Section 5 we see
that adversarial training biases the learned representations to retain shapes instead of textures, which
may be a more desirable invariant across the datasets.

Transfering adversarially-trained models. There are mainly two works directly associated with
ours. First, subsequent to this paper’s initial posting (in a non-anonymized form in a public forum),
Salman et al. (2020) posted a related paper. They arrived at broadly similar conclusions, confirming
our main results that robust models transfer better; and they do so by focusing on somewhat different
experiments, e.g., they focus on the effects of network architecture width, fixed feature transfer,
and seeing if models without texture bias transfer better than robust models. Second, Shafahi
et al. (2020) mainly find that models lose robustness as more layers are fine-tuned. It might seem
to contradict our thesis that they also notice that an ImageNet robust model with a ‖δ‖∞ ≤ 5
constraint has lower accuracy on the target datasets, CIFAR-10 and CIFAR-100, compared to a
natural ImageNet model. However, we show that the robust model transfers better than the natural
one when we use a ‖δ‖2 ≤ 3 constraint to adversarially train the source model.

Example based interpretability. There has been significant interest in interpreting blackbox
models using salient examples from the data. A line of research focuses on using influence func-
tions (Koh & Liang, 2017; Koh et al., 2019; Khanna et al., 2019) to choose the most indicative
data points for a given prediction. In particular, Khanna et al. (2019) discuss the connection of
influence functions with Fisher kernels; and Kim et al. (2016) propose using criticisms in addi-
tion to representative examples. Complimentary lines of research focus on interpretability based on
human-understandable concepts (Bau et al., 2017) and feature saliency metrics (M. Ancona, 2017).

3 BRIEF OVERVIEW OF THE ADVERSARIAL TRAINING PROCESS

Adversarial training modifies the objective of minimizing the average loss across all data points by
first maximizing the loss produced by each image with a perturbation (i.e., a mask) that may not
exceed a specified magnitude. Here, we describe this process, similar to Madry et al. (2018).

Let (xi, yi) be m data points for i ∈ [m], where xi ∈ Rd is the ith feature vector, and yi ∈ Y is the
corresponding response value. Typically, we model the response as a parametric model hθ : Rd → Y
with a corresponding loss function ` : Y ×Y → R≥0. The objective is to minimize the loss `(ŷ, y),
where ŷ = hθ(x) is the predicted response. Adversarial training replaces the above minimization
problem of training the model by a minimax optimization problem to make the model resilient to
arbitrary perturbations of inputs. The goal of adversarial training is to solve a problem of the form

min
θ

1

m

m∑
i=1

max
‖δi‖p≤ε

`(hθ(xi + δi), yi). (1)

That is, the goal is to find the parameters θ of the model hθ that minimize the average maximum loss
obtained by perturbing every input xi with a δi constrained such that its `p norm does not exceed

3



Published as a conference paper at ICLR 2021

some non-negative ε. If ε = 0, then δi = 0, in which case there is no perturbation to the input, which
is what we call natural training. As ε increases, the magnitude of the perturbation also increases.
For more details on how we solve this problem, and a few examples, see Appendix A.2.

4 TRANSFERRING ADVERSARIALLY-TRAINED MODELS

In this study, we train four ResNet50 source models on ImageNet. We train one of them naturally
(non-adversarially), and train each of the remaining three adversarially with one of the following
constraints: (i) ‖δ‖2 ≤ 3, (ii) ‖δ‖∞ ≤ 4

255 , (iii) ‖δ‖∞ ≤ 8
255 . Next, we fine-tune some convo-

lutional blocks in the source models to each of the six target datasets separately using a subset of
the training data. We repeat each of these trials for various seed values and report the mean and
95% confidence interval. Altogether, we have a comprehensive and replicable experimental setup
that considers four ImageNet source models, four fine-tuning configurations, six target datasets, ten
random subset sizes, and an average of fifteen random seeds for a total of 14,400 fine-tuned models.
For more details, see Appendix A.3 and A.4.

robust
natural

0

25

50

75

robust
natural

40

60

80

100

robust
natural25

50

75

100

robust
natural

10
0

40
0

16
00

64
00

25
60

0

70

80

90

robust
natural

10
0

40
0

16
00

64
00

25
60

0

40

60

80

100

robust
natural

10
0

40
0

16
00

64
00

25
60

0

70

80

90

100

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0
50

00
0

Number of training images

0

5

10

15

20

25

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN
FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training images

(a) (b)

Figure 2: Robust models generalize better to new domains, especially with fewer training images
in the target domain. (a) Shows the test accuracy on the six target datasets (color-coded as in (b))
for various subset sizes. (b) Shows the test accuracy delta, defined as the robust model test accuracy
minus natural model test accuracy. The solid line is the mean and its shade is the 95% confidence
interval. Both the robust and natural models are ResNet50s’ trained on ImageNet. The robust model
uses a ‖δ‖2 ≤ 3 constraint. Both models fine-tune three convolutional blocks on the target dataset.

robust
natural

30

40

50

60

robust
natural

75

80

85

90

robust
natural

50
60
70
80
90

robust
natural

11 21 41 81 15
0

84
86
88
90

robust
natural

11 21 41 81 15
0

60

70

80

90

robust
natural

11 21 41 81 15
0

92
94
96
98

11 21 41 81 15
0

Number of training epochs

0

5

10

15

20

25

30

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN
FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training epochs

(a) (b)

Figure 3: Robust models transfer faster. (a) Shows the test accuracy during the fine-tuning process
on the six target datasets (color-coded as in (b)). (b) Shows the test accuracy delta, defined as the
robust model test accuracy minus the natural model test accuracy. The solid line is the mean and its
shade is the 95% confidence interval. Both the robust and natural models are ResNet50s’ trained on
ImageNet. The robust model uses a ‖δ‖2 ≤ 3 constraint. Both models fine-tune three convolutional
blocks using a random subset of 3,200 images (∼ 5%) of the target dataset.

