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ABSTRACT

Tabular data streams are rapidly emerging as a dominant modality for real-time
decision-making in healthcare, finance, and the Internet of Things (IoT). These
applications commonly run on edge and mobile devices, where energy budgets,
memory, and compute are strictly limited. Continual learning (CL) addresses
such dynamics by training models sequentially on task streams while preserving
prior knowledge and consolidating new knowledge. While recent CL work has
advanced in mitigating catastrophic forgetting and improving knowledge transfer,
the practical requirements of energy and memory efficiency for tabular data streams
remain underexplored. In particular, existing CL solutions mostly depend on replay
mechanisms whose buffers grow over time and exacerbate resource costs.
We propose a context-aware incremental Multi-Layer Perceptron (IMLP), a com-
pact continual learner for tabular data streams. IMLP incorporates a windowed
scaled dot-product attention over a sliding latent feature buffer, enabling constant-
size memory and avoiding storing raw data. The attended context is concate-
nated with current features and processed by shared feed-forward layers, yielding
lightweight per-segment updates. To assess practical deployability, we introduce
NetScore-T, a tunable metric coupling balanced accuracy with energy for Pareto-
aware comparison across models and datasets. IMLP achieves up to 27.6× higher
energy efficiency than TabNet and 85.5× higher than TabPFN, while maintain-
ing competitive average accuracy. Overall, IMLP provides an easy-to-deploy,
energy-efficient alternative to full retraining for tabular data streams.

1 INTRODUCTION

Tabular data, structured as a collection of features and instances, is one of the most common and
practical data types in practical machine learning applications, such as in fields of healthcare (Lee
& Lee, 2020; Amrollahi et al., 2022), finance (Ramjattan et al., 2024; Li et al., 2024a), and IoT (Li
et al., 2025b). As such domains increasingly rely on streaming data sources, tabular data streams are
gaining significant attention due to their ability to capture continuous, real-time updates rather than
static snapshots (Borisov et al., 2022). In particular, most such scenarios often occur on edge devices,
IoT systems, and mobile platforms, where energy budgets, battery life, and computational resources
are severely constrained Chang et al. (2021).

To tackle those real-world dynamics, Continual Learning (CL) (Wang et al., 2024a), also referred to as
lifelong learning (Lee & Lee, 2020), enables models to incrementally acquire, update, accumulate, and
exploit knowledge over time. While significant progress has been made on overcoming catastrophic
forgetting (Kemker et al., 2018; Li et al., 2019; Bhat et al., 2022) and knowledge transfer (Ke et al.,
2021; Li et al., 2024b; Shi et al., 2024a), much less is known about their computational analysis and
energy efficiency (Li et al., 2023; Trinci et al., 2024).

Energy-efficient continual learning has become a practical necessity for real-world applications that
need to adapt in real time on resource-constrained platforms (Chavan et al., 2023; Shi et al., 2024b;
Trinci et al., 2024; Xiao et al., 2024). Meanwhile, most CL progress to date targets image (Trinci et al.,
2024; Chavan et al., 2023; Shi et al., 2024b) and language tasks (Li et al., 2025a; Wang et al., 2024b).
In contrast, tabular data streams remain underexplored. Tabular models that excel on static datasets
do not transfer directly to non-stationary streams with tight memory, compute, and energy budgets.
Existing CL methods rarely target these constraints. In particular, replay-based strategies rely on
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buffers that grow over time, increasing storage and compute, and hindering on-device deployment.
This gap motivates methods for tabular streaming CL that sustain accuracy under distribution shift
while operating at low energy cost, with fixed memory, and without storing raw examples. Achieving
this under strict resource budgets while mitigating catastrophic forgetting remains a central challenge
for Green AI (Henderson et al., 2020; Bouza et al., 2023; Trinci et al., 2024; Różycki et al., 2025).

This paper introduces Incremental Multi-Layer Perceptron (IMLP), a novel method for energy-
efficient continual learning, particularly focusing on tabular data streams. IMLP augments a simple
MLP with self-attention capabilities, while maintaining efficiency in compute, memory, and energy
usage. To be specific: 1) IMLP employs a windowed scaled dot-product attention with a sliding
feature buffer, enabling the model to adaptively attend to the most relevant parts of the stream while
storing only latent features without needing to revisit raw historical data. 2) The resulting attended
representation is concatenated and passed through two shared feed-forward layers followed by a
classifier head, serving as the MLP learner for classification tasks. This design avoids the unbounded
growth in memory inherent to replay baselines (Rebuffi et al., 2017; Li & Hoiem, 2017; Lopez-Paz &
Ranzato, 2017), while remaining computationally lightweight on resource-constrained devices. To
evaluate hardware-grounded accuracy–energy trade-offs in continual learning on tabular data streams,
we introduce NetScore-T, a stream-aware aggregate that couples per-segment performance with a
logarithmic energy penalty.

We evaluate IMLP on 36 benchmark tabular datasets designed to assess models under temporal
distribution shifts, which provides a systematic comparison across diverse algorithms. IMLP is
benchmarked against state-of-the-art (SOTA) tabular models, with results showing that it provides
an efficient and competitive neural network alternative. While gradient-boosting methods, such as
LightGBM (Ke et al., 2017), still achieve competitive overall accuracy with shorter training time,
IMLP demonstrates a favorable trade-off between performance and energy efficiency.

2 RELATED WORK

Traditional tabular data models can be roughly categorized into three main groups: Gradient-Boosted
Decision Trees (GBDTs) (Friedman, 2001), Neural Networks (NNs) (Goodfellow et al., 2016), and
classic models (e.g., SVMs (Cortes & Vapnik, 1995), k-NN (Cover & Hart, 1967), linear model (Cox,
1958), and simple decision trees (Loh, 2011)).

GBDTs and their variants for CL.Traditional GBDTs such as XGBoost (Chen & Guestrin, 2016),
LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2019) remain strong baselines
for tabular classification due to their efficiency and robustness, especially on large or irregular static
datasets. However, they are not naturally suited for continual learning: (1) new data typically requires
retraining from scratch, since tree splits and boosting weights depend on the full dataset (Chen &
Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2019); (2) without access to past data, models
trained only on new samples overwrite previous knowledge, causing catastrophic forgetting (Wang
et al., 2024a); and (3) unlike neural networks, GBDTs lack mechanisms for knowledge transfer
across tasks (Ke et al., 2021; Parisi et al., 2019; De Lange et al., 2021). Extensions such as online
bagging and boosting (Oza & Russell, 2001) or warm-starting (Pedregosa et al., 2011), and adaptive
XGBoost (Montiel et al., 2020), partially mitigate these issues, but remain limited in long-term
knowledge retention due to the lack of representation reuse, especially when compared to neural
continual learning methods.

Classic models in CL. Both standard SVMs (Cortes & Vapnik, 1995) and decision trees (Loh,
2011) are batch learners, requiring retraining on the full dataset when new tasks arrive. SVMs
can be extended to continual learning through incremental or online variants such as incremental
SVM (Cauwenberghs & Poggio, 2000), LASVM (Bordes et al., 2005), and NORMA (Kivinen et al.,
2004), which handle streaming updates but still face challenges with scalability, memory growth,
and forgetting. k-NNs (Cover & Hart, 1967) trivially avoid forgetting if all data is stored, but this
violates the constraint of no access to past raw inputs and is impractical under resource limits. Linear
models (Cox, 1958) are efficient but prone to forgetting under distribution shifts, as updates overwrite
prior knowledge. Incremental decision trees, such as Hoeffding Trees (Domingos & Hulten, 2000),
and streaming ensembles (Bifet et al., 2010; Gomes et al., 2017) can adapt to data streams without
full retraining, but their accuracy degrades under severe drift, they lack strong representation learning,
and ensemble methods can be computationally expensive.
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Neural models in CL. Recent studies demonstrate that advanced NNs (Zabërgja et al., 2024; Arik
& Pfister, 2021; Kadra et al., 2021a; Gorishniy et al., 2023a; Hollmann et al., 2025b; Ye et al.,
2024; Gorishniy et al., 2024) can surpass GBDTs on static tabular data in certain regimes, e.g., with
well-regularized MLPs (Kadra et al., 2021a), attention-based models such as SAINT (Somepalli et al.,
2021), or meta-learned foundation models like TabPFN and its variants (Hollmann et al., 2025b).
While their training is typically computationally intensive than that of GBDTs unless carefully
tuned (Kadra et al., 2021a), NNs are generally better suited for streaming data, owing to their
rich representations, incremental updates via stochastic gradient descent, and flexible architectures.
However, vanilla NNs still suffer from catastrophic forgetting in the absence of CL strategies (Wang
et al., 2024a).

CL strategies with neural models. In NNs, CL strategies are commonly categorized into
regularization-based approaches (Kirkpatrick et al., 2017; Zenke et al., 2017), replay-based strate-
gies (Rebuffi et al., 2017; Shin et al., 2017), attention-based retrieval mechanisms (Chaudhry et al.,
2019; Aljundi et al., 2017), and architectural methods (Rusu et al., 2016). Regularization-based
methods, such as EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2017),
and LwF (Li & Hoiem, 2016), mitigate forgetting by constraining updates to parameters deemed
important for previously learned tasks. Replay-based strategies, including iCaRL (Rebuffi et al.,
2017) and generative replay (Shin et al., 2017), maintain past knowledge by rehearsing stored samples
or synthetic data. Attention-based retrieval mechanisms, such as A-GEM with attention (Chaudhry
et al., 2019) and attentive experience replay (Aljundi et al., 2017), employ attention to prioritize and
retrieve relevant past experiences. Architectural methods, exemplified by PNNs (Rusu et al., 2016),
expand model capacity by freezing previously trained components and introducing new modules for
incoming tasks.

