
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMLP: AN ENERGY-EFFICIENT CONTINUAL LEARNING
METHOD FOR TABULAR DATA STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data streams are rapidly emerging as a dominant modality for real-time
decision-making in healthcare, finance, and the Internet of Things (IoT). These
applications commonly run on edge and mobile devices, where energy budgets,
memory, and compute are strictly limited. Continual learning (CL) addresses
such dynamics by training models sequentially on task streams while preserving
prior knowledge and consolidating new knowledge. While recent CL work has
advanced in mitigating catastrophic forgetting and improving knowledge transfer,
the practical requirements of energy and memory efficiency for tabular data streams
remain underexplored. In particular, existing CL solutions mostly depend on replay
mechanisms whose buffers grow over time and exacerbate resource costs.
We propose a context-aware incremental Multi-Layer Perceptron (IMLP), a com-
pact continual learner for tabular data streams. IMLP incorporates a windowed
scaled dot-product attention over a sliding latent feature buffer, enabling constant-
size memory and avoiding storing raw data. The attended context is concate-
nated with current features and processed by shared feed-forward layers, yielding
lightweight per-segment updates. To assess practical deployability, we introduce
NetScore-T, a tunable metric coupling balanced accuracy with energy for Pareto-
aware comparison across models and datasets. IMLP achieves up to 27.6× higher
energy efficiency than TabNet and 85.5× higher than TabPFN, while maintain-
ing competitive average accuracy. Overall, IMLP provides an easy-to-deploy,
energy-efficient alternative to full retraining for tabular data streams.

1 INTRODUCTION

Tabular data, structured as a collection of features and instances, is one of the most common and
practical data types in practical machine learning applications, such as in fields of healthcare (Lee
& Lee, 2020; Amrollahi et al., 2022), finance (Ramjattan et al., 2024; Li et al., 2024a), and IoT (Li
et al., 2025b). As such domains increasingly rely on streaming data sources, tabular data streams are
gaining significant attention due to their ability to capture continuous, real-time updates rather than
static snapshots (Borisov et al., 2022). In particular, most such scenarios often occur on edge devices,
IoT systems, and mobile platforms, where energy budgets, battery life, and computational resources
are severely constrained Chang et al. (2021).

To tackle those real-world dynamics, Continual Learning (CL) (Wang et al., 2024a), also referred to as
lifelong learning (Lee & Lee, 2020), enables models to incrementally acquire, update, accumulate, and
exploit knowledge over time. While significant progress has been made on overcoming catastrophic
forgetting (Kemker et al., 2018; Li et al., 2019; Bhat et al., 2022) and knowledge transfer (Ke et al.,
2021; Li et al., 2024b; Shi et al., 2024a), much less is known about their computational analysis and
energy efficiency (Li et al., 2023; Trinci et al., 2024).

Energy-efficient continual learning has become a practical necessity for real-world applications that
need to adapt in real time on resource-constrained platforms (Chavan et al., 2023; Shi et al., 2024b;
Trinci et al., 2024; Xiao et al., 2024). Meanwhile, most CL progress to date targets image (Trinci et al.,
2024; Chavan et al., 2023; Shi et al., 2024b) and language tasks (Li et al., 2025a; Wang et al., 2024b).
In contrast, tabular data streams remain underexplored. Tabular models that excel on static datasets
do not transfer directly to non-stationary streams with tight memory, compute, and energy budgets.
Existing CL methods rarely target these constraints. In particular, replay-based strategies rely on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

buffers that grow over time, increasing storage and compute, and hindering on-device deployment.
This gap motivates methods for tabular streaming CL that sustain accuracy under distribution shift
while operating at low energy cost, with fixed memory, and without storing raw examples. Achieving
this under strict resource budgets while mitigating catastrophic forgetting remains a central challenge
for Green AI (Henderson et al., 2020; Bouza et al., 2023; Trinci et al., 2024; Różycki et al., 2025).

This paper introduces Incremental Multi-Layer Perceptron (IMLP), a novel method for energy-
efficient continual learning, particularly focusing on tabular data streams. IMLP augments a simple
MLP with self-attention capabilities, while maintaining efficiency in compute, memory, and energy
usage. To be specific: 1) IMLP employs a windowed scaled dot-product attention with a sliding
feature buffer, enabling the model to adaptively attend to the most relevant parts of the stream while
storing only latent features without needing to revisit raw historical data. 2) The resulting attended
representation is concatenated and passed through two shared feed-forward layers followed by a
classifier head, serving as the MLP learner for classification tasks. This design avoids the unbounded
growth in memory inherent to replay baselines (Rebuffi et al., 2017; Li & Hoiem, 2017; Lopez-Paz &
Ranzato, 2017), while remaining computationally lightweight on resource-constrained devices. To
evaluate hardware-grounded accuracy–energy trade-offs in continual learning on tabular data streams,
we introduce NetScore-T, a stream-aware aggregate that couples per-segment performance with a
logarithmic energy penalty.

We evaluate IMLP on 36 benchmark tabular datasets designed to assess models under temporal
distribution shifts, which provides a systematic comparison across diverse algorithms. IMLP is
benchmarked against state-of-the-art (SOTA) tabular models, with results showing that it provides
an efficient and competitive neural network alternative. While gradient-boosting methods, such as
LightGBM (Ke et al., 2017), still achieve competitive overall accuracy with shorter training time,
IMLP demonstrates a favorable trade-off between performance and energy efficiency.

2 RELATED WORK

Traditional tabular data models can be roughly categorized into three main groups: Gradient-Boosted
Decision Trees (GBDTs) (Friedman, 2001), Neural Networks (NNs) (Goodfellow et al., 2016), and
classic models (e.g., SVMs (Cortes & Vapnik, 1995), k-NN (Cover & Hart, 1967), linear model (Cox,
1958), and simple decision trees (Loh, 2011)).

GBDTs and their variants for CL.Traditional GBDTs such as XGBoost (Chen & Guestrin, 2016),
LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2019) remain strong baselines
for tabular classification due to their efficiency and robustness, especially on large or irregular static
datasets. However, they are not naturally suited for continual learning: (1) new data typically requires
retraining from scratch, since tree splits and boosting weights depend on the full dataset (Chen &
Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2019); (2) without access to past data, models
trained only on new samples overwrite previous knowledge, causing catastrophic forgetting (Wang
et al., 2024a); and (3) unlike neural networks, GBDTs lack mechanisms for knowledge transfer
across tasks (Ke et al., 2021; Parisi et al., 2019; De Lange et al., 2021). Extensions such as online
bagging and boosting (Oza & Russell, 2001) or warm-starting (Pedregosa et al., 2011), and adaptive
XGBoost (Montiel et al., 2020), partially mitigate these issues, but remain limited in long-term
knowledge retention due to the lack of representation reuse, especially when compared to neural
continual learning methods.

Classic models in CL. Both standard SVMs (Cortes & Vapnik, 1995) and decision trees (Loh,
2011) are batch learners, requiring retraining on the full dataset when new tasks arrive. SVMs
can be extended to continual learning through incremental or online variants such as incremental
SVM (Cauwenberghs & Poggio, 2000), LASVM (Bordes et al., 2005), and NORMA (Kivinen et al.,
2004), which handle streaming updates but still face challenges with scalability, memory growth,
and forgetting. k-NNs (Cover & Hart, 1967) trivially avoid forgetting if all data is stored, but this
violates the constraint of no access to past raw inputs and is impractical under resource limits. Linear
models (Cox, 1958) are efficient but prone to forgetting under distribution shifts, as updates overwrite
prior knowledge. Incremental decision trees, such as Hoeffding Trees (Domingos & Hulten, 2000),
and streaming ensembles (Bifet et al., 2010; Gomes et al., 2017) can adapt to data streams without
full retraining, but their accuracy degrades under severe drift, they lack strong representation learning,
and ensemble methods can be computationally expensive.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Neural models in CL. Recent studies demonstrate that advanced NNs (Zabërgja et al., 2024; Arik
& Pfister, 2021; Kadra et al., 2021a; Gorishniy et al., 2023a; Hollmann et al., 2025b; Ye et al.,
2024; Gorishniy et al., 2024) can surpass GBDTs on static tabular data in certain regimes, e.g., with
well-regularized MLPs (Kadra et al., 2021a), attention-based models such as SAINT (Somepalli et al.,
2021), or meta-learned foundation models like TabPFN and its variants (Hollmann et al., 2025b).
While their training is typically computationally intensive than that of GBDTs unless carefully
tuned (Kadra et al., 2021a), NNs are generally better suited for streaming data, owing to their
rich representations, incremental updates via stochastic gradient descent, and flexible architectures.
However, vanilla NNs still suffer from catastrophic forgetting in the absence of CL strategies (Wang
et al., 2024a).

CL strategies with neural models. In NNs, CL strategies are commonly categorized into
regularization-based approaches (Kirkpatrick et al., 2017; Zenke et al., 2017), replay-based strate-
gies (Rebuffi et al., 2017; Shin et al., 2017), attention-based retrieval mechanisms (Chaudhry et al.,
2019; Aljundi et al., 2017), and architectural methods (Rusu et al., 2016). Regularization-based
methods, such as EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2017),
and LwF (Li & Hoiem, 2016), mitigate forgetting by constraining updates to parameters deemed
important for previously learned tasks. Replay-based strategies, including iCaRL (Rebuffi et al.,
2017) and generative replay (Shin et al., 2017), maintain past knowledge by rehearsing stored samples
or synthetic data. Attention-based retrieval mechanisms, such as A-GEM with attention (Chaudhry
et al., 2019) and attentive experience replay (Aljundi et al., 2017), employ attention to prioritize and
retrieve relevant past experiences. Architectural methods, exemplified by PNNs (Rusu et al., 2016),
expand model capacity by freezing previously trained components and introducing new modules for
incoming tasks.

Despite recent progress, energy-efficient CL for tabular data streams remains largely unexplored (Cha-
van et al., 2023; Trinci et al., 2024). Real-world tables frequently undergo domain drift (e.g., quarterly
finance transactions, evolving sensor logs, healthcare data) without changes to the label space, yet no
standardized Domain-Incremental Learning benchmark currently exists for tabular streams. More-
over, pre-trained transformers for tabular data (Gorishniy et al., 2023b; Hollmann et al., 2025b) and
feature-level or attention-based CL strategies (Pellegrini et al., 2020; Vaswani et al., 2017a; Jha et al.,
2023) show promise for low-storage, privacy-preserving CL, but their effectiveness under domain
drift has not been systematically evaluated. Here, we bridge this gap by introducing our method,
establishing fair comparisons, and quantifying energy–performance trade-offs.

3 PRELIMINARIES

Continual learning. Owing to the general difficulty and diversity of challenges in continual learning,
we focus on a simplified task incremental learning setting (Parisi et al., 2019; De Lange et al., 2021).
In this setting, a model is trained on a sequence of tasks {Tt}Tt=1, where the training data for each
task arrives incrementally at time t. Training continues until convergence on each task. Each task Tt
is associated with data (Xt,Yt) randomly drawn from distribution Dt, where Xt denotes the set of
data samples and Yt is the corresponding ground truth labels. The key objective is to acquire new
knowledge from the current task while maintaining performance on previously learned tasks.

Formally, given a model ft(θ) with parameters θ for task Tt, loss function ℓ(·) (e.g., cross-entry), the
number of tasks seen so far T , the learner is updated sequentially by minimizing the expected risk
across all observed tasks, with limited or no access to the data from earlier tasks t < T ,

T∑
t=1

E(Xt,Yt)∼Dt
[ℓ(ft(Xt; θ),Yt)] (1)

Multi-layer perceptron (MLP). A standard MLP with one hidden layer computes hidden activations
as h = g

(
W (1)x+ b(1)

)
and produces class probabilities pθ(y) through softmax(W (2)h + b(2)),

where g(·) is a pointwise nonlinearity (e.g., ReLU (Daubechies et al., 2022)). The model parameter
consists of weight matrices W (1) ∈ Rdh×din and W (2) ∈ RC×dh , along with bias vectors b(1) ∈
Rdh ,b(2) ∈ RC (Goodfellow et al., 2016). In the task incremental learning setting, a pre-trained
MLP is then sequentially trained on a sequence of T tasks, typically tabular classification tasks, each
defined by a disjoint set of input-label distributions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Dot-Product Attention. The scaled dot-product attention mechanism forms the basis of most
modern attention-based architectures. Given queries Q ∈ Rnq×dk , keys K ∈ Rnk×dk , and values
V ∈ Rnk×dv , the attention output (Vaswani et al., 2017b) is defined as

Attention(Q,K, V) = softmax

(
QK⊤√

dk

)
V. (2)

Here, the similarity between a query qi ∈ Q and a key kj ∈ K is computed via their inner product,
scaled by

√
dk to mitigate the effect of large dot products when the dimensionality dk is high. More

explicitly, the normalized weight αij assigned to value vj for query qi, and the resulting attended
representation zi are given by

αij =

exp

(
q⊤i kj√

dk

)
∑nk

j′=1 exp

(
q⊤i kj′√

dk

) , zi =

nk∑
j=1

αij vj . (3)

Trade-off measures. In many optimization problems, objectives are inherently conflicting; for
instance, improving the accuracy of a neural network increases energy consumption or latency. To sys-
tematically evaluate such trade-offs, Trinci et al. (2024) proposed the Energy NetScore metric, which
balances predictive accuracy against energy consumption, originally derived from NetScore (Wong,
2019). For a model M, the Energy NetScore is computed as 20 log

(
A(M)α

E(M)β

)
, where A(M) is

predictive accuracy and E(M) is the total energy consumption; the exponents α and β weight the
trade-off between accuracy and energy.