4



Published as a conference paper at ICLR 2021

Adversarially-trained models transfer better and faster. For ease of comparison, we select
the robust and natural models that transfer with the highest test accuracy across all datasets (fine-
tuning three convolutional blocks and the robust model using the ‖δ‖2 ≤ 3 constraint), as shown in
Figures 2 and 3. See Appendix A.5 for additional results. Figure 2(b) shows that the test accuracy
delta between robust and natural models is above zero for all six target datasets. Thus, robust
models obtain higher test accuracy on the target dataset than the natural model, especially with
less training data in the target domain. Robust models also learn faster, as shown by the positive
test accuracy delta in Figure 3(b) for all target datasets after only 11 and 21 fine-tuning epochs.
See Appendix A.6 for additional information on different random subset sizes. Fine-tuning cost is
the same for both robust and natural models, but training the source model is considerably more
expensive. For more detail on computational complexity see A.8. Also, our code is available at
https://github.com/utrerf/robust transfer learning.git

Best results achieved with `2 constraint and fine-tuning one to three convolutional blocks. Ro-
bust models achieve the highest test accuracy on the target datasets when an optimal number of con-
volutional blocks are fine-tuned, and when these models are trained with an appropriate constraint
type. In particular, fine-tuning zero (only the fully-connected layer) or nine convolutional blocks
leads to lower test accuracy than fine-tuning one or three blocks, as shown in Figure 4(a) for all six
target datasets. The natural model and the other two robust models exhibit the same behavior, as
shown in Appendix A.7. To analyze the best constraint type, we select the fine-tuning configuration
that yields the highest test accuracy on the target datasets (fine-tuning three convolutional blocks).
We see that the `2 constraint outperforms the `∞ constraint, as shown by the positive accuracy delta
between the `2 and `∞ models in Figures 5(d) and (e), respectively.

Similarity effect on transfer learning configurations. Besides noticing that robust models
achieved better performance on the target dataset than natural models, we also observe trends in how
well they transfer to different datasets. When transferring from ImageNet, we find that CIFAR-10
and CIFAR-100 have interesting transfer properties, compared to the other datasets. In particular,
even though all other datasets transfer better when fine-tuning one or three blocks, it seems that
models transfer better to CIFAR-10 and CIFAR-100 when fewer blocks are fine-tuned, as shown in
Figure 4(b). This suggests that because these datasets are close to ImageNet, fine-tuning of early
blocks is unnecessary (Yosinski et al., 2014). Along similar lines, it is better to use a smaller ε
for CIFAR-10 and CIFAR-100 datasets than the other datasets when transferring from ImageNet,
as seen from Figure 5(c). This is because a larger perturbation would destroy low-level features,
learned from ImageNet, which are useful to discriminate between labels in CIFAR-10 and CIFAR-
100. Finally, for datasets that are most distinct from ImageNet (SVHN and KMNIST), we find that
robustness yields the largest benefit to classification accuracy and learning speed, as seen in Fig-
ure 2(b) and Figure 3(b), respectively. These discrepancies are even more noticeable when smaller
fractions of the target dataset are used.

0

25

50

75

0
1
3
9 40

60

80
0
1
3
9 25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

60

80
0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

40

60

80

100

0
1
3
9

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0
50

00
0

Number of training images

10

5

0

5

10

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN

FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training images

(a) (b)

Figure 4: The optimal number of fine-tuned blocks is somewhere between one and three. (a, b)
Shows the test accuracy of the robust model trained on ImageNet using the ‖δ‖2 ≤ 3 constraint with
various numbers of fine-tuned blocks (0, 1, 3, or 9). (a) Shows the test accuracy on each of the six
target datasets (color-coded as in (b)). (b) Shows the test accuracy delta, defined as the test accuracy
of the model with three fine-tuned blocks minus the test accuracy of the model with one fine-tuned
block. The solid line is the mean and its shade is the 95% confidence interval.

5



Published as a conference paper at ICLR 2021

5 BIAS TOWARDS RECOGNIZING SHAPES AS OPPOSED TO TEXTURES

In this section, we explore the effect of texture and shape bias, as described by Geirhos et al. (2019),
on the robust models’ transferability. As pointed out by Geirhos et al. (2019), natural models are
more biased towards recognizing textures than shapes. This is in stark contrast to the human bias
of recognizing shapes over textures (Landau et al., 1988). However, Engstrom et al. (2019) showed
that robust models encode humanly-aligned representations, and we observe (e.g see Figure 1(b))
that these representations persist even after fine-tuning on CIFAR-10.

Adversarially-trained models are less sensitive to texture variations. Table 1a shows that the
robust model outperforms the natural one when only tested on Stylized Imagenet (SIN) and also
after fine-tuning only the last fully-connected layer to SIN. Both models are ResNet50s pre-trained
on ImageNet (IN), and the robust model uses a ‖δ‖2 ≤ 3 constraint.

Models trained on standard and stylized ImageNet are less sensitive to adversarial attacks.
Table 1b shows that the ResNet50 model trained on both IN and SIN (IN+SIN) outperforms the
models trained on just IN on a PGD(3) adversarial test accuracy on IN for various ε levels.

Adversarially-trained models are biased towards low resolution and low frequencies. We
observe that the transferability of robust models is also affected by two input perturbations that
destroy, or at least damage, textures. Namely, lowering the resolution of images and applying low
pass filters. To demonstrate this, we use the Caltech101 dataset (Li Fei-Fei et al., 2004). This dataset
has 101 labels with 30 high-resolution (224x224 pixels or more) images per label. The results in
Table 2 support our conjecture that robust models use shapes more than textures for classification by

60

80 | |2 3
| | 4

255
| | 8

255

10
0

20
0

40
0

80
0
16

00
32

00
64

00
12

80
0
25

60
0
50

00
0

Number of training images

50

75
| |2 3
| | 4

255
| | 8

255

10
0

20
0

40
0

80
0
16

00
32

00
64

00
12

80
0
25

60
0
50

00
0

Number of training images

6

3

0

3

6

9

12

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN

FMNIST
KMNIST
MNIST

0

10 CIFAR-100
CIFAR-10
SVHN

FMNIST
KMNIST
MNIST

10
0

20
0

40
0

80
0
16

00
32

00
64

00
12

80
0
25

60
0
50

00
0

Number of training images

0

5

Te
st

 A
cc

ur
ac

y 
%

Te
st

 A
cc

ur
ac

y 
De

lta
 %

(a)

(b)

(c) (d)

(e)

Figure 5: Shows the test accuracy on target datasets, (a) CIFAR-10 and (b) SVHN, of three robust
models. (c) Shows that source models trained with lower ε transfer better to target domains that are
similar to ImageNet, as shown by the test accuracy delta between the ‖δ‖∞ ≤ 4

255 model and the
‖δ‖∞ ≤ 8

255 model. (d, e) Shows the test accuracy delta between the `2 norm with ε = 3 and each
of the two `∞ models: ε = 4

255 in (d), and ε = 8
255 in (e). In both (d, e) the `2 norm constraint

outperforms both of the `∞ constraints.

Table 1: Adversarially-trained models are less biased towards recognizing textures than natural ones.
Models trained on both ImageNet and Stylized ImageNet are more robust to adversarial attacks.

(a) Shows SIN test accuracy of robust and natural
IN source models before (i.e., SIN (Test)) and af-
ter fine-tuning (i.e., SIN (FT)) three convolutional
blocks. Robust constraint: ‖δ‖2 ≤ 3.

