
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMLP: AN ENERGY-EFFICIENT CONTINUAL LEARNING
METHOD FOR TABULAR DATA STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data streams are rapidly emerging as a dominant modality for real-time
decision-making in healthcare, finance, and the Internet of Things (IoT). These
applications commonly run on edge and mobile devices, where energy budgets,
memory, and compute are strictly limited. Continual learning (CL) addresses
such dynamics by training models sequentially on task streams while preserving
prior knowledge and consolidating new knowledge. While recent CL work has
advanced in mitigating catastrophic forgetting and improving knowledge transfer,
the practical requirements of energy and memory efficiency for tabular data streams
remain underexplored. In particular, existing CL solutions mostly depend on replay
mechanisms whose buffers grow over time and exacerbate resource costs.
We propose a context-aware incremental Multi-Layer Perceptron (IMLP), a com-
pact continual learner for tabular data streams. IMLP incorporates a windowed
scaled dot-product attention over a sliding latent feature buffer, enabling constant-
size memory and avoiding storing raw data. The attended context is concate-
nated with current features and processed by shared feed-forward layers, yield-
ing lightweight per-segment updates. We evaluate IMLP against state-of-the-art
(SOTA) tabular models on real-world concept drift benchmark tabular datasets de-
signed to assess models under temporal distribution shifts. Compared to TabPFNv2
under the incremental concept drift, IMLP has 22.7% total energy reduction while
only a 0.05 final balanced accuracy drop. The results show that the proposed
attention-based feature memory design can effectively guide the energy consump-
tion while achieving the highest final accuracy in the abrupt concept drifts among
all network baselines.

1 INTRODUCTION

Tabular data, structured as a collection of features and instances, is one of the most common and
practical data types in practical machine learning applications, for example, in both high-stakes
domains and lower-stakes domains (Amrollahi et al., 2022; Ramjattan et al., 2024; Li et al., 2025b).
As such domains increasingly rely on streaming data sources, tabular data streams are gaining
significant attention due to their ability to capture continuous, real-time updates rather than static
snapshots (Borisov et al., 2022). In particular, most such scenarios often occur on edge devices, IoT
systems, and mobile platforms, where energy budgets, battery life, and computational resources are
severely constrained Chang et al. (2021).

To tackle those real-world dynamics, Continual Learning (CL) (Wang et al., 2024a), also referred to as
lifelong learning (Lee & Lee, 2020), enables models to incrementally acquire, update, accumulate, and
exploit knowledge over time. While significant progress has been made on overcoming catastrophic
forgetting (Kemker et al., 2018; Li et al., 2019; Bhat et al., 2022) and knowledge transfer (Ke et al.,
2021; Li et al., 2024; Shi et al., 2024a), much less is known about their computational analysis and
energy efficiency (Li et al., 2023; Trinci et al., 2024).

Energy-efficient continual learning (EECL) has become a practical necessity for real-world applica-
tions that require real-time adaptation on resource-constrained platforms (Chavan et al., 2023; Shi
et al., 2024b; Trinci et al., 2024; Xiao et al., 2024). Meanwhile, most CL progress to date targets
image (Trinci et al., 2024; Chavan et al., 2023; Shi et al., 2024b) and language tasks (Li et al., 2025a;
Wang et al., 2024b). In contrast, tabular data streams remain underexplored. Tabular models that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

excel on static datasets do not transfer directly to non-stationary streams with tight memory, compute,
and energy budgets. Existing CL methods rarely target these constraints. In particular, replay-based
strategies rely on buffers that grow over time, increasing storage and compute, and hindering on-
device deployment. This gap motivates methods for tabular streaming CL that sustain accuracy under
distribution shift while operating at low energy cost, with fixed memory, and without storing raw
examples. Moreover, trade-offs between energy consumption and predictive performance matter in
lower-stakes domains, especially when the cost of electricity is taken into account. Achieving this
under strict resource budgets while mitigating catastrophic forgetting remains a central challenge for
Green AI (Henderson et al., 2020; Bouza et al., 2023; Trinci et al., 2024; Różycki et al., 2025).

This paper introduces Incremental Multi-Layer Perceptron (IMLP), a novel method for energy-
efficient continual learning, particularly focusing on tabular data streams. IMLP augments a simple
MLP with self-attention capabilities, while maintaining efficiency in compute, memory, and energy
usage. To be specific: 1) IMLP employs a windowed scaled dot-product attention with a sliding
feature buffer, enabling the model to adaptively attend to the most relevant parts of the stream while
storing only latent features without needing to revisit raw historical data. 2) The resulting attended
representation is concatenated and passed through two shared feed-forward layers followed by a
classifier head, serving as the MLP learner for classification tasks. This design avoids the unbounded
memory growth inherent to replay baselines (Rebuffi et al., 2017; Li & Hoiem, 2017; Lopez-Paz &
Ranzato, 2017), while remaining computationally lightweight on resource-constrained devices. To
evaluate hardware-grounded energy-accuracy trade-offs in CL on tabular data streams, we provide
quantitative Pareto AUC and global efficiency analysis.

2 RELATED WORK

Traditional tabular data models can be roughly categorized into three main groups: Gradient-Boosted
Decision Trees (GBDTs) (Friedman, 2001), Neural Networks (NNs) (Goodfellow et al., 2016), and
classic models (e.g., SVMs (Cortes & Vapnik, 1995), k-NN (Cover & Hart, 1967), linear model (Cox,
1958), and simple decision trees (Loh, 2011)).

GBDTs and their variants for CL. Traditional GBDTs such as XGBoost (Chen & Guestrin, 2016),
LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2019) remain strong baselines
for tabular classification due to their efficiency and robustness, especially on large or irregular static
datasets. However, they are not naturally suited for CL: (1) new data typically requires retraining
from scratch, since tree splits and boosting weights depend on the full dataset (Chen & Guestrin,
2016; Ke et al., 2017; Prokhorenkova et al., 2019); (2) without access to past data, models trained
only on new samples overwrite previous knowledge, causing catastrophic forgetting (Wang et al.,
2024a); and (3) unlike NNs, GBDTs lack mechanisms for knowledge transfer across tasks (Ke et al.,
2021; Parisi et al., 2019; De Lange et al., 2021). Extensions such as online bagging and boosting (Oza
& Russell, 2001) or warm-starting (Pedregosa et al., 2011), and adaptive XGBoost (Montiel et al.,
2020), partially mitigate these issues, but remain limited in long-term knowledge retention due to the
lack of representation reuse, especially when compared to neural CL methods.

Classic models in CL. Both standard SVMs (Cortes & Vapnik, 1995) and decision trees (Loh, 2011)
are batch learners, requiring retraining on the full dataset when new tasks arrive. SVMs can be
extended to CL through incremental or online variants such as incremental SVM (Cauwenberghs &
Poggio, 2000), LASVM (Bordes et al., 2005), and NORMA (Kivinen et al., 2004), which handle
streaming updates but still face challenges with scalability, memory growth, and forgetting. k-
NNs (Cover & Hart, 1967) trivially avoid forgetting if all data is stored, but this violates the constraint
of no access to past raw inputs and is impractical under resource limits. Linear models (Cox, 1958)
are efficient but prone to forgetting under distribution shifts, as updates overwrite prior knowledge.
Incremental decision trees, such as Hoeffding Trees (Domingos & Hulten, 2000), and streaming
ensembles (Bifet et al., 2010; Gomes et al., 2017) can adapt to data streams without full retraining.
Still, their accuracy degrades under severe drift, since they lack strong representation learning, and
ensemble methods can be computationally expensive.

Neural models in CL. Recent studies demonstrate that advanced NNs (Zabërgja et al., 2024; Arik
& Pfister, 2021; Kadra et al., 2021; Gorishniy et al., 2023a; Hollmann et al., 2025b; Ye et al., 2024;
Gorishniy et al., 2024) can surpass GBDTs on static tabular data in certain regimes, e.g., with well-
regularized MLPs (Kadra et al., 2021), attention-based models such as SAINT (Somepalli et al., 2021),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

or meta-learned foundation models like TabPFN and its variants (Hollmann et al., 2025b). While
their training is typically computationally intensive than that of GBDTs unless carefully tuned (Kadra
et al., 2021), NNs are generally better suited for streaming data, owing to their rich representations,
incremental updates via stochastic gradient descent, and flexible architectures. However, vanilla NNs
still suffer from catastrophic forgetting in the absence of CL strategies (Wang et al., 2024a).

CL strategies with neural models. In NNs, CL strategies are commonly categorized into
regularization-based approaches (Kirkpatrick et al., 2017; Zenke et al., 2017), replay-based strate-
gies (Rebuffi et al., 2017; Shin et al., 2017), attention-based retrieval mechanisms (Chaudhry et al.,
2019; Aljundi et al., 2017), and architectural methods (Rusu et al., 2016). Regularization-based
methods, such as EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2017),
and LwF (Li & Hoiem, 2016), mitigate forgetting by constraining updates to parameters deemed
important for previously learned tasks. Replay-based strategies, including iCaRL (Rebuffi et al.,
2017) and generative replay (Shin et al., 2017), maintain past knowledge by rehearsing stored samples
or synthetic data. Attention-based retrieval mechanisms, such as A-GEM with attention (Chaudhry
et al., 2019) and attentive experience replay (Aljundi et al., 2017), employ attention to prioritize and
retrieve relevant past experiences. Architectural methods, exemplified by PNNs (Rusu et al., 2016),
expand model capacity by freezing previously trained components and introducing new modules for
incoming tasks.

Despite recent progress, energy-efficient CL for tabular data streams remains largely unexplored (Cha-
van et al., 2023; Trinci et al., 2024). Real-world tables frequently undergo domain drift (e.g., quarterly
finance transactions, evolving sensor logs, healthcare data) without changes to the label space. Yet, no
standardized domain-incremental learning benchmark that considers energy-performance trade-offs
currently exists for tabular streams. Moreover, pre-trained transformers for tabular data (Gorishniy
et al., 2023b; Hollmann et al., 2025b) and feature-level or attention-based CL strategies (Pelle-
grini et al., 2020; Vaswani et al., 2017a; Jha et al., 2023) show promise for low-storage, privacy-
preserving CL, but their effectiveness under domain drift has not been systematically evaluated.
Here, we bridge this gap by introducing our method, establishing fair comparisons, and quantifying
energy–performance trade-offs.

3 IMLP: AN INCREMENTAL MLP FOR TABULAR DATA STREAMS

Owing to the general difficulty and diversity of challenges in CL, we focus on a simplified task
incremental learning setting (Parisi et al., 2019; De Lange et al., 2021). In this setting, a model is
trained on a sequence of tasks {Tt}Tt=1, where the data for each task arrives incrementally at time t.