A classical way to study such trade-offs is through Pareto front analysis (Giagkiozis & Fleming,
2014). Let x = (p,E) denote the pair of model performance p and energy consumption E measured
during training and inference. Consider a set of candidate solutions S = {xi = (pi, Ei) | i =
1, 2, . . . ,m}. For any two solutions xa = (pa, Ea) and xb = (pb, Eb), we say that xa dominates xb

if pa ≥ pb and Ea ≤ Eb, with at least one inequality being strict. The Pareto front P ⊆ S is then
defined as the set of all non-dominated solutions:

P = {x∗ ∈ S | ∄x′ ∈ S such that x′ dominates x⃗}. (4)

The Pareto front thus provides a set of optimal trade-offs. By examining its shape and Pareto
efficiency, one can assess how much performance must be sacrificed to achieve energy savings.

4 IMLP: AN INCREMENTAL MLP FOR TABULAR DATA STREAMS

Problem Statement. Let {Tt}Tt=1 denote a stream of T segments, where the training data for each
task arrives incrementally at time t. The raw inputs are real-valued feature vectors xi ∈ Xt ⊆ Rdin ,
and the corresponding labels are categorical yi ∈ Yt, sampled from distribution Dt. Our goal is to
train an incremental MLP model using data Tt available at time t, where the learner may scan the
current data multiple times but cannot revisit raw data from earlier tasks. The training objective is
to minimize the cross-entropy loss. We aim to train the model without storing raw inputs from past
tasks, and to evaluate its performance during inference on a stratified test set.

Architecture Overview. For efficient learning from the current task while maintaining performance
on previously learned tasks, we consider two strategies: (1) processing each task with an augmented
MLP module that incorporates limited historical context through a variant of scaled dot-product
attention. 2) maintaining an FIFO feature buffer with fixed memory over time, which facilitates
representation reuse while keeping memory and computation cost constrained as new data evolves.

We aim to reuse a compact, input-dependent summary of recent experience without retaining raw
data, while preventing unbounded growth in memory and computation. To this end, we employ
a sliding window of size W to cache 256-dimensional (256-D) feature vectors. By attending to
latent features, the model enables privacy-preserving rehearsal with a constant memory footprint.
The architecture of IMLP is presented in Figure 1. Each incoming sample x ∈ T t is mapped from
the dimensional input din to a 256-D query Q within a windowed attention module. This query
retrieves a context vector c from a fixed-size feature memory that stores the most recent W segment
embeddings, Hstacked = {ht−1, . . . , ht−W }. When the attention gate is active, the concatenated pair

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: IMLP architecture. IMLP sequentially takes Tt as input and outputs predictive performance
pθ(y).

(x, c) is passed through two shared feed-forward layers followed by a classification head. Next, the
modelM1att

t yields the model’s predictions at step t and updates the feature representations.

In the following, we detail these two key component designs to achieve energy-efficient continual
learning over tabular data streams.

4.1 WINDOWED SELF-ATTENTION MECHANISM

To selectively integrate useful past features into the current segment’s representation, IMLP employs
attention gates AG in each window size W , as depicted in Figure 1.

Algorithm 1 Sliding Window Update

Require: Current input x, Hprev, W
Ensure: Updated feature Hnew

1: hcurrent ← FeatureExtractor(x,Context(x))
2: Hnew ← Hprev ∪ {hcurrent}
3: if |Hnew| > W then
4: Hnew ← Hnew[1 :] ▷ Remove oldest feature
5: return Hnew

Unlike standard scaled dot-product attention,
our windowed variant departs in two con-
trolled ways: (i) the sequence is a FIFO
buffer of latent features [ht−1, . . . , ht−W]
rather than input tokens, and (ii) we tie values
to keys, i.e., V = K, to reduce parameters
and latency while preserving the dot-product
inductive bias.

Let dh = 256 and B denote the batch size.
Stacking the last W penultimate features
along the temporal dimension yields H ∈
RB×W×dh . For each input x ∈ Rdin , we com-
pute Q = Wqx ∈ RB×1×dh , K = WkH ∈
RB×W×dh , α = softmax(scores√

dh
) ∈ RB×W×1, where scores = bmm(K,Q⊤) ∈ RB×W×1. The

context vector is then computed as c = bmm(α⊤,K) ∈ RB×1×dh through the attention module.

Next, squeezing the singleton dimension yields c̃ ∈ RB×dh , which is concatenated with the input
z = [x; c̃] ∈ RB×(din+dh). This representation is then fed into an MLP consisting of a two-layer
feature extractor followed by a linear classification head as

h = σ
(
W2 σ(W1z + b1)

)
∈ RB×dh , o = Wch+ bc ∈ RB×C , p = softmax(o). (5)

After each forward pass, the detached penultimate feature h̄t is appended to a FIFO buffer, and the
oldest entry is discarded once the buffer holds W items.

4.2 SLIDING WINDOW MANAGEMENT

The model retains a set of feature vectors extracted from representative past samples, typically the
activations from the penultimate layer. IMLP maintains a FIFO feature buffer update so that it
continually captures updated latent features from previous tasks, as shown in Algorithm 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Let Ft denote the FIFO buffer of the last W segment prototypes, each of which is a detached
penultimate feature vector. After consuming all minibatches of Tt, we compute

f⃗t = Detach(
1

|Tt|
∑

(Xt,Yt)∈Tt

h(x)), Ft ← truncate_last
(
Ft−1 ∪ {f⃗t}, W

)
. (6)

Notably, IMLP stores only latent features instead of raw samples. Optionally, stored features can be
ℓ2-normalized before enqueueing, i.e., h̃ = h

∥h∥2+ε , which stabilizes attention weights by focusing on

feature directions. Likewise, we enqueue normalized prototypes f̃t = ft/(∥ft∥2 + ε) with ε = 10−8.

4.3 MEMORY AND COMPUTATIONAL EFFICIENCY

In terms of memory complexity, the only additional cost arises from the feature buffer used by the
attention mechanism, given by O(Wdh). Since the oldest feature is discarded once the window is
full, this overhead remains constant with respect to the number of tasks T . Unlike replay-based
methods, our approach avoids memory growth with the number of segments, thereby preventing
excessive storage costs. Moreover, this design also contributes to lightweight computation.

Given a mini-batch of B samples and a sliding window of W cached 256-D feature vectors, the total
computational efficiency in our model can be formally stated by,

O(Bdindh)︸ ︷︷ ︸
query

+O(BWd2h)︸ ︷︷ ︸
key projection

+O(BWdh)︸ ︷︷ ︸
scores

+O(BWdh)︸ ︷︷ ︸
aggregation

+O(B(din + dh)512)︸ ︷︷ ︸
feature MLP

= O
(
B(dindh +Wd2h)

)
(7)

where 512 is the feature dimension of the FC1, FC2 layer in the feature extraction module using MLP.
Hence, with W and dh fixed, IMLP exhibits (empirically) linear cumulative energy growth with the
number of segments, in contrast to the quadratic growth of cumulative retraining. Further analysis is
provided in Appendix B.

Summary of IMLP’s strengths. IMLP offers several notable advantages over related tabular
methods: (1) it is simple and inherently suitable for streaming tabular learning without replaying past
raw inputs; (2) it is lightweight in both computation and memory, with costs independent of task size,
yielding an energy-efficient solution; (3) it is straightforward to deploy on hardware; and (4) it aligns
well with privacy-sensitive applications by avoiding storage of raw data.

5 ENERGY EFFICIENCY ANALYSIS

Measuring energy consumption. To obtain ground-truth measurements, we instrument our CL
pipeline with an ElmorLabs PMD-USB power meter and corresponding PCI-E slot adapter (Elmor-
Labs, 2023; 2025). This device captures fine-grained voltage/current sampling with millisecond-level
resolution that is drawn for CPU and GPU throughout online updates, enabling precise monitoring of
transient spikes, including the training and inference phases. Different from software-based measure-
ments introduced by Trinci et al. (2024), this hardware-level setup provides real-life wall power and
vendor-independent measurements of actual power draw without introducing runtime overhead. The
reported energy values will always refer to the total energy that integrates power readings over the
training and inference duration for each segment t, that is E(Mt) =

∫ tend

tstart
Ptotal(t) dt, where Ptotal(t)

includes both CPU and GPU power consumption during training and inference.

NetScore-T. NetScore-T extends the NetScore framework (Shafiee et al., 2018) to CL by jointly
assessing the model’s predictive performance and energy consumption across data segments. Let
P (Mt)(≥ 0) denote a performance measure (e.g., balanced accuracy) of the modelM on segment
t ∈ {Tt}Tt=1 and its total energy consumed E(Mt). We define the per-segment score as NS(Mt),
and as consequence, its stream aggregate

NetScore-T(M) = 1
T

T∑
t=1

NS(Mt), where NS(Mt) =
P (Mt)

log10(E(Mt) + 1)
(8)

High NetScore-T values indicate models that combine strong accuracy with low energy usage. Wide
empirical ranges can reflect the diversity of energy consumption patterns across models and datasets.

Logarithmic energy scaling. NetScore-T penalizes energy via a base-10 logarithm (see equation 8),
which compresses the wide dynamic range of Et across hardware and datasets, preventing any

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

outlier segment from dominating the stream average. The +1 term ensures the expression remains
well-defined as E → 0. For fixed performance P (Mt), the mapping E 7→ log10(E + 1) is
strictly decreasing with diminishing penalties: additional Joules always reduce the score, but with
progressively smaller marginal impact at higher energy levels.

Additionally, rankings remain invariant to the choice of logarithm base (a constant rescaling) and
are practically unaffected by energy unit rescaling (E 7→ kE), because log10(kE + 1) = log10 k +
log10(E + 1

k), which behaves nearly as an additive shift in the typical regime E ≫ 1.

Unlike scalarizations that require exponent tuning, the logarithmic transform introduces no additional
hyperparameters.

6 EXPERIMENTS

Setup and Configuration. All experiments were conducted on a single workstation equipped
with an Intel® Core™ i5-8600K Processor, a NVIDIA GeForce RTX 2080 Ti GPU, 16GB DDR4
RAM, and an NVMe SSD for data and model checkpoints. An ElmorLabs PMD-USB power
meter and corresponding PCI-E slot adapter (ElmorLabs, 2023; 2025) were used for real-life energy
consumption measurement.

Datasets. We have conducted experiments on 36 classification tasks from the TabZilla bench-
marks (McElfresh & Talwalkar, 2023), selected from OpenML to ensure (i) sufficient size for
meaningful segmentation, (ii) a balanced mix of binary and multi-class problems, and (iii) diversity in
feature dimensionalities and label distributions. To simulate data streams, each dataset is partitioned
chronologically into contiguous segments of size 500–1000 instances, determined by an algorithm
that minimizes remainder imbalance while preserving temporal order (see Appendix §A.1.1). Any
remainder is redistributed across the first segments to maintain near-uniform segment sizes. For fair
evaluation, all datasets undergo the same preprocessing pipeline: median imputation and standard-
ization for numerical features, constant imputation and one-hot encoding for categorical features,
stratified 85%-15% splits for training, validation, and /or testing.