Model SIN (Test) SIN (FT)

Robust 20.1 64.2
Natural 11.4 36.1

(b) Shows IN PGD(3) adversarial test accuracy
with various ε magnitudes for ResNet50 models
naturally-trained (non-adversarially) on IN, SIN,
and both IN and SIN.

ε (Test) IN SIN IN+SIN

3/32 52.1 39.6 53.9
3/16 34.7 25.5 38.5

6



Published as a conference paper at ICLR 2021

showing that the robust model obtains a higher test accuracy, in both the low-resolution and low-pass
versions of Caltech101, than the natural one.

6 INTERPRETING REPRESENTATIONS USING INFLUENCE FUNCTIONS

In this section, we use influence functions (Koh & Liang, 2017) to show that robust representa-
tions hold semantic information, i.e., robust DNNs classify images like a human would, through
similar-looking examples. Engstrom et al. (2019) observed that moving the image in carefully cho-
sen directions in the latent space allows for high-level human-understandable feature manipulation
in the pixel space. They suggest that the bias introduced by adversarial training can be viewed
as a human prior on the representations, so that these representations are extractors of high-level
human-interpretable features. It has long been established that humans learn new concepts through
concept-representative or similar-looking examples (Cohen et al., 1996; Newell, 1972). Our focus
in the present work is to study whether these representations aid the neural network to learn new
concepts (namely image labels) akin to how humans learn concepts.

To study this, we use influence functions as described by Koh & Liang (2017) (see Appendix A.9 for
an overview). For each test image in the CIFAR-10 dataset, influence functions allow us to answer
the following: What is the influence of each training image on the model prediction for a given test
image? We ask this question for both the robust and natural models, and compare the results. In
our experiments, we fine-tune the last three blocks with the same 3,200 randomly selected training
images. Also, the robust model uses ‖δ‖2 ≤ 3 as the constraint.

Adversarially-trained models have more similar-looking influential images. Figure 6 shows
that the robust models’ most influential image is often more perceptibly similar to the test image
than the natural models’ most influential image. Consider, for example, the test image of the blue
car (on the second column). The robust models’ corresponding top influential training image is a
similar-looking blue car, while the natural model has a red truck. As a second example, the robust

Table 2: Robust models transfer better than natural ones on low resolution and low pass filtered
variants of Caltech101. This table shows the test accuracy after fine-tuning three convolutional
blocks of the robust model (‖δ‖2 ≤ 3) and the natural model on a low resolution (Low-Res) or a
low pass filtered (Low-Pass) version of Caltech101. We lowered the resolution to 32x32 and zeroed
out the top 1,024 (∼ 14%) frequencies, respectively.

Model Low-Res Low-Pass

Robust 83.7 85.3
Natural 79.1 80.7

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Test

Robust

Natural

Figure 6: Adversarially-trained (i.e, robust) models have more similar-looking influential images
in the target dataset than the non-adversarially-trained (i.e., natural) model. The top row shows a
randomly selected test image, for each of the ten categories. The middle and bottom rows display
the most influential images, for the robust and natural models, respectively.

7



Published as a conference paper at ICLR 2021

(a) (b)

Figure 7: Top influential image labels in the robust model match test image labels more often than
in the natural model. (a) Shows the influence values (standardized by their matrix norm) of each
training image on each test image, sorted by their label as in Figure 6, for both the natural (left)
and robust (right) models. (b) Displays the percentage of times that the label of the top-k influential
image in the training set matches the label in the test image being evaluated.

models’ top influential training image for the orange truck (on the far right) is a similar-looking
orange truck, while the natural model has a blue and white truck.

Influential image labels match test image labels more often in adversarially-trained models.
To quantify the visual similarity described above, we show the influence values (standardized by
their matrix norm) of each training image on each test image, sorted by their label as in Figure 6,
for both the natural (left) and robust (right) models in Figure 7(a). Darker and better-defined blocks
across the diagonal signal that the influence values are more consistent with the test image label
index in the y-axis because darker colors represent higher influence values. The robust model (right)
has a slight advantage over the natural model.

Figure 7(b) further accentuates the difference between the robust model and the natural model. It
displays the percentage of times that the label of the top-k influential image in the training set
matches the label in the test image evaluated. To better understand this figure, consider the leftmost
point in Figure 7(b) for both models. This point represents the proportion of the training images
corresponding to the darkest dots in each horizontal line (i.e., top-1 influential training image) in
(a) that match the label of the given test image, for robust and natural models separately. 78.6%
of the robust model’s top-1 influential images match the label of the given test image vs 55.1% for
the natural counterpart. We also consider the case when the category of at least three of the top-5
influential training images match that of the test image. This happens in 77.3% of the cases for the
robust model, but only for 53.8% of the cases for the natural model. This vast gap is not explainable
solely from only ∼5% difference in target test accuracy, shown in Table 7 in Appendix A.5.

From the qualitative and quantitative analysis, we see that the robust model has learned represen-
tations with more human-identifiable semantic information than the natural model, while the latter
relies on less interpretable representations. In other words, the robust neural network has learned
the image labels by creating strong associations to semantically-similar examples (akin to example-
based concept learning in human beings) in its internal representations. Thus, reinforcing the human
prior bias hypothesis in robust representations observed by Engstrom et al. (2019).

7 DO OTHER ADVERSARIAL ATTACKS IMPROVE TRANSFERRABILITY?

Prior works show that there is a connection between the sensitivity of a neural network to Gaussian
noise and its robustness to adversarial perturbations (Weng et al., 2018; Gilmer et al., 2019). It has
also been suggested that Gaussian perturbations can improve or even replace adversarial training
(Kannan et al., 2018). Further, it has been shown that often only a few PGD iterations are sufficient
to obtain a robust model (Madry et al., 2018; Shafahi et al., 2019; Wong et al., 2020).

To better understand these trade-offs, in this section we further explore the transferrability of models
trained on ImageNet with random Gaussian noise and one-step of PGD (i.e., PGD(1)) using the same
methodology as described in Section 4. For all models, including the Gaussian one, we contraint the

8



Published as a conference paper at ICLR 2021

20
0

80
0

32
00

12
80

0
50

00
0

Number of training images

0

5

10

15

20

25
Te

st
 A

cc
ur

ac
y 

De
lta

 %

20
0

80
0

32
00

12
80

0
50

00
0

Number of training images

0

5

10

15

20

25

20
0

80
0

32
00

12
80

0
50

00
0

Number of training images

0

5

10

15

20

25 CIFAR-100
CIFAR-10
SVHN
FMNIST
KMNIST
MNIST

(a) (b) (c)

Figure 8: Shows the test accuracy delta, defined as the transfer test accuracy of the source models
trained with PGD(20) in (a), PGD(1) in (b), and Gaussian in (c), minus the naturally-trained model.
Comparing (a) and (b) shows that more attack steps (i.e., PGD(20) vs PGD(1)) slightly improves
transferability. Comparing (a) and (b) to (c) shows that a targeted adversarial attacks (i.e. PGD vs
Gaussian) significantly improves transferability relative to random ones. (c) shows us that a random
adversarial attack can improve transfer accuracy.

perturbation, namely δ, to be ‖δ‖2 ≤ 3 in order make a fair comparison across models. See A.10
for more details on our experimental setup.