Despite recent progress, energy-efficient CL for tabular data streams remains largely unexplored (Cha-
van et al., 2023; Trinci et al., 2024). Real-world tables frequently undergo domain drift (e.g., quarterly
finance transactions, evolving sensor logs, healthcare data) without changes to the label space, yet no
standardized Domain-Incremental Learning benchmark currently exists for tabular streams. More-
over, pre-trained transformers for tabular data (Gorishniy et al., 2023b; Hollmann et al., 2025b) and
feature-level or attention-based CL strategies (Pellegrini et al., 2020; Vaswani et al., 2017a; Jha et al.,
2023) show promise for low-storage, privacy-preserving CL, but their effectiveness under domain
drift has not been systematically evaluated. Here, we bridge this gap by introducing our method,
establishing fair comparisons, and quantifying energy–performance trade-offs.

3 PRELIMINARIES

Continual learning. Owing to the general difficulty and diversity of challenges in continual learning,
we focus on a simplified task incremental learning setting (Parisi et al., 2019; De Lange et al., 2021).
In this setting, a model is trained on a sequence of tasks {Tt}Tt=1, where the training data for each
task arrives incrementally at time t. Training continues until convergence on each task. Each task Tt
is associated with data (Xt,Yt) randomly drawn from distribution Dt, where Xt denotes the set of
data samples and Yt is the corresponding ground truth labels. The key objective is to acquire new
knowledge from the current task while maintaining performance on previously learned tasks.

Formally, given a model ft(θ) with parameters θ for task Tt, loss function ℓ(·) (e.g., cross-entry), the
number of tasks seen so far T , the learner is updated sequentially by minimizing the expected risk
across all observed tasks, with limited or no access to the data from earlier tasks t < T ,

T∑
t=1

E(Xt,Yt)∼Dt
[ℓ(ft(Xt; θ),Yt)] (1)

Multi-layer perceptron (MLP). A standard MLP with one hidden layer computes hidden activations
as h = g

(
W (1)x+ b(1)

)
and produces class probabilities pθ(y) through softmax(W (2)h + b(2)),

where g(·) is a pointwise nonlinearity (e.g., ReLU (Daubechies et al., 2022)). The model parameter
consists of weight matrices W (1) ∈ Rdh×din and W (2) ∈ RC×dh , along with bias vectors b(1) ∈
Rdh ,b(2) ∈ RC (Goodfellow et al., 2016). In the task incremental learning setting, a pre-trained
MLP is then sequentially trained on a sequence of T tasks, typically tabular classification tasks, each
defined by a disjoint set of input-label distributions.
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Dot-Product Attention. The scaled dot-product attention mechanism forms the basis of most
modern attention-based architectures. Given queries Q ∈ Rnq×dk , keys K ∈ Rnk×dk , and values
V ∈ Rnk×dv , the attention output (Vaswani et al., 2017b) is defined as

Attention(Q,K, V ) = softmax

(
QK⊤√

dk

)
V. (2)

Here, the similarity between a query qi ∈ Q and a key kj ∈ K is computed via their inner product,
scaled by

√
dk to mitigate the effect of large dot products when the dimensionality dk is high. More

explicitly, the normalized weight αij assigned to value vj for query qi, and the resulting attended
representation zi are given by

αij =

exp

(
q⊤i kj√

dk

)
∑nk

j′=1 exp

(
q⊤i kj′√

dk

) , zi =

nk∑
j=1

αij vj . (3)

Trade-off measures. In many optimization problems, objectives are inherently conflicting; for
instance, improving the accuracy of a neural network increases energy consumption or latency. To sys-
tematically evaluate such trade-offs, Trinci et al. (2024) proposed the Energy NetScore metric, which
balances predictive accuracy against energy consumption, originally derived from NetScore (Wong,
2019). For a model M, the Energy NetScore is computed as 20 log

(
A(M)α

E(M)β

)
, where A(M) is

predictive accuracy and E(M) is the total energy consumption; the exponents α and β weight the
trade-off between accuracy and energy.

A classical way to study such trade-offs is through Pareto front analysis (Giagkiozis & Fleming,
2014). Let x = (p,E) denote the pair of model performance p and energy consumption E measured
during training and inference. Consider a set of candidate solutions S = {xi = (pi, Ei) | i =
1, 2, . . . ,m}. For any two solutions xa = (pa, Ea) and xb = (pb, Eb), we say that xa dominates xb

if pa ≥ pb and Ea ≤ Eb, with at least one inequality being strict. The Pareto front P ⊆ S is then
defined as the set of all non-dominated solutions:

P = {x∗ ∈ S | ∄x′ ∈ S such that x′ dominates x⃗}. (4)

The Pareto front thus provides a set of optimal trade-offs. By examining its shape and Pareto
efficiency, one can assess how much performance must be sacrificed to achieve energy savings.

4 IMLP: AN INCREMENTAL MLP FOR TABULAR DATA STREAMS

Problem Statement. Let {Tt}Tt=1 denote a stream of T segments, where the training data for each
task arrives incrementally at time t. The raw inputs are real-valued feature vectors xi ∈ Xt ⊆ Rdin ,
and the corresponding labels are categorical yi ∈ Yt, sampled from distribution Dt. Our goal is to
train an incremental MLP model using data Tt available at time t, where the learner may scan the
current data multiple times but cannot revisit raw data from earlier tasks. The training objective is
to minimize the cross-entropy loss. We aim to train the model without storing raw inputs from past
tasks, and to evaluate its performance during inference on a stratified test set.

Architecture Overview. For efficient learning from the current task while maintaining performance
on previously learned tasks, we consider two strategies: (1) processing each task with an augmented
MLP module that incorporates limited historical context through a variant of scaled dot-product
attention. 2) maintaining an FIFO feature buffer with fixed memory over time, which facilitates
representation reuse while keeping memory and computation cost constrained as new data evolves.

We aim to reuse a compact, input-dependent summary of recent experience without retaining raw
data, while preventing unbounded growth in memory and computation. To this end, we employ
a sliding window of size W to cache 256-dimensional (256-D) feature vectors. By attending to
latent features, the model enables privacy-preserving rehearsal with a constant memory footprint.
The architecture of IMLP is presented in Figure 1. Each incoming sample x ∈ T t is mapped from
the dimensional input din to a 256-D query Q within a windowed attention module. This query
retrieves a context vector c from a fixed-size feature memory that stores the most recent W segment
embeddings, Hstacked = {ht−1, . . . , ht−W }. When the attention gate is active, the concatenated pair
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Figure 1: IMLP architecture. IMLP sequentially takes Tt as input and outputs predictive performance
pθ(y).

(x, c) is passed through two shared feed-forward layers followed by a classification head. Next, the
modelM1att

t yields the model’s predictions at step t and updates the feature representations.

In the following, we detail these two key component designs to achieve energy-efficient continual
learning over tabular data streams.

4.1 WINDOWED SELF-ATTENTION MECHANISM

To selectively integrate useful past features into the current segment’s representation, IMLP employs
attention gates AG in each window size W , as depicted in Figure 1.

Algorithm 1 Sliding Window Update

Require: Current input x, Hprev, W
Ensure: Updated feature Hnew

1: hcurrent ← FeatureExtractor(x,Context(x))
2: Hnew ← Hprev ∪ {hcurrent}
3: if |Hnew| > W then
4: Hnew ← Hnew[1 :] ▷ Remove oldest feature
5: return Hnew

Unlike standard scaled dot-product attention,
our windowed variant departs in two con-
trolled ways: (i) the sequence is a FIFO
buffer of latent features [ht−1, . . . , ht−W ]
rather than input tokens, and (ii) we tie values
to keys, i.e., V = K, to reduce parameters
and latency while preserving the dot-product
inductive bias.

Let dh = 256 and B denote the batch size.
Stacking the last W penultimate features
along the temporal dimension yields H ∈
RB×W×dh . For each input x ∈ Rdin , we com-
pute Q = Wqx ∈ RB×1×dh , K = WkH ∈
RB×W×dh , α = softmax( scores√

dh
) ∈ RB×W×1, where scores = bmm(K,Q⊤) ∈ RB×W×1. The

context vector is then computed as c = bmm(α⊤,K) ∈ RB×1×dh through the attention module.

Next, squeezing the singleton dimension yields c̃ ∈ RB×dh , which is concatenated with the input
z = [x; c̃] ∈ RB×(din+dh). This representation is then fed into an MLP consisting of a two-layer
feature extractor followed by a linear classification head as

h = σ
(
W2 σ(W1z + b1)

)
∈ RB×dh , o = Wch+ bc ∈ RB×C , p = softmax(o). (5)

After each forward pass, the detached penultimate feature h̄t is appended to a FIFO buffer, and the
oldest entry is discarded once the buffer holds W items.

4.2 SLIDING WINDOW MANAGEMENT

The model retains a set of feature vectors extracted from representative past samples, typically the
activations from the penultimate layer. IMLP maintains a FIFO feature buffer update so that it
continually captures updated latent features from previous tasks, as shown in Algorithm 1.

5
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Let Ft denote the FIFO buffer of the last W segment prototypes, each of which is a detached
penultimate feature vector. After consuming all minibatches of Tt, we compute

f⃗t = Detach(
1

|Tt|
∑

(Xt,Yt)∈Tt

h(x)), Ft ← truncate_last
(
Ft−1 ∪ {f⃗t}, W

)
. (6)

Notably, IMLP stores only latent features instead of raw samples. Optionally, stored features can be
ℓ2-normalized before enqueueing, i.e., h̃ = h

∥h∥2+ε , which stabilizes attention weights by focusing on

feature directions. Likewise, we enqueue normalized prototypes f̃t = ft/(∥ft∥2 + ε) with ε = 10−8.

4.3 MEMORY AND COMPUTATIONAL EFFICIENCY

In terms of memory complexity, the only additional cost arises from the feature buffer used by the
attention mechanism, given by O(Wdh). Since the oldest feature is discarded once the window is
full, this overhead remains constant with respect to the number of tasks T . Unlike replay-based
methods, our approach avoids memory growth with the number of segments, thereby preventing
excessive storage costs. Moreover, this design also contributes to lightweight computation.