Baselines. We compare against SOTA networks for tabular data, including TabPFN v2 (Hollmann
et al., 2025a), TabM (Gorishniy et al., 2024), Real-MLP (Holzmüller et al., 2024), TabR (Gorishniy
et al., 2023a), and ModernNCA (Ye et al., 2024), as well as representative methods such as MLP (Taud
& Mas, 2017), TabNet (Arik & Pfister, 2021), DANet (Chen et al., 2022), ResNet (Gorishniy et al.,
2021), STG (Jana et al., 2023), VIME (Yoon et al., 2020)). To provide a broader perspective, we also
include tree-based gradient boosting methods (XGBoost (Chen & Guestrin, 2016), LightGBM (Ke
et al., 2017), CatBoost (Prokhorenkova et al., 2019)), and classical models (k-NN (Guo et al., 2003),
SVM (Jakkula, 2006), Linear Model (Kiebel & Holmes, 2007), Random Forest (Rigatti, 2017),
Decision Tree (Rokach & Maimon, 2005)), although they require replay and are not directly suited to
our problem setting. Since the recent baselines we consider were not originally designed for stream
learning, we adopt a best-effort comparison: at each segment step t, all baselines are retrained from
scratch on the cumulative data available so far to mitigate catastrophic forgetting and maximize their
performance. In contrast, our method operates in a true incremental mode without replay of past data.
Appendix §A.2.5 provides details on model training protocols.

Evaluation. To assess whether performance differences among algorithms are statistically sig-
nificant across multiple datasets, we first conduct the classic Friedman test (Friedman, 1937),
χ2
F = 12N

k(k+1)

[∑k
j=1 R

2
j −

k(k+1)2

4

]
, where N is the number of datasets, i.e., 36, k the number

of algorithms and Rj the average rank of the j-th algorithm. If the null hypothesis is rejected,
we perform post-hoc analyses using the Wilcoxon signed-rank test (Wilcoxon, 1945) with Holm
correction (Holm, 1979), as well as critical difference analysis (Nemenyi, 1963). All models are
evaluated on six key metrics: balanced accuracy, log-loss, energy consumption, execution time, and
the composite NetScore-T metrics capturing accuracy–efficiency trade-offs. Furthermore, we plot 2D
Pareto fronts of performance versus energy efficiency to examine the trade-offs among models. More
details have been provided in Appendix C.

IMLP excels on the energy–accuracy trade-off under no replay. Table 1 summarizes the energy
consumption, time cost, and performance among neural methods. Neural methods generally demand
higher energy and runtime, particularly for large networks, TabPFN v2 (72,319J), DANet (32,382J),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance statistics across all neural network baselines on 36 TabZilla datasets, reported
as mean±standard deviation. Energy is measured in Joules, and Time in seconds. Trade-offs between
balanced accuracy and energy consumption are measured by NetScore-T (see Eq. 8).

Model Energy Consumed (J) (↓) Time (s) (↓) Balanced Accuracy (↑) Log Loss (↓) NetScore-T (↑)

STG 6747 ± 5671 85.6 ± 71.8 0.416 ± 0.166 1.162 ± 0.689 0.151 ± 0.073
VIME 21705 ± 34212 261.8 ± 416.9 0.738 ± 0.197 1.098 ± 1.544 0.238 ± 0.060
DANet 32382 ± 26865 406.3 ± 336.4 0.812 ± 0.172 0.349 ± 0.334 0.248 ± 0.055
TabNet 23312 ± 18268 285.3 ± 226.3 0.807 ± 0.177 0.357 ± 0.337 0.250 ± 0.059
TabPFN v2 72319 ± 100877 291.1 ± 405.3 0.862 ± 0.151 0.240 ± 0.265 0.252 ± 0.052
TabM 15558 ± 12321 96.6 ± 76.8 0.839 ± 0.161 0.288 ± 0.307 0.280 ± 0.056
ResNet 5422 ± 3672 66.1 ± 45.1 0.805 ± 0.160 1.489 ± 1.469 0.312 ± 0.065
Real-MLP 6243 ± 4735 62.8 ± 47.4 0.823 ± 0.159 0.342 ± 0.314 0.313 ± 0.065
MLP 3241 ± 2581 41.4 ± 32.9 0.829 ± 0.162 0.329 ± 0.326 0.341 ± 0.073
TabR 4125 ± 3625 46.1 ± 41.2 0.836 ± 0.155 0.554 ± 0.656 0.345 ± 0.072
ModernNCA 4829 ± 4630 54.9 ± 53.1 0.843 ± 0.145 1.298 ± 1.344 0.346 ± 0.077
IMLP (Ours) 845 ± 386 9.9 ± 4.5 0.807 ± 0.164 0.399 ± 0.365 0.430 ± 0.095

TabNet (23,312J), and TabM (15,558J) on average, though they still achieve competitive accuracy,
namely 0.862, 0.812, 0.807, and 0.839, respectively. Among them, IMLP stands out for its superior
energy–accuracy trade-off under the no-replay setting. On average, it requires only 845J, which
is 27.6× lower than TabNet (23,312J) at comparable accuracy and 85.5× lower than TabPFN v2
(72,319J), with only a 0.055 drop in balanced accuracy. Compared to standard MLP, IMLP achieves
a 4.2× speedup on average, along with a 73.9% reduction in energy usage.

(a) Pareto optimal trade-offs for NNs.

10
2

10
3

10
4

Mean Energy Consumption (J)

0.4

0.5

0.6

0.7

0.8

M
ea

n
Ba

la
nc

ed
 A

cc
ur

ac
y

IMLP
MLP

LIGHTGBM

LINEARMODEL

STG

TABPFNV2

REALMLP

DECISIONTREE

Neural
Tree-based
Classical
Pareto frontier

(b) Pareto optimal trade-offs for all family.

Figure 2: Pareto frontiers overview. (a) op-
timal trade-offs for NN models. (b) optimal
trade-offs across all families.

The energy-accuracy trade-off, as measured by
NetScore-T, shows that IMLP ranks as the most
energy-efficient method under the no-replay setting.
Among all evaluated methods, GBDTs such as Light-
GBM consistently deliver strong performance with
relatively low runtime. However, IMLP beats Cat-
Boost and XGBoost in terms of both average energy
consumption and runtime (see Appendix C). Classic
methods such as DecisionTree, RandomForest, and
LinearModel use very little energy and time, but their
balanced accuracy is generally low (< 0.8). SVM
and k-NN are useful for reference; however, they re-
quire more computation and energy usage compared
to IMLP. Specifically, while the average balanced ac-
curacy of SVM is the same as that of IMLP, it requires
about 4.4× more energy and takes 8.5× longer on
average (see Appendix C).

NetScore-T is compatible with Pareto efficiency.
Figure 2 depicts the optimal trade-offs among neu-
ral tabular models using a Pareto-2D visualization.
Each point represents a specific model training and
inference run on a given dataset indexed by ID (see
Appendix A) with a particular random seed (e.g., 7,
42, and 101), providing a detailed view of the Pareto
optimal trade-offs in this group. As shown in sub Fig-
ure 2a, the frontier line maps the optimal trade-offs,
in which most (four out of eight) of the optimal trade-
offs in neural tabular models come from IMLP, with
one from TabNet, one from MLP, one from Modern-
NCA, and one from TabR. IMLP points (pink) lie in
the low-energy region while still keeping high accu-
racy. In contrast, TabNet attains relatively high accuracy but at the cost of substantially higher energy
consumption, often exceeding 10,000 joules. MLP and TabR fall in the middle ground, showing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

balanced trade-offs without the extremes observed in IMLP or TabNet. Some come close to the
frontier, but most need more energy than IMLP. Surprisingly, for all model families, as shown in
Figure 2b, IMLP also becomes one of the Pareto optimal trade-offs between the average balanced
accuracy and average total energy consumption. The others include DecisionTree, LinearModel,
LightGDM, and TabPFN v2. Overall, IMLP distinguishes itself as an efficient and competitive neural
counterpart.

Furthermore, we compare IMLP with the SOTA methods, namely TabPFN v2, LightGBM, CatBoost,
XGBoost, and MLP, about the dynamic performance and efficiency when data arrives in sequence,
as illustrated in Figure 3. Figure 3a presents the balanced accuracy averaged across datasets for

(a) Balanced Accuracy. (b) Cumulative energy. (c) Training time.

Figure 3: Dynamic learning performance and efficiency comparisons per segment.

each segment. The accuracy generally increases across segments, showing that all models, including
IMLP, improve with more data. Figure 3b displays cumulative energy consumption per segment.
Notably, TabPFN v2 exhibits substantially higher energy consumption compared to others, primarily
due to its large neural network backbone. The results reveal that as the segment step increases, MLP,
LightGBM, CatBoost, and XGBoost consume energy at accelerating rates, while IMLP sustains the
lowest and most stable energy usage across all segments. Similarly, Figure 3c shows training time
per segment. Its trend closely follows that of cumulative energy consumption, as expected from the
strong correlation between training time and energy use.

7 CONCLUSION

This paper addresses the critical gap of energy-efficient continual learning on tabular data streams
by introducing IMLP, a novel incremental MLP model. IMLP employs attention-based feature
replay with context retrieval and sliding buffer updates, integrated into a minibatch training loop for
streaming tabular learning. We further propose NETSCORE-T, a new metric that jointly evaluates
balanced accuracy and energy consumption and can be compatible with traditional Pareto efficiency.
IMLP achieves outstanding energy savings compared to SOTA neural tabular models and excels on
energy-accuracy trade-off under no replay, according to hardware-level energy measurement.

Experiments show that IMLP matches the accuracy of neural baselines under no replay while
substantially reducing runtime and energy costs. IMLP achieves up to 27.6× higher energy efficiency
than TabNet and 85.5× higher than TabPFN, while maintaining competitive average accuracy.
Positioned optimally on the neural Pareto frontier, IMLP consistently delivers efficiency gains across
diverse datasets.

Limitations and Future Work. Despite these exciting findings, IMLP currently treats baselines
on classic TabZilla benchmarks in an experimental setting. A promising next step is to compare
the method with up-to-date models on real-life lifelong settings, thereby enriching the benchmarks
(e.g., TabRed (Rubachev et al., 2024)). Beyond that, conducting a comprehensive ablation study
would shed light on the influence of key parameter choices, such as window size, feature dimensions,
scaling, and alternative CL strategies. Ultimately, an important future direction is to extend IMLP
toward jointly optimizing the trade-offs between energy efficiency and predictive performance, ideally
supported by theoretical guarantees or unified analytical frameworks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics statement. This work contributes to an easy-to-deploy, energy-efficient alternative to full
retraining for tabular data streams. By a windowed scaled dot-product attention over a sliding latent
feature buffer, it enables lightweight computation and avoids unbounded memory growth in continual
learning, while achieving efficient energy consumption. This method will be beneficial for Green AI,
especially in resource-constrained tabular data learning. All experiments are conducted on publicly
available benchmark datasets and baselines. Regarding the large language model use, ChatGPTs
and Grammarly were used to assist us with writing and editing, retrieving related work, coding
improvement, but all the ideas, designs, plots, and analyses are our own.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. CoRR, abs/1711.09601, 2017. URL
http://arxiv.org/abs/1711.09601.

Fatemeh Amrollahi, Supreeth P Shashikumar, Andre L Holder, and Shamim Nemati. Leveraging
clinical data across healthcare institutions for continual learning of predictive risk models. Scientific
reports, 12(1):8380, 2022.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Consistency is the key to further
mitigating catastrophic forgetting in continual learning. In Conference on Lifelong Learning
Agents, pp. 1195–1212. PMLR, 2022.

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging bagging for evolving data streams.
In Joint European conference on machine learning and knowledge discovery in databases, pp.
135–150. Springer, 2010.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel classifiers with online
and active learning. Journal of machine learning research, 6(Sep):1579–1619, 2005.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE transactions on neural networks
and learning systems, 35(6):7499–7519, 2022.

Lucía Bouza, Aurélie Bugeau, and Loïc Lannelongue. How to estimate carbon footprint when
training deep learning models? a guide and review. Environmental Research Communications, 5
(11):115014, November 2023. ISSN 2515-7620. doi: 10.1088/2515-7620/acf81b. URL http:
//dx.doi.org/10.1088/2515-7620/acf81b.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
learning. Advances in neural information processing systems, 13, 2000.

Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhaohui Cai, and Guoqing Tu. A survey of recent
advances in edge-computing-powered artificial intelligence of things. IEEE Internet of Things
Journal, 8(18):13849–13875, 2021.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, S. Dsouza, T. Ajanthan, and P. K. Dokania. Efficient
lifelong learning with a-gem. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1396–1405, 2019. doi: 10.1109/CVPR.2019.00153.

Vivek Chavan, Paul Koch, Marian Schlüter, and Clemens Briese. Towards realistic evaluation of
industrial continual learning scenarios with an emphasis on energy consumption and computational
footprint. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11506–11518, 2023.