In the following we discuss our experimental results, summarized in Figure 8, which shows the test
accuracy delta of each of the three adversarially-trained models versus the natural one.

Training with more steps is marginally better. Figure 8 (a) and (b) show that more PGD iterations
(i.e., PGD(20) vs PGD(1)) slightly improve transferability. This is evidenced by the slightly higher
test accuracy delta in (a), relative to (b) across all target datasets. Our emperical result agrees
with previous works that are showing that more attacker steps typically only improve adversarial
robustness slightly (Madry et al., 2018; Shafahi et al., 2019; Wong et al., 2020).

A targeted adversary is better than a random one. Comparing Figure 8 (a) and (b) to (c) shows
that a targeted adversarial attacks (i.e. PGD vs Gaussian) significantly improves transferability
relative to a random perturbation. This is evidenced by the slightly higher test accuracy delta in
(a), and (b) relative to (c) across all target datasets.

A random adversary is better than no adversary. Figure 8 (c) shows us that a random adversarial
attack can improve transferability. This is evidenced by the significantly positive accuracy delta in
(c) across all target datasets. Our results agree with prior works showing that training a model by
perturbing inputs with Gaussian noise can improve adversarial robustness (Kannan et al., 2018).

8 CONCLUSION AND FUTURE WORKS

We show that robust models transfer very well to new domains, even outperforming natural models.
This may be surprising since robust models generalize worse than natural models within the source
domain, and since they were originally designed to protect against adversarial attacks. We show that
robust DNNs can be transferred both faster and with higher accuracy, while also requiring fewer
images to achieve suitable performance on the target domain. We observe that adversarial training
biases the learned representations to retain shapes instead of textures, which impacts the source
models’ transferability. We also show that the improved classification accuracy is due to the fact that
robust models have an implicit bias that enables them to comprehend human-aligned features. Given
the widespread use of DNNs, there is great potential for robust networks to be applied to a variety
of high-tech areas such as facial recognition, self-driving cars, and healthcare, but understanding
the issues we have addressed is crucial to deliver upon that potential. Please see Appendix A.12 for
details on future works.

9



Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

We are grateful to the generous support from Amazon AWS and Google Cloud. NBE and MWM
would like to acknowledge IARPA (contract W911NF20C0035), NSF, ONR and CLTC for provid-
ing partial support of this work. Our conclusions do not necessarily reflect the position or the policy
of our sponsors, and no official endorsement should be inferred.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
CoRR, abs/1907.02893, 2019.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Computer Vision and Pattern
Recognition (CVPR), 2017.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Inter-
national Conference of Machine learning (ICML), 2012.

Rich Caruana. Learning many related tasks at the same time with backpropagation. In Neural
Information Processing Systems (NeurIPS). 1995.

Marvin S. Cohen, Jared T. Freeman, and Steve Wolf. Metarecognition in time-stressed decision
making: recognizing, critiquing, and correcting. Human Factors, 1996.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: a large-scale
hierarchical image database. In Computer Vision and Pattern Recognition (CVPR), 2009.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander
Madry. Adversarial robustness as a prior for learned representations, 2019.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations
(ICLR), 2019.

Muhammad Ghifary, W. Bastiaan Kleijn, and Mengjie Zhang. Domain adaptive neural networks for
object recognition. In Pacific Rim International Conferences on Artificial Intelligence (PRICAI),
2014.

Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. Adversarial examples are a natural
consequence of test error in noise. In International Conference on Machine Learning (ICML),
2019.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In International Conference on Machine Learning
(ICML), 2011.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition (CVPR), 2016.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. In Neural Information Processing
Systems (NeurIPS), 2019.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing, 2018.

Rajiv Khanna, Been Kim, Joydeep Ghosh, and Oluwasanmi Koyejo. Interpreting black box predic-
tions using fisher kernels. In Artificial Intelligence and Statistics (AISTATS), 2019.

10



Published as a conference paper at ICLR 2021

Been Kim, Rajiv Khanna, and Oluwasanmi Koyejo. Examples are not enough, learn to criticize!
criticism for interpretability. In Neural Information Processing Systems (NeurIPS), 2016.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning (ICML), 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. In Neural Information Processing Systems (NeurIPS).
2019.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better? In
Computer Vision and Pattern Recognition (CVPR), 2019.

Barbara Landau, Linda B Smith, and Susan S Jones. The importance of shape in early lexical
learning. Cognitive development, 3(3):299–321, 1988.

Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training exam-
ples: An incremental bayesian approach tested on 101 object categories. In 2004 Conference on
Computer Vision and Pattern Recognition Workshop (CVPR), pp. 178–178, 2004.

A. C. Öztireli M. Gross M. Ancona, E. Ceolini. A unified view of gradient-based attribution methods
for deep neural networks. In Neural Information Processing Systems (NeurIPS) workshops, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Allen Newell. Human problem solving. Prentice-Hall, USA, 1972.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. Transactions on knowledge and
data engineering (TPAMI), 2009.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers
generalize to ImageNet? In International Conference on Machine Learning (ICML), 2019.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-
sarially robust imagenet models transfer better? arXiv preprint arXiv:2007.08489, 2020.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation
shift. arXiv preprint arXiv:2008.04859, 2020.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In
Neural Information Processing Systems (NeurIPS), pp. 3358–3369, 2019.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and Tom
Goldstein. Adversarially robust transfer learning. In International Conference on Learning Rep-
resentations (ICLR), 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In International Conference on Learning Representa-
tions (ICLR), 2019.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From
imagenet to image classification: Contextualizing progress on benchmarks. In International Con-
ference on Machine Learning (ICML), 2020.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=BkUHlMZ0b.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training.
In International Conference on Learning Representations (ICLR), 2020.

11

https://openreview.net/forum?id=BkUHlMZ0b
https://openreview.net/forum?id=BkUHlMZ0b


Published as a conference paper at ICLR 2021

Baoyuan Wu, Weidong Chen, Yanbo Fan, Yong Zhang, Jinlong Hou, Jie Liu, and Tong Zhang.
Tencent ml-images: A large-scale multi-label image database for visual representation learning.
IEEE Access, 7:172683–172693, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, abs/1708.07747, 2017.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Neural Information Processing Systems (NeurIPS), 2014.