3.1 PROBLEM STATEMENT

Problem Setup. We consider a sequence of tasks {Tt}Tt=0, where the training data for each task
arrives incrementally at time t. Each task Tt is associated with data (Xt,Yt) randomly drawn from
distribution Dt, where Xt denotes the set of data samples and Yt is the corresponding ground truth
labels. Our goal is to design an incremental learner fθ that updates online and minimizes the expected
risk L̂t(θ) across all observed tasks, with limited or no access to the data from earlier tasks t < T ,

L̂t(θ) :=

T∑
t=0

E(Xt,Yt)∼Dt [ℓt(θ)], (1)

where ℓt(θ) represents the loss function of the model fθ(Xt, Ht) with input Xt, parameter θ, and the
historical features Ht at time t. Additionally, we aim to achieve energy efficiency.

Assumptions. We formalize this with standard non-convex optimization assumptions for NNs.
(A1) There exists RX > 0 such that ∥Xt∥2 ≤ RX for all samples in the arrived stream Tt.
(A2) The precomputed latent features are ℓ2-normalized, i.e., ∥ht,j∥2 ≤ 1 for all t, j.
(A3) Training is performed with weight decay and early stopping, so that for some Rθ > 0,
∥θ∥2 ≤ Rθ throughout optimization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 ARCHITECTURE OVERVIEW

For efficient learning from the current task Tt while maintaining performance on previously learned
tasks, we propose an incremental multi-layer perceptron (IMLP) architecture, as shown in Figure 1.
We employ two strategies: (1) processing each task with an augmented MLP learner moduleM1att

Figure 1: IMLP architecture. IMLP sequentially takes Tt as raw input and outputs predictive
performance pθ(Yt).
that incorporates limited historical context Ht in a window size W through a variant of scaled
dot-product attention (Vaswani et al., 2017b); and (2) maintaining an FIFO feature buffer with fixed
memory over time to handle the concept drifts (Hoens et al., 2012), which facilitates representation
reuse while keeping memory and computation cost constrained as new data evolves.

Given the current input Xt ∈ Rdx , a hidden dimension dh, and a FIFO memory of the past L features.
We denote by Ht = [ht,1, . . . , ht,L]

⊤ ∈ RL×dh the matrix that stacks the latent features in the
window associated with time t, with learnable maps Wq ∈ Rdh×dx and Wk ∈ Rdh×dh , IMLP forms

qt = WqXt + bq ∈ Rdh , (2)

Kt = HtW
⊤
k + 1Lb

⊤
k ∈ RL×dh , (3)

st = Ktqt ∈ RL, (4)

s̃t =
1√
dh

st, (5)

αt = softmax(s̃t) ∈ RL, (6)

where

αt,j =
exp(s̃t,j)∑L
j=1 exp(s̃t,j)

for j = 1, . . . , L(L ≤W), (7)

and 1L ∈ RL is the all-ones vector used to broadcast the bias bk to all L rows. ht,j ∈ Rdh is the
feature vector of the j-th most recent sample before Xt (with j = 1 being the most recent). The j-th
row Kt,j ∈ Rdh is the key for the j-th past feature in the window.

The attention-based feature memory is the weighted sum of the keys ct = α⊤
t Kt. Finally, IMLP

concatenates the context with the current input x̃t = [Xt, ct]
⊤ ∈ Rdx+dh and then feeds it to the

feature extractor ft,θ = ϕ(x̃t) ∈ Rdh , where ϕ(·) is a two-layer MLP, and the classifier outputs
ŷt = Wcls ·ft,θ+bcls where Wcls ∈ RC×dh and bcls denotes the weight matrix and bias, respectively.
This corresponds to the model’s performance pθ(Yt) at the time t.

In the following, we detail the properties of the proposed attention-based feature memory design to
achieve EECL over tabular data streams.

3.3 CONVERGENCE ANALYSIS OF IMLP

Let A(Xt, Ht; θatt) := ct denote the attention-based context, where θatt = (Wq, bq,Wk, bk) and Ht

collects the latent features in the window at the time t.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Lemma 3.1 (Bounded context vector). Under (A2), there exists Bc > 0 (depending only on Wk and
bk) such that ∥ct∥2 ≤ Bc for all i.
Lemma 3.2 (Smooth attention map). Under (A1)–(A3), the map (Xt, Ht, θatt) 7→ A(Xt, Ht; θatt)
is continuously differentiable, and its Jacobian with respect to θatt is bounded on the compact set

K := {(Xt, Ht, θatt) : ∥Xt∥2 ≤ RX , ∥ht,j∥2 ≤ 1, ∥θatt∥2 ≤ Rθ}. (8)

In particular, there exists Latt > 0 such that

∥A(Xt, Ht; θ
(1)
att)−A(Xt, Ht; θ

(2)
att)∥2 ≤ Latt∥θ(1)att − θ

(2)
att∥2, (9)

for all θ(1)att, θ
(2)
att ∈ K.

Correspondingly, the full network can be written as

fθ(Xt, Ht) := Wcls ϕθ

(
[Xt;A(Xt, Ht; θatt)]

)
+ bcls, (10)

where ϕθ is the two-layer ReLU feature extractor, and the per-sample loss is

ℓt(θ) = CE
(
softmax(fθ(Xt, Ht)),Yt

)
. (11)

Lemma 3.3 (Smooth network and loss). Under (A1)–(A3), fθ(Xt, Ht) is continuously differentiable
with bounded Jacobian on {θ : ∥θ∥2 ≤ Rθ}, and ℓt(θ) has Lipschitz-continuous gradient on the
same set.

For a fixed segment (task) Tt with data (Xt, Ht,Yt), where {(Xt,i, Ht,i,Yt,i)}nt
i=1 denotes the samples

in this segment, we define L̂t(θ) :=
1
nt

∑nt

i=1 ℓt,i(θ).

Theorem 3.4 (Segment-wise smooth empirical loss). Under (A1)–(A3), the empirical loss L̂t(θ)
is (i) bounded below; (ii) continuously differentiable on {θ : ∥θ∥2 ≤ Rθ}; and (iii) has Lipschitz-
continuous gradient on this compact set.

Corollary 3.5 (Per-segment convergence of IMLP). Consider optimizing L̂t(θ) with a stochastic
first-order method (e.g., SGD or Adam) under standard step-size conditions and weight decay, as in
our training loop. Then the iterates on segment Tt converge to a first-order stationary point in the
sense that

∥∇L̂t(θk)∥2 → 0 as k →∞, (12)

or, in the practical finite-epoch setting, reach a parameter θ⋆ with small gradient norm ε. In
particular, the attention-based feature memory acts as a bounded, smooth transformation of a finite
latent window, so IMLP behaves like a standard MLP with an augmented input s̃t and inherits the
usual segment-wise convergence guarantees of non-convex deep networks.

Remark on non-stationary streams. The analysis above is segment-wise. Under standard
assumptions, the attention-based feature memory yields a bounded, smooth network with
Lipschitz-continuous gradients, so first-order optimizers converge to a stationary point of the
empirical loss on each fixed segment Tt. However, we do not claim convergence to any global
limit when the data-generating process is non-stationary across t. Instead, the theory guarantees
that, conditional on the data observed in each segment, the optimization problem remains
well-behaved despite using attention over a finite feature memory.

Proofs of Lemmas 3.1–3.3 and Theorem 3.4 are given in the appendix A.

3.4 FIFO ATTENTION-BASED FEATURE MEMORY AND TIME COMPLEXITY

Unlike replay buffers that grow with the number of seen samples, our FIFO memory has constant
memory complexity in time. The attention module adds the query layer Wq ∈ Rdh×dx , bq ∈
Rdh and key layer Wk ∈ Rdh×dh , bk ∈ Rdh , hence, the parameter memory for attention denotes
O(dx · dh + d2h), which is constant with respect to the stream length and number of tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

At time t, the FIFO buffer stores W latent feature vectors Ht ∈ RW×dh , it costs O(Wdh) memory
per stream, independent of how long the stream has run. In the batched implementation, each FIFO
buffer holds W feature tensors, each of shape [B, dh]; hence, the runtime memory overhead is
O(BWdh).

For a single forward step with batch size B, the total computational efficiency of IMLP is given
by query computation O(Bdxdh), key computation O(BWd2h), attention scores and weights
O(Bdxdh +BWd2h +BWdh), as well as the rest of the network O(B(dx + dh) · 512)), where 512
is the feature dimension of the FC1, FC2 layer in the feature extraction module using MLP. Therefore,
the incremental cost scales linearly in B and W , its per-step computational cost scales as

O(Bdh(dx +Wdh)) = O(Bdh(dx +Wdh))︸ ︷︷ ︸
query and key

+O(Bdh(dx +Wdh +W))︸ ︷︷ ︸
attention scores and weights

+O(B(dx + dh)512)︸ ︷︷ ︸
feature MLP

, (13)

where for a fixed B and dh, the incremental overhead of IMLP over a vanilla MLP is controlled and
linear in the window size W .

Therefore, FIFO attention-based feature memory adds O(dxdh + d2h) parameters and O(BWdh)
runtime memory, while its per-step computational cost scales as O(Bdh(dx + Wdh)), yielding
constant memory in time with respect to the length of the data stream.

3.5 ENERGY EFFICIENCY ANALYSIS OF IMLP

Energy model and assumptions. We assume that for a fixed device and implementation, energy
is approximately linear in the number of floating-point operations (FLOPs), up to device-specific
constants and small overhead. Let Ftrain denote the number of FLOPs required to perform one
forward-and-backward pass of IMLP on a single sample. We adopt a standard abstract energy model
with the following assumptions:
(A4) On a fixed hardware platform (GPU/CPU), there exist constants 0 < ηmin ≤ ηmax such that
the energy consumed per FLOP lies in [ηmin, ηmax].
(A5) The additional system overhead per training step (e.g., kernel launches, bookkeeping) is
bounded by a constant E0 independent of the sample index and segment.
Lemma 3.6 (FLOP complexity per sample). Let C be the number of classes and din be the input
dimension. For a single sample (Xt,i, Ht,i,Yt,i), the FLOP count of a forward-and-backward step of
IMLP satisfies

Ftrain ≤ Karch
(
dindh + Wd2h + d2h + dhC

)
, (14)

for an architecture-dependent constant Karch > 0 that does not depend on nt or t.

Theorem 3.7 (Per-segment energy complexity bound). Consider a segment Tt with nt training
samples. Under (A4)-(A5) and Lemma 3.6, the total training energy consumed by IMLP on this
segment satisfies

Etrain
t ≤ Ctrain Emax nt

(
dindh +Wd2h + d2h + dhC

)
+ C0, (15)

for some hardware- and implementation-dependent constants Ctrain > 0 and C0 ≥ 0. Similarly, the
inference energy on the test set of size ntest admits

Einfer
t ≤ Cinfer n

test(dindh +Wd2h + d2h + dhC
)
+ C ′

0, (16)

with another constant Cinfer > 0 and overhead C ′
0 ≥ 0.