10

http://arxiv.org/abs/1711.09601
http://dx.doi.org/10.1088/2515-7620/acf81b
http://dx.doi.org/10.1088/2515-7620/acf81b

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z Chen, and Jian Wu. Danets: Deep abstract networks
for tabular data classification and regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 3930–3938, 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794. ACM, August 2016. doi: 10.1145/2939672.2939785. URL http:
//dx.doi.org/10.1145/2939672.2939785.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 20(2):215–232, 1958.

Ingrid Daubechies, Ronald DeVore, Simon Foucart, Boris Hanin, and Guergana Petrova. Nonlinear
approximation and (deep) relu networks. Constructive Approximation, 55(1):127–172, 2022.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7:
1–30, December 2006. ISSN 1532-4435.

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 71–80,
2000.

ElmorLabs. Pmd-usb (power measurement device with usb). https://www.elmorlabs.com/
product/elmorlabs-pmd-usb-power-measurement-device-with-usb/,
2023. Accessed: 2025-01-15.

ElmorLabs. Pmd pci-e slot power measurement adapter. https://www.elmorlabs.com/
product/pmd-pci-e-slot-power-measurement-adapter/, 2025. Accessed:
2025-01-15.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association, 32(200):675–701, 1937. ISSN 01621459,
1537274X. URL http://www.jstor.org/stable/2279372.

Ioannis Giagkiozis and Peter J Fleming. Pareto front estimation for decision making. Evolutionary
computation, 22(4):651–678, 2014.

Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard
Pfharinger, Geoff Holmes, and Talel Abdessalem. Adaptive random forests for evolving data
stream classification. Machine Learning, 106(9):1469–1495, 2017.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in neural information processing systems, 34:18932–18943,
2021.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and
Artem Babenko. Tabr: Tabular deep learning meets nearest neighbors in 2023. arXiv preprint
arXiv:2307.14338, 2023a.

11

http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://www.elmorlabs.com/product/elmorlabs-pmd-usb-power-measurement-device-with-usb/
https://www.elmorlabs.com/product/elmorlabs-pmd-usb-power-measurement-device-with-usb/
https://www.elmorlabs.com/product/pmd-pci-e-slot-power-measurement-adapter/
https://www.elmorlabs.com/product/pmd-pci-e-slot-power-measurement-adapter/
http://www.jstor.org/stable/2279372

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data, 2023b. URL https://arxiv.org/abs/2106.11959.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning with
parameter-efficient ensembling. arXiv preprint arXiv:2410.24210, 2024.

Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. Knn model-based approach in
classification. In OTM Confederated International Conferences" On the Move to Meaningful
Internet Systems", pp. 986–996. Springer, 2003.

Peter Henderson, Jierui Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau.
Towards the systematic reporting of the energy and carbon footprints of machine learning. In
Proceedings of the Workshop on Challenges in Deploying and monitoring Machine Learning
Systems (EMNLP), 2020. arXiv:2002.05651.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025a.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a
tabular foundation model. Nature, 01 2025b. doi: 10.1038/s41586-024-08328-6. URL https:
//www.nature.com/articles/s41586-024-08328-6.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6(2):65–70, 1979. ISSN 03036898, 14679469. URL http://www.jstor.org/
stable/4615733.

David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps
and boosted trees on tabular data. Advances in Neural Information Processing Systems, 37:
26577–26658, 2024.

Vikramaditya Jakkula. Tutorial on support vector machine (svm). School of EECS, Washington State
University, 37(2.5):3, 2006.

Soham Jana, Henry Li, Yutaro Yamada, and Ofir Lindenbaum. Support recovery with projected
stochastic gates: Theory and application for linear models. Signal Processing, 213:109193, 2023.

S. Jha et al. Neural processes for continual learning. In International Conference on Machine
Learning, 2023.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928–23941, 2021a.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. NeurIPS, 2021b. URL https://arxiv.org/abs/2106.11189.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: a highly efficient gradient boosting decision tree. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pp. 3149–3157,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and
knowledge transfer in continual learning. Advances in Neural Information Processing Systems, 34:
22443–22456, 2021.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

S Kiebel and A Holmes. The general linear model. Academic Press. London, 2007.

12

https://arxiv.org/abs/2106.11959
https://www.nature.com/articles/s41586-024-08328-6
https://www.nature.com/articles/s41586-024-08328-6
http://www.jstor.org/stable/4615733
http://www.jstor.org/stable/4615733
https://arxiv.org/abs/2106.11189

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with kernels. IEEE
transactions on signal processing, 52(8):2165–2176, 2004.

Cecilia S Lee and Aaron Y Lee. Clinical applications of continual learning machine learning. The
Lancet Digital Health, 2(6):e279–e281, 2020.

Ao Li, Chong Zhang, Fu Xiao, Cheng Fan, Yang Deng, and Dan Wang. Large-scale comparison and
demonstration of continual learning for adaptive data-driven building energy prediction. Applied
Energy, 347:121481, 2023.

Xiaodi Li, Dingcheng Li, Rujun Gao, Mahmoud Zamani, and Latifur Khan. Lsebmcl: A latent
space energy-based model for continual learning. In 2025 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), pp. 0690–0695. IEEE, 2025a.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International conference
on machine learning, pp. 3925–3934. PMLR, 2019.

Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin
Yang, Rui Zhang, Shui Yu, et al. Unleashing the power of continual learning on non-centralized
devices: A survey. IEEE Communications Surveys & Tutorials, 2025b.

Yujie Li, Xin Yang, Qiang Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Cross-regional fraud
detection via continual learning with knowledge transfer. IEEE Transactions on Knowledge and
Data Engineering, 2024a.

Yujie Li, Xin Yang, Hao Wang, Xiangkun Wang, and Tianrui Li. Learning to prompt knowledge
transfer for open-world continual learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 13700–13708, 2024b.

Zhizhong Li and Derek Hoiem. Learning without forgetting. CoRR, abs/1606.09282, 2016. URL
http://arxiv.org/abs/1606.09282.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining and
knowledge discovery, 1(1):14–23, 2011.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

David McElfresh and Ameet Talwalkar. Tabzilla benchmark. NeurIPS, 2023. Version 1.0, accessed
May 2025.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Benjamin Feuer, Chin-
may Hegde, Ganesh Ramakrishnan, Micah Goldblum, and Colin White. When do neural nets
outperform boosted trees on tabular data? In Advances in Neural Information Processing Systems
(NeurIPS) 2023, Track on Datasets and Benchmarks, 2023.

Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, and Albert Bifet.
Adaptive xgboost for evolving data streams. In 2020 international joint conference on neural
networks (IJCNN), pp. 1–8. IEEE, 2020.

Peter Björn Nemenyi. Distribution-free Multiple Comparisons. PhD thesis, Princeton University,
1963.

Nikunj C Oza and Stuart J Russell. Online bagging and boosting. In International workshop on
artificial intelligence and statistics, pp. 229–236. PMLR, 2001.

13

http://arxiv.org/abs/1606.09282

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

F. Pellegrini et al. Latent replay for on-device continual learning. IEEE Transactions on Neural
Networks and Learning Systems, 2020. doi: 10.1109/TNNLS.2020.2971234.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features, 2019. URL https://arxiv.
org/abs/1706.09516.

Reshawn Ramjattan, Daniele Atzeni, and Daniele Mazzei. Comparative evaluation of continual
learning methods in financial and industrial time-series data. In 2024 International Joint Conference
on Neural Networks (IJCNN), pp. 1–7. IEEE, 2024.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Steven J Rigatti. Random forest. Journal of insurance medicine, 47(1):31–39, 2017.

Lior Rokach and Oded Maimon. Decision trees. In Data mining and knowledge discovery handbook,
pp. 165–192. Springer, 2005.

Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. Tabred: Analyzing pitfalls
and filling the gaps in tabular deep learning benchmarks. arXiv preprint arXiv:2406.19380, 2024.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

Rafał Różycki, Dorota Agnieszka Solarska, and Grzegorz Waligóra. Energy-aware machine learning
models—a review of recent techniques and perspectives. Energies, 18(11), 2025. ISSN 1996-1073.
doi: 10.3390/en18112810. URL https://www.mdpi.com/1996-1073/18/11/2810.

Mohammad Javad Shafiee, Bartłomiej Chywl, Francis Li, and Alexander Wong. Netscore: Towards
universal metrics for large-scale performance evaluation of deep neural networks. In NeurIPS
Workshop, 2018.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna
Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive survey.
ACM Computing Surveys, 2024a.

Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neural
networks: An unstructured pruning framework. In The Twelfth International Conference on
Learning Representations, 2024b.

H. Shin, J. K. Lee, J. Kim, J. Kim, and S. Kim. Continual learning with deep generative replay. In
Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Hind Taud and Jean-Franccois Mas. Multilayer perceptron (mlp). In Geomatic approaches for
modeling land change scenarios, pp. 451–455. Springer, 2017.

Tomaso Trinci, Simone Magistri, Roberto Verdecchia, and Andrew D. Bagdanov. How green is
continual learning, really? analyzing the energy consumption in continual training of vision
foundation models. arXiv preprint arXiv:2409.18664, 2024. Accepted to GreenFOMO Workshop
at ECCV 2024.

14

https://arxiv.org/abs/1706.09516
https://arxiv.org/abs/1706.09516
http://arxiv.org/abs/1606.04671
https://www.mdpi.com/1996-1073/18/11/2810

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017a. URL
http://arxiv.org/abs/1706.03762.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017b.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE transactions on pattern analysis and machine intelligence,
46(8):5362–5383, 2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024b. URL https://arxiv.org/abs/2302.00487.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945.

Alexander Wong. Netscore: towards universal metrics for large-scale performance analysis of deep
neural networks for practical on-device edge usage. In International Conference on Image Analysis
and Recognition, pp. 15–26. Springer, 2019.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Hebbian learning
based orthogonal projection for continual learning of spiking neural networks. arXiv preprint
arXiv:2402.11984, 2024.

Zeyu Yang, Karel Adamek, and Wesley Armour. Accurate and convenient energy measurements for
gpus: A detailed study of nvidia gpu’s built-in power sensor. In SC24: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 1–17. IEEE, November
2024. doi: 10.1109/sc41406.2024.00028. URL http://dx.doi.org/10.1109/SC41406.
2024.00028.

Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components analysis: A
deep tabular baseline two decades later. arXiv e-prints, pp. arXiv–2407, 2024.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela Van der Schaar. Vime: Extending the success
of self-and semi-supervised learning to tabular domain. Advances in neural information processing
systems, 33:11033–11043, 2020.

Guri Zabërgja, Arlind Kadra, Christian MM Frey, and Josif Grabocka. Is deep learning finally better
than decision trees on tabular data? arXiv preprint arXiv:2402.03970, 2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

15

http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2302.00487
http://dx.doi.org/10.1109/SC41406.2024.00028
http://dx.doi.org/10.1109/SC41406.2024.00028

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXTENDED EXPERIMENTS

A.1 DATASETS AND STREAM SEGMENTATION

We evaluate IMLP on 36 classification tasks from the TabZilla benchmark (McElfresh & Talwalkar,
2023), selected from OpenML based on three criteria: (1) sufficient data size to create meaningful
segments, (2) balanced representation of binary and multi-class problems, and (3) diverse feature
dimensionalities and class distributions. To simulate the data stream in incremental learning scenarios,
Table 2 lists every OpenML task in our benchmark together with basic statistics and the fixed stream
segmentation applied in original row order (rows 1 . . .k form Segment 0, rows k+1 . . . 2k form
Segment 1, etc.).

† Class counts show label ID : instances after preprocessing. Binary tasks list two numbers; multi-
class tasks list one count per class. For tasks with many classes, we show representative counts or use
compact notation (e.g., “25 × 300” for 25 classes with 300 instances each).

A.1.1 STREAM SEGMENTATION ALGORITHM

Our segmentation follows a principled approach to create balanced segments while minimizing data
waste:

Algorithm 2 Optimal Segment Size Selection

Require: Dataset with N training instances, bounds kmin = 500, kmax = 1000
Ensure: Segment size k∗ that minimizes remainder

1: best_remainder← N
2: k∗ ← kmin

3: for k = kmin to min(kmax, N) do
4: num_segments← ⌊N/k⌋
5: remainder← N mod k
6: if remainder = 0 then
7: return k ▷ Perfect division found
8: if remainder < best_remainder then
9: best_remainder← remainder

10: k∗ ← k
11: return k∗

The choice of segment size bounds (500–1000 instances) balances three considerations: (1) statistical
power, each segment must contain sufficient samples for reliable learning, (2) IMLP coherence,
segments should be large enough for the attention mechanism to learn meaningful feature relationships
within each temporal chunk, and (3) computational efficiency, larger segments would increase memory
requirements and training time per segment without proportional benefits.