Given a mini-batch of B samples and a sliding window of W cached 256-D feature vectors, the total
computational efficiency in our model can be formally stated by,

O(Bdindh)︸ ︷︷ ︸
query

+O(BWd2h)︸ ︷︷ ︸
key projection

+O(BWdh)︸ ︷︷ ︸
scores

+O(BWdh)︸ ︷︷ ︸
aggregation

+O(B(din + dh)512)︸ ︷︷ ︸
feature MLP

= O
(
B(dindh +Wd2h)

)
(7)

where 512 is the feature dimension of the FC1, FC2 layer in the feature extraction module using MLP.
Hence, with W and dh fixed, IMLP exhibits (empirically) linear cumulative energy growth with the
number of segments, in contrast to the quadratic growth of cumulative retraining. Further analysis is
provided in Appendix B.

Summary of IMLP’s strengths. IMLP offers several notable advantages over related tabular
methods: (1) it is simple and inherently suitable for streaming tabular learning without replaying past
raw inputs; (2) it is lightweight in both computation and memory, with costs independent of task size,
yielding an energy-efficient solution; (3) it is straightforward to deploy on hardware; and (4) it aligns
well with privacy-sensitive applications by avoiding storage of raw data.

5 ENERGY EFFICIENCY ANALYSIS

Measuring energy consumption. To obtain ground-truth measurements, we instrument our CL
pipeline with an ElmorLabs PMD-USB power meter and corresponding PCI-E slot adapter (Elmor-
Labs, 2023; 2025). This device captures fine-grained voltage/current sampling with millisecond-level
resolution that is drawn for CPU and GPU throughout online updates, enabling precise monitoring of
transient spikes, including the training and inference phases. Different from software-based measure-
ments introduced by Trinci et al. (2024), this hardware-level setup provides real-life wall power and
vendor-independent measurements of actual power draw without introducing runtime overhead. The
reported energy values will always refer to the total energy that integrates power readings over the
training and inference duration for each segment t, that is E(Mt) =

∫ tend

tstart
Ptotal(t) dt, where Ptotal(t)

includes both CPU and GPU power consumption during training and inference.

NetScore-T. NetScore-T extends the NetScore framework (Shafiee et al., 2018) to CL by jointly
assessing the model’s predictive performance and energy consumption across data segments. Let
P (Mt)(≥ 0) denote a performance measure (e.g., balanced accuracy) of the modelM on segment
t ∈ {Tt}Tt=1 and its total energy consumed E(Mt). We define the per-segment score as NS(Mt),
and as consequence, its stream aggregate

NetScore-T(M) = 1
T

T∑
t=1

NS(Mt), where NS(Mt) =
P (Mt)

log10(E(Mt) + 1)
(8)

High NetScore-T values indicate models that combine strong accuracy with low energy usage. Wide
empirical ranges can reflect the diversity of energy consumption patterns across models and datasets.

Logarithmic energy scaling. NetScore-T penalizes energy via a base-10 logarithm (see equation 8),
which compresses the wide dynamic range of Et across hardware and datasets, preventing any
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outlier segment from dominating the stream average. The +1 term ensures the expression remains
well-defined as E → 0. For fixed performance P (Mt), the mapping E 7→ log10(E + 1) is
strictly decreasing with diminishing penalties: additional Joules always reduce the score, but with
progressively smaller marginal impact at higher energy levels.

Additionally, rankings remain invariant to the choice of logarithm base (a constant rescaling) and
are practically unaffected by energy unit rescaling (E 7→ kE), because log10(kE + 1) = log10 k +
log10(E + 1

k ), which behaves nearly as an additive shift in the typical regime E ≫ 1.

Unlike scalarizations that require exponent tuning, the logarithmic transform introduces no additional
hyperparameters.

6 EXPERIMENTS

Setup and Configuration. All experiments were conducted on a single workstation equipped
with an Intel® Core™ i5-8600K Processor, a NVIDIA GeForce RTX 2080 Ti GPU, 16GB DDR4
RAM, and an NVMe SSD for data and model checkpoints. An ElmorLabs PMD-USB power
meter and corresponding PCI-E slot adapter (ElmorLabs, 2023; 2025) were used for real-life energy
consumption measurement.

Datasets. We have conducted experiments on 36 classification tasks from the TabZilla bench-
marks (McElfresh & Talwalkar, 2023), selected from OpenML to ensure (i) sufficient size for
meaningful segmentation, (ii) a balanced mix of binary and multi-class problems, and (iii) diversity in
feature dimensionalities and label distributions. To simulate data streams, each dataset is partitioned
chronologically into contiguous segments of size 500–1000 instances, determined by an algorithm
that minimizes remainder imbalance while preserving temporal order (see Appendix §A.1.1 ). Any
remainder is redistributed across the first segments to maintain near-uniform segment sizes. For fair
evaluation, all datasets undergo the same preprocessing pipeline: median imputation and standard-
ization for numerical features, constant imputation and one-hot encoding for categorical features,
stratified 85%-15% splits for training, validation, and /or testing.

Baselines. We compare against SOTA networks for tabular data, including TabPFN v2 (Hollmann
et al., 2025a), TabM (Gorishniy et al., 2024), Real-MLP (Holzmüller et al., 2024), TabR (Gorishniy
et al., 2023a), and ModernNCA (Ye et al., 2024), as well as representative methods such as MLP (Taud
& Mas, 2017), TabNet (Arik & Pfister, 2021), DANet (Chen et al., 2022), ResNet (Gorishniy et al.,
2021), STG (Jana et al., 2023), VIME (Yoon et al., 2020)). To provide a broader perspective, we also
include tree-based gradient boosting methods (XGBoost (Chen & Guestrin, 2016), LightGBM (Ke
et al., 2017), CatBoost (Prokhorenkova et al., 2019)), and classical models (k-NN (Guo et al., 2003),
SVM (Jakkula, 2006), Linear Model (Kiebel & Holmes, 2007), Random Forest (Rigatti, 2017),
Decision Tree (Rokach & Maimon, 2005)), although they require replay and are not directly suited to
our problem setting. Since the recent baselines we consider were not originally designed for stream
learning, we adopt a best-effort comparison: at each segment step t, all baselines are retrained from
scratch on the cumulative data available so far to mitigate catastrophic forgetting and maximize their
performance. In contrast, our method operates in a true incremental mode without replay of past data.
Appendix §A.2.5 provides details on model training protocols.

Evaluation. To assess whether performance differences among algorithms are statistically sig-
nificant across multiple datasets, we first conduct the classic Friedman test (Friedman, 1937),
χ2
F = 12N

k(k+1)

[∑k
j=1 R

2
j −

k(k+1)2

4

]
, where N is the number of datasets, i.e., 36, k the number

of algorithms and Rj the average rank of the j-th algorithm. If the null hypothesis is rejected,
we perform post-hoc analyses using the Wilcoxon signed-rank test (Wilcoxon, 1945) with Holm
correction (Holm, 1979), as well as critical difference analysis (Nemenyi, 1963). All models are
evaluated on six key metrics: balanced accuracy, log-loss, energy consumption, execution time, and
the composite NetScore-T metrics capturing accuracy–efficiency trade-offs. Furthermore, we plot 2D
Pareto fronts of performance versus energy efficiency to examine the trade-offs among models. More
details have been provided in Appendix C.

IMLP excels on the energy–accuracy trade-off under no replay. Table 1 summarizes the energy
consumption, time cost, and performance among neural methods. Neural methods generally demand
higher energy and runtime, particularly for large networks, TabPFN v2 (72,319J), DANet (32,382J),
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Table 1: Performance statistics across all neural network baselines on 36 TabZilla datasets, reported
as mean±standard deviation. Energy is measured in Joules, and Time in seconds. Trade-offs between
balanced accuracy and energy consumption are measured by NetScore-T (see Eq. 8).

Model Energy Consumed (J) (↓) Time (s) (↓) Balanced Accuracy (↑) Log Loss (↓) NetScore-T (↑)

STG 6747 ± 5671 85.6 ± 71.8 0.416 ± 0.166 1.162 ± 0.689 0.151 ± 0.073
VIME 21705 ± 34212 261.8 ± 416.9 0.738 ± 0.197 1.098 ± 1.544 0.238 ± 0.060
DANet 32382 ± 26865 406.3 ± 336.4 0.812 ± 0.172 0.349 ± 0.334 0.248 ± 0.055
TabNet 23312 ± 18268 285.3 ± 226.3 0.807 ± 0.177 0.357 ± 0.337 0.250 ± 0.059
TabPFN v2 72319 ± 100877 291.1 ± 405.3 0.862 ± 0.151 0.240 ± 0.265 0.252 ± 0.052
TabM 15558 ± 12321 96.6 ± 76.8 0.839 ± 0.161 0.288 ± 0.307 0.280 ± 0.056
ResNet 5422 ± 3672 66.1 ± 45.1 0.805 ± 0.160 1.489 ± 1.469 0.312 ± 0.065
Real-MLP 6243 ± 4735 62.8 ± 47.4 0.823 ± 0.159 0.342 ± 0.314 0.313 ± 0.065
MLP 3241 ± 2581 41.4 ± 32.9 0.829 ± 0.162 0.329 ± 0.326 0.341 ± 0.073
TabR 4125 ± 3625 46.1 ± 41.2 0.836 ± 0.155 0.554 ± 0.656 0.345 ± 0.072
ModernNCA 4829 ± 4630 54.9 ± 53.1 0.843 ± 0.145 1.298 ± 1.344 0.346 ± 0.077
IMLP (Ours) 845 ± 386 9.9 ± 4.5 0.807 ± 0.164 0.399 ± 0.365 0.430 ± 0.095

TabNet (23,312J), and TabM (15,558J) on average, though they still achieve competitive accuracy,
namely 0.862, 0.812, 0.807, and 0.839, respectively. Among them, IMLP stands out for its superior
energy–accuracy trade-off under the no-replay setting. On average, it requires only 845J, which
is 27.6× lower than TabNet (23,312J) at comparable accuracy and 85.5× lower than TabPFN v2
(72,319J), with only a 0.055 drop in balanced accuracy. Compared to standard MLP, IMLP achieves
a 4.2× speedup on average, along with a 73.9% reduction in energy usage.