Proofs of Lemma 3.6 and Theorem 3.7 are given in the appendix B.
Corollary 3.8 (Energy complexity over the full non-stationary stream). Let the data stream be
partitioned into T segments {Tt}Tt=0 with sizes {nt}Tt=1. Under the same assumptions as Theorem 3.7,
the total training energy over the entire stream satisfies

Etrain
total =

T∑
t=1

Etrain
t ≤ CtrainEmax

(T∑
t=1

nt

)(
dindh +Wd2h + d2h + dhC

)
+ TC0, (17)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and the total inference energy satisfies

Einfer
total ≤ Cinfer n

test
total

(
dindh +Wd2h + d2h + dhC

)
+ TC ′

0. (18)

Theoretically, for a fixed dh, W , and Emax, both training and inference energy grow at most linearly
in the total number of processed examples

∑
t nt and in the effective model size. The attention-based

feature memory only adds the bounded term Wd2h and does not change this linear energy scaling.

Remark on the energy complexity bounds. The bounds above explain two aspects of our
empirical observations: (1) on a fixed device, IMLP has a predictable energy profile, scaling
linearly with the number of samples and epochs; and (2) The attention-based feature memory
contributes a controlled overhead proportional to Wd2h, which remains small in our IMLP
because W and dh are fixed. Our measured Joule values are therefore consistent with an energy
complexity that is linear in the stream size, and the theoretical bounds clarify that this behavior
is not specific to a particular dataset, but a structural property of the IMLP architecture and
training procedure.

4 ENERGY-ACCURACY TRADE-OFFS

In many optimization problems, objectives are inherently conflicting; for instance, improving the
accuracy of a NN increases energy consumption or latency. A classical way to study such trade-offs
is through Pareto front analysis (Giagkiozis & Fleming, 2014).

Our convergence and energy bounds naturally lead to a bi-objective viewpoint, where we jointly
consider predictive performance and energy consumption. For a fixed segment Tt, an IMLP configu-
ration is determined by its architecture (dh,W) and optimization budget (e.g., number of iterations,
learning-rate schedule). Each such configuration yields a pair

(
Et(θ), Pt(θ)

)
, where Et(θ) denotes

the total energy consumed on Tt and Pt(θ) = pθ(Yt) denotes the resulting segment-wise model
performance (e.g., balanced accuracy). We say that a configuration θ(1) Pareto-dominates θ(2) if

Et(θ
(1)) ≤ Et(θ

(2)), Pt(θ
(1)) ≥ Pt(θ

(2)), (19)

with at least one strict inequality. The Pareto set

Pt :=
{
θ : ∄ θ′ s.t. Et(θ

′) ≤ Et(θ), Pt(θ
′) ≥ Pt(θ) and one inequality is strict

}
(20)

collects all Pareto-efficient configurations, and its image in the energy–accuracy plane forms the
Pareto frontier.

Intuitively, on each segment Tt, our smoothness and Lipschitz-gradient assumptions imply that
stochastic first-order methods require on the order of 1/ε2 iterations to reach an ε-stationary point
of the empirical loss L̂t(θ), i.e., ∥∇L̂t(θk)∥2 ≤ ε. Each iteration has a bounded computational cost
proportional to dindh +Wd2h + d2h + dhC (Lemma 3.6), and our energy model (Theorem 3.7) shows
that energy is proportional to this cost up to device-dependent constants. Combining these results
yields the scaling

Etrain
t (ε) = O

(
dindh +Wd2h + d2h + dhC

ε2

)
. (21)

Thus, reducing the optimization tolerance ε leads to a more than linear increase in training energy,
with the rate governed by the architectural parameters (dh,W). For any fixed architecture, attainable
pairs

(
Et(θ), Pt(θ)

)
therefore lie on or above a decreasing curve in the energy–accuracy plane:

improving performance inevitably requires a disproportionately large increase in energy.

5 EXPERIMENTS

Setup and Configuration. All experiments were conducted on a single workstation equipped with an
Intel® Core™ i5-8600K Processor, a NVIDIA GeForce RTX 2080 Ti GPU, 16GB DDR4 RAM, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

an NVMe SSD for data and model checkpoints. To obtain ground-truth measurements, we instrument
our CL pipeline with an ElmorLabs PMD-USB power meter (ElmorLabs, 2023) and corresponding
PCI-E slot adapter (ElmorLabs, 2025) for real-life energy consumption measurement.

Datasets and Baselines. We evaluate our method on real-world data streams using the River’s
INSECTS datasets1, which are specifically chosen to represent challenging concept drift scenarios.
The datasets include tasks that exhibit both abrupt and incremental concept drift as the underlying
data distribution changes over time (Souza et al., 2020). We compare our IMLP model against a
comprehensive set of seven recent SOTA methods for tabular classification, covering three distinct
model categories: 1) foundation models: TabPFNv2; 2) deep NN baselines: RealMLP, ModernNCA,
and MLP; and 3) GBDTs: CatBoost, XGBoost, and LightGBM. More details are in Appendix C.2.

Evaluation Protocol. A crucial consideration for this study is that our selected baselines were pri-
marily developed for static, independent and identically distributed data. While an ideal comparison
in our incremental environment would involve creating a dedicated CL variant of each GBDT and
NN baseline, e.g., equipped with specialized components for memory and catastrophic forgetting mit-
igation, such an undertaking is outside the scope of this work. To establish a methodologically sound
comparison, we standardize the data flow for all models by applying our FIFO buffer mechanism.
This enforces a segmental training mode with a limited memory window, thereby comparing IMLP
against the SOTA under the same challenging, resource-constrained sequential protocol.

Statistical Analysis and Metrics. For a fair evaluation, all datasets undergo the same preprocessing
pipeline, with an 85%-15% stratified split used for training and validation/testing within the segmental
mode. To assess the statistical significance of performance differences across the evaluated scenarios,
we first conduct the Friedman test (Friedman, 1937). If the null hypothesis is rejected, we perform
post-hoc analyses using the Wilcoxon signed-rank test (Wilcoxon, 1945) with Holm correction (Holm,
1979), along with critical difference analysis (Nemenyi, 1963). All models are evaluated based on six
key metrics: balanced accuracy, log-loss, energy consumption, execution time, and the composite
Pareto (AUC and global efficiency) metrics that capture the crucial energy-accuracy trade-offs.

5.1 ABLATION STUDY: IMPACT OF ATTENTION, dh, W , AND BUFFER STRATEGY CHOICES

Attention and Buffer Strategy Choices. We first ablated the core components, i.e., the attention
module and buffer strategy, on the Insects-abrupt-drift dataset to evaluate the impact of the attention
and buffer strategy choices on model performance and energy consumption. We compared our default
FIFO strategy against a similarity-based strategy, which replaces the most similar feature in the buffer
to maximize diversity. The results are presented in Figure 2.

Disabled Enabled

0.2

0.3

0.4

0.5

0.6

0.7

Ba
la

nc
ed

 A
cc

ur
ac

y

0.376

0.568

0

1

2

3

4

5

6

To
ta

l E
ne

rg
y

ov
er

 A
ll

St
re

am
s (

kJ
)

4.135

6.083

(a) Attention.

Similarity FIFO

0.2

0.3

0.4

0.5

0.6

0.7

Ba
la

nc
ed

 A
cc

ur
ac

y

0.452

0.568

0

1

2

3

4

5

6

To
ta

l E
ne

rg
y

ov
er

 A
ll

St
re

am
s (

kJ
)

4.680

6.083

(b) Buffer Strategy.

Figure 2: Ablation study. (a) Attention. (b) Buffer strategy.

Figure 2a compares models with
and without attention, while Fig-
ure 2b reports results for different
buffer replacement strategies. En-
abling attention substantially im-
proves the predictive performance
(the median balanced accuracy in-
creases from 0.376 to 0.568) but
also raises total energy consump-
tion by approximately 47.11%.
The FIFO strategy outperforms
the diversity-maximizing similar-
ity strategy, which highlights the
importance of recency in drifting streams. The results indicate that for handling concept drift in
data streams, temporal locality (preserving the most recent samples) is more critical than feature
diversity. Meanwhile, the similarity-based buffer strategy has a smaller influence on the total energy
consumption compared to the FIFO strategy. Overall, these ablations indicate that the buffer strategy
tends to trade additional energy for improved accuracy, while attention acts as the primary lever to
control the energy footprint at a given performance level.

1https://riverml.xyz/dev/api/datasets/Insects/

8

https://riverml.xyz/dev/api/datasets/Insects/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Impact of dh and W . We also ablated the window size W and hidden dimensions dh on the model
performance and total energy cost under the non-stationary distributions, as depicted in Figure 3.

dh = 64 dh = 128 dh = 256 dh = 512

0.2

0.3

0.4

0.5

0.6

0.7

Ba
la

nc
ed

 A
cc

ur
ac

y

0.167

0.394

0.482

0.542

0

1

2

3

4

5

To
ta

l E
ne

rg
y

ov
er

 A
ll

St
re

am
s (

kJ
)

2.559

4.424

4.986 5.180

(a) Hidden Dimensions dh.

W=1 W=5 W=10 W=15 W=20

0.4

0.5

0.6

0.7

Ba
la

nc
ed

 A
cc

ur
ac

y

0.451

0.516
0.482

0.525
0.546

0

1

2

3

4

5

To
ta

l E
ne

rg
y

ov
er

 A
ll

St
re

am
s (

kJ
)

4.288

5.117 4.986

5.656
5.301

(b) Window Sizes W .

Figure 3: Overview of the impact of dh and W under the Insects-abrupt-drift dataset.

Figure 3a compares with different hidden dimension values (dh = 64, 128, 256, 512) with a fixed
window size (W = 10), in which the median balanced accuracy improves significantly as the dh
increases from 64 to 512. Correspondingly, the total energy consumption increases from 64 to 512.
Figure 3b presents the results for different window sizes (W = 1, 5, 10, 15, 20) with a fixed dh = 256.
The median balanced accuracy slightly improves as the window size increases, plateauing around
W = 10 to W = 20. However, its upward trend is not linearly dependent on the window size.

Therefore, the attention-based FIFO feature buffer module, including the hidden dimension setting,
significantly impacts the predictive performance improvement and energy consumption reduction
under the non-stationary distributions.

5.2 EVALUATION UNDER ABRUPT AND INCREMENTAL DRIFTS

Figure 4 compares the dynamic performance and energy consumed when data arrives in sequence on
the abrupt- and incremental-balanced drift scenarios.

0 5 10 15 20 25
Segment Number

0.0

0.2

0.4

0.6

0.8

1.0

Ba
la

nc
ed

 A
cc

ur
ac

y

CATBOOST
IMLP

LIGHTGBM
MLP

MODERNNCA
REALMLP

TABPFNV2
XGBOOST

(a) Balanced accuracy under the abrupt drift.

0 5 10 15 20 25
Segment Number

0
100
200
300
400
500
600
700
800

To
ta

l E
ne

rg
y

(Jo
ul

es
)

CATBOOST
IMLP

LIGHTGBM
MLP

MODERNNCA
REALMLP

TABPFNV2
XGBOOST

(b) Energy consumed under the abrupt drift.

0 6 12 18 24 30
Segment Number

0.0

0.2

0.4

0.6

0.8

1.0

Ba
la

nc
ed

 A
cc

ur
ac

y

CATBOOST
IMLP

LIGHTGBM
MLP

MODERNNCA
REALMLP

TABPFNV2
XGBOOST

(c) Balanced accuracy under the incremental drift.