When the optimal segment size k∗ leaves a remainder r = N mod k∗, we apply round-robin
redistribution: the first r segments each receive one additional instance, ensuring segment sizes differ
by at most 1. This maintains temporal ordering while achieving optimal balance.

A.2 DATA RETRIEVAL AND PREPROCESSING PROTOCOL

A.2.1 DATASET ACQUISITION

All datasets are retrieved via the OpenML Python API (v0.15.2) with local caching enabled. We use
the default target attribute specified in each OpenML task definition. Raw data is downloaded in
DataFrame format to preserve both feature names and categorical indicators.

A.2.2 FEATURE PREPROCESSING PIPELINE

Our preprocessing pipeline follows scikit-learn best practices with separate transformers for numerical
and categorical features:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Statistics of datasets. OpenML classification tasks and stream-segmentation parameters used
in this study. # Inst, stands for the number of instances, # Feat. stands for the number of features.
Seg. size stands for the segment size bound. # Segs stands for the number of segments. Numbers are
produced by the data-processing pipeline and reproduced by the helper script in §A.3.

ID Name # Inst. #Feat. Class balance† Seg. size #Segs

146820 wilt 4,839 5 4,578; 261 514 8
14964 artificial-characters 10,218 7 1,196; 600; 1,192; 1,416; 808;

1,008; . . .
579 15

14969 GesturePhaseSegmentation 9,873 32 2,741; 998; 2,097; 1,087; 2,950 839 10
14951 eeg-eye-state 14,980 14 8,257; 6,723 749 17

146206 magic 19,020 10 12,332; 6,688 951 17
167211 Satellite 5,100 36 75; 5,025 867 5
167141 churn 5,000 29 4,293; 707 850 5
168910 fabert 8,237 800 933; 1,433; 1,927; 1,515; 979;

948; 502
500 14

168912 sylvine 5,124 20 2,562; 2,562 871 5
190410 philippine 5,832 308 2,916; 2,916 708 7

2074 satimage 6,430 36 1,531; 703; 1,356; 625; 707;
1,508

683 8

28 optdigits 5,620 64 554; 571; 557; 572; 568; 558; . . . 597 8
32 pendigits 10,992 16 1,143; 1,143; 1,144; 1,055; 1,144;

. . .
519 18

146607 SpeedDating 8,378 442 6,998; 1,380 712 10
168908 christine 5,418 1,611 2,709; 2,709 921 5

14952 PhishingWebsites 11,055 38 4,898; 6,157 522 18
3510 JapaneseVowels 9,961 14 1,096; 991; 1,614; 1,473; 782; . . . 529 16
3735 pollen 3,848 5 1,924; 1,924 545 6
3711 elevators 16,599 18 5,130; 11,469 641 22
3896 ada_agnostic 4,562 48 3,430; 1,132 646 6

14970 har 10,299 561 1,722; 1,544; 1,406; 1,777; 1,906;
1,944

547 16

3686 house_16H 22,784 16 6,744; 16,040 842 23
3897 eye_movements 10,936 27 3,804; 4,262; 2,870 715 13
3904 jm1 10,885 21 8,779; 2,106 514 18

43 spambase 4,601 57 2,788; 1,813 782 5
3954 MagicTelescope 19,020 10 12,332; 6,688 951 17
9952 phoneme 5,404 5 3,818; 1,586 574 8
3950 musk 6,598 267 5,581; 1,017 701 8
9960 wall-robot-navigation 5,456 24 2,205; 2,097; 328; 826 515 9
3889 sylva_agnostic 14,395 216 13,509; 886 941 13
9985 first-order-theorem-proving 6,118 51 1,089; 486; 748; 617; 624; 2,554 520 10
3481 isolet 7,797 617 25 × 300 (class 0. . . 24) 552 12

45 splice 3,190 227 767; 768; 1,655 542 5
9986 gas-drift 13,910 128 2,565; 2,926; 1,641; 1,936; 3,009;

1,833
563 21

9987 gas-drift-different-conc. 13,910 129 2,565; 2,926; 1,641; 1,936; 3,009;
1,833

563 21

168909 dilbert 10,000 2,000 1,988; 2,049; 1,913; 2,046; 2,004 500 17

Numerical Features:

1. Imputation: Missing values filled with column medians

2. Standardization: Zero mean, unit variance scaling via StandardScaler

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Categorical Features:

1. Imputation: Missing values filled with constant ‘missing’

2. Encoding: One-hot encoding with drop=‘first’ to avoid multicollinearity

3. Unknown handling: handle_unknown=‘ignore’ for robust inference

The ColumnTransformer ensures preprocessing consistency across all data splits. After transforma-
tion, all features are converted to float32 for memory efficiency.

A.2.3 TARGET PROCESSING AND TASK TYPE DETECTION

Target variables are processed based on OpenML task type:

• Binary classification: 2 unique labels → LabelEncoder → {0, 1}

• Multi-class classification: C > 2 unique labels → LabelEncoder → {0, . . . , C-1}

• Regression: Direct conversion to float32 (not used in this study)

A.2.4 DATA SPLITTING STRATEGY

Our splitting protocol ensures a realistic evaluation:

1. Test Set Isolation: A stratified 15% test split is carved out before any stream processing,
using random_seed=42 for reproducibility.

2. Training Stream Creation: The remaining 85% forms the chronologically ordered training
stream, preserving the original row order from OpenML.

3. Per-Segment Validation: Each segment (or cumulative data) is further split with stratified
15% validation, using random_seed=42+segment_idx to ensure different splits per
segment while maintaining reproducibility.

This approach simulates realistic continual learning where: 1) The test set represents future unseen
data, 2) Each segment represents a temporal chunk of arriving data, 3) Validation splits enable early
stopping without future data leakage, and 4) All models use consistent 15% validation splits for
hyperparameter selection and early stopping criteria.

A.2.5 MODEL TRAINING PROTOCOLS

Our experimental design follows two distinct training protocols based on model type:

Cumulative Training (Baseline Models): Traditional baselines (XGBoost, LightGBM, CatBoost,
kNN, SVM, Decision Trees, Random Forest, and neural baselines like TabNet, SAINT) are retrained
from scratch at each segment using all available data up to that point. For the segment, these models
train on the union

⋃T
t=0 Tt where Tt denotes the t-th data segment. This protocol maximizes baseline

performance by leveraging all historical data, representing the standard approach in tabular learning.

Incremental Training (IMLP): Our proposed IMLP trains only on the current segment St while
accessing previous feature representations through the attention mechanism. This protocol tests true
incremental learning capabilities without replay of raw historical data.

Both protocols use identical validation procedures: each model’s hyperparameters are selected
via early stopping on the 15% validation split, ensuring fair comparison despite different training
paradigms.

A.2.6 REPRODUCIBILITY MEASURES

All steps are deterministic with fixed random seeds, including 1) Global seed: random_seed =
42, 2) Per-segment validation: random_seed = 42 + segment_idx, and 3) Preprocessing:
Deterministic transformers with fixed parameters.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3 DATASET SUMMARY REGENERATION SCRIPT

For full reproducibility, we provide a helper script that regenerates Table 2 from the processed data:

1 # dataset_summary.py (runs in < 2 seconds)
2 import json, csv, gzip, numpy as np, pathlib
3

4 def regenerate_dataset_summary():
5 """Regenerate the dataset summary CSV from processed metadata."""
6 META = pathlib.Path("processed_datasets_summary.json")
7 ROOT = pathlib.Path("full_datasets")
8 OUT = pathlib.Path("dataset_summary.csv")
9

10 # Load processing metadata
11 with META.open() as f:
12 meta = json.load(f)
13

14 rows = []
15 for tid, m in meta.items():
16 # Load target labels to compute class balance
17 y = np.load(gzip.open(ROOT/m["dataset_name"]/"y_full.npy.gz"))
18 counts = np.bincount(y.astype(int))
19

20 rows.append({
21 "task_id": int(tid),
22 "name": m["original_name"],
23 "instances": int(m["num_instances"]),
24 "features": int(m["num_features"]),
25 "class_balance": ";".join(map(str, counts)),
26 "segment_size": int(m["segment_size"]),
27 "num_segments": int(m["num_segments"])
28 })
29

30 # Write CSV output
31 with OUT.open("w", newline="") as f:
32 writer = csv.DictWriter(f, fieldnames=rows[0].keys())
33 writer.writeheader()
34 writer.writerows(rows)
35

36 print(f"Wrote {OUT} with {len(rows)} tasks")
37

38 if __name__ == "__main__":
39 regenerate_dataset_summary()

Running this script in the project root recreates the CSV that backs Table 2. The script requires the
preprocessed datasets, but no pipeline re-execution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.4 BASELINES

We implement most of the baseline methods according to the publicly available codebases and
integrate them into the same backbone for benchmarking.

• XGBoost (Chen & Guestrin, 2016). https://github.com/dmlc/xgboost

• LightGBM (Ke et al., 2017). https://github.com/microsoft/LightGBM

• CatBoost (Prokhorenkova et al., 2019). https://github.com/catboost/
catboost

• TabPFN v2 (Hollmann et al., 2025a). https://github.com/automl/TabPFN

• TabM (Gorishniy et al., 2024). https://github.com/yandex-research/tabm

• Real-MLP (Holzmüller et al., 2024). https://github.com/dholzmueller/
realmlp-td-s_standalone

• TabR (Gorishniy et al., 2023a). https://github.com/yandex-research/
tabular-dl-tabr

• ModernNCA (Ye et al., 2024). https://github.com/YyzHarry/ModernNCA

• MLP (Taud & Mas, 2017). https://scikit-learn.org/stable/modules/
neural_networks_supervised.html

• TabNet (Arik & Pfister, 2021). https://github.com/dreamquark-ai/tabnet

• DANet (Chen et al., 2022). https://github.com/QwQ2000/DANets

• ResNet (Gorishniy et al., 2021). https://github.com/yandex-research/
tabular-dl-revisiting-models

• STG (Jana et al., 2023). https://github.com/runopti/stg

• VIME (Yoon et al., 2020). https://github.com/jsyoon0823/VIME

• k-NN (Guo et al., 2003). https://scikit-learn.org/stable/modules/
neighbors.html

• SVM (Jakkula, 2006). https://scikit-learn.org/stable/modules/svm.
html

• Linear Model (Kiebel & Holmes, 2007). https://scikit-learn.org/stable/
modules/linear_model.html

• Random Forest (Rigatti, 2017). https://scikit-learn.org/stable/
modules/ensemble.html#random-forests

• Decision Tree (Rokach & Maimon, 2005). https://scikit-learn.org/stable/
modules/tree.html

B IMLP IMPLEMENTATION DETAILS

B.1 ARCHITECTURE OVERVIEW AND DESIGN RATIONALE

IMLP extends the standard MLP architecture with an attention-based memory mechanism designed
specifically for tabular continual learning. The key innovation lies in storing and retrieving feature
representations rather than raw data, enabling privacy-preserving incremental learning with constant
memory requirements.

B.1.1 COMPARISON WITH STANDARD MLP

Table 4 contrasts IMLP with a standard MLP of equivalent capacity:

20

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://github.com/automl/TabPFN
https://github.com/yandex-research/tabm
https://github.com/dholzmueller/realmlp-td-s_standalone
https://github.com/dholzmueller/realmlp-td-s_standalone
https://github.com/yandex-research/tabular-dl-tabr
https://github.com/yandex-research/tabular-dl-tabr
https://github.com/YyzHarry/ModernNCA
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://github.com/dreamquark-ai/tabnet
https://github.com/QwQ2000/DANets
https://github.com/yandex-research/tabular-dl-revisiting-models
https://github.com/yandex-research/tabular-dl-revisiting-models
https://github.com/runopti/stg
https://github.com/jsyoon0823/VIME
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Architectural comparison between standard MLP and IMLP.

Component MLP IMLP IMLP Notes
Input processing din → 512 din → 256 Query projection
Memory mechanism None Attention Key-value retrieval
Feature extraction 512→ 256 (din + 256)→ 512→ 256 Context-augmented
Memory complexity O(1) O(W) W = window size
Time complexity O(1) O(W · d) d = hidden dim
Privacy Requires raw data Feature-only No raw data storage

Table 5: Detailed layer-wise specification of IMLP architecture.