(a) Pareto optimal trade-offs for NNs.
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Figure 2: Pareto frontiers overview. (a) op-
timal trade-offs for NN models. (b) optimal
trade-offs across all families.

The energy-accuracy trade-off, as measured by
NetScore-T, shows that IMLP ranks as the most
energy-efficient method under the no-replay setting.
Among all evaluated methods, GBDTs such as Light-
GBM consistently deliver strong performance with
relatively low runtime. However, IMLP beats Cat-
Boost and XGBoost in terms of both average energy
consumption and runtime (see Appendix C). Classic
methods such as DecisionTree, RandomForest, and
LinearModel use very little energy and time, but their
balanced accuracy is generally low (< 0.8). SVM
and k-NN are useful for reference; however, they re-
quire more computation and energy usage compared
to IMLP. Specifically, while the average balanced ac-
curacy of SVM is the same as that of IMLP, it requires
about 4.4× more energy and takes 8.5× longer on
average (see Appendix C).

NetScore-T is compatible with Pareto efficiency.
Figure 2 depicts the optimal trade-offs among neu-
ral tabular models using a Pareto-2D visualization.
Each point represents a specific model training and
inference run on a given dataset indexed by ID (see
Appendix A) with a particular random seed (e.g., 7,
42, and 101), providing a detailed view of the Pareto
optimal trade-offs in this group. As shown in sub Fig-
ure 2a, the frontier line maps the optimal trade-offs,
in which most (four out of eight) of the optimal trade-
offs in neural tabular models come from IMLP, with
one from TabNet, one from MLP, one from Modern-
NCA, and one from TabR. IMLP points (pink) lie in
the low-energy region while still keeping high accu-
racy. In contrast, TabNet attains relatively high accuracy but at the cost of substantially higher energy
consumption, often exceeding 10,000 joules. MLP and TabR fall in the middle ground, showing
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balanced trade-offs without the extremes observed in IMLP or TabNet. Some come close to the
frontier, but most need more energy than IMLP. Surprisingly, for all model families, as shown in
Figure 2b, IMLP also becomes one of the Pareto optimal trade-offs between the average balanced
accuracy and average total energy consumption. The others include DecisionTree, LinearModel,
LightGDM, and TabPFN v2. Overall, IMLP distinguishes itself as an efficient and competitive neural
counterpart.

Furthermore, we compare IMLP with the SOTA methods, namely TabPFN v2, LightGBM, CatBoost,
XGBoost, and MLP, about the dynamic performance and efficiency when data arrives in sequence,
as illustrated in Figure 3. Figure 3a presents the balanced accuracy averaged across datasets for

(a) Balanced Accuracy. (b) Cumulative energy. (c) Training time.

Figure 3: Dynamic learning performance and efficiency comparisons per segment.

each segment. The accuracy generally increases across segments, showing that all models, including
IMLP, improve with more data. Figure 3b displays cumulative energy consumption per segment.
Notably, TabPFN v2 exhibits substantially higher energy consumption compared to others, primarily
due to its large neural network backbone. The results reveal that as the segment step increases, MLP,
LightGBM, CatBoost, and XGBoost consume energy at accelerating rates, while IMLP sustains the
lowest and most stable energy usage across all segments. Similarly, Figure 3c shows training time
per segment. Its trend closely follows that of cumulative energy consumption, as expected from the
strong correlation between training time and energy use.

7 CONCLUSION

This paper addresses the critical gap of energy-efficient continual learning on tabular data streams
by introducing IMLP, a novel incremental MLP model. IMLP employs attention-based feature
replay with context retrieval and sliding buffer updates, integrated into a minibatch training loop for
streaming tabular learning. We further propose NETSCORE-T, a new metric that jointly evaluates
balanced accuracy and energy consumption and can be compatible with traditional Pareto efficiency.
IMLP achieves outstanding energy savings compared to SOTA neural tabular models and excels on
energy-accuracy trade-off under no replay, according to hardware-level energy measurement.

Experiments show that IMLP matches the accuracy of neural baselines under no replay while
substantially reducing runtime and energy costs. IMLP achieves up to 27.6× higher energy efficiency
than TabNet and 85.5× higher than TabPFN, while maintaining competitive average accuracy.
Positioned optimally on the neural Pareto frontier, IMLP consistently delivers efficiency gains across
diverse datasets.

Limitations and Future Work. Despite these exciting findings, IMLP currently treats baselines
on classic TabZilla benchmarks in an experimental setting. A promising next step is to compare
the method with up-to-date models on real-life lifelong settings, thereby enriching the benchmarks
(e.g., TabRed (Rubachev et al., 2024)). Beyond that, conducting a comprehensive ablation study
would shed light on the influence of key parameter choices, such as window size, feature dimensions,
scaling, and alternative CL strategies. Ultimately, an important future direction is to extend IMLP
toward jointly optimizing the trade-offs between energy efficiency and predictive performance, ideally
supported by theoretical guarantees or unified analytical frameworks.
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Ethics statement. This work contributes to an easy-to-deploy, energy-efficient alternative to full
retraining for tabular data streams. By a windowed scaled dot-product attention over a sliding latent
feature buffer, it enables lightweight computation and avoids unbounded memory growth in continual
learning, while achieving efficient energy consumption. This method will be beneficial for Green AI,
especially in resource-constrained tabular data learning. All experiments are conducted on publicly
available benchmark datasets and baselines. Regarding the large language model use, ChatGPTs
and Grammarly were used to assist us with writing and editing, retrieving related work, coding
improvement, but all the ideas, designs, plots, and analyses are our own.
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A EXTENDED EXPERIMENTS

A.1 DATASETS AND STREAM SEGMENTATION

We evaluate IMLP on 36 classification tasks from the TabZilla benchmark (McElfresh & Talwalkar,
2023), selected from OpenML based on three criteria: (1) sufficient data size to create meaningful
segments, (2) balanced representation of binary and multi-class problems, and (3) diverse feature
dimensionalities and class distributions. To simulate the data stream in incremental learning scenarios,
Table 2 lists every OpenML task in our benchmark together with basic statistics and the fixed stream
segmentation applied in original row order (rows 1 . . .k form Segment 0, rows k+1 . . . 2k form
Segment 1, etc.).

† Class counts show label ID : instances after preprocessing. Binary tasks list two numbers; multi-
class tasks list one count per class. For tasks with many classes, we show representative counts or use
compact notation (e.g., “25 × 300” for 25 classes with 300 instances each).

A.1.1 STREAM SEGMENTATION ALGORITHM

Our segmentation follows a principled approach to create balanced segments while minimizing data
waste:

Algorithm 2 Optimal Segment Size Selection

Require: Dataset with N training instances, bounds kmin = 500, kmax = 1000
Ensure: Segment size k∗ that minimizes remainder

1: best_remainder← N
2: k∗ ← kmin

3: for k = kmin to min(kmax, N) do
4: num_segments← ⌊N/k⌋
5: remainder← N mod k
6: if remainder = 0 then
7: return k ▷ Perfect division found
8: if remainder < best_remainder then
9: best_remainder← remainder

10: k∗ ← k
11: return k∗

The choice of segment size bounds (500–1000 instances) balances three considerations: (1) statistical
power, each segment must contain sufficient samples for reliable learning, (2) IMLP coherence,
segments should be large enough for the attention mechanism to learn meaningful feature relationships
within each temporal chunk, and (3) computational efficiency, larger segments would increase memory
requirements and training time per segment without proportional benefits.

When the optimal segment size k∗ leaves a remainder r = N mod k∗, we apply round-robin
redistribution: the first r segments each receive one additional instance, ensuring segment sizes differ
by at most 1. This maintains temporal ordering while achieving optimal balance.

A.2 DATA RETRIEVAL AND PREPROCESSING PROTOCOL

A.2.1 DATASET ACQUISITION

All datasets are retrieved via the OpenML Python API (v0.15.2) with local caching enabled. We use
the default target attribute specified in each OpenML task definition. Raw data is downloaded in
DataFrame format to preserve both feature names and categorical indicators.

A.2.2 FEATURE PREPROCESSING PIPELINE

Our preprocessing pipeline follows scikit-learn best practices with separate transformers for numerical
and categorical features:
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Table 2: Statistics of datasets. OpenML classification tasks and stream-segmentation parameters used
in this study. # Inst, stands for the number of instances, # Feat. stands for the number of features.
Seg. size stands for the segment size bound. # Segs stands for the number of segments. Numbers are
produced by the data-processing pipeline and reproduced by the helper script in §A.3.

ID Name # Inst. #Feat. Class balance† Seg. size #Segs

146820 wilt 4,839 5 4,578; 261 514 8
14964 artificial-characters 10,218 7 1,196; 600; 1,192; 1,416; 808;

1,008; . . .
579 15

14969 GesturePhaseSegmentation 9,873 32 2,741; 998; 2,097; 1,087; 2,950 839 10
14951 eeg-eye-state 14,980 14 8,257; 6,723 749 17

146206 magic 19,020 10 12,332; 6,688 951 17
167211 Satellite 5,100 36 75; 5,025 867 5
167141 churn 5,000 29 4,293; 707 850 5
168910 fabert 8,237 800 933; 1,433; 1,927; 1,515; 979;

948; 502
500 14

168912 sylvine 5,124 20 2,562; 2,562 871 5
190410 philippine 5,832 308 2,916; 2,916 708 7

2074 satimage 6,430 36 1,531; 703; 1,356; 625; 707;
1,508

683 8

28 optdigits 5,620 64 554; 571; 557; 572; 568; 558; . . . 597 8
32 pendigits 10,992 16 1,143; 1,143; 1,144; 1,055; 1,144;

. . .
519 18

146607 SpeedDating 8,378 442 6,998; 1,380 712 10
168908 christine 5,418 1,611 2,709; 2,709 921 5

14952 PhishingWebsites 11,055 38 4,898; 6,157 522 18
3510 JapaneseVowels 9,961 14 1,096; 991; 1,614; 1,473; 782; . . . 529 16
3735 pollen 3,848 5 1,924; 1,924 545 6
3711 elevators 16,599 18 5,130; 11,469 641 22
3896 ada_agnostic 4,562 48 3,430; 1,132 646 6