A APPENDIX

A.1 DETAILS ON FIGURE 1(A)

We generated Figure 1(a) by maximizing the activations in the penultimate layer on out of distri-
bution images (i.e., images that are are not part of the training and test data) as our starting seeds,
following the “feature visualization” technique as implemented in Engstrom et al. (2019). The natu-
ral and robust models are pre-trained ResNet-50 models on ImageNet after fine-tuning only the last
fully-connected layer on CIFAR-10. The robust model used the ‖δ‖2 ≤ 3 constraint.

A.2 MORE DETAILS ON ADVERSARIAL TRAINING

In practice, we solve equation 1 using stochastic gradient descent (SGD) over θ. More concretely,
we include a random sample of training examples in a set B, specify a non-negative learning rate α,
calculate the gradient with respect to the parameters of the model∇θ, and update θ as follows:

θ := θ − α

|B|
∑

(xi,yi)∈B

∇θ max
‖δi‖p≤ε

`(hθi(xi + δi), yi). (2)

This training process has a sequential nature: it first finds the worst possible perturbation δ∗i for each
training example (xi, yi) in B before updating the parameters of the model θ, where

δ∗i = argmax
‖δi‖p≤ε

`(hθ(xi + δi), yi). (3)

Problem equation 3 is typically solved using projected gradient descent with k update steps, which
is what we call PGD(k). In this work, we use PGD(20), which means that we take 20 update steps
to solve (3). Each step iteratively updates δi by projecting the update onto the `p ball of interest:

δi := P(δi + α∇δi`(hθ(xi + δi), yi)). (4)

As an example, consider the case of the `2 norm and let f(δi) = `(hθ(xi + δi), yi). If we want to
meet the restriction that ‖δi‖2 ≤ ε, we can pick an update value for δi whose `2 norm will be at
most the learning rate. This yields the problem:

argmax
‖v‖2≤α

v>∇δif(δi) = ε
∇δif(δi)
‖∇δif(δi)‖2

. (5)

And in the case of the `∞ norm we have

argmax
‖v‖∞≤α

v>∇δif(δi) = ε · sign(∇δif(δi))

Thus, we set the learning rate to be equal to α = c · ε
num. of steps for 1.5 < c < 4 in order to ensure

that we reach the boundary condition for δi. Also we must clip δi according to the `p norm in case
that it exceeds the boundary condition.

A.3 TRANSFER LEARNING EXPERIMENTAL SETUP DETAILS

Source models. For all of our experiments, we use four residual networks (ResNet-50) (He et al.,
2016) pre-trained on the ImageNet dataset (Deng et al., 2009), one was naturally-trained (without

12



Published as a conference paper at ICLR 2021

an adversarial constraint), and the others use PGD(20) and the following adversarial constraints: (1)
‖δ‖2 ≤ 3, (2) ‖δ‖∞ ≤ 4

255 , (3) ‖δ‖∞ ≤ 8
255 , where δ is a matrix that contains represents the pertur-

bation applied to the input image as described in Section 3, equation (1). In addition to the natural
ResNet-50, considered as baseline, we also use three robust networks with various constraints. For
speed, transparency and reproducibility, we do not re-train the source models ourselves.1

Fine-tuning procedure. To transfer our models we copy the entire source model to the target model,
freeze the all but the last k convolutional blocks, re-initialize the last fully-connected (FC) layer for
the appropriate number of labels, and only fine-tune (re-train) the last FC layer plus 0, 1, 3, or 9
convolutional blocks. Freezing layers in the neural networks entails permitting forward propagation,
but disabling the back-propagation of gradients used during SGD training. We have four different
fine-tuning configurations, one for each number of fine-tuned convolutional blocks. Note that the
ResNet model that we consider has residual blocks that are composed of three convolutional layers,
i.e., we fine-tune 27 layers plus the fully connected layer when the number of fine-tuned blocks is
equal to 9. (See Section A.4 for a visualization of our fine-tuning process).

Random subsets. One of the most interesting parts of our experimental setup is that we also explore
the test accuracy of our fine-tuned models using randomly chosen subsets of 100, 200, 400, ... , and
25,600 images from the target dataset. These subsets are constructed using random sampling without
replacement, with a minor constraint: all labels must have at least one training image. For each run
of model training, we fix the training data to be a randomized subset of the entire training data. As
the number of images in a random subset decreases, the variance in the validation accuracy of the
transferred models increases. Thus, we repeat the fine-tuning procedure using 20 seeds for every
subset with at most 1,600 images, and using 10 seeds for all larger subsets. We reduce the number
of seeds for larger subsets because the inherently lower variance in the validation accuracy doesn’t
justify paying the computational cost associated to fine-tuning more seeds.

Target datasets. We transfer our models to a broad set of target datasets, including (1) CIFAR-100,
(2) CIFAR-10, (3) SVHN, (4) Fashion MNIST (Xiao et al., 2017), (5) KMNIST and (6) MNIST.
Since all of these datasets have images at a lower resolution than ImageNet, we up-scale our images
with bi-linear interpolation. In addition, we use common data transform techniques such as random
cropping and rotation that are well-known to produce high-quality results with certain datasets.

A.4 FINE-TUNING DETAILS

Figure 9 illustrates all four fine-tuning configurations in our experiments. Notice how in Subfigure
9(d) we unfreeze more than half of the ResNet-50 architecture, thereby testing what occurs as we
fine-tune a lot of blocks.

All source models are fine-tuned to all datasets using stochastic gradient descent with momentum
using the hyperparameters described in Table 3.

Table 3: Hyper-parameter summary for all fine-tuned source models

Learning Batch Weight LR LR decay Fine-tuned
rate size Momentum decay decay schedule adversarially?
0.1 128 0.9 5× 10−4 10x 1/3, 2/3 epochs No

The learning rate decays to a tenth of it’s current value every 33 or 50 epochs, which corresponds to
1/3 of the total fine-tuning epochs, as shown in Table 4. Also, the test accuracy frequency refers to
how often is the test accuracy computed, in epochs. So, for example, if the test accuracy frequency
is 20, then we check the test accuracy after epoch 1, 21, 41, ..., 81, and 100.

With regards to the random seeds, we have the following formula to define the set of seeds used, Sk,
as a function of the total number of random seeds used, k:

1The models that we use are provided as part of by the following repository: https://github.com/
MadryLab/robustness.

13

https://github.com/MadryLab/robustness.
https://github.com/MadryLab/robustness.