Component Output dim. Activation Notes

Input feature vector din – Raw tabular features after preprocessing

Attention Module
Query projection Q 256 – Linear(din, 256)
Key projection K 256 – Linear(256, 256) applied to each stored

feature
Context computation 256 – Scaled dot-product attention over win-

dow

Feature Extraction
Concatenated input (x, c) din + 256 – Only if attention enabled; c = context

vector
FC 1 512 ReLU Linear(din + 256, 512)
FC 2 256 ReLU Linear(512, 256)

Classification Head
Classifier C – Linear(256, C) where C = number of

classes

B.2 LAYER-WISE ARCHITECTURE SPECIFICATION

Design Choices:

• Hidden size 256: Balances expressiveness with computational efficiency across all datasets

• No dropout/normalization: Empirically found to hurt performance in continual learning
setting

• ReLU activations: Simple, stable gradients for incremental training

• Fixed architecture: Same capacity across all 36 datasets for fair comparison

B.3 ATTENTION MECHANISM DESIGN

B.3.1 SCALED DOT-PRODUCT ATTENTION

IMLP uses a simplified attention mechanism to retrieve relevant historical features. For a batch of
size B:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Q = Wq · x ∈ RB×1×256 (query from current input) (9)

K = Wt ·Hstacked ∈ RB×W×256 (keys from previous features) (10)

Scores = bmm(K,QT) ∈ RB×W×1 (11)

α = softmax(Scores.squeeze()) ∈ RB×W (12)

Context = bmm(α.unsqueeze(1),K) ∈ RB×1×256 (13)

where:

• Hstacked = stack({ht−W , . . . , ht−1}) ∈ RB×W×256

• bmm denotes batch matrix multiplication
• No scaling factor is applied (unlike standard scaled dot-product attention)
• Values equal keys: V = K

B.3.2 WINDOW MANAGEMENT STRATEGY

The sliding window maintains a FIFO queue of the most recent W feature vectors:

Algorithm 3 Sliding Window Update

Require: Current input x, previous features Hprev, window size W
Ensure: Updated window Hnew

1: hcurrent ← FeatureExtractor(x,Context(x))
2: Hnew ← Hprev ∪ {hcurrent}
3: if |Hnew| > W then
4: Hnew ← Hnew[1 :] ▷ Remove oldest feature
5: return Hnew

B.3.3 FEATURE NORMALIZATION

To improve attention stability, stored features are L2-normalized during precomputation:

h̃i =
hi

∥hi∥2 + ϵ
(14)

where ϵ = 10−8 prevents division by zero. This normalization ensures attention weights focus
on feature directions rather than magnitudes and is applied in the _precompute method during
segmental training.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.4 COMPLETE IMPLEMENTATION

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4

5 class IncrementalMLP(nn.Module):
6 """
7 Incremental MLP with attention-based feature replay for continual

learning.↪→
8

9 Args:
10 input_size (int): Number of input features
11 num_classes (int): Number of output classes
12 use_attention (bool): Whether to use attention mechanism
13 window_size (int): Size of sliding memory window
14 """
15

16 def __init__(self, input_size, num_classes, use_attention=True,
window_size=10):↪→

17 super().__init__()
18 self.window_size = window_size
19 self.use_attention = use_attention
20 self.hidden_size = 256
21

22 # Attention projections
23 self.query = nn.Linear(input_size, 256)
24 self.key = nn.Linear(256, 256)
25

26 # Feature extraction pathway
27 total_input_size = input_size + (256 if use_attention else 0)
28 self.feature_extractor = nn.Sequential(
29 nn.Linear(total_input_size, 512),
30 nn.ReLU(),
31 nn.Linear(512, self.hidden_size),
32 nn.ReLU()
33)
34

35 # Classification head
36 self.classifier = nn.Linear(self.hidden_size, num_classes)
37

38 def compute_context(self, x, prev_features):
39 """
40 Compute attention-weighted context from previous features.
41

42 Args:
43 x (Tensor): Current input batch [B, D]
44 prev_features (List[Tensor]): Previous feature vectors [W x

[256]]↪→
45

46 Returns:
47 Tensor: Context vector [B, 256]
48 """
49 if not prev_features or self.window_size == 0:
50 return torch.zeros(x.size(0), 256, device=x.device)
51

52 # Stack previous features: [B, W, 256]
53 stacked_prev = torch.stack(prev_features, dim=1)
54

55 # Compute keys and queries
56 keys = self.key(stacked_prev) # [B, W, 256]
57 query = self.query(x).unsqueeze(1) # [B, 1, 256]
58

59 # Scaled dot-product attention
60 scores = torch.bmm(keys, query.transpose(1, 2)).squeeze(-1) # [B,

W]↪→

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

61 attention_weights = F.softmax(scores, dim=1) # [B, W]
62

63 # Compute weighted context
64 context = torch.bmm(attention_weights.unsqueeze(1),

keys).squeeze(1) # [B, 256]↪→
65

66 return context
67

68 def forward(self, x, prev_features=None):
69 """
70 Forward pass with optional attention over previous features.
71

72 Args:
73 x (Tensor): Input features [B, D]
74 prev_features (List[Tensor]): Previous features for attention
75

76 Returns:
77 Tuple[Tensor, Tensor]: (logits, current_features)
78 """
79 # Compute attention context
80 context = torch.zeros(x.size(0), 256, device=x.device)
81 if self.use_attention and prev_features:
82 context = self.compute_context(x, prev_features)
83

84 # Concatenate input with context
85 if self.use_attention:
86 augmented_input = torch.cat([x, context], dim=1)
87 else:
88 augmented_input = x
89

90 # Extract features and classify
91 features = self.feature_extractor(augmented_input)
92 logits = self.classifier(features)
93

94 return logits, features

B.5 COMPUTATIONAL COMPLEXITY ANALYSIS

B.5.1 TIME COMPLEXITY

For each forward pass with batch size B, input dimension din, hidden dimension dh = 256, and
window size W :

Query projection: O(B · din · dh) (15)

Key projection: O(B ·W · d2h) (16)
Attention scores: O(B ·W · dh) (17)

Context aggregation: O(B ·W · dh) (18)
Feature extraction: O(B · (din + dh) · 512) (19)

Total: O(B · (din · dh +W · d2h)) (20)

For typical values (W = 10, dh = 256, din ≲ 2000), the attention overhead is O(W · d2h) =
O(655,360) operations per sample.

B.5.2 MEMORY COMPLEXITY

IMLP maintains constant memory usage per segment:

• Model parameters: ≈ 1.2M parameters (fixed)
• Feature buffer: W × 256× 4 bytes = 10,240 bytes for W = 10

• Attention matrices: B ×W × 256× 4 bytes during computation

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Unlike replay-based methods, memory usage does not grow with the number of segments, enabling
indefinite continual learning.

B.5.3 COMPARISON WITH REPLAY METHODS

Table 6 compares IMLP with alternative continual learning approaches:

Table 6: Complexity comparison of continual learning approaches.

Method Memory Time per step Privacy
Naive retraining O(T ·N) O(T ·N) Requires raw data
Experience replay O(M) O(N +M) Requires raw data
Generative replay O(1) O(N +G) Private
IMLP (ours) O(W) O(N +W · d2) Private

where T = number of tasks, N = samples per task, M = replay buffer size, G = generative model
cost, W = window size, d = feature dimension.

B.6 HYPERPARAMETER CONFIGURATION

IMLP uses the following default hyperparameters across all experiments:

Table 7: IMLP hyperparameter configuration.

Parameter Value Description
Window size (W) 10 Number of previous feature vectors stored
Hidden dimension 256 Feature representation size
Learning rate 10−3 Adam optimizer learning rate
Batch size 128 Training batch size
Weight decay 10−5 L2 regularization strength
Early stopping patience 10 Epochs without improvement before stopping
Max epochs 100 Maximum training epochs per segment
Normalization ϵ 10−8 Small constant for L2 normalization

The window size W = 10 was chosen to balance memory efficiency with sufficient historical
context. The hidden dimension of 256 provides adequate representational capacity while maintaining
computational efficiency across diverse tabular datasets.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C EXTENDED RESULTS

C.1 STATISTICAL TESTS

We conducted comprehensive statistical analysis following the methodology of Demšar Demšar
(2006) to compare model performance across multiple datasets. This section presents detailed results
of the Friedman omnibus tests and post-hoc Wilcoxon signed-rank tests with Holm correction.

C.1.1 FRIEDMAN OMNIBUS TEST RESULTS

All statistical tests were conducted with N = 36 datasets and k = 20 classifiers at significance level
α = 0.05. The critical difference for post-hoc comparisons is

CD = q0.05

√
k(k + 1)

6N
= 3.532

√
20 · 21
6 · 36

≈ 4.92.

Metric Friedman χ2 p-value Null Hypothesis

Balanced Accuracy 298.90 3.36× 10−52 Rejected
Log-Loss 430.31 2.13× 10−79 Rejected
NetScore-T (Balanced) 545.36 1.65× 10−103 Rejected
NetScore-T (Log-Loss) 395.52 3.75× 10−72 Rejected
Total Energy (Joules) 562.96 3.26× 10−107 Rejected
Total Time (Seconds) 548.94 2.91× 10−104 Rejected

Table 8: Friedman omnibus test results across all metrics with k = 20. All tests decisively reject the
equal-performance null, which warrants post-hoc pairwise analysis.

C.1.2 ERROR ANALYSIS AND DATASET-SPECIFIC PERFORMANCE

To understand when and why IMLP provides advantages over baseline methods, we conducted
pairwise comparisons across all 36 TabZilla datasets. This analysis reveals distinct performance
patterns that illuminate IMLP’s positioning in the accuracy-efficiency landscape.

C.1.3 PREDICTIVE PERFORMANCE ANALYSIS

vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better
Balanced Accuracy 5 31 11 25 14 22 27 9
Log-Loss 2 34 4 32 11 25 34 2

Table 9: Dataset count where IMLP outperforms key baselines on predictive metrics. IMLP consis-
tently dominates XGBoost while trailing other methods.

The predictive performance analysis reveals a clear hierarchy: IMLP consistently outperforms
XGBoost (winning on 27/36 datasets for balanced accuracy and 34/36 for log-loss) but generally
trails MLP, LightGBM, and CatBoost. The mean differences are modest: IMLP achieves 1.97% lower
balanced accuracy than MLP but 3.93% higher than XGBoost, indicating competitive performance
within the neural network family.

C.1.4 EFFICIENCY-ADJUSTED PERFORMANCE

When efficiency is considered, IMLP’s value proposition becomes evident. Against standard MLP,
IMLP wins decisively: faster on all 36 datasets (mean speedup: 23.5s) and more energy-efficient on
35/36 datasets (mean reduction: 1,746J). The NetScore-T (Balanced) metric particularly favors IMLP
over MLP (34 vs. 2 datasets), demonstrating superior accuracy-efficiency trade-offs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better
NetScore-T (bal. acc.) 34 2 7 29 7 29 13 23
NetScore-T (log-loss) 18 18 2 34 9 27 32 4
Total Time (s) 36 0 7 29 7 29 8 28
Total Energy (J) 35 1 7 29 7 29 13 23

Table 10: Dataset count where IMLP outperforms baselines on efficiency and composite metrics.
IMLP dominates other neural methods but trails tree-based approaches.

However, tree-based methods maintain their efficiency advantage, with LightGBM and CatBoost
outperforming IMLP on efficiency metrics across 29/36 datasets. This reflects the fundamental
computational efficiency of tree-based architectures compared to neural networks.

C.1.5 LANDSCAPE ANALYSIS

The pairwise analysis reveals three distinct performance tiers:

1. Accuracy Leaders: TabPFNv2, LightGBM, MLP, and CatBoost dominate predictive met-
rics, with TabPFNv2 achieving the best overall balance.

2. Efficiency-Accuracy Optimizers: IMLP occupies a unique position, offering neural net-
work expressiveness with substantially improved efficiency compared to standard MLPs,
while maintaining competitive accuracy.

3. Pure Efficiency Champions: Tree-based methods (particularly DecisionTree and k-NN)
excel in computational efficiency but may sacrifice some accuracy on complex datasets.

C.1.6 PRACTICAL IMPLICATIONS

Deployment scenarios requiring neural network capabilities with energy constraints, streaming data
applications where constant-time updates matter, and situations where the modest accuracy trade-off
(<2% vs. MLP) is acceptable for significant efficiency gains (3× speedup, 60% energy reduction).

When maximum predictive accuracy is paramount (favor LightGBM/MLP), when computational
resources are unconstrained (favor standard MLP), or when extreme efficiency is required regardless
of accuracy (favor DecisionTree/k-NN).

The consistent pattern across efficiency metrics confirms IMLP’s design goal: providing a practical
middle ground between the accuracy of full neural networks and the efficiency demands of production
deployment.