14970 har 10,299 561 1,722; 1,544; 1,406; 1,777; 1,906;
1,944

547 16

3686 house_16H 22,784 16 6,744; 16,040 842 23
3897 eye_movements 10,936 27 3,804; 4,262; 2,870 715 13
3904 jm1 10,885 21 8,779; 2,106 514 18

43 spambase 4,601 57 2,788; 1,813 782 5
3954 MagicTelescope 19,020 10 12,332; 6,688 951 17
9952 phoneme 5,404 5 3,818; 1,586 574 8
3950 musk 6,598 267 5,581; 1,017 701 8
9960 wall-robot-navigation 5,456 24 2,205; 2,097; 328; 826 515 9
3889 sylva_agnostic 14,395 216 13,509; 886 941 13
9985 first-order-theorem-proving 6,118 51 1,089; 486; 748; 617; 624; 2,554 520 10
3481 isolet 7,797 617 25 × 300 (class 0. . . 24) 552 12

45 splice 3,190 227 767; 768; 1,655 542 5
9986 gas-drift 13,910 128 2,565; 2,926; 1,641; 1,936; 3,009;

1,833
563 21

9987 gas-drift-different-conc. 13,910 129 2,565; 2,926; 1,641; 1,936; 3,009;
1,833

563 21

168909 dilbert 10,000 2,000 1,988; 2,049; 1,913; 2,046; 2,004 500 17

Numerical Features:

1. Imputation: Missing values filled with column medians

2. Standardization: Zero mean, unit variance scaling via StandardScaler
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Categorical Features:

1. Imputation: Missing values filled with constant ‘missing’

2. Encoding: One-hot encoding with drop=‘first’ to avoid multicollinearity

3. Unknown handling: handle_unknown=‘ignore’ for robust inference

The ColumnTransformer ensures preprocessing consistency across all data splits. After transforma-
tion, all features are converted to float32 for memory efficiency.

A.2.3 TARGET PROCESSING AND TASK TYPE DETECTION

Target variables are processed based on OpenML task type:

• Binary classification: 2 unique labels → LabelEncoder → {0, 1}

• Multi-class classification: C > 2 unique labels → LabelEncoder → {0, . . . , C-1}

• Regression: Direct conversion to float32 (not used in this study)

A.2.4 DATA SPLITTING STRATEGY

Our splitting protocol ensures a realistic evaluation:

1. Test Set Isolation: A stratified 15% test split is carved out before any stream processing,
using random_seed=42 for reproducibility.

2. Training Stream Creation: The remaining 85% forms the chronologically ordered training
stream, preserving the original row order from OpenML.

3. Per-Segment Validation: Each segment (or cumulative data) is further split with stratified
15% validation, using random_seed=42+segment_idx to ensure different splits per
segment while maintaining reproducibility.

This approach simulates realistic continual learning where: 1) The test set represents future unseen
data, 2) Each segment represents a temporal chunk of arriving data, 3) Validation splits enable early
stopping without future data leakage, and 4) All models use consistent 15% validation splits for
hyperparameter selection and early stopping criteria.

A.2.5 MODEL TRAINING PROTOCOLS

Our experimental design follows two distinct training protocols based on model type:

Cumulative Training (Baseline Models): Traditional baselines (XGBoost, LightGBM, CatBoost,
kNN, SVM, Decision Trees, Random Forest, and neural baselines like TabNet, SAINT) are retrained
from scratch at each segment using all available data up to that point. For the segment, these models
train on the union

⋃T
t=0 Tt where Tt denotes the t-th data segment. This protocol maximizes baseline

performance by leveraging all historical data, representing the standard approach in tabular learning.

Incremental Training (IMLP): Our proposed IMLP trains only on the current segment St while
accessing previous feature representations through the attention mechanism. This protocol tests true
incremental learning capabilities without replay of raw historical data.

Both protocols use identical validation procedures: each model’s hyperparameters are selected
via early stopping on the 15% validation split, ensuring fair comparison despite different training
paradigms.

A.2.6 REPRODUCIBILITY MEASURES

All steps are deterministic with fixed random seeds, including 1) Global seed: random_seed =
42, 2) Per-segment validation: random_seed = 42 + segment_idx, and 3) Preprocessing:
Deterministic transformers with fixed parameters.
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A.3 DATASET SUMMARY REGENERATION SCRIPT

For full reproducibility, we provide a helper script that regenerates Table 2 from the processed data:

1 # dataset_summary.py (runs in < 2 seconds)
2 import json, csv, gzip, numpy as np, pathlib
3

4 def regenerate_dataset_summary():
5 """Regenerate the dataset summary CSV from processed metadata."""
6 META = pathlib.Path("processed_datasets_summary.json")
7 ROOT = pathlib.Path("full_datasets")
8 OUT = pathlib.Path("dataset_summary.csv")
9

10 # Load processing metadata
11 with META.open() as f:
12 meta = json.load(f)
13

14 rows = []
15 for tid, m in meta.items():
16 # Load target labels to compute class balance
17 y = np.load(gzip.open(ROOT/m["dataset_name"]/"y_full.npy.gz"))
18 counts = np.bincount(y.astype(int))
19

20 rows.append({
21 "task_id": int(tid),
22 "name": m["original_name"],
23 "instances": int(m["num_instances"]),
24 "features": int(m["num_features"]),
25 "class_balance": ";".join(map(str, counts)),
26 "segment_size": int(m["segment_size"]),
27 "num_segments": int(m["num_segments"])
28 })
29

30 # Write CSV output
31 with OUT.open("w", newline="") as f:
32 writer = csv.DictWriter(f, fieldnames=rows[0].keys())
33 writer.writeheader()
34 writer.writerows(rows)
35

36 print(f"Wrote {OUT} with {len(rows)} tasks")
37

38 if __name__ == "__main__":
39 regenerate_dataset_summary()

Running this script in the project root recreates the CSV that backs Table 2. The script requires the
preprocessed datasets, but no pipeline re-execution.
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A.4 BASELINES

We implement most of the baseline methods according to the publicly available codebases and
integrate them into the same backbone for benchmarking.

• XGBoost (Chen & Guestrin, 2016). https://github.com/dmlc/xgboost

• LightGBM (Ke et al., 2017). https://github.com/microsoft/LightGBM

• CatBoost (Prokhorenkova et al., 2019). https://github.com/catboost/
catboost

• TabPFN v2 (Hollmann et al., 2025a). https://github.com/automl/TabPFN

• TabM (Gorishniy et al., 2024). https://github.com/yandex-research/tabm

• Real-MLP (Holzmüller et al., 2024). https://github.com/dholzmueller/
realmlp-td-s_standalone

• TabR (Gorishniy et al., 2023a). https://github.com/yandex-research/
tabular-dl-tabr

• ModernNCA (Ye et al., 2024). https://github.com/YyzHarry/ModernNCA

• MLP (Taud & Mas, 2017). https://scikit-learn.org/stable/modules/
neural_networks_supervised.html

• TabNet (Arik & Pfister, 2021). https://github.com/dreamquark-ai/tabnet

• DANet (Chen et al., 2022). https://github.com/QwQ2000/DANets

• ResNet (Gorishniy et al., 2021). https://github.com/yandex-research/
tabular-dl-revisiting-models

• STG (Jana et al., 2023). https://github.com/runopti/stg

• VIME (Yoon et al., 2020). https://github.com/jsyoon0823/VIME

• k-NN (Guo et al., 2003). https://scikit-learn.org/stable/modules/
neighbors.html

• SVM (Jakkula, 2006). https://scikit-learn.org/stable/modules/svm.
html

• Linear Model (Kiebel & Holmes, 2007). https://scikit-learn.org/stable/
modules/linear_model.html

• Random Forest (Rigatti, 2017). https://scikit-learn.org/stable/
modules/ensemble.html#random-forests

• Decision Tree (Rokach & Maimon, 2005). https://scikit-learn.org/stable/
modules/tree.html

B IMLP IMPLEMENTATION DETAILS

B.1 ARCHITECTURE OVERVIEW AND DESIGN RATIONALE

IMLP extends the standard MLP architecture with an attention-based memory mechanism designed
specifically for tabular continual learning. The key innovation lies in storing and retrieving feature
representations rather than raw data, enabling privacy-preserving incremental learning with constant
memory requirements.

B.1.1 COMPARISON WITH STANDARD MLP

Table 4 contrasts IMLP with a standard MLP of equivalent capacity:
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Table 4: Architectural comparison between standard MLP and IMLP.

Component MLP IMLP IMLP Notes
Input processing din → 512 din → 256 Query projection
Memory mechanism None Attention Key-value retrieval
Feature extraction 512→ 256 (din + 256)→ 512→ 256 Context-augmented
Memory complexity O(1) O(W ) W = window size
Time complexity O(1) O(W · d) d = hidden dim
Privacy Requires raw data Feature-only No raw data storage

Table 5: Detailed layer-wise specification of IMLP architecture.