0 6 12 18 24 30
Segment Number

0

100

200

300

400

500

To
ta

l E
ne

rg
y

(Jo
ul

es
)

CATBOOST
IMLP

LIGHTGBM
MLP

MODERNNCA
REALMLP

TABPFNV2
XGBOOST

(d) Energy consumed under the incremental drift.

Figure 4: Overview of the model performance and energy consumption under different concept drifts.

Abrupt drifts. Figure 4a shows that IMLP reacts strongly to abrupt drifts with immediate accuracy
degradation, while it also demonstrates a robust ability to recover in the following segment using

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the new training data. For example, segments 9 and 16 show significant drops in balanced accuracy
(0.338 and 0.436); however, the accuracy recovers to 0.548 at segment 11 and 0.582 at segment 17,
respectively, and the final accuracy ranked second (lower than LightGBM equipped with FIFO buffer)
among the methods evaluated. The training energy required for such adaptation and recovery tends to
be significantly higher than that of the average non-drift segment, as IMLP is effectively retrained
from the previous segment’s state, which necessitates gradient updates across all layers. Additionally,
it must utilize the attention mechanism to analyze features from the memory buffer. Notably, the
results show that the FIFO buffer keeps the LightGBM stable and prevents forgetting, while it ensures
that this stability is maintained with the lowest computational cost and fastest adaptation speed among
the compared models, as shown in Figure 4b.

Incremental drifts. Figure 4c depicts that TabPFNv2 (0.716) outperforms under the incremental
concept drifts, followed by CatBoost (0.691), LightGBM (0.666), and IMLP (0.666), while it
consumes the highest total energy as shown in Figure 4d. Still, GBDTs keep the lowest energy
consumption. The IMLP’s energy profile is volatile because it is a gradient-based model operating
with an aggressive adaptation policy controlled by a performance-based early stopping mechanism.
This design means its energy consumption becomes a direct, fluctuating measure of the difficulty
of adapting to the new segment’s concept. Consequently, most NN baselines (MLP, RealMLP,
ModernNCA), when equipped with the FIFO buffer, exhibit similar energy volatility.

Energy-accuracy trade-offs. Table 1 presents the trade-off analysis based on final balanced accuracy,
total energy consumed, quantitative Pareto AUC, and global Pareto efficiency.

Table 1: Trade-off analysis.

Data Method FinalAcc (↑) TotalEnergy (↓) AUC (↑) Efficiency (↑)

ab
ru

pt

TabPFNV2 0.244 8316.162 0 0
RealMLP 0.393 6325.562 0.177 0
MLP 0.562 5408.748 0.551 0
ModernNCA 0.647 4424.620 0.935 1.0
IMLP 0.675 6622.577 0.435 1.0

in
cr

em
en

ta
l TabPFNV2 0.716 9159.547 0 1.0

RealMLP 0.354 6568.508 0 0
MLP 0.562 6500.125 0.396 0
ModernNCA 0.620 5291.275 0.737 1.0
IMLP 0.666 7082.398 0.463 1.0

In abrupt concept drift, IMLP achieves the
highest final balanced accuracy (0.675),
while costing 49.7% energy more than that
of ModernNCA. Compared to TabPFNv2
under the incremental concept drift, IMLP
has 22.7% total energy reduction while
only a 0.05 final balanced accuracy drop.
Both IMLP and ModernNCA remain a
global Pareto efficiency of 1.0 in both con-
cept drifts, indicating that they are most
often on the neural-global Pareto frontier.

Summary of IMLP’s strengths. IMLP
offers several notable advantages over related tabular methods: (1) it is simple and inherently suitable
for streaming tabular learning without replaying past raw inputs; and (2) it is lightweight and tunable
in both computation and memory, with costs independent of the length of the data stream, yielding an
energy-efficient solution.

6 CONCLUSION

This paper addresses the critical gap of EECL on tabular data streams by introducing IMLP, a
novel incremental MLP model. IMLP employs a novel attention-based feature replay with context
retrieval and sliding buffer updates, integrated into a minibatch training loop for streaming tabular
learning. Experiments show that IMLP matches the accuracy of neural baselines under no replay
while substantially reducing runtime and energy costs. IMLP achieves up to 22.7% energy reduction
compared to TabPFNv2, while maintaining competitive average accuracy. Positioned optimally on
the neural Pareto frontier, IMLP consistently delivers efficiency gains across abrupt and incremental
concept drift datasets.

Limitations and Future Work. Despite these exciting findings, IMLP currently treats baselines on
River’s Insets benchmarks in an experimental setting. A promising next step is to compare the method
with up-to-date models on real-life lifelong settings, thereby enriching the benchmarks. Beyond that,
building a comprehensive evaluation framework would shed light on the influence of alternative CL
strategies for SOTA baselines. Ultimately, an important future direction for EECL is to extend IMLP
toward jointly optimizing the trade-offs between energy efficiency and predictive performance with
tunable parameters, ideally supported by theoretical guarantees or unified analytical frameworks for
different CL strategies on different models under non-stationary distributions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics statement. This work contributes to an energy-efficient alternative to full retraining for
tabular data streams. By a windowed scaled dot-product attention over a sliding latent feature buffer,
it enables lightweight computation and avoids unbounded memory growth in continual learning,
while achieving efficient energy consumption for deep networks. This method will be beneficial for
Green AI, especially in resource-constrained tabular data learning. All experiments are conducted
on publicly available benchmark datasets and baselines. Regarding the large language model use,
ChatGPTs, Gemini, and Grammarly were used to assist us with writing and editing, retrieving related
work, coding improvement, but all the ideas, designs, plots, and analyses are our own.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory
aware synapses: Learning what (not) to forget. CoRR, abs/1711.09601, 2017. URL http://arxiv.org/
abs/1711.09601.

Fatemeh Amrollahi, Supreeth P Shashikumar, Andre L Holder, and Shamim Nemati. Leveraging clinical data
across healthcare institutions for continual learning of predictive risk models. Scientific reports, 12(1):8380,
2022.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Consistency is the key to further mitigating
catastrophic forgetting in continual learning. In Conference on Lifelong Learning Agents, pp. 1195–1212.
PMLR, 2022.

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging bagging for evolving data streams. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 135–150. Springer,
2010.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel classifiers with online and active
learning. Journal of machine learning research, 6(Sep):1579–1619, 2005.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci. Deep
neural networks and tabular data: A survey. IEEE transactions on neural networks and learning systems, 35
(6):7499–7519, 2022.

Lucía Bouza, Aurélie Bugeau, and Loïc Lannelongue. How to estimate carbon footprint when training deep
learning models? a guide and review. Environmental Research Communications, 5(11):115014, November
2023. ISSN 2515-7620. doi: 10.1088/2515-7620/acf81b. URL http://dx.doi.org/10.1088/
2515-7620/acf81b.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine learning.
Advances in neural information processing systems, 13, 2000.

Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhaohui Cai, and Guoqing Tu. A survey of recent advances
in edge-computing-powered artificial intelligence of things. IEEE Internet of Things Journal, 8(18):13849–
13875, 2021.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, S. Dsouza, T. Ajanthan, and P. K. Dokania. Efficient lifelong learning
with a-gem. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1396–1405, 2019. doi: 10.1109/CVPR.2019.00153.

Vivek Chavan, Paul Koch, Marian Schlüter, and Clemens Briese. Towards realistic evaluation of industrial
continual learning scenarios with an emphasis on energy consumption and computational footprint. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11506–11518, 2023.

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z Chen, and Jian Wu. Danets: Deep abstract networks for tabular
data classification and regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 3930–3938, 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794.
ACM, August 2016. doi: 10.1145/2939672.2939785. URL http://dx.doi.org/10.1145/2939672.
2939785.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on information theory,
13(1):21–27, 1967.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 20(2):215–232, 1958.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE transactions
on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

12

http://arxiv.org/abs/1711.09601
http://arxiv.org/abs/1711.09601
http://dx.doi.org/10.1088/2515-7620/acf81b
http://dx.doi.org/10.1088/2515-7620/acf81b
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 71–80, 2000.

ElmorLabs. Pmd-usb (power measurement device with usb). https://www.elmorlabs.com/product/
elmorlabs-pmd-usb-power-measurement-device-with-usb/, 2023. Accessed: 2025-01-
15.

ElmorLabs. Pmd pci-e slot power measurement adapter. https://www.elmorlabs.com/product/
pmd-pci-e-slot-power-measurement-adapter/, 2025. Accessed: 2025-01-15.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pp.
1189–1232, 2001.

Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
Journal of the American Statistical Association, 32(200):675–701, 1937. ISSN 01621459, 1537274X. URL
http://www.jstor.org/stable/2279372.

Ioannis Giagkiozis and Peter J Fleming. Pareto front estimation for decision making. Evolutionary computation,
22(4):651–678, 2014.

Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard Pfharinger, Geoff
Holmes, and Talel Abdessalem. Adaptive random forests for evolving data stream classification. Machine
Learning, 106(9):1469–1495, 2017.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for
tabular data. Advances in neural information processing systems, 34:18932–18943, 2021.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem Babenko.
Tabr: Tabular deep learning meets nearest neighbors in 2023. arXiv preprint arXiv:2307.14338, 2023a.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for
tabular data, 2023b. URL https://arxiv.org/abs/2106.11959.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning with parameter-
efficient ensembling. arXiv preprint arXiv:2410.24210, 2024.

Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. Knn model-based approach in classification.
In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", pp. 986–996.
Springer, 2003.

Peter Henderson, Jierui Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau. Towards the
systematic reporting of the energy and carbon footprints of machine learning. In Proceedings of the Workshop
on Challenges in Deploying and monitoring Machine Learning Systems (EMNLP), 2020. arXiv:2002.05651.

T Ryan Hoens, Robi Polikar, and Nitesh V Chawla. Learning from streaming data with concept drift and
imbalance: an overview. Progress in Artificial Intelligence, 1(1):89–101, 2012.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor
Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular foundation model. Nature,
637(8045):319–326, 2025a.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor
Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular foundation model.
Nature, 01 2025b. doi: 10.1038/s41586-024-08328-6. URL https://www.nature.com/articles/
s41586-024-08328-6.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2):
65–70, 1979. ISSN 03036898, 14679469. URL http://www.jstor.org/stable/4615733.

David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and boosted
trees on tabular data. Advances in Neural Information Processing Systems, 37:26577–26658, 2024.

Vikramaditya Jakkula. Tutorial on support vector machine (svm). School of EECS, Washington State University,
37(2.5):3, 2006.

Soham Jana, Henry Li, Yutaro Yamada, and Ofir Lindenbaum. Support recovery with projected stochastic gates:
Theory and application for linear models. Signal Processing, 213:109193, 2023.