Published as a conference paper at ICLR 2021

Table 4: Batch summary for every target dataset and source model

Number of Fine-tuning Number of Test accuracy LR decay
images epochs random seeds frequency (epochs) schedule

100 100 20 20 33/66
200 100 20 20 33/66
400 100 20 20 33/66
800 100 20 20 33/66

1,600 100 20 20 33/66
3,200 150 10 10 50/100
6,400 150 10 10 50/100

12,800 150 5 10 50/100
25,600 150 5 10 50/100

All 150 1 10 50/100

Sk = {20000000 + (100000i)|i ∈ {0, 1, · · · , k − 1}}. (6)

Thus, when we use 20 seeds, as it is the case for the subset of 100 images, we use seeds 20000000,
20100000, . . . , 21900000. Large numbers were used to avoid numerical instability issues that arise
with small numbers where their binary representation has too many zeroes.

See Table 5 for additional detail with regards to the source models. Notice that although
adversarially-trained models do worse on the source dataset, they outperform naturally-trained mod-
els on the target datasets, as shown in Table 7.

Table 5: Summary of source models trained on ImageNet, which we consider for transfer learning.

Pre-training Procedure Constraint ImageNet Test Accuracy

Natural – 76.13%

Adversarial ‖δ‖2 ≤ 3 57.90%
Adversarial ‖δ‖∞ ≤ 4/255 62.42%
Adversarial ‖δ‖∞ ≤ 8/255 47.91%

See Table 6 for a high-level overview of all datasets used. This should serve as a reminder that our
source dataset is ImageNet, with an extensive 1.2 million training images and 1,000 labels, it serves
as a great starting point in our experiments. All other target datasets have a considerably lower
number of training and test images.

Table 6: Summary of the source and target datasets.

Number of Number of Number of Color or Source or
Dataset training images test images labels grayscale target

ImageNet 1.2 million 150,000 1,000 color source
CIFAR-100 50,000 10,000 100 color target
CIFAR-10 50,000 10,000 10 color target

SVHN 73,257 26,032 10 color target
FMNIST 60,000 10,000 10 grey-scale target
KMNIST 60,000 10,000 10 grey-scale target
MNIST 60,000 10,000 10 grey-scale target

14



Published as a conference paper at ICLR 2021

7x7 conv, 64, /2

max pool, /2

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

avg pool

fully-connected

7x7 conv, 64, /2

max pool, /2

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

avg pool

fully-connected

7x7 conv, 64, /2

max pool, /2

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

avg pool

fully-connected

7x7 conv, 64, /2

max pool, /2

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1,024

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2,048

avg pool

fully-connected

(a) (b) (c) (d)

Figure 9: Fine-tuning setup: (a) Zero blocks. (b) One block. (c) Three blocks (d) Nine blocks. Each
block has Three convolutional layers.

A.5 ADDITIONAL RESULTS

Table 7 reports the test accuracy of all of our source models after fine-tuning three blocks using
different numbers of training images on each of the six target datasets. The rightmost column shows
the non-transferred model trained only on the target dataset and trained on the entire network. The
average test accuracy is reported for all cases where the model is fine-tuned with less than the entire
training set. The bolded numbers represent the highest test accuracy among source models. From
this table, we can see that the robust models consistently outperform the natural models.

15



Published as a conference paper at ICLR 2021

robust
natural

21 41 81 10
0

20

30

robust
natural

21 41 81 10
0

60
65
70
75
80

robust
natural

21 41 81 10
0

40
50
60
70

robust
natural

21 41 81 10
0

75

80

85

robust
natural

21 41 81 10
0

50

60

70

80

robust
natural

21 41 81 10
0

85

90

95

21 41 81 10
0

Number of training epochs

5

10

15

20

25

30

35

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN

FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training epochs

(1a) (1b)

robust
natural

11 21 41 81 15
0

50

60

70

robust
natural

11 21 41 81 15
0

85.0
87.5
90.0
92.5
95.0

robust
natural

11 21 41 81 15
0

70

80

90

robust
natural

11 21 41 81 15
0

88

90

92

robust
natural

11 21 41 81 15
0

80
85
90
95

robust
natural

11 21 41 81 15
0

96

98

11 21 41 81 15
0

Number of training epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN
FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training epochs

(2a) (2b)

Figure 10: Robust models transfer faster. (a) Shows the test accuracy during the fine-tuning process
on the six target datasets (color-coded as in (b)). (b) Shows the test accuracy delta, defined as the
robust model test accuracy minus the natural model test accuracy. The solid line is the mean and its
shade is the 95% confidence interval. Both the robust and natural models are ResNet50s’ trained on
ImageNet. The robust model uses a ‖δ‖2 ≤ 3 constraint. Both models fine-tune three convolutional
blocks using a random subset of 800 images (∼ 2%) in (1) and 12,800 images (∼ 26%) in (2) of the
target dataset.

A.6 ADDITIONAL DETAIL ON LEARNING FASTER

The following subsection contains the additional charts that were omitted in Figure 3 in Section 4.
Figure 11 shows the same behavior is observed in all three figures: It’s sub-optimal to fine-tune
either 0 or nine convolutional blocks, as opposed to one or three. Consistent with our methodology
for Figure 4, we adversarially-train models on ImageNet and then fine-tune various numbers of
convolutional blocks using a random sample of images in the target dataset.

A.7 ADDITIONAL DETAIL ON THE EFFECT OF THE NUMBER OF FINE-TUNED BLOCKS

The following subsection contains the additional charts that were omitted in Figure 4 in Section 4.
Figure 11 shows the same behavior is observed in all three figures: It’s sub-optimal to fine-tune
either 0 or nine convolutional blocks, as opposed to one or three. Consistent with our methodology
for Figure 4, we adversarially-train models on ImageNet and then fine-tune various numbers of
convolutional blocks using a random sample of images in the target dataset.

A.8 COMPUTATIONAL COST

In general, a PGD(k) adversarial training process as described by Madry, is k orders of magnitude
more expensive than natural training. This can be seen directly from the fact that there are k more
iterations in the inner maximization loop of the risk minimization procedure. However, since only
the source model must be trained adversarially, and these source models can be downloaded from
publicly available repositories, the marginal computational cost of fine-tuning to a target dataset is

16



Published as a conference paper at ICLR 2021

0

25

50

75

0
1
3
9 25

50

75
0
1
3
9 25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

40

60

80
0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

40
60
80

100

0
1
3
9

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0
50

00
0

Number of training images

5

0

5

10

15

20

25

30

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN
FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training images

(1.a) (1.b)

0

25

50

75

0
1
3
9

20
40
60
80

0
1
3
9 25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0
40

60

80
0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0
25

50

75

100

0
1
3
9

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0
50

00
0

Number of training images

15

10

5

0

5

10

15

20

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN

FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training images

(2.a) (2.b)