Component Output dim. Activation Notes

Input feature vector din – Raw tabular features after preprocessing

Attention Module
Query projection Q 256 – Linear(din, 256)
Key projection K 256 – Linear(256, 256) applied to each stored

feature
Context computation 256 – Scaled dot-product attention over win-

dow

Feature Extraction
Concatenated input (x, c) din + 256 – Only if attention enabled; c = context

vector
FC 1 512 ReLU Linear(din + 256, 512)
FC 2 256 ReLU Linear(512, 256)

Classification Head
Classifier C – Linear(256, C) where C = number of

classes

B.2 LAYER-WISE ARCHITECTURE SPECIFICATION

Design Choices:

• Hidden size 256: Balances expressiveness with computational efficiency across all datasets

• No dropout/normalization: Empirically found to hurt performance in continual learning
setting

• ReLU activations: Simple, stable gradients for incremental training

• Fixed architecture: Same capacity across all 36 datasets for fair comparison

B.3 ATTENTION MECHANISM DESIGN

B.3.1 SCALED DOT-PRODUCT ATTENTION

IMLP uses a simplified attention mechanism to retrieve relevant historical features. For a batch of
size B:
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Q = Wq · x ∈ RB×1×256 (query from current input) (9)

K = Wt ·Hstacked ∈ RB×W×256 (keys from previous features) (10)

Scores = bmm(K,QT ) ∈ RB×W×1 (11)

α = softmax(Scores.squeeze()) ∈ RB×W (12)

Context = bmm(α.unsqueeze(1),K) ∈ RB×1×256 (13)

where:

• Hstacked = stack({ht−W , . . . , ht−1}) ∈ RB×W×256

• bmm denotes batch matrix multiplication
• No scaling factor is applied (unlike standard scaled dot-product attention)
• Values equal keys: V = K

B.3.2 WINDOW MANAGEMENT STRATEGY

The sliding window maintains a FIFO queue of the most recent W feature vectors:

Algorithm 3 Sliding Window Update

Require: Current input x, previous features Hprev, window size W
Ensure: Updated window Hnew

1: hcurrent ← FeatureExtractor(x,Context(x))
2: Hnew ← Hprev ∪ {hcurrent}
3: if |Hnew| > W then
4: Hnew ← Hnew[1 :] ▷ Remove oldest feature
5: return Hnew

B.3.3 FEATURE NORMALIZATION

To improve attention stability, stored features are L2-normalized during precomputation:

h̃i =
hi

∥hi∥2 + ϵ
(14)

where ϵ = 10−8 prevents division by zero. This normalization ensures attention weights focus
on feature directions rather than magnitudes and is applied in the _precompute method during
segmental training.
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B.4 COMPLETE IMPLEMENTATION

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4

5 class IncrementalMLP(nn.Module):
6 """
7 Incremental MLP with attention-based feature replay for continual

learning.↪→
8

9 Args:
10 input_size (int): Number of input features
11 num_classes (int): Number of output classes
12 use_attention (bool): Whether to use attention mechanism
13 window_size (int): Size of sliding memory window
14 """
15

16 def __init__(self, input_size, num_classes, use_attention=True,
window_size=10):↪→

17 super().__init__()
18 self.window_size = window_size
19 self.use_attention = use_attention
20 self.hidden_size = 256
21

22 # Attention projections
23 self.query = nn.Linear(input_size, 256)
24 self.key = nn.Linear(256, 256)
25

26 # Feature extraction pathway
27 total_input_size = input_size + (256 if use_attention else 0)
28 self.feature_extractor = nn.Sequential(
29 nn.Linear(total_input_size, 512),
30 nn.ReLU(),
31 nn.Linear(512, self.hidden_size),
32 nn.ReLU()
33 )
34

35 # Classification head
36 self.classifier = nn.Linear(self.hidden_size, num_classes)
37

38 def compute_context(self, x, prev_features):
39 """
40 Compute attention-weighted context from previous features.
41

42 Args:
43 x (Tensor): Current input batch [B, D]
44 prev_features (List[Tensor]): Previous feature vectors [W x

[256]]↪→
45

46 Returns:
47 Tensor: Context vector [B, 256]
48 """
49 if not prev_features or self.window_size == 0:
50 return torch.zeros(x.size(0), 256, device=x.device)
51

52 # Stack previous features: [B, W, 256]
53 stacked_prev = torch.stack(prev_features, dim=1)
54

55 # Compute keys and queries
56 keys = self.key(stacked_prev) # [B, W, 256]
57 query = self.query(x).unsqueeze(1) # [B, 1, 256]
58

59 # Scaled dot-product attention
60 scores = torch.bmm(keys, query.transpose(1, 2)).squeeze(-1) # [B,

W]↪→
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61 attention_weights = F.softmax(scores, dim=1) # [B, W]
62

63 # Compute weighted context
64 context = torch.bmm(attention_weights.unsqueeze(1),

keys).squeeze(1) # [B, 256]↪→
65

66 return context
67

68 def forward(self, x, prev_features=None):
69 """
70 Forward pass with optional attention over previous features.
71

72 Args:
73 x (Tensor): Input features [B, D]
74 prev_features (List[Tensor]): Previous features for attention
75

76 Returns:
77 Tuple[Tensor, Tensor]: (logits, current_features)
78 """
79 # Compute attention context
80 context = torch.zeros(x.size(0), 256, device=x.device)
81 if self.use_attention and prev_features:
82 context = self.compute_context(x, prev_features)
83

84 # Concatenate input with context
85 if self.use_attention:
86 augmented_input = torch.cat([x, context], dim=1)
87 else:
88 augmented_input = x
89

90 # Extract features and classify
91 features = self.feature_extractor(augmented_input)
92 logits = self.classifier(features)
93

94 return logits, features

B.5 COMPUTATIONAL COMPLEXITY ANALYSIS

B.5.1 TIME COMPLEXITY

For each forward pass with batch size B, input dimension din, hidden dimension dh = 256, and
window size W :

Query projection: O(B · din · dh) (15)

Key projection: O(B ·W · d2h) (16)
Attention scores: O(B ·W · dh) (17)

Context aggregation: O(B ·W · dh) (18)
Feature extraction: O(B · (din + dh) · 512) (19)

Total: O(B · (din · dh +W · d2h)) (20)

For typical values (W = 10, dh = 256, din ≲ 2000), the attention overhead is O(W · d2h) =
O(655,360) operations per sample.

B.5.2 MEMORY COMPLEXITY

IMLP maintains constant memory usage per segment:

• Model parameters: ≈ 1.2M parameters (fixed)
• Feature buffer: W × 256× 4 bytes = 10,240 bytes for W = 10

• Attention matrices: B ×W × 256× 4 bytes during computation
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Unlike replay-based methods, memory usage does not grow with the number of segments, enabling
indefinite continual learning.

B.5.3 COMPARISON WITH REPLAY METHODS

Table 6 compares IMLP with alternative continual learning approaches:

Table 6: Complexity comparison of continual learning approaches.

Method Memory Time per step Privacy
Naive retraining O(T ·N) O(T ·N) Requires raw data
Experience replay O(M) O(N +M) Requires raw data
Generative replay O(1) O(N +G) Private
IMLP (ours) O(W ) O(N +W · d2) Private

where T = number of tasks, N = samples per task, M = replay buffer size, G = generative model
cost, W = window size, d = feature dimension.

B.6 HYPERPARAMETER CONFIGURATION

IMLP uses the following default hyperparameters across all experiments:

Table 7: IMLP hyperparameter configuration.

Parameter Value Description
Window size (W ) 10 Number of previous feature vectors stored
Hidden dimension 256 Feature representation size
Learning rate 10−3 Adam optimizer learning rate
Batch size 128 Training batch size
Weight decay 10−5 L2 regularization strength
Early stopping patience 10 Epochs without improvement before stopping
Max epochs 100 Maximum training epochs per segment
Normalization ϵ 10−8 Small constant for L2 normalization

The window size W = 10 was chosen to balance memory efficiency with sufficient historical
context. The hidden dimension of 256 provides adequate representational capacity while maintaining
computational efficiency across diverse tabular datasets.
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C EXTENDED RESULTS

C.1 STATISTICAL TESTS

We conducted comprehensive statistical analysis following the methodology of Demšar Demšar
(2006) to compare model performance across multiple datasets. This section presents detailed results
of the Friedman omnibus tests and post-hoc Wilcoxon signed-rank tests with Holm correction.

C.1.1 FRIEDMAN OMNIBUS TEST RESULTS

All statistical tests were conducted with N = 36 datasets and k = 20 classifiers at significance level
α = 0.05. The critical difference for post-hoc comparisons is

CD = q0.05

√
k(k + 1)

6N
= 3.532

√
20 · 21
6 · 36

≈ 4.92.

Metric Friedman χ2 p-value Null Hypothesis

Balanced Accuracy 298.90 3.36× 10−52 Rejected
Log-Loss 430.31 2.13× 10−79 Rejected
NetScore-T (Balanced) 545.36 1.65× 10−103 Rejected
NetScore-T (Log-Loss) 395.52 3.75× 10−72 Rejected
Total Energy (Joules) 562.96 3.26× 10−107 Rejected
Total Time (Seconds) 548.94 2.91× 10−104 Rejected

Table 8: Friedman omnibus test results across all metrics with k = 20. All tests decisively reject the
equal-performance null, which warrants post-hoc pairwise analysis.

C.1.2 ERROR ANALYSIS AND DATASET-SPECIFIC PERFORMANCE

To understand when and why IMLP provides advantages over baseline methods, we conducted
pairwise comparisons across all 36 TabZilla datasets. This analysis reveals distinct performance
patterns that illuminate IMLP’s positioning in the accuracy-efficiency landscape.

C.1.3 PREDICTIVE PERFORMANCE ANALYSIS

vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better
Balanced Accuracy 5 31 11 25 14 22 27 9
Log-Loss 2 34 4 32 11 25 34 2

Table 9: Dataset count where IMLP outperforms key baselines on predictive metrics. IMLP consis-
tently dominates XGBoost while trailing other methods.

The predictive performance analysis reveals a clear hierarchy: IMLP consistently outperforms
XGBoost (winning on 27/36 datasets for balanced accuracy and 34/36 for log-loss) but generally
trails MLP, LightGBM, and CatBoost. The mean differences are modest: IMLP achieves 1.97% lower
balanced accuracy than MLP but 3.93% higher than XGBoost, indicating competitive performance
within the neural network family.

C.1.4 EFFICIENCY-ADJUSTED PERFORMANCE

When efficiency is considered, IMLP’s value proposition becomes evident. Against standard MLP,
IMLP wins decisively: faster on all 36 datasets (mean speedup: 23.5s) and more energy-efficient on
35/36 datasets (mean reduction: 1,746J). The NetScore-T (Balanced) metric particularly favors IMLP
over MLP (34 vs. 2 datasets), demonstrating superior accuracy-efficiency trade-offs.
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vs. MLP vs. LightGBM vs. CatBoost vs. XGBoost
Metric IMLP Base IMLP Base IMLP Base IMLP Base

Better Better Better Better Better Better Better Better
NetScore-T (bal. acc.) 34 2 7 29 7 29 13 23
NetScore-T (log-loss) 18 18 2 34 9 27 32 4
Total Time (s) 36 0 7 29 7 29 8 28
Total Energy (J) 35 1 7 29 7 29 13 23

Table 10: Dataset count where IMLP outperforms baselines on efficiency and composite metrics.
IMLP dominates other neural methods but trails tree-based approaches.