13

https://www.elmorlabs.com/product/elmorlabs-pmd-usb-power-measurement-device-with-usb/
https://www.elmorlabs.com/product/elmorlabs-pmd-usb-power-measurement-device-with-usb/
https://www.elmorlabs.com/product/pmd-pci-e-slot-power-measurement-adapter/
https://www.elmorlabs.com/product/pmd-pci-e-slot-power-measurement-adapter/
http://www.jstor.org/stable/2279372
https://arxiv.org/abs/2106.11959
https://www.nature.com/articles/s41586-024-08328-6
https://www.nature.com/articles/s41586-024-08328-6
http://www.jstor.org/stable/4615733

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

S. Jha et al. Neural processes for continual learning. In International Conference on Machine Learning, 2023.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on tabular
datasets. Advances in neural information processing systems, 34:23928–23941, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: a highly efficient gradient boosting decision tree. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 3149–3157, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and knowledge transfer
in continual learning. Advances in Neural Information Processing Systems, 34:22443–22456, 2021.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring catastrophic
forgetting in neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

S Kiebel and A Holmes. The general linear model. Academic Press. London, 2007.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with kernels. IEEE transactions
on signal processing, 52(8):2165–2176, 2004.

Cecilia S Lee and Aaron Y Lee. Clinical applications of continual learning machine learning. The Lancet Digital
Health, 2(6):e279–e281, 2020.

Ao Li, Chong Zhang, Fu Xiao, Cheng Fan, Yang Deng, and Dan Wang. Large-scale comparison and demonstra-
tion of continual learning for adaptive data-driven building energy prediction. Applied Energy, 347:121481,
2023.

Xiaodi Li, Dingcheng Li, Rujun Gao, Mahmoud Zamani, and Latifur Khan. Lsebmcl: A latent space energy-
based model for continual learning. In 2025 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pp. 0690–0695. IEEE, 2025a.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual structure
learning framework for overcoming catastrophic forgetting. In International conference on machine learning,
pp. 3925–3934. PMLR, 2019.

Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin Yang, Rui
Zhang, Shui Yu, et al. Unleashing the power of continual learning on non-centralized devices: A survey.
IEEE Communications Surveys & Tutorials, 2025b.

Yujie Li, Xin Yang, Hao Wang, Xiangkun Wang, and Tianrui Li. Learning to prompt knowledge transfer for
open-world continual learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 13700–13708, 2024.

Zhizhong Li and Derek Hoiem. Learning without forgetting. CoRR, abs/1606.09282, 2016. URL http:
//arxiv.org/abs/1606.09282.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017.

Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge
discovery, 1(1):14–23, 2011.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30, 2017.

David McElfresh and Ameet Talwalkar. Tabzilla benchmark. NeurIPS, 2023. Version 1.0, accessed May 2025.

Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, and Albert Bifet. Adaptive
xgboost for evolving data streams. In 2020 international joint conference on neural networks (IJCNN), pp.
1–8. IEEE, 2020.

Peter Björn Nemenyi. Distribution-free Multiple Comparisons. PhD thesis, Princeton University, 1963.

14

http://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nikunj C Oza and Stuart J Russell. Online bagging and boosting. In International workshop on artificial
intelligence and statistics, pp. 229–236. PMLR, 2001.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural networks, 113:54–71, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

F. Pellegrini et al. Latent replay for on-device continual learning. IEEE Transactions on Neural Networks and
Learning Systems, 2020. doi: 10.1109/TNNLS.2020.2971234.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features, 2019. URL https://arxiv.org/abs/1706.
09516.

Reshawn Ramjattan, Daniele Atzeni, and Daniele Mazzei. Comparative evaluation of continual learning methods
in financial and industrial time-series data. In 2024 International Joint Conference on Neural Networks
(IJCNN), pp. 1–7. IEEE, 2024.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 2001–2010, 2017.

Steven J Rigatti. Random forest. Journal of insurance medicine, 47(1):31–39, 2017.

Lior Rokach and Oded Maimon. Decision trees. In Data mining and knowledge discovery handbook, pp.
165–192. Springer, 2005.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR, abs/1606.04671, 2016.
URL http://arxiv.org/abs/1606.04671.

Rafał Różycki, Dorota Agnieszka Solarska, and Grzegorz Waligóra. Energy-aware machine learning models—a
review of recent techniques and perspectives. Energies, 18(11), 2025. ISSN 1996-1073. doi: 10.3390/
en18112810. URL https://www.mdpi.com/1996-1073/18/11/2810.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna Ebrahimi,
and Hao Wang. Continual learning of large language models: A comprehensive survey. ACM Computing
Surveys, 2024a.

Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neural networks:
An unstructured pruning framework. In The Twelfth International Conference on Learning Representations,
2024b.

H. Shin, J. K. Lee, J. Kim, J. Kim, and S. Kim. Continual learning with deep generative replay. In Advances in
Neural Information Processing Systems, pp. 2990–2999, 2017.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein. Saint:
Improved neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342, 2021.

Vinicius MA Souza, Denis M dos Reis, Andre G Maletzke, and Gustavo EAPA Batista. Challenges in
benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, 34
(6):1805–1858, 2020.

Hind Taud and Jean-Franccois Mas. Multilayer perceptron (mlp). In Geomatic approaches for modeling land
change scenarios, pp. 451–455. Springer, 2017.

Tomaso Trinci, Simone Magistri, Roberto Verdecchia, and Andrew D. Bagdanov. How green is continual
learning, really? analyzing the energy consumption in continual training of vision foundation models. arXiv
preprint arXiv:2409.18664, 2024. Accepted to GreenFOMO Workshop at ECCV 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017a. URL http://arxiv.
org/abs/1706.03762.

15

https://arxiv.org/abs/1706.09516
https://arxiv.org/abs/1706.09516
http://arxiv.org/abs/1606.04671
https://www.mdpi.com/1996-1073/18/11/2810
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017b.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,
method and application. IEEE transactions on pattern analysis and machine intelligence, 46(8):5362–5383,
2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024b. URL
https://arxiv.org/abs/2302.00487.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Hebbian learning based orthogonal
projection for continual learning of spiking neural networks. arXiv preprint arXiv:2402.11984, 2024.

Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components analysis: A deep tabular
baseline two decades later. arXiv e-prints, pp. arXiv–2407, 2024.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela Van der Schaar. Vime: Extending the success of self-
and semi-supervised learning to tabular domain. Advances in neural information processing systems, 33:
11033–11043, 2020.

Guri Zabërgja, Arlind Kadra, Christian MM Frey, and Josif Grabocka. Is deep learning finally better than
decision trees on tabular data? arXiv preprint arXiv:2402.03970, 2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International conference on machine learning, pp. 3987–3995. PMLR, 2017.

16

https://arxiv.org/abs/2302.00487

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A FORMAL PROPERTIES OF THE ATTENTION-BASED FEATURE MEMORY

We recall that the IncrementalMLP (IMLP) augments the input xi ∈ Rdin with a context vector ci ∈ R256

obtained from a finite window of past latent features Hi = {hi,1, . . . , hi,W }, and then feeds the concatenated
vector [xi; ci] into a two-layer ReLU network followed by a linear classifier.

Attention-based feature memory. Given xi and a set of past latent features Hi, IMLP computes

qi = Wqxi + bq ∈ R256, (22)

ki,j = Wkhi,j + bk ∈ R256, (23)

ei,j =
1√
256

k⊤
i,jqi, (24)

αi,j =
exp(ei,j)∑W
ℓ=1 exp(ei,ℓ)

, (25)

ci =

W∑
j=1

αi,jki,j . (26)

In practice, the latent features hi,j are ℓ2-normalized after precomputation.

The feature extractor and classifier then read

z
(1)
i = ReLU

(
W1[xi; ci] + b1

)
, (27)

z
(2)
i = ReLU

(
W2z

(1)
i + b2

)
, (28)

oi = Wclsz
(2)
i + bcls, (29)

pi = softmax(oi), (30)
ℓi(θ) = CE(pi, yi), (31)

where θ collects all network parameters, and CE denotes cross-entropy loss.

Assumptions. We make the following mild assumptions, which are standard in non-convex optimization for
neural networks:

(A1) (Bounded inputs) There exists Rx > 0 such that ∥xi∥2 ≤ Rx for all samples in the segment.

(A2) (Bounded latent features) The precomputed latent features are ℓ2-normalized, i.e., ∥hi,j∥2 ≤ 1 for all
i, j.

(A3) (Bounded parameters) Training is performed with weight decay and early stopping, so that for some
Rθ > 0, ∥θ∥2 ≤ Rθ throughout optimization.

These assumptions hold in our implementation due to explicit normalization of hi,j and the use of weight decay
and patience-based early stopping.

Lemma A.1 (Bounded context vector). Suppose (A2) holds, and let ∥Wk∥2→2 denote the operator norm of
Wk. Then there exists a constant Bc > 0 depending only on Wk and bk such that

∥ci∥2 ≤ Bc for all i.

In particular, one can take Bc = ∥Wk∥2→2 + ∥bk∥2.

Proof. For each j, we have

∥ki,j∥2 = ∥Wkhi,j + bk∥2 ≤ ∥Wk∥2→2 ∥hi,j∥2 + ∥bk∥2 ≤ ∥Wk∥2→2 + ∥bk∥2. (32)

Define Bc := ∥Wk∥2→2 + ∥bk∥2. Since (αi,1, . . . , αi,W) is a probability vector, the context vector ci is a
convex combination of the keys:

ci =

W∑
j=1

αi,jki,j .

Thus

∥ci∥2 ≤
W∑
j=1

αi,j∥ki,j∥2 ≤
W∑
j=1

αi,jBc = Bc.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Lemma A.2 (Smoothness and Lipschitzness of the attention map). Let A(xi, Hi; θatt) := ci denote the
attention-based feature memory, where θatt collects (Wq, bq,Wk, bk). Under assumptions (A1)–(A3), the map

(xi, Hi, θatt) 7→ A(xi, Hi; θatt)

is continuously differentiable, and its Jacobian with respect to θatt is bounded on the compact set

K := {(xi, Hi, θatt) : ∥xi∥2 ≤ Rx, ∥hi,j∥2 ≤ 1, ∥θatt∥2 ≤ Rθ}.

Consequently, there exists Latt > 0 such that for all (xi, Hi) and all θ(1)att, θ
(2)
att in this set,

∥A(xi, Hi; θ
(1)
att)−A(xi, Hi; θ

(2)
att)∥2 ≤ Latt ∥θ(1)att − θ

(2)
att∥2.

Proof. The attention map A is a composition of: (i) linear maps (x, h) 7→ (Wqx+ bq,Wkh+ bk), (ii) bilinear
inner products and scaling (k, q) 7→ k⊤q/

√
256, (iii) the softmax function on RW , and (iv) a weighted sum

c =
∑

j αjkj . Each of these operations is smooth. Therefore, their composition is continuously differentiable
in (xi, Hi, θatt).

On the compact set K, all partial derivatives are bounded, hence the Jacobian ∇θattA is bounded in operator
norm. This implies global Lipschitzness in θatt on K with some constant Latt > 0.

We now consider the full network mapping

fθ(xi, Hi) := Wcls ϕθ(xi, Hi) + bcls,

where ϕθ denotes the two-layer ReLU feature extractor applied to [xi;A(xi, Hi; θatt)], and θ collects both the
attention parameters and the MLP parameters.