C.2 COMPUTATIONAL PROCEDURE

Algorithm 4 outlines the NetScore-T computation process:

Algorithm 4 NetScore-T Computation

Require: Performance metrics {P (m)
t }Tt=1, energy measurements {E(m)

t }Tt=1
Ensure: Stream-level NetScore-T score

1: Initialize scores← []
2: for t = 1 to T do
3: NS

(m)
t ← P

(m)
t / log10(E

(m)
t + 1)

4: scores.append(NS
(m)
t)

5: return 1
T

∑T
i=1 scores[i]

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.3 COMPLETE PER-DATASET RESULTS

We present per-dataset results for all models and metrics evaluated in our study. The tables below
show performance across the 36 TabZilla datasets for six key metrics: balanced accuracy, log-loss,
NetScore-T (balanced accuracy), NetScore-T (log-loss), wall-time, and energy consumption. Best
values in each row are highlighted in bold.

All results represent the final performance after training on the complete stream (i.e., performance on
the test set after processing all segments). For cumulative models, this corresponds to training on all
available data; for IMLP, this represents performance after incremental learning across all segments.

Table 11: Performance statistics across 36 TabZilla datasets. Results are reported as mean ± standard
deviation across streams. Models are grouped into GBDT, Neural network-based, and Basic ones.
Energy is measured in Joules, and Time in seconds.

Type Model Bal. Acc. Log-Loss NS-T (Bal.) NS-T (Log.) Energy (J) Time (s)

G
B

D
T LightGBM 0.849 ± 0.149 0.269 ± 0.269 0.614 ± 0.226 7.251 ± 10.636 2408 ± 8293 32.1 ± 107.2

CatBoost 0.805 ± 0.176 0.389 ± 0.350 0.611 ± 0.222 5.283 ± 8.901 2270 ± 6612 28.3 ± 78.9
XGBoost 0.764 ± 0.177 1.207 ± 0.671 0.417 ± 0.128 0.627 ± 0.332 2091 ± 4322 13.8 ± 22.5

B
as

ic

SVM 0.807 ± 0.170 0.345 ± 0.327 0.495 ± 0.211 4.905 ± 8.768 3720 ± 7389 84.4 ± 168.3
k-NN 0.781 ± 0.155 1.447 ± 1.487 0.610 ± 0.219 1.232 ± 1.330 1191 ± 2958 16.3 ± 37.8
LinearModel 0.758 ± 0.200 0.479 ± 0.497 0.568 ± 0.169 4.362 ± 6.108 297 ± 182 7.0 ± 4.4
RandomForest 0.738 ± 0.179 0.560 ± 0.394 0.595 ± 0.159 3.404 ± 6.802 283 ± 310 5.4 ± 4.3
DecisionTree 0.717 ± 0.189 0.693 ± 0.448 0.955 ± 0.385 2.537 ± 2.916 178 ± 447 4.6 ± 11.1

N
et

w
or

k-
ba

se
d

DANet 0.812 ± 0.172 0.349 ± 0.334 0.248 ± 0.055 2.159 ± 2.596 32382 ± 26865 406.3 ± 336.4
TabNet 0.807 ± 0.177 0.357 ± 0.337 0.250 ± 0.059 1.965 ± 2.413 23312 ± 18268 285.3 ± 226.3
ResNet 0.805 ± 0.160 1.489 ± 1.469 0.312 ± 0.065 1.036 ± 1.334 5422 ± 3672 66.1 ± 45.1
VIME 0.738 ± 0.197 1.098 ± 1.544 0.238 ± 0.060 0.763 ± 0.633 21705 ± 34212 261.8 ± 416.9
STG 0.416 ± 0.166 1.162 ± 0.689 0.151 ± 0.073 0.436 ± 0.191 6747 ± 5671 85.6 ± 71.8
TabPFN v2 0.862 ± 0.151 0.240 ± 0.265 0.252 ± 0.052 4.693 ± 5.598 72319 ± 100877 291.1 ± 405.3
ModernNCA 0.843 ± 0.145 1.298 ± 1.344 0.346 ± 0.077 1.571 ± 2.049 4829 ± 4630 54.9 ± 53.1
TabM 0.839 ± 0.161 0.288 ± 0.307 0.280 ± 0.056 3.370 ± 3.921 15558 ± 12321 96.6 ± 76.8
TabR 0.836 ± 0.155 0.554 ± 0.656 0.345 ± 0.072 2.535 ± 3.027 4125 ± 3625 46.1 ± 41.2
Real-MLP 0.823 ± 0.159 0.342 ± 0.314 0.313 ± 0.065 2.438 ± 2.656 6243 ± 4735 62.8 ± 47.4
MLP 0.829 ± 0.162 0.329 ± 0.326 0.341 ± 0.073 2.846 ± 2.956 3241 ± 2581 41.4 ± 32.9
IMLP (Ours) 0.807 ± 0.164 0.399 ± 0.365 0.430 ± 0.095 3.169 ± 4.294 845 ± 386 9.9 ± 4.5

C.4 CRITICAL DIFFERENCE ANALYSIS

Figure 4 compares all k = 20 classifiers using NetScore-T (Balanced). Tree-based ensembles
(CatBoost, LightGBM, XGBoost, RandomForest) achieve the best ranks overall. Neural networks
cluster lower, though IMLP clearly outperforms the other neural baselines.

Restricting to neural methods (k = 11) in Figure 4 (right) confirms this: IMLP achieves the best
rank, followed by TabR, ModernNCA, and MLP, while TabPFNv2, TabNet, VIME, DANet, and STG
perform worst. This demonstrates IMLP’s consistent advantage over alternative neural continual
learners.

1 2 3 4 5 6 7 8 9 1011121314151617181920

1.16[B] decisiontree
3.81[T] catboost
4.23[T] lightgbm
4.26[B] knn
4.26[B] randomforest
5.00[B] linearmodel
6.84[B] svm
8.03[N] imlp
8.42[T] xgboost

10.71[N] tabr 10.94 [N] modernnca
11.23 [N] mlp
13.19 [N] realmlp
13.42 [N] resnet
15.32 [N] tabm
17.06 [N] tabpfnv2
17.35 [N] tabnet
17.68 [N] vime
17.71 [N] danet
19.39 [N] stg

Netscore-T Balanced

(a) All models (N = 36, k = 20).

1 2 3 4 5 6 7 8 9 10 11 12

1.19[N] imlp
2.97[N] tabr
3.23[N] modernnca
3.39[N] mlp
5.23[N] realmlp
5.45[N] resnet 7.32 [N] tabm

9.10 [N] tabpfnv2
9.35 [N] tabnet
9.68 [N] vime
9.71 [N] danet
11.39 [N] stg

Netscore-T Balanced (Neural only)

(b) Neural models only (N = 36, k = 11).

Figure 4: Critical difference diagrams for NetScore-T (Balanced). IMLP achieves the best neural
rank and remains competitive when compared with all models.

Figure 5 compares all k = 20 classifiers using NetScore-T (Log-Loss). LightGBM and CatBoost
achieve the strongest ranks overall, followed by linear baselines. Neural methods trail behind
but IMLP remains the top-performing network, ranking above other deep baselines and some tree
methods.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Restricting to neural methods (k = 11) in Figure 5 (right) highlights IMLP’s clear advantage. It
leads the group, with TabPFNv2, MLP, and TabM following, while RealMLP, TabR, and especially
attention-based models (DANet, TabNet, ModernNCA, VIME, ResNet, STG) cluster lower. This
confirms that IMLP achieves consistently lower log-loss than competing neural continual learners.

1 2 3 4 5 6 7 8 9 1011121314151617181920

2.52[T] lightgbm
4.32[T] catboost
5.13[B] linearmodel
5.45[B] svm
6.52[B] randomforest
6.97[B] decisiontree
7.39[N] imlp
7.71[N] tabpfnv2
8.42[N] mlp
8.65[N] tabm 10.48 [N] realmlp

11.00 [N] tabr
13.16 [N] danet
13.45 [N] tabnet
14.94 [T] xgboost
15.29 [B] knn
16.32 [N] modernnca
17.23 [N] vime
17.45 [N] resnet
17.61 [N] stg

Netscore-T Logloss

(a) All models (N = 36, k = 20).

1 2 3 4 5 6 7 8 9 10 11 12

2.58[N] imlp
3.23[N] tabpfnv2
3.32[N] mlp
3.61[N] tabm
4.87[N] realmlp
5.55[N] tabr 7.29 [N] danet

7.42 [N] tabnet
9.81 [N] modernnca
9.97 [N] stg
10.06 [N] vime
10.29 [N] resnet

Netscore-T Logloss (Neural only)

(b) Neural models only (N = 36, k = 11).

Figure 5: Critical difference diagrams for NetScore-T (Log-Loss). IMLP is the strongest neural
method and remains competitive overall.

C.5 PARETO-OPTIMAL TRADE-OFFS

To complement the critical-difference and efficiency analyses, we quantify each model’s Pareto
efficiency in the accuracy–energy plane. For model m,

ParetoEff(m) =
#{Pareto-optimal configs of m}

#{all configs of m}
.

Model Total Pareto Efficiency (%)

imlp 67 4 5.97
tabnet 42 1 2.38
mlp 74 1 1.35
tabr 75 1 1.33
modernnca 75 1 1.33
danet 32 0 0.00
realmlp 72 0 0.00
tabm 63 0 0.00
resnet 68 0 0.00
tabpfnv2 34 0 0.00
vime 31 0 0.00

Table 12: Per-model Pareto efficiency on the accuracy–energy frontier across all datasets and seeds.

IMLP attains the highest Pareto efficiency among neural models (5.97%), followed by TabNet
(2.38%), while most other networks rarely appear on the frontier. This confirms that IMLP provides
the most favorable accuracy–energy trade-offs within the neural family.

C.6 PER-SEGMENT ANALYSIS AND LEARNING DYNAMICS

We examine the fundamental paradigmatic difference between IMLP’s incremental learning approach
and traditional batch retraining methods. IMLP operates exclusively in segmental mode (training
only on new data), while baseline neural methods operate in cumulative mode (retraining on all
accumulated data). This distinction drives fundamentally different computational and deployment
characteristics.

C.6.1 LEARNING PARADIGM COMPARISON

The segment data demonstrates two distinct learning paradigms with different computational and
data requirements:

IMLP (Segmental Mode): Trains exclusively on each new data segment using attention-based
feature replay to maintain knowledge of previous patterns. By segment N , IMLP has seen only the
data from segment N .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

MLP (Cumulative Mode): Retrains from scratch on the complete accumulated dataset at each
segment. By segment N , MLP has retrained on data from segments 0 through N combined.

This fundamental difference means accuracy comparisons across segments are not directly equivalent,
MLP leverages exponentially more training data as segments progress.

C.6.2 ENERGY EFFICIENCY ANALYSIS

The computational efficiency comparison is valid and reveals substantial advantages for incremental
learning:

Segment IMLP Energy (J) MLP Energy (J) MLP Overhead
0 128.1 131.9 1.0×
1 81.7 107.9 1.3×
2 88.8 121.6 1.4×
3 101.3 137.8 1.4×
4 84.0 154.8 1.8×
5 81.0 167.8 2.1×
6 82.8 187.9 2.3×
7 81.3 226.2 2.8×

Table 13: Per-segment energy consumption. IMLP maintains constant computational cost (∼ 85J
after initialization) while MLP’s batch retraining shows linear growth with accumulated data size.

After initialization, IMLP stabilizes at approximately 85J per segment, confirming theoretical constant-
time updates regardless of historical data size. This enables predictable computational requirements
for long-term deployment.

MLP exhibits 71% energy growth from segment 0 to 7 (132J→ 226J), reflecting the linear scaling
inherent in batch retraining as dataset size grows. This trend projects to 350J+ per segment by
segment 20, making long-term deployment computationally prohibitive.

C.6.3 DATA EFFICIENCY AND CONTINUAL LEARNING EFFECTIVENESS

The most striking finding emerges from analyzing performance relative to training data consumption:

Segment IMLP Accuracy MLP Accuracy Training Data Ratio
(Segmental) (Cumulative) (MLP:IMLP)

0 0.747 0.647 1:1
1 0.766 0.740 2:1
2 0.776 0.769 3:1
3 0.776 0.781 4:1
4 0.789 0.792 5:1
5 0.774 0.795 6:1
6 0.783 0.809 7:1
7 0.796 0.815 8:1

Table 14: Performance vs training data consumption. IMLP achieves 79.6% accuracy using 1/8th the
training data required by MLP to reach 81.5%.

By segment 7, IMLP achieves 79.6% accuracy having trained only on segment 7’s data, while MLP
requires all eight segments of accumulated data to reach 81.5%. This represents achieving 97.7%
of MLP’s performance with 12.5% of the training data—a compelling demonstration of effective
continual learning.