However, tree-based methods maintain their efficiency advantage, with LightGBM and CatBoost
outperforming IMLP on efficiency metrics across 29/36 datasets. This reflects the fundamental
computational efficiency of tree-based architectures compared to neural networks.

C.1.5 LANDSCAPE ANALYSIS

The pairwise analysis reveals three distinct performance tiers:

1. Accuracy Leaders: TabPFNv2, LightGBM, MLP, and CatBoost dominate predictive met-
rics, with TabPFNv2 achieving the best overall balance.

2. Efficiency-Accuracy Optimizers: IMLP occupies a unique position, offering neural net-
work expressiveness with substantially improved efficiency compared to standard MLPs,
while maintaining competitive accuracy.

3. Pure Efficiency Champions: Tree-based methods (particularly DecisionTree and k-NN)
excel in computational efficiency but may sacrifice some accuracy on complex datasets.

C.1.6 PRACTICAL IMPLICATIONS

Deployment scenarios requiring neural network capabilities with energy constraints, streaming data
applications where constant-time updates matter, and situations where the modest accuracy trade-off
(<2% vs. MLP) is acceptable for significant efficiency gains (3× speedup, 60% energy reduction).

When maximum predictive accuracy is paramount (favor LightGBM/MLP), when computational
resources are unconstrained (favor standard MLP), or when extreme efficiency is required regardless
of accuracy (favor DecisionTree/k-NN).

The consistent pattern across efficiency metrics confirms IMLP’s design goal: providing a practical
middle ground between the accuracy of full neural networks and the efficiency demands of production
deployment.

C.2 COMPUTATIONAL PROCEDURE

Algorithm 4 outlines the NetScore-T computation process:

Algorithm 4 NetScore-T Computation

Require: Performance metrics {P (m)
t }Tt=1, energy measurements {E(m)

t }Tt=1
Ensure: Stream-level NetScore-T score

1: Initialize scores← []
2: for t = 1 to T do
3: NS

(m)
t ← P

(m)
t / log10(E

(m)
t + 1)

4: scores.append(NS
(m)
t )

5: return 1
T

∑T
i=1 scores[i]
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C.3 COMPLETE PER-DATASET RESULTS

We present per-dataset results for all models and metrics evaluated in our study. The tables below
show performance across the 36 TabZilla datasets for six key metrics: balanced accuracy, log-loss,
NetScore-T (balanced accuracy), NetScore-T (log-loss), wall-time, and energy consumption. Best
values in each row are highlighted in bold.

All results represent the final performance after training on the complete stream (i.e., performance on
the test set after processing all segments). For cumulative models, this corresponds to training on all
available data; for IMLP, this represents performance after incremental learning across all segments.

Table 11: Performance statistics across 36 TabZilla datasets. Results are reported as mean ± standard
deviation across streams. Models are grouped into GBDT, Neural network-based, and Basic ones.
Energy is measured in Joules, and Time in seconds.

Type Model Bal. Acc. Log-Loss NS-T (Bal.) NS-T (Log.) Energy (J) Time (s)

G
B

D
T LightGBM 0.849 ± 0.149 0.269 ± 0.269 0.614 ± 0.226 7.251 ± 10.636 2408 ± 8293 32.1 ± 107.2

CatBoost 0.805 ± 0.176 0.389 ± 0.350 0.611 ± 0.222 5.283 ± 8.901 2270 ± 6612 28.3 ± 78.9
XGBoost 0.764 ± 0.177 1.207 ± 0.671 0.417 ± 0.128 0.627 ± 0.332 2091 ± 4322 13.8 ± 22.5

B
as

ic

SVM 0.807 ± 0.170 0.345 ± 0.327 0.495 ± 0.211 4.905 ± 8.768 3720 ± 7389 84.4 ± 168.3
k-NN 0.781 ± 0.155 1.447 ± 1.487 0.610 ± 0.219 1.232 ± 1.330 1191 ± 2958 16.3 ± 37.8
LinearModel 0.758 ± 0.200 0.479 ± 0.497 0.568 ± 0.169 4.362 ± 6.108 297 ± 182 7.0 ± 4.4
RandomForest 0.738 ± 0.179 0.560 ± 0.394 0.595 ± 0.159 3.404 ± 6.802 283 ± 310 5.4 ± 4.3
DecisionTree 0.717 ± 0.189 0.693 ± 0.448 0.955 ± 0.385 2.537 ± 2.916 178 ± 447 4.6 ± 11.1

N
et

w
or

k-
ba

se
d

DANet 0.812 ± 0.172 0.349 ± 0.334 0.248 ± 0.055 2.159 ± 2.596 32382 ± 26865 406.3 ± 336.4
TabNet 0.807 ± 0.177 0.357 ± 0.337 0.250 ± 0.059 1.965 ± 2.413 23312 ± 18268 285.3 ± 226.3
ResNet 0.805 ± 0.160 1.489 ± 1.469 0.312 ± 0.065 1.036 ± 1.334 5422 ± 3672 66.1 ± 45.1
VIME 0.738 ± 0.197 1.098 ± 1.544 0.238 ± 0.060 0.763 ± 0.633 21705 ± 34212 261.8 ± 416.9
STG 0.416 ± 0.166 1.162 ± 0.689 0.151 ± 0.073 0.436 ± 0.191 6747 ± 5671 85.6 ± 71.8
TabPFN v2 0.862 ± 0.151 0.240 ± 0.265 0.252 ± 0.052 4.693 ± 5.598 72319 ± 100877 291.1 ± 405.3
ModernNCA 0.843 ± 0.145 1.298 ± 1.344 0.346 ± 0.077 1.571 ± 2.049 4829 ± 4630 54.9 ± 53.1
TabM 0.839 ± 0.161 0.288 ± 0.307 0.280 ± 0.056 3.370 ± 3.921 15558 ± 12321 96.6 ± 76.8
TabR 0.836 ± 0.155 0.554 ± 0.656 0.345 ± 0.072 2.535 ± 3.027 4125 ± 3625 46.1 ± 41.2
Real-MLP 0.823 ± 0.159 0.342 ± 0.314 0.313 ± 0.065 2.438 ± 2.656 6243 ± 4735 62.8 ± 47.4
MLP 0.829 ± 0.162 0.329 ± 0.326 0.341 ± 0.073 2.846 ± 2.956 3241 ± 2581 41.4 ± 32.9
IMLP (Ours) 0.807 ± 0.164 0.399 ± 0.365 0.430 ± 0.095 3.169 ± 4.294 845 ± 386 9.9 ± 4.5

C.4 CRITICAL DIFFERENCE ANALYSIS

Figure 4 compares all k = 20 classifiers using NetScore-T (Balanced). Tree-based ensembles
(CatBoost, LightGBM, XGBoost, RandomForest) achieve the best ranks overall. Neural networks
cluster lower, though IMLP clearly outperforms the other neural baselines.

Restricting to neural methods (k = 11) in Figure 4 (right) confirms this: IMLP achieves the best
rank, followed by TabR, ModernNCA, and MLP, while TabPFNv2, TabNet, VIME, DANet, and STG
perform worst. This demonstrates IMLP’s consistent advantage over alternative neural continual
learners.

1 2 3 4 5 6 7 8 9 1011121314151617181920

1.16[B] decisiontree
3.81[T] catboost
4.23[T] lightgbm
4.26[B] knn
4.26[B] randomforest
5.00[B] linearmodel
6.84[B] svm
8.03[N] imlp
8.42[T] xgboost

10.71[N] tabr 10.94 [N] modernnca
11.23 [N] mlp
13.19 [N] realmlp
13.42 [N] resnet
15.32 [N] tabm
17.06 [N] tabpfnv2
17.35 [N] tabnet
17.68 [N] vime
17.71 [N] danet
19.39 [N] stg

Netscore-T Balanced

(a) All models (N = 36, k = 20).

1 2 3 4 5 6 7 8 9 10 11 12

1.19[N] imlp
2.97[N] tabr
3.23[N] modernnca
3.39[N] mlp
5.23[N] realmlp
5.45[N] resnet 7.32 [N] tabm

9.10 [N] tabpfnv2
9.35 [N] tabnet
9.68 [N] vime
9.71 [N] danet
11.39 [N] stg

Netscore-T Balanced (Neural only)

(b) Neural models only (N = 36, k = 11).

Figure 4: Critical difference diagrams for NetScore-T (Balanced). IMLP achieves the best neural
rank and remains competitive when compared with all models.

Figure 5 compares all k = 20 classifiers using NetScore-T (Log-Loss). LightGBM and CatBoost
achieve the strongest ranks overall, followed by linear baselines. Neural methods trail behind
but IMLP remains the top-performing network, ranking above other deep baselines and some tree
methods.
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Restricting to neural methods (k = 11) in Figure 5 (right) highlights IMLP’s clear advantage. It
leads the group, with TabPFNv2, MLP, and TabM following, while RealMLP, TabR, and especially
attention-based models (DANet, TabNet, ModernNCA, VIME, ResNet, STG) cluster lower. This
confirms that IMLP achieves consistently lower log-loss than competing neural continual learners.

1 2 3 4 5 6 7 8 9 1011121314151617181920

2.52[T] lightgbm
4.32[T] catboost
5.13[B] linearmodel
5.45[B] svm
6.52[B] randomforest
6.97[B] decisiontree
7.39[N] imlp
7.71[N] tabpfnv2
8.42[N] mlp
8.65[N] tabm 10.48 [N] realmlp

11.00 [N] tabr
13.16 [N] danet
13.45 [N] tabnet
14.94 [T] xgboost
15.29 [B] knn
16.32 [N] modernnca
17.23 [N] vime
17.45 [N] resnet
17.61 [N] stg

Netscore-T Logloss

(a) All models (N = 36, k = 20).