Lemma A.3 (Smoothness of the network and loss). Under assumptions (A1)–(A3), the mapping

θ 7→ fθ(xi, Hi)

is continuously differentiable with bounded Jacobian on {θ : ∥θ∥2 ≤ Rθ}. Consequently, the per-sample loss

ℓi(θ) = CE
(
softmax(fθ(xi, Hi)), yi

)
is continuously differentiable with Lipschitz-continuous gradient on this compact set.

Proof. By Lemma A.2, the attention map is smooth with bounded derivatives on bounded inputs. The feature
extractor is a composition of affine maps and ReLU activations:

ϕθ = ReLU ◦ (W2 ·+b2) ◦ ReLU ◦ (W1 ·+b1),

which is piecewise linear and globally Lipschitz, and smooth almost everywhere with respect to θ on any
compact subset of parameter space. Composition with the final linear classifier preserves these properties for fθ .

The softmax function and cross-entropy loss are smooth with bounded derivatives when their inputs are bounded,
which follows from Lemma A.1 and (A1)–(A3). Hence ℓi(θ) is continuously differentiable with Lipschitz-
continuous gradient on {∥θ∥ ≤ Rθ}.

We now move from individual samples to the empirical loss over a fixed segment (task) Tt.

Theorem A.4 (Segment-wise smooth empirical loss). For a fixed segment Tt with data {(xi, Hi, yi)}nt
i=1, define

the empirical loss

L̂t(θ) :=
1

nt

nt∑
i=1

ℓi(θ).

Under assumptions (A1)–(A3), L̂t(θ) is:

(i) bounded below, since ℓi(θ) ≥ 0 for all i;

(ii) continuously differentiable on {θ : ∥θ∥ ≤ Rθ}; and

(iii) has Lipschitz-continuous gradient on {θ : ∥θ∥ ≤ Rθ}.

Proof. Each per-sample loss ℓi(θ) is non-negative and continuously differentiable with Lipschitz gradient on
the compact parameter set by Lemma A.3. A finite average of such functions preserves these properties. Thus
L̂t is bounded below, continuously differentiable, and has Lipschitz-continuous gradient on {∥θ∥ ≤ Rθ}.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Corollary A.5 (Per-segment convergence of IMLP training). Consider optimizing L̂t(θ) by a stochastic first-
order method (e.g., SGD or Adam) with standard hyperparameters and weight decay, as implemented in our
training loop. Under Theorem A.4 and the usual step-size conditions from non-convex optimization theory, the
iterates {θk} produced by the optimizer on segment Tt converge to a first-order stationary point of L̂t, in the
sense that

lim
k→∞

∥∇L̂t(θk)∥2 = 0,

or, in the practical finite-epoch setting, reach a parameter θ⋆ with small gradient norm ∥∇L̂t(θ
⋆)∥2. In

particular, the attention-based feature memory, being a bounded and smooth transformation of a finite latent
feature window, does not alter the fundamental optimization character of the model: IMLP behaves like
a conventional MLP with an augmented input [xi; ci] and inherits the standard per-segment convergence
guarantees of non-convex deep networks.

Remark on non-stationary streams. The analysis above is segment-wise: for each fixed segment Tt, we
assume a finite dataset and study the optimization of the empirical risk L̂t(θ). This does not imply convergence
of the model to any limiting distribution when the underlying data-generating process is non-stationary across
t. Instead, our result shows that, conditional on the observed stream in each segment, the attention-based
feature memory yields a well-behaved optimization problem (smooth, with Lipschitz gradients), so that standard
optimizers can reliably minimize the empirical loss on that segment even in the presence of non-stationarity
across segments.

B ENERGY COMPLEXITY OF IMLP IN OUR EXPERIMENTAL SETTING

We now provide a simple energy-complexity characterization of IMLP in the experimental setup of Section 6.
The goal is not to predict the exact Joule values measured by our energy monitor, but to show that, under mild
hardware assumptions, the total energy consumed by IMLP is bounded and scales in a controlled way with the
model size and the number of training examples.

Setup. Recall that IMLP uses:

• input dimension din,

• fixed hidden size H = 256,

• number of classes C,

• a finite feature-memory window of size W ≤ Wmax,

• at most Emax training epochs per segment, enforced by early stopping (default Emax = 100),

• mini-batch training with batch size B and Adam/AdamW optimization.

For a given segment Tt with nt training samples, our code performs at most Emax full passes over the segment
before stopping.

Hardware and energy model. Let Ftrain denote the number of floating-point operations (FLOPs) required
to perform one forward-and-backward pass of IMLP on a single sample (including the attention-based feature
memory). We adopt a standard abstract energy model:

(H1) On a fixed hardware platform (GPU/CPU), there exist constants 0 < ηmin ≤ ηmax such that the
energy consumed per FLOP lies in [ηmin, ηmax].

(H2) The additional system overhead per training step (e.g., kernel launches, bookkeeping) is bounded by a
constant E0 independent of the sample index and segment.

These assumptions reflect that, for a fixed device and implementation, energy is approximately linear in the
number of FLOPs, up to device-specific constants and small overhead.

Lemma B.1 (FLOP complexity per sample). For a single sample (xi, Hi, yi), the FLOP count of a forward-
and-backward step of IMLP satisfies

Ftrain ≤ Karch
(
dinH + WH2 + H2 + HC

)
,

for some architecture-dependent constant Karch > 0 that does not depend on nt or t. In particular, since H=256
and W ≤ Wmax are fixed in our experiments, Ftrain grows at most linearly in din and C.

Proof. We count FLOPs layer by layer:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Attention block.

– Query: xi 7→ qi = Wqxi + bq costs O(dinH) FLOPs.
– Keys: each hi,j is mapped to ki,j = Wkhi,j + bk with cost O(H2); for W keys this is

O(WH2).

– Attention scores and softmax: computing ei,j = k⊤
i,jqi/

√
H costs O(WH), softmax costs

O(W), and forming ci =
∑

j αi,jki,j costs O(WH). Altogether O(WH) FLOPs.

Thus the attention block has FLOP complexity O(dinH +WH2).

• Feature extractor. The two ReLU layers operate on dimensions (din+H) → 512 → H , which costs

O
(
(din+H) · 512

)
+O(512 ·H) = O(dinH +H2).

• Classifier. The final linear layer H → C costs O(HC) FLOPs.

• Backward pass. The backward pass through these linear and ReLU layers multiplies the forward
FLOP count by a constant factor (depending only on the layer type), which we absorb into Karch.

Summing these contributions gives

Ftrain ≤ Karch
(
dinH +WH2 +H2 +HC

)
for some constant Karch > 0.

Theorem B.2 (Per-segment energy complexity bound). Consider a segment Tt with nt training samples. Under
assumptions (H1)–(H2) and Lemma B.1, the total training energy consumed by IMLP on this segment satisfies

E train
t ≤ Ctrain Emax nt

(
dinH +WH2 +H2 +HC

)
+ C0,

for some hardware- and implementation-dependent constants Ctrain > 0 and C0 ≥ 0. Similarly, the inference
energy on the test set of size ntest admits

E infer
t ≤ Cinfer n

test(dinH +WH2 +H2 +HC
)
+ C′

0,

with another constant Cinfer > 0 and overhead C′
0 ≥ 0.

Proof. For each epoch, the optimizer processes all nt samples once (up to mini-batch granularity). Thus, the
total FLOP count per segment is at most

F seg
t ≤ Emax nt Ftrain,

where Ftrain is bounded as in Lemma B.1. By (H1), energy per FLOP lies in [ηmin, ηmax], so there exists C̃train
such that

E train
t ≤ ηmaxF

seg
t + (overhead) ≤ C̃trainEmaxnt

(
dinH +WH2 +H2 +HC

)
+ C0.

We rename C̃train as Ctrain for simplicity. The inference bound follows analogously, using only a forward pass per
sample (no backward pass) and absorbing the constant factor into Cinfer.

Corollary B.3 (Energy complexity over the full non-stationary stream). Let the data stream be partitioned into
T segments {Tt}Tt=1 with sizes {nt}Tt=1. Under the same assumptions as Theorem B.2, the total training energy
over the entire stream satisfies

E train
total =

T∑
t=1

E train
t ≤ CtrainEmax

(T∑
t=1

nt

)(
dinH +WH2 +H2 +HC

)
+ TC0,

and the total inference energy satisfies

E infer
total ≤ Cinfer n

test
total

(
dinH +WH2 +H2 +HC

)
+ TC′

0.

In particular, for our experimental setting where H=256, W ≤ Wmax, and Emax are fixed constants, both
training and inference energy grow at most linearly in the total number of processed examples

∑
t nt and in

the effective model size. The attention-based feature memory only adds the bounded term WH2 and does not
change this linear energy scaling.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Discussion. The bounds above explain two aspects of our empirical observations: (i) on a fixed device,
IMLP has a predictable energy profile, scaling linearly with the number of samples and epochs; and (ii) the
attention-based feature memory contributes a controlled overhead proportional to WH2, which remains small in
our experiments because W and H are fixed (W ≤ 10, H = 256). Our measured Joule values are therefore
consistent with an energy complexity that is linear in the stream size, and the theoretical bounds clarify that this
behavior is not specific to a particular dataset, but a structural property of the IMLP architecture and training
procedure.

C EXTENDED EXPERIMENTS

C.1 DATASETS AND STREAM SEGMENTATION

We evaluate IMLP on 36 classification tasks from the TabZilla benchmark (McElfresh & Talwalkar, 2023),
selected from OpenML based on three criteria: (1) sufficient data size to create meaningful segments, (2)
balanced representation of binary and multi-class problems, and (3) diverse feature dimensionalities and class
distributions. To simulate the data stream in incremental learning scenarios, Table 2 lists every OpenML task in
our benchmark together with basic statistics and the fixed stream segmentation applied in original row order
(rows 1 . . .k form Segment 0, rows k+1 . . .2k form Segment 1, etc.).

† Class counts show label ID : instances after preprocessing. Binary tasks list two numbers; multi-class tasks
list one count per class. For tasks with many classes, we show representative counts or use compact notation
(e.g., “25 × 300” for 25 classes with 300 instances each).

C.1.1 STREAM SEGMENTATION ALGORITHM

Our segmentation follows a principled approach to create balanced segments while minimizing data waste:

Algorithm 1 Optimal Segment Size Selection

Require: Dataset with N training instances, bounds kmin = 500, kmax = 1000
Ensure: Segment size k∗ that minimizes remainder

1: best_remainder← N
2: k∗ ← kmin

3: for k = kmin to min(kmax, N) do
4: num_segments← ⌊N/k⌋
5: remainder← N mod k
6: if remainder = 0 then
7: return k ▷ Perfect division found
8: if remainder < best_remainder then
9: best_remainder← remainder

10: k∗ ← k
11: return k∗

The choice of segment size bounds (500–1000 instances) balances three considerations: (1) statistical power,
each segment must contain sufficient samples for reliable learning, (2) IMLP coherence, segments should be
large enough for the attention mechanism to learn meaningful feature relationships within each temporal chunk,
and (3) computational efficiency, larger segments would increase memory requirements and training time per
segment without proportional benefits.