The only fair accuracy comparison occurs at segment 0, where both methods train on identical data.
IMLP achieves 74.7% versus MLP’s 64.7%, a 15.5% relative improvement, indicating superior
learning efficiency when given equivalent training data. IMLP’s ability to maintain 77-79% accuracy

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

across segments 1-7 while training only on individual segments demonstrates successful mitigation of
catastrophic forgetting. The attention-based feature replay mechanism effectively preserves relevant
knowledge without requiring raw data storage.

C.6.4 CUMULATIVE COMPUTATIONAL COST ANALYSIS

Long-term deployment scenarios reveal the compounding advantages of incremental learning:

Segment IMLP Cumulative (J) MLP Cumulative (J) Efficiency Advantage
0 128.1 131.9 1.0×
2 298.6 361.4 1.2×
4 484.0 654.0 1.4×
6 647.7 1009.7 1.6×
7 729.0 1235.8 1.7×

Table 15: Cumulative energy consumption showing widening efficiency gap. The advantage grows
from parity to 1.7× by segment 7, with the trend indicating continued divergence.

The cumulative energy gap widens from parity at segment 0 to 1.7× by segment 7. Extrapolating this
trend suggests 2.5× advantage by segment 15 and 4× by segment 30, making incremental learning
essential for long-term deployment feasibility.

By segment 7, IMLP has consumed 507J less energy than MLP (729J vs 1,236J), representing a 41%
reduction in total computational cost. In large-scale deployments, these savings translate directly to
reduced operational expenses and carbon footprint.

C.6.5 PRACTICAL DEPLOYMENT IMPLICATIONS

IMLP Advantages:

• Resource-Constrained Environments: Constant 85J per update enables deployment on
edge devices and mobile platforms where batch retraining would exceed power budgets.

• Privacy-Preserving Applications: Segmental learning eliminates the need to store historical
raw data, addressing data retention regulations and privacy concerns.

• Real-Time Systems: Predictable computational requirements enable consistent response
times regardless of historical data volume.

• Long-Term Learning: Growing efficiency advantage makes IMLP the only viable option
for systems intended to learn continuously over months or years.

MLP Advantages:

• Maximum Accuracy Scenarios: When computational resources are unlimited and maxi-
mum predictive performance is paramount, batch retraining on complete datasets provides
marginal accuracy improvements.

• Short-Term Deployment: For applications processing fewer than 10 segments, the compu-
tational overhead remains manageable.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D REPRODUCIBILITY ASSETS AND INSTRUCTIONS

We provide comprehensive instructions for reproducing all experimental results, with particular
emphasis on the hyperparameter optimization procedure that underpins our comparative evaluation.

D.1 SHARED HYPERPARAMETER OPTIMIZATION

Both MLP and IMLP models utilize identical optimized hyperparameters obtained through the
comprehensive search described in Section D.3. This design choice ensures fair comparison by
providing both architectures with equivalent optimization budget and regularization strategies. The
attention-specific hyperparameters for IMLP (window_size, use_attention) are set to their
default values as specified in the configuration files, focusing the optimization on general neural
network training techniques that benefit both architectures.

D.1.1 PREPROCESSING PIPELINE

Execute the data preparation:

cd data
python openml_data_processor.py --task_list openml_import.txt \

--num_workers 4 --min_segment_size 500 --max_segment_size 1000

This generates both segmented datasets (for IMLP) and cumulative datasets (for baseline models)
with consistent train/validation/test splits across all 36 tasks.

D.2 EXTERNAL DEPENDENCIES AND PLATFORM COMPATIBILITY

D.2.1 CORE DEPENDENCIES

The framework integrates with TabZilla McElfresh et al. (2023) for baseline model implementations:

Install core dependencies
pip install -r requirements.txt

D.2.2 MODEL-SPECIFIC REQUIREMENTS

Several baseline models have additional dependencies:

• Tree-based models: LightGBM, XGBoost, CatBoost with platform-specific optimizations

• Transformer models: Additional memory requirements for attention mechanisms

• Specialized architectures: DANet, NODE, SAINT with custom CUDA kernels

D.2.3 PLATFORM CONSIDERATIONS

The codebase supports both CPU and CUDA execution with automatic device detection. Mixed-
precision training (AMP) is enabled by default on compatible hardware but can be disabled for older
GPUs.

D.3 HYPERPARAMETER OPTIMIZATION FRAMEWORK

Following the methodology of Kadra et al. Kadra et al. (2021b), we employ a comprehensive
hyperparameter search for both MLP and IMLP models to ensure fair comparison. Our approach
extends beyond simple grid search to include a "regularization cocktail" that systematically explores
combinations of modern deep learning techniques.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

D.3.1 SEARCH SPACE DEFINITION

The optimization space encompasses multiple regularization families:

Implicit Regularization:

• Batch Normalization: use_batch_norm ∈ {True,False}
• Stochastic Weight Averaging: use_swa ∈ {True,False}

Explicit Regularization:

• Weight Decay: use_weight_decay ∈ {True,False}
• Weight Decay Coefficient: weight_decay ∈ [10−5, 10−1] (log-uniform)

• Dropout: use_dropout ∈ {True,False}
• Dropout Patterns: dropout_shape ∈ {funnel, long_funnel, diamond, triangle}
• Dropout Rate: dropout_rate ∈ [0.0, 0.8] (uniform)

Architectural Variations:

• Skip Connections: use_skip ∈ {True,False}
• Skip Types: skip_type ∈ {Standard,ShakeShake, ShakeDrop}
• ShakeDrop Probability: shakedrop_prob ∈ [0.0, 1.0] (uniform)

Training Techniques:

• Data Augmentation: augmentation ∈ {None,MixUp}
• Augmentation Magnitude: aug_magnitude ∈ [0.0, 1.0] (uniform)

• Mixed Precision: use_amp ∈ {True,False}
• Gradient Clipping: max_grad_norm ∈ [0.1, 10.0] (log-uniform)

D.3.2 OPTIMIZATION ALGORITHM

We employ Optuna Akiba et al. (2019) with the following configuration:

• Sampler: Tree-structured Parzen Estimator (TPE) with multivariate optimization

• Pruner: MedianPruner with 50 startup trials and 50 warmup steps

• Trials per Task: 100 trials with early stopping (patience=100)

• Training Budget: 100 epochs per trial with early stopping (patience=10)

• Objective: Minimize 1− validation balanced accuracy

D.3.3 COMPUTATIONAL REQUIREMENTS

The hyperparameter optimization requires substantial computational resources:

• Total Runtime: Approximately 72 hours for all 36 tasks

• Trials per Task: 100 trials × 36 tasks = 3,600 total optimization runs

• Storage: SQLite databases for persistence and resumption

D.3.4 EXECUTION PROTOCOL

The optimization is ran through a parallelized bash script:

#!/bin/bash
N_TRIALS=100
EPOCHS=100

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

DEVICE="cuda"
MAX_PARALLEL=22
DATA_ROOT="../data/full_datasets"

Parallel execution across all tasks
printf "%s\n" "${TASK_IDS[@]}" | xargs -I {} -P ${MAX_PARALLEL} \

bash -c 'python mlp_c.py --task_id {} --n_trials ${N_TRIALS} \
--epochs ${EPOCHS} --device ${DEVICE} \
--storage "sqlite:///optuna_db/task_{}.db" \
--data_root ${DATA_ROOT}'

Each task generates optimized hyperparameters saved as YAML files:
tuning/task_{TASK_ID}_hyperparams.yml

D.3.5 INTEGRATION WITH MAIN EXPERIMENTS

The CLI automatically loads tuned hyperparameters when available:

tuning_f = f"tuning/task_{args.task}_hyperparams.yml"
if not args.no_tuning and os.path.isfile(tuning_f):

merge_dict(hp, load_yaml(tuning_f))

This ensures that all comparative results use optimized configurations, providing a fair evaluation
baseline that reflects the current state-of-the-art in hyperparameter optimization for tabular neural
networks.

D.3.6 REPRODUCIBILITY CONSIDERATIONS

To ensure reproducible optimization:

• Fixed random seed (42) across all Optuna samplers
• Deterministic trial ordering through study persistence
• Gradient clipping and mixed precision for numerical stability
• Model checksum verification for state consistency

D.4 HARDWARE REQUIREMENTS AND ENERGY MEASUREMENT

D.4.1 HARDWARE SETUP

All experiments were conducted on a single workstation with the following hardware configuration:

Compute Platform:

• CPU: Intel Core i5-8600K @ 3.60GHz (6 physical cores, 6 logical cores)
• GPU: NVIDIA GeForce RTX 2080 Ti Rev. A (CUDA Compute Capability 7.5)
• Memory: 15GB RAM
• Architecture: x86_64

Software Environment:

• Operating System: Debian GNU/Linux 12 (bookworm)
• Kernel Version: 6.1.0-32-amd64
• Compiler: GCC 12.2.0 (Debian 12.2.0-14)
• CUDA Toolkit: 11.8.89

Limitations:

• Memory constraints may limit batch sizes for larger models

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• Single-GPU configuration restricts parallel training capabilities
• Total system memory (15GB) may constrain certain memory-intensive operations

All timing measurements and energy consumption data reported in this work are specific to this hard-
ware configuration. Performance scaling to different hardware configurations should be considered
when reproducing results, particularly for:

• Different GPU architectures (compute capability variations)
• Systems with varying memory capacities
• Multi-GPU configurations

The reported absolute performance metrics should be interpreted relative to this baseline configuration,
with relative performance improvements being the primary focus for cross-system validation.

D.4.2 ENERGY MEASUREMENT SETUP

Hardware-based Measurement (Recommended): We employ an ElmorLabs PMD-USB power
measurement device with PCIe slot adapter for precise wall-power readings at 500-800Hz sampling
rate. This setup provides ground-truth energy measurements by capturing total system power draw
during training and inference phases.

Software-based Measurement (Alternative): For systems without dedicated power measurement
hardware, the framework can fall back to software-based energy estimation using NVIDIA’s Manage-
ment Library (nvidia-smi) or Intel’s RAPL interface. However, as noted by Yang et al. (2024), these
software solutions suffer from significant limitations:

• Sampling Coverage: NVIDIA’s power sensor samples only 25% of runtime on A100/H100
cards

• Estimation Error: Up to 65% under/over-estimation compared to calibrated external meters
• Temporal Resolution: Lower sampling rates lead to missed power spikes during intensive

operations

The energy monitoring can be disabled entirely by setting appropriate flags, though this removes the
energy-efficiency evaluation component of our NetScore-T metrics.

35

	Introduction
	Related Work
	Preliminaries
	IMLP: an Incremental MLP for Tabular Data Streams
	Windowed Self-Attention Mechanism
	Sliding Window Management
	Memory and Computational Efficiency

	Energy Efficiency Analysis
	Experiments
	Conclusion
	Extended Experiments
	Datasets and Stream Segmentation
	Stream Segmentation Algorithm

	Data Retrieval and Preprocessing Protocol
	Dataset Acquisition
	Feature Preprocessing Pipeline
	Target Processing and Task Type Detection
	Data Splitting Strategy
	Model Training Protocols
	Reproducibility Measures

	Dataset Summary Regeneration Script
	Baselines

	IMLP Implementation Details
	Architecture Overview and Design Rationale
	Comparison with Standard MLP

	Layer-wise Architecture Specification
	Attention Mechanism Design
	Scaled Dot-Product Attention
	Window Management Strategy
	Feature Normalization

	Complete Implementation
	Computational Complexity Analysis
	Time Complexity
	Memory Complexity
	Comparison with Replay Methods

	Hyperparameter Configuration

	Extended Results
	Statistical Tests
	Friedman Omnibus Test Results
	Error Analysis and Dataset-Specific Performance
	Predictive Performance Analysis
	Efficiency-Adjusted Performance
	Landscape Analysis
	Practical Implications

	Computational Procedure
	Complete Per-Dataset Results
	Critical Difference Analysis
	Pareto-optimal Trade-offs
	Per-Segment Analysis and Learning Dynamics
	Learning Paradigm Comparison
	Energy Efficiency Analysis
	Data Efficiency and Continual Learning Effectiveness
	Cumulative Computational Cost Analysis
	Practical Deployment Implications

	Reproducibility Assets and Instructions
	Shared Hyperparameter Optimization
	Preprocessing Pipeline

	External Dependencies and Platform Compatibility
	Core Dependencies
	Model-Specific Requirements
	Platform Considerations

	Hyperparameter Optimization Framework
	Search Space Definition
	Optimization Algorithm
	Computational Requirements
	Execution Protocol
	Integration with Main Experiments
	Reproducibility Considerations

	Hardware Requirements and Energy Measurement
	Hardware Setup
	Energy Measurement Setup