0

25

50

75

0
1
3
9

20
40
60
80

0
1
3
9 25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

60

80
0
1
3
9

10
0

40
0

16
00

64
00

25
60

0

25

50

75

100

0
1
3
9

10
0

40
0

16
00

64
00

25
60

0
25

50

75

100

0
1
3
9

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0
50

00
0

Number of training images

5

0

5

10

15

20

Te
st

 A
cc

ur
ac

y 
De

lta
 %

CIFAR-100
CIFAR-10
SVHN

FMNIST
KMNIST
MNIST

Te
st

 A
cc

ur
ac

y 
%

Number of training images

(3.a) (3.b)

Figure 11: It’s sub-optimal to fine-tune either zero (only FC layer) or nine convolutional blocks, as
opposed to one or three. (a) Test accuracy on each of the six target datasets (color-coded as in (b))
for various subset sizes and fine-tuning various number of blocks: zero, one, three, or nine. (b) Test
accuracy delta is defined as the test accuracy with three fine-tuned blocks minus the test accuracy
with one fine-tuned block. Adversarial constraints used to train on the source dataset (ImageNet):
(1) ‖δ‖2 ≤ 3, (2) ‖δ‖∞ ≤ 4

255 , or (3) ‖δ‖∞ ≤ 8
255 . The solid line is the mean and the shade is the

95% confidence interval.

perhaps more important. Fortunately, the computational cost of fine-tuning both robust or natural
models is the same.

17



Published as a conference paper at ICLR 2021

A.9 ADDITIONAL DETAILS ON INFLUENCE FUNCTIONS

Suppose that ` : Rm × Rd → R is a smooth loss function and x1, . . . , xn ∈ Rm are our given data.
The empirical risk minimization (ERM) problem takes the form

min
θ∈Rd

f(θ) =
1

n

n∑
j=1

`(xj , θ). (7)

Say θ? is the argmin solution of the above optimization problem. Let’s now consider upweighing a
data point xtrain with ε ∈ R. This modifies the learning problem as:

min
θ∈Rd

1

n

n∑
j=1

`(xj , w) + ε`(xtrain, θ). (8)

Let θ?ε be the solution of the upweighted problem above. The influence of a training data point xtrain
on a test data point xtest approximates the change in the function value `(xtest, θ

?) → `(xtest, θ
?
ε )

with respect to an infinitesimally small ε, i.e., when ε → 0 when xtrain is upweighed by ε. This can
be calculated in closed form Koh & Liang (2017) as:

−g1H−1g2, (9)

where g1 = ∇`(xtrain, θ
?)>, g2 = ∇`(xtest, θ

?) and H is the Hessian of the loss function ∇2f(θ?).
In particular, we first compute the Hessian of the source model fine-tuned with 3,200 CIFAR-10
images as the sum of the Hessians of the loss of batches of five images. Note that we only use the
3,200 images that were used in the fine-tuning process, since it accurately reflects the Hessian of
the model. Then we get H−1 using the (Moore-Penrose) pseudo-inverse, using its singular-value
decomposition and including all singular values larger than 1e-20.

Koh et. al. Koh & Liang (2017) discuss optimization speedup techniques to determine the most
influential xtrain for a given xtest at scale. However, finding top-k influential images is a combinatorial
problem for k > 1. So, typically a greedy selection of the next top influential image is made
iteratively k times. Further, selecting multiple images also requires consideration of interaction and
group effects. As such, the top-5 influential images are likely to be less representative of actual
influence being asserted than one would expect.

Fisher kernels and influence functions Khanna et. al. Khanna et al. (2019) recently discovered an
interesting relationship between Fisher Kernels and Influence functions: if the loss function `(·) can
be written as a negative log-likelihood, then at the optimum w?, the Fisher dot product between two
points is exactly the same as the influence of those points on each other (note that the influence is a
symmetric function). In other words, finding the most influential data point to a given data point is
equivalent to finding the nearest neighbor of the point in the space induced by the Fisher kernel. As
observed in Section 6 for robust training, most influential points for a data point tend to be largely
the ones belonging to the same label. This implies that the in the Fisher space, the points with the
same label tend to be grouped together.

A.10 ADDITIONAL DETAILS FOR ADVERSARIAL ATTACKS COMPARISON SECTION

Both the PGD(1) and Gaussian models are ResNet-50’s trained on ImageNet-1K using stochastic
gradient descent with momentum and the following hyperparameters: 0.1 learning rate, 128 batch
size, 0.9 momentum, 10x learning rate decay, and an equally-spaced (i.e. linear) learning rate decay
schedule. The test accuracy of each of these models is 60.29% and 74.02% for the PGD(1) and
Gaussian model, respectively. Both models use the ‖δ‖2 ≤ 3 adversarial constraint.

The PGD(1) model uses one attacker step, with a step size of 6 and the perturbation is initialized
at zero. The Gaussian model adds a perturbation for each pixel drawn from a standard Normal
distribution N (µ = 0, σ2 = 1).

A.11 CODEBASE OVERVIEW

The starting point requires downloading the source ImageNet models, and installing the appropriate
libraries. Next, the user can decide how to fine-tune the source models: individually or in batches.

18



Published as a conference paper at ICLR 2021

The train.py file will allow individual training, while the tools/batch.py file allows train-
ing in batches.

The train.py file contains 9 parameters that are explained by running the following command:
python train.py --help. Also, the helpers.py and delete big files.py files un-
der the tools folder contain the logic that supports the train.py file. This includes the random
subset generator, the fine-tuning procedure, and the data transforms.

Separately, note that when running the batch.py file, the fine-tuned models won’t be saved into
the results/logs directory. This is due to the fact that models can occupy a significant amount
of memory and we do not plan to use these fine-tuned models in the future. However, if the user
wants to save the fine-tuned models, then he or she can do so by commenting our line 60 in the
batch.py file: deleteBigFilesFor1000experiment().

Lastly, all results are stored into the results/logs folder by default and can be compiled easily
into a csv file using the log extractor.py script.

A.12 DETAILED FUTURE WORKS

Even though we support our main thesis with extensive empirical evidence and analyze this phe-
nomenon through the lens of texture bias and influence functions, why, when, and how robust mod-
els transfer better deserves further investigation. In this section we’d like to provide some ideas that
we hope will spark research interest.

Different adversarial training constraint type. Prior work only considers `2 and `∞ adversarial
constraint types. However, different adversarial constraints could allow models to retain more trans-
ferable features from the source dataset. Two possibilities are (i) constraining on the Fischer Kernel
with influence functions, and (ii) constraining on the Fourier space instead of the pixel space. For
(i), as shown by Koh & Liang (2017) for the ith image xi we can compute the perturbation δi at each
step of PGD by starting with δi = 0, and then δi = P(δi + αsignIpert,loss(xi + δi, xi)). For (ii),
we could instead calculate the gradient w.r.t. each one of the frequencies and constrain the model to
only use a subset of all of its frequencies to represent the input image.