When the optimal segment size k∗ leaves a remainder r = N mod k∗, we apply round-robin redistribution: the
first r segments each receive one additional instance, ensuring segment sizes differ by at most 1. This maintains
temporal ordering while achieving optimal balance.

C.2 DATA RETRIEVAL AND PREPROCESSING PROTOCOL

C.2.1 DATASET ACQUISITION

All datasets are retrieved via the OpenML Python API (v0.15.2) with local caching enabled. We use the default
target attribute specified in each OpenML task definition. Raw data is downloaded in DataFrame format to
preserve both feature names and categorical indicators.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 2: Statistics of datasets. OpenML classification tasks and stream-segmentation parameters used
in this study. # Inst, stands for the number of instances, # Feat. stands for the number of features.
Seg. size stands for the segment size bound. # Segs stands for the number of segments. Numbers are
produced by the data-processing pipeline and reproduced by the helper script in §C.3.

ID Name # Inst. #Feat. Class balance† Seg. size #Segs

146820 wilt 4,839 5 4,578; 261 514 8
14964 artificial-characters 10,218 7 1,196; 600; 1,192; 1,416; 808;

1,008; . . .
579 15

14969 GesturePhaseSegmentation 9,873 32 2,741; 998; 2,097; 1,087; 2,950 839 10
14951 eeg-eye-state 14,980 14 8,257; 6,723 749 17

146206 magic 19,020 10 12,332; 6,688 951 17
167211 Satellite 5,100 36 75; 5,025 867 5
167141 churn 5,000 29 4,293; 707 850 5
168910 fabert 8,237 800 933; 1,433; 1,927; 1,515; 979;

948; 502
500 14

168912 sylvine 5,124 20 2,562; 2,562 871 5
190410 philippine 5,832 308 2,916; 2,916 708 7

2074 satimage 6,430 36 1,531; 703; 1,356; 625; 707;
1,508

683 8

28 optdigits 5,620 64 554; 571; 557; 572; 568; 558; . . . 597 8
32 pendigits 10,992 16 1,143; 1,143; 1,144; 1,055; 1,144;

. . .
519 18

146607 SpeedDating 8,378 442 6,998; 1,380 712 10
168908 christine 5,418 1,611 2,709; 2,709 921 5

14952 PhishingWebsites 11,055 38 4,898; 6,157 522 18
3510 JapaneseVowels 9,961 14 1,096; 991; 1,614; 1,473; 782; . . . 529 16
3735 pollen 3,848 5 1,924; 1,924 545 6
3711 elevators 16,599 18 5,130; 11,469 641 22
3896 ada_agnostic 4,562 48 3,430; 1,132 646 6

14970 har 10,299 561 1,722; 1,544; 1,406; 1,777; 1,906;
1,944

547 16

3686 house_16H 22,784 16 6,744; 16,040 842 23
3897 eye_movements 10,936 27 3,804; 4,262; 2,870 715 13
3904 jm1 10,885 21 8,779; 2,106 514 18

43 spambase 4,601 57 2,788; 1,813 782 5
3954 MagicTelescope 19,020 10 12,332; 6,688 951 17
9952 phoneme 5,404 5 3,818; 1,586 574 8
3950 musk 6,598 267 5,581; 1,017 701 8
9960 wall-robot-navigation 5,456 24 2,205; 2,097; 328; 826 515 9
3889 sylva_agnostic 14,395 216 13,509; 886 941 13
9985 first-order-theorem-proving 6,118 51 1,089; 486; 748; 617; 624; 2,554 520 10
3481 isolet 7,797 617 25 × 300 (class 0. . . 24) 552 12

45 splice 3,190 227 767; 768; 1,655 542 5
9986 gas-drift 13,910 128 2,565; 2,926; 1,641; 1,936; 3,009;

1,833
563 21

9987 gas-drift-different-conc. 13,910 129 2,565; 2,926; 1,641; 1,936; 3,009;
1,833

563 21

168909 dilbert 10,000 2,000 1,988; 2,049; 1,913; 2,046; 2,004 500 17
99901 Insects Abrupt 52,847 33 Balanced (6 classes) 1,957 27
99902 Insects Incremental 57,017 33 Balanced (6 classes) 1,629 35

C.2.2 FEATURE PREPROCESSING PIPELINE

Our preprocessing pipeline follows scikit-learn best practices with separate transformers for numerical and
categorical features:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Numerical Features:

1. Imputation: Missing values filled with column medians

2. Standardization: Zero mean, unit variance scaling via StandardScaler

Categorical Features:

1. Imputation: Missing values filled with constant ‘missing’

2. Encoding: One-hot encoding with drop=‘first’ to avoid multicollinearity

3. Unknown handling: handle_unknown=‘ignore’ for robust inference

The ColumnTransformer ensures preprocessing consistency across all data splits. After transformation, all
features are converted to float32 for memory efficiency.

C.2.3 TARGET PROCESSING AND TASK TYPE DETECTION

Target variables are processed based on OpenML task type:

• Binary classification: 2 unique labels → LabelEncoder → {0, 1}

• Multi-class classification: C > 2 unique labels → LabelEncoder → {0, . . . , C-1}

• Regression: Direct conversion to float32 (not used in this study)

C.2.4 DATA SPLITTING STRATEGY

Our splitting protocol ensures a realistic evaluation:

1. Test Set Isolation: A stratified 15% test split is carved out before any stream processing, using
random_seed=42 for reproducibility.

2. Training Stream Creation: The remaining 85% forms the chronologically ordered training stream,
preserving the original row order from OpenML.

3. Per-Segment Validation: Each segment (or cumulative data) is further split with stratified 15%
validation, using random_seed=42+segment_idx to ensure different splits per segment while
maintaining reproducibility.

This approach simulates realistic continual learning where: 1) The test set represents future unseen data, 2) Each
segment represents a temporal chunk of arriving data, 3) Validation splits enable early stopping without future
data leakage, and 4) All models use consistent 15% validation splits for hyperparameter selection and early
stopping criteria.

C.2.5 MODEL TRAINING PROTOCOLS

Our experimental design follows two distinct training protocols based on model type:

Cumulative Training: Traditional baselines (XGBoost, LightGBM, CatBoost, kNN, SVM, Decision Trees,
Random Forest, and neural baselines like TabNet, SAINT) are retrained from scratch at each segment using all
available data up to that point. For the segment, these models train on the union

⋃T
t=0 Tt where Tt denotes the

t-th data segment. This protocol maximizes baseline performance by leveraging all historical data, representing
the standard approach in tabular learning.

Incremental Training: Our proposed IMLP trains only on the current segment St while accessing previous
feature representations through the attention mechanism. This protocol tests true incremental learning capabilities
without replay of raw historical data.

Both protocols use identical validation procedures: each model’s hyperparameters are selected via early stopping
on the 15% validation split, ensuring fair comparison despite different training paradigms.

C.2.6 REPRODUCIBILITY MEASURES

All steps are deterministic with fixed random seeds, including 1) Global seed: random_seed = 42, 2)
Per-segment validation: random_seed = 42 + segment_idx, and 3) Preprocessing: Deterministic
transformers with fixed parameters.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.3 DATASET SUMMARY REGENERATION SCRIPT

For full reproducibility, we provide a helper script that regenerates Table 2 from the processed data:

1 # dataset_summary.py (runs in < 2 seconds)
2 import json, csv, gzip, numpy as np, pathlib
3

4 def regenerate_dataset_summary():
5 """Regenerate the dataset summary CSV from processed metadata."""
6 META = pathlib.Path("processed_datasets_summary.json")
7 ROOT = pathlib.Path("full_datasets")
8 OUT = pathlib.Path("dataset_summary.csv")
9

10 # Load processing metadata
11 with META.open() as f:
12 meta = json.load(f)
13

14 rows = []
15 for tid, m in meta.items():
16 # Load target labels to compute class balance
17 y = np.load(gzip.open(ROOT/m["dataset_name"]/"y_full.npy.gz"))
18 counts = np.bincount(y.astype(int))
19

20 rows.append({
21 "task_id": int(tid),
22 "name": m["original_name"],
23 "instances": int(m["num_instances"]),
24 "features": int(m["num_features"]),
25 "class_balance": ";".join(map(str, counts)),
26 "segment_size": int(m["segment_size"]),
27 "num_segments": int(m["num_segments"])
28 })
29

30 # Write CSV output
31 with OUT.open("w", newline="") as f:
32 writer = csv.DictWriter(f, fieldnames=rows[0].keys())
33 writer.writeheader()
34 writer.writerows(rows)
35

36 print(f"Wrote {OUT} with {len(rows)} tasks")
37

38 if __name__ == "__main__":
39 regenerate_dataset_summary()

Running this script in the project root recreates the CSV that backs Table 2. The script requires the preprocessed
datasets, but no pipeline re-execution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.4 BASELINES

We implement most of the baseline methods according to the publicly available codebases and integrate them
into the same backbone for benchmarking.

• XGBoost (Chen & Guestrin, 2016). https://github.com/dmlc/xgboost

• LightGBM (Ke et al., 2017). https://github.com/microsoft/LightGBM

• CatBoost (Prokhorenkova et al., 2019). https://github.com/catboost/catboost

• TabPFN v2 (Hollmann et al., 2025a). https://github.com/automl/TabPFN

• TabM (Gorishniy et al., 2024). https://github.com/yandex-research/tabm

• Real-MLP (Holzmüller et al., 2024). https://github.com/dholzmueller/
realmlp-td-s_standalone

• TabR (Gorishniy et al., 2023a). https://github.com/yandex-research/
tabular-dl-tabr

• ModernNCA (Ye et al., 2024). https://github.com/YyzHarry/ModernNCA

• MLP (Taud & Mas, 2017). https://scikit-learn.org/stable/modules/neural_
networks_supervised.html

• TabNet (Arik & Pfister, 2021). https://github.com/dreamquark-ai/tabnet

• DANet (Chen et al., 2022). https://github.com/QwQ2000/DANets

• ResNet (Gorishniy et al., 2021). https://github.com/yandex-research/
tabular-dl-revisiting-models

• STG (Jana et al., 2023). https://github.com/runopti/stg

• VIME (Yoon et al., 2020). https://github.com/jsyoon0823/VIME

• k-NN (Guo et al., 2003). https://scikit-learn.org/stable/modules/neighbors.
html

• SVM (Jakkula, 2006). https://scikit-learn.org/stable/modules/svm.html

• Linear Model (Kiebel & Holmes, 2007). https://scikit-learn.org/stable/modules/
linear_model.html

• Random Forest (Rigatti, 2017). https://scikit-learn.org/stable/modules/
ensemble.html#random-forests

• Decision Tree (Rokach & Maimon, 2005). https://scikit-learn.org/stable/
modules/tree.html

In revisions, we changed the evaluation protocol and only include the recent SOTA works.