Different source datasets. ImageNet might not be the best source dataset for two reasons. First,
we as shown by Tsipras et al. (2020) there are many labels that overlap with each other, such as
rifle and assault rifle. Second, there are many training images containing objects from more than
one label, referred to in Tsipras et al. (2020) as multi-object images. Thus, we think it would be
worthwhile to use Tencent’s Large-Scale Multi-Label Image Database from Wu et al. (2019) as a
source dataset instead of ImageNet.

Decision-boundary bias. In line with Section 5, it might be worth looking at the transferability
of robust models as a function of how closely related are the labels in the target dataset. Our hy-
pothesis is that if the labels in the target dataset are closely related, then the robust model might
transfer slightly worse than if the labels were further apart from each other. Although measuring the
closeness of labels within a dataset is challenging, this could be an interesting extension to Santurkar
et al. (2020).

New use-cases. As shown in Section 5, robust models are biased towards low resolutions and low
frequencies. Thus, it’s possible that robust models have a lower facial recognition bias than naturally
trained models.

19



Published as a conference paper at ICLR 2021

Table 7: Summary of the test accuracy on target datasets after fine-tuning three blocks (nine convo-
lutional layers) except for the rightmost column, which shows the non-transferred model trained on
the entire network. Reported average test accuracy for all cases where the model is fine-tuned with
less than the entire training set.

Target Training Pre-training constraint on source dataset (ImageNet) Trained From
dataset images Natural ‖δ‖2 ≤ 3 ‖δ‖∞ ≤ 4

255 ‖δ‖∞ ≤ 8
255 Random Init

CIFAR-100 100 7.97 8.54 8.24 8.84 1.34
CIFAR-10 100 48.49 51.89 49.86 49.03 12.29
SVHN 100 23.5 37.9 34.75 35.75 19.14
FMNIST 100 66.11 71.8 71.24 72.69 19.91
KMNIST 100 34.29 51.76 50.12 51.05 12.42
MNIST 100 68.69 83.83 83.03 82.81 12.79

CIFAR-100 200 13.05 13.26 13.71 12.79 1.35
CIFAR-10 200 57.44 64.05 62.83 60.11 11.01
SVHN 200 29.37 50.89 46.82 47.77 19.16
FMNIST 200 73.53 78.51 77.67 78.33 19.88
KMNIST 200 44.77 62.97 60.36 62.84 12.63
MNIST 200 81.58 90.72 90.44 90.49 15.66

CIFAR-100 400 18.57 21.74 21.32 19.79 1.36
CIFAR-10 400 66.84 71.65 71.93 68.81 12.01
SVHN 400 37.3 61.97 58.99 61.02 19.36
FMNIST 400 78.8 82.09 81.4 81.58 35.23
KMNIST 400 52.45 71.65 70.18 71.89 13.13
MNIST 400 88.09 94.28 93.9 93.98 22.57

CIFAR-100 800 27.57 33.68 32.55 30.17 2.13
CIFAR-10 800 74.2 78.68 78.99 75.95 20.86
SVHN 800 49.17 71.19 68.84 70.19 19.51
FMNIST 800 82.73 85.21 84.6 84.59 61.12
KMNIST 800 63 79.67 77.73 80.68 16.86
MNIST 800 91.81 96.05 95.58 95.92 38.6

CIFAR-100 1,600 37.88 45.64 44.49 40.82 5.13
CIFAR-10 1,600 79.74 83.76 83.47 81.1 30.98
SVHN 1,600 62.14 77.84 75.24 76.77 19.6
FMNIST 1,600 85.39 87.58 87.09 86.91 78.14
KMNIST 1,600 74.06 84.95 83.66 85.52 30.13
MNIST 1,600 94.47 97.13 97 97.16 85.55

CIFAR-100 3,200 51.46 56.91 55.79 51.34 20.94
CIFAR-10 3,200 83.77 87.56 87.34 85.07 55.99
SVHN 3,200 74.31 85.55 81.57 84.4 22.94
FMNIST 3,200 87.97 89.43 89.11 88.89 83.47
KMNIST 3,200 81.42 89.68 88.26 89.14 81.51
MNIST 3,200 96.4 98.13 97.93 98.1 96.89

CIFAR-100 6,400 62.26 66.1 65.31 60.75 36.74
CIFAR-10 6,400 87.28 90.91 90.23 88.6 71.37
SVHN 6,400 82.63 90.46 88.17 89.09 83.87
FMNIST 6,400 89.63 90.73 90.44 90.11 87.41
KMNIST 6,400 86.7 93.61 91.7 92.86 90.88
MNIST 6,400 97.34 98.73 98.5 98.57 98.46

CIFAR-100 12,800 69.92 71.61 71.42 67.16 52.32
CIFAR-10 12,800 91.95 93.2 93.11 91.6 81.19
SVHN 12,800 88.7 92.86 91.68 91.81 92.44
FMNIST 12,800 91.56 92.09 91.97 91.69 90.32
KMNIST 12,800 94.32 96.21 95.73 95.9 95.7
MNIST 12,800 98.52 99.11 98.98 99.03 99.27
CIFAR-100 25,600 75.08 75.68 75.4 71.52 67.75
CIFAR-10 25,600 93.93 94.92 94.63 93.28 89.92
SVHN 25,600 92.24 94.36 93.76 93.91 94.93
FMNIST 25,600 93.42 93.24 93.14 92.79 92.25
KMNIST 25,600 97.01 97.52 97.34 97.44 97.96
MNIST 25,600 99.06 99.27 99.21 99.24 99.53
CIFAR-100 50,000 78.49 79.24 79.51 76.06 79.42
CIFAR-10 50,000 95.36 95.86 95.6 94.58 94.08
FMNIST 60,000 94.51 94.72 94.41 93.98 93.97
KMNIST 60,000 98.07 98.35 98.19 98.38 99.01
MNIST 60,000 99.19 99.42 99.34 99.39 99.68
SVHN 73,257 95.33 96.02 95.42 95.63 96.53

20


	Introduction
	Related Works
	Brief Overview of the Adversarial Training Process
	Transferring Adversarially-Trained Models
	Bias towards recognizing shapes as opposed to textures
	Interpreting Representations using Influence Functions
	Do other adversarial attacks improve transferrability?
	Conclusion and Future Works
	Appendix
	Details on Figure 1(a)
	More details on Adversarial Training
	Transfer Learning Experimental Setup Details
	Fine-Tuning Details
	Additional Results
	Additional Detail on Learning Faster
	Additional Detail on the Effect of the Number of Fine-Tuned Blocks
	Computational Cost
	Additional Details on Influence Functions
	Additional details for adversarial attacks comparison section
	Codebase Overview
	Detailed Future Works