D IMLP IMPLEMENTATION DETAILS

D.1 ARCHITECTURE OVERVIEW AND DESIGN RATIONALE

IMLP extends the standard MLP architecture with an attention-based memory mechanism designed specifically
for tabular continual learning. The key innovation lies in storing and retrieving feature representations rather
than raw data, enabling privacy-preserving incremental learning with constant memory requirements.

D.1.1 COMPARISON WITH STANDARD MLP

Table 4 contrasts IMLP with a standard MLP of equivalent capacity:

D.2 LAYER-WISE ARCHITECTURE SPECIFICATION

Design Choices:

• Hidden size 256: Balances expressiveness with computational efficiency across all datasets

• No dropout/normalization: Empirically found to hurt performance in continual learning setting

• ReLU activations: Simple, stable gradients for incremental training

• Fixed architecture: Same capacity across all 36 datasets for fair comparison

25

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://github.com/catboost/catboost
https://github.com/automl/TabPFN
https://github.com/yandex-research/tabm
https://github.com/dholzmueller/realmlp-td-s_standalone
https://github.com/dholzmueller/realmlp-td-s_standalone
https://github.com/yandex-research/tabular-dl-tabr
https://github.com/yandex-research/tabular-dl-tabr
https://github.com/YyzHarry/ModernNCA
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://github.com/dreamquark-ai/tabnet
https://github.com/QwQ2000/DANets
https://github.com/yandex-research/tabular-dl-revisiting-models
https://github.com/yandex-research/tabular-dl-revisiting-models
https://github.com/runopti/stg
https://github.com/jsyoon0823/VIME
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4: Architectural comparison between standard MLP and IMLP.

Component MLP IMLP IMLP Notes
Input processing din → 512 din → 256 Query projection
Memory mechanism None Attention Key-value retrieval
Feature extraction 512→ 256 (din + 256)→ 512→ 256 Context-augmented
Memory complexity O(1) O(W) W = window size
Time complexity O(1) O(W · d) d = hidden dim
Privacy Requires raw data Feature-only No raw data storage

Table 5: Detailed layer-wise specification of IMLP architecture.

Component Output dim. Activation Notes

Input feature vector din – Raw tabular features after preprocessing

Attention Module
Query projection Q 256 – Linear(din, 256)
Key projection K 256 – Linear(256, 256) applied to each stored

feature
Context computation 256 – Scaled dot-product attention over win-

dow

Feature Extraction
Concatenated input (x, c) din + 256 – Only if attention enabled; c = context

vector
FC 1 512 ReLU Linear(din + 256, 512)
FC 2 256 ReLU Linear(512, 256)

Classification Head
Classifier C – Linear(256, C) where C = number of

classes

D.3 ATTENTION MECHANISM DESIGN

D.3.1 SCALED DOT-PRODUCT ATTENTION

IMLP uses a simplified attention mechanism to retrieve relevant historical features. For a batch of size B:

Q = Wq · x ∈ RB×1×256 (query from current input) (33)

K = Wt ·Hstacked ∈ RB×W×256 (keys from previous features) (34)

Scores = bmm(K,QT) ∈ RB×W×1 (35)

α = softmax(Scores.squeeze()) ∈ RB×W (36)

Context = bmm(α.unsqueeze(1),K) ∈ RB×1×256 (37)

where:

• Hstacked = stack({ht−W , . . . , ht−1}) ∈ RB×W×256

• bmm denotes batch matrix multiplication

• No scaling factor is applied (unlike standard scaled dot-product attention)

• Values equal keys: V = K

D.3.2 WINDOW MANAGEMENT STRATEGY

The sliding window maintains a FIFO queue of the most recent W feature vectors:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 2 Sliding Window Update

Require: Current input x, previous features Hprev, window size W
Ensure: Updated window Hnew

1: hcurrent ← FeatureExtractor(x,Context(x))
2: Hnew ← Hprev ∪ {hcurrent}
3: if |Hnew| > W then
4: Hnew ← Hnew[1 :] ▷ Remove oldest feature
5: return Hnew

D.3.3 FEATURE NORMALIZATION

To improve attention stability, stored features are L2-normalized during precomputation:

h̃i =
hi

∥hi∥2 + ϵ
(38)

where ϵ = 10−8 prevents division by zero. This normalization ensures attention weights focus on feature
directions rather than magnitudes and is applied in the _precompute method during segmental training.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.4 COMPLETE IMPLEMENTATION

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4

5 class IncrementalMLP(nn.Module):
6 """
7 Incremental MLP with attention-based feature replay for continual

learning.↪→
8

9 Args:
10 input_size (int): Number of input features
11 num_classes (int): Number of output classes
12 use_attention (bool): Whether to use attention mechanism
13 window_size (int): Size of sliding memory window
14 """
15

16 def __init__(self, input_size, num_classes, use_attention=True,
window_size=10):↪→

17 super().__init__()
18 self.window_size = window_size
19 self.use_attention = use_attention
20 self.hidden_size = 256
21

22 # Attention projections
23 self.query = nn.Linear(input_size, 256)
24 self.key = nn.Linear(256, 256)
25

26 # Feature extraction pathway
27 total_input_size = input_size + (256 if use_attention else 0)
28 self.feature_extractor = nn.Sequential(
29 nn.Linear(total_input_size, 512),
30 nn.ReLU(),
31 nn.Linear(512, self.hidden_size),
32 nn.ReLU()
33)
34

35 # Classification head
36 self.classifier = nn.Linear(self.hidden_size, num_classes)
37

38 def compute_context(self, x, prev_features):
39 """
40 Compute attention-weighted context from previous features.
41

42 Args:
43 x (Tensor): Current input batch [B, D]
44 prev_features (List[Tensor]): Previous feature vectors [W x

[256]]↪→
45

46 Returns:
47 Tensor: Context vector [B, 256]
48 """
49 if not prev_features or self.window_size == 0:
50 return torch.zeros(x.size(0), 256, device=x.device)
51

52 # Stack previous features: [B, W, 256]
53 stacked_prev = torch.stack(prev_features, dim=1)
54

55 # Compute keys and queries
56 keys = self.key(stacked_prev) # [B, W, 256]
57 query = self.query(x).unsqueeze(1) # [B, 1, 256]
58

59 # Scaled dot-product attention
60 scores = torch.bmm(keys, query.transpose(1, 2)).squeeze(-1) # [B,

W]↪→

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

61 attention_weights = F.softmax(scores, dim=1) # [B, W]
62

63 # Compute weighted context
64 context = torch.bmm(attention_weights.unsqueeze(1),

keys).squeeze(1) # [B, 256]↪→
65

66 return context
67

68 def forward(self, x, prev_features=None):
69 """
70 Forward pass with optional attention over previous features.
71

72 Args:
73 x (Tensor): Input features [B, D]
74 prev_features (List[Tensor]): Previous features for attention
75

76 Returns:
77 Tuple[Tensor, Tensor]: (logits, current_features)
78 """
79 # Compute attention context
80 context = torch.zeros(x.size(0), 256, device=x.device)
81 if self.use_attention and prev_features:
82 context = self.compute_context(x, prev_features)
83

84 # Concatenate input with context
85 if self.use_attention:
86 augmented_input = torch.cat([x, context], dim=1)
87 else:
88 augmented_input = x
89

90 # Extract features and classify
91 features = self.feature_extractor(augmented_input)
92 logits = self.classifier(features)
93

94 return logits, features

D.5 COMPUTATIONAL COMPLEXITY ANALYSIS

D.5.1 TIME COMPLEXITY

For each forward pass with batch size B, input dimension din, hidden dimension dh = 256, and window size
W :

Query projection: O(B · din · dh) (39)

Key projection: O(B ·W · d2h) (40)
Attention scores: O(B ·W · dh) (41)

Context aggregation: O(B ·W · dh) (42)
Feature extraction: O(B · (din + dh) · 512) (43)

Total: O(B · (din · dh +W · d2h)) (44)

For typical values (W = 10, dh = 256, din ≲ 2000), the attention overhead is O(W · d2h) = O(655,360)
operations per sample.

D.5.2 MEMORY COMPLEXITY

IMLP maintains constant memory usage per segment:

• Model parameters: ≈ 1.2M parameters (fixed)
• Feature buffer: W × 256× 4 bytes = 10,240 bytes for W = 10

• Attention matrices: B ×W × 256× 4 bytes during computation

Unlike replay-based methods, memory usage does not grow with the number of segments, enabling indefinite
continual learning.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.5.3 COMPARISON WITH REPLAY METHODS

Table 6 compares IMLP with alternative continual learning approaches:

Table 6: Complexity comparison of continual learning approaches.

Method Memory Time per step Privacy
Naive retraining O(T ·N) O(T ·N) Requires raw data
Experience replay O(M) O(N +M) Requires raw data
Generative replay O(1) O(N +G) Private
IMLP (ours) O(W) O(N +W · d2) Private

where T = number of tasks, N = samples per task, M = replay buffer size, G = generative model cost, W =
window size, d = feature dimension.

D.6 HYPERPARAMETER CONFIGURATION

IMLP uses the following default hyperparameters across all experiments:

Table 7: IMLP hyperparameter configuration.

Parameter Value Description
Window size (W) 10 Number of previous feature vectors stored
Hidden dimension 256 Feature representation size
Learning rate 10−3 Adam optimizer learning rate
Batch size 128 Training batch size
Weight decay 10−5 L2 regularization strength
Early stopping patience 10 Epochs without improvement before stopping
Max epochs 100 Maximum training epochs per segment
Normalization ϵ 10−8 Small constant for L2 normalization

The window size W = 10 was chosen to balance memory efficiency with sufficient historical context. The
hidden dimension of 256 provides adequate representational capacity while maintaining computational efficiency
across diverse tabular datasets.

30

	Introduction
	Related Work
	IMLP: an Incremental MLP for Tabular Data Streams
	Problem Statement
	Architecture Overview
	Convergence Analysis of IMLP
	FIFO Attention-based Feature Memory and Time Complexity
	Energy Efficiency Analysis of IMLP

	Energy-Accuracy Trade-offs
	Experiments
	Ablation Study: Impact of Attention, dh, W, and Buffer Strategy Choices
	Evaluation under Abrupt and Incremental Drifts

	Conclusion
	Formal Properties of the Attention-Based Feature Memory
	Energy Complexity of IMLP in Our Experimental Setting
	Extended Experiments
	Datasets and Stream Segmentation
	Stream Segmentation Algorithm

	Data Retrieval and Preprocessing Protocol
	Dataset Acquisition
	Feature Preprocessing Pipeline
	Target Processing and Task Type Detection
	Data Splitting Strategy
	Model Training Protocols
	Reproducibility Measures

	Dataset Summary Regeneration Script
	Baselines

	IMLP Implementation Details
	Architecture Overview and Design Rationale
	Comparison with Standard MLP

	Layer-wise Architecture Specification
	Attention Mechanism Design
	Scaled Dot-Product Attention
	Window Management Strategy
	Feature Normalization

	Complete Implementation
	Computational Complexity Analysis
	Time Complexity
	Memory Complexity
	Comparison with Replay Methods

	Hyperparameter Configuration