1 2 3 4 5 6 7 8 9 10 11 12

2.58[N] imlp
3.23[N] tabpfnv2
3.32[N] mlp
3.61[N] tabm
4.87[N] realmlp
5.55[N] tabr 7.29 [N] danet

7.42 [N] tabnet
9.81 [N] modernnca
9.97 [N] stg
10.06 [N] vime
10.29 [N] resnet

Netscore-T Logloss (Neural only)

(b) Neural models only (N = 36, k = 11).

Figure 5: Critical difference diagrams for NetScore-T (Log-Loss). IMLP is the strongest neural
method and remains competitive overall.

C.5 PARETO-OPTIMAL TRADE-OFFS

To complement the critical-difference and efficiency analyses, we quantify each model’s Pareto
efficiency in the accuracy–energy plane. For model m,

ParetoEff(m) =
#{Pareto-optimal configs of m}

#{all configs of m}
.

Model Total Pareto Efficiency (%)

imlp 67 4 5.97
tabnet 42 1 2.38
mlp 74 1 1.35
tabr 75 1 1.33
modernnca 75 1 1.33
danet 32 0 0.00
realmlp 72 0 0.00
tabm 63 0 0.00
resnet 68 0 0.00
tabpfnv2 34 0 0.00
vime 31 0 0.00

Table 12: Per-model Pareto efficiency on the accuracy–energy frontier across all datasets and seeds.

IMLP attains the highest Pareto efficiency among neural models (5.97%), followed by TabNet
(2.38%), while most other networks rarely appear on the frontier. This confirms that IMLP provides
the most favorable accuracy–energy trade-offs within the neural family.

C.6 PER-SEGMENT ANALYSIS AND LEARNING DYNAMICS

We examine the fundamental paradigmatic difference between IMLP’s incremental learning approach
and traditional batch retraining methods. IMLP operates exclusively in segmental mode (training
only on new data), while baseline neural methods operate in cumulative mode (retraining on all
accumulated data). This distinction drives fundamentally different computational and deployment
characteristics.

C.6.1 LEARNING PARADIGM COMPARISON

The segment data demonstrates two distinct learning paradigms with different computational and
data requirements:

IMLP (Segmental Mode): Trains exclusively on each new data segment using attention-based
feature replay to maintain knowledge of previous patterns. By segment N , IMLP has seen only the
data from segment N .

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

MLP (Cumulative Mode): Retrains from scratch on the complete accumulated dataset at each
segment. By segment N , MLP has retrained on data from segments 0 through N combined.

This fundamental difference means accuracy comparisons across segments are not directly equivalent,
MLP leverages exponentially more training data as segments progress.

C.6.2 ENERGY EFFICIENCY ANALYSIS

The computational efficiency comparison is valid and reveals substantial advantages for incremental
learning:

Segment IMLP Energy (J) MLP Energy (J) MLP Overhead
0 128.1 131.9 1.0×
1 81.7 107.9 1.3×
2 88.8 121.6 1.4×
3 101.3 137.8 1.4×
4 84.0 154.8 1.8×
5 81.0 167.8 2.1×
6 82.8 187.9 2.3×
7 81.3 226.2 2.8×

Table 13: Per-segment energy consumption. IMLP maintains constant computational cost (∼ 85J
after initialization) while MLP’s batch retraining shows linear growth with accumulated data size.

After initialization, IMLP stabilizes at approximately 85J per segment, confirming theoretical constant-
time updates regardless of historical data size. This enables predictable computational requirements
for long-term deployment.

MLP exhibits 71% energy growth from segment 0 to 7 (132J→ 226J), reflecting the linear scaling
inherent in batch retraining as dataset size grows. This trend projects to 350J+ per segment by
segment 20, making long-term deployment computationally prohibitive.

C.6.3 DATA EFFICIENCY AND CONTINUAL LEARNING EFFECTIVENESS

The most striking finding emerges from analyzing performance relative to training data consumption:

Segment IMLP Accuracy MLP Accuracy Training Data Ratio
(Segmental) (Cumulative) (MLP:IMLP)

0 0.747 0.647 1:1
1 0.766 0.740 2:1
2 0.776 0.769 3:1
3 0.776 0.781 4:1
4 0.789 0.792 5:1
5 0.774 0.795 6:1
6 0.783 0.809 7:1
7 0.796 0.815 8:1

Table 14: Performance vs training data consumption. IMLP achieves 79.6% accuracy using 1/8th the
training data required by MLP to reach 81.5%.

By segment 7, IMLP achieves 79.6% accuracy having trained only on segment 7’s data, while MLP
requires all eight segments of accumulated data to reach 81.5%. This represents achieving 97.7%
of MLP’s performance with 12.5% of the training data—a compelling demonstration of effective
continual learning.

The only fair accuracy comparison occurs at segment 0, where both methods train on identical data.
IMLP achieves 74.7% versus MLP’s 64.7%, a 15.5% relative improvement, indicating superior
learning efficiency when given equivalent training data. IMLP’s ability to maintain 77-79% accuracy
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across segments 1-7 while training only on individual segments demonstrates successful mitigation of
catastrophic forgetting. The attention-based feature replay mechanism effectively preserves relevant
knowledge without requiring raw data storage.

C.6.4 CUMULATIVE COMPUTATIONAL COST ANALYSIS

Long-term deployment scenarios reveal the compounding advantages of incremental learning:

Segment IMLP Cumulative (J) MLP Cumulative (J) Efficiency Advantage
0 128.1 131.9 1.0×
2 298.6 361.4 1.2×
4 484.0 654.0 1.4×
6 647.7 1009.7 1.6×
7 729.0 1235.8 1.7×

Table 15: Cumulative energy consumption showing widening efficiency gap. The advantage grows
from parity to 1.7× by segment 7, with the trend indicating continued divergence.

The cumulative energy gap widens from parity at segment 0 to 1.7× by segment 7. Extrapolating this
trend suggests 2.5× advantage by segment 15 and 4× by segment 30, making incremental learning
essential for long-term deployment feasibility.

By segment 7, IMLP has consumed 507J less energy than MLP (729J vs 1,236J), representing a 41%
reduction in total computational cost. In large-scale deployments, these savings translate directly to
reduced operational expenses and carbon footprint.

C.6.5 PRACTICAL DEPLOYMENT IMPLICATIONS

IMLP Advantages:

• Resource-Constrained Environments: Constant 85J per update enables deployment on
edge devices and mobile platforms where batch retraining would exceed power budgets.

• Privacy-Preserving Applications: Segmental learning eliminates the need to store historical
raw data, addressing data retention regulations and privacy concerns.

• Real-Time Systems: Predictable computational requirements enable consistent response
times regardless of historical data volume.

• Long-Term Learning: Growing efficiency advantage makes IMLP the only viable option
for systems intended to learn continuously over months or years.

MLP Advantages:

• Maximum Accuracy Scenarios: When computational resources are unlimited and maxi-
mum predictive performance is paramount, batch retraining on complete datasets provides
marginal accuracy improvements.

• Short-Term Deployment: For applications processing fewer than 10 segments, the compu-
tational overhead remains manageable.
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D REPRODUCIBILITY ASSETS AND INSTRUCTIONS

We provide comprehensive instructions for reproducing all experimental results, with particular
emphasis on the hyperparameter optimization procedure that underpins our comparative evaluation.

D.1 SHARED HYPERPARAMETER OPTIMIZATION

Both MLP and IMLP models utilize identical optimized hyperparameters obtained through the
comprehensive search described in Section D.3. This design choice ensures fair comparison by
providing both architectures with equivalent optimization budget and regularization strategies. The
attention-specific hyperparameters for IMLP (window_size, use_attention) are set to their
default values as specified in the configuration files, focusing the optimization on general neural
network training techniques that benefit both architectures.

D.1.1 PREPROCESSING PIPELINE

Execute the data preparation:

cd data
python openml_data_processor.py --task_list openml_import.txt \

--num_workers 4 --min_segment_size 500 --max_segment_size 1000

This generates both segmented datasets (for IMLP) and cumulative datasets (for baseline models)
with consistent train/validation/test splits across all 36 tasks.

D.2 EXTERNAL DEPENDENCIES AND PLATFORM COMPATIBILITY

D.2.1 CORE DEPENDENCIES

The framework integrates with TabZilla McElfresh et al. (2023) for baseline model implementations:

# Install core dependencies
pip install -r requirements.txt

D.2.2 MODEL-SPECIFIC REQUIREMENTS

Several baseline models have additional dependencies:

• Tree-based models: LightGBM, XGBoost, CatBoost with platform-specific optimizations

• Transformer models: Additional memory requirements for attention mechanisms

• Specialized architectures: DANet, NODE, SAINT with custom CUDA kernels

D.2.3 PLATFORM CONSIDERATIONS

The codebase supports both CPU and CUDA execution with automatic device detection. Mixed-
precision training (AMP) is enabled by default on compatible hardware but can be disabled for older
GPUs.

D.3 HYPERPARAMETER OPTIMIZATION FRAMEWORK

Following the methodology of Kadra et al. Kadra et al. (2021b), we employ a comprehensive
hyperparameter search for both MLP and IMLP models to ensure fair comparison. Our approach
extends beyond simple grid search to include a "regularization cocktail" that systematically explores
combinations of modern deep learning techniques.
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D.3.1 SEARCH SPACE DEFINITION

The optimization space encompasses multiple regularization families:

Implicit Regularization:

• Batch Normalization: use_batch_norm ∈ {True,False}
• Stochastic Weight Averaging: use_swa ∈ {True,False}

Explicit Regularization:

• Weight Decay: use_weight_decay ∈ {True,False}
• Weight Decay Coefficient: weight_decay ∈ [10−5, 10−1] (log-uniform)

• Dropout: use_dropout ∈ {True,False}
• Dropout Patterns: dropout_shape ∈ {funnel, long_funnel, diamond, triangle}
• Dropout Rate: dropout_rate ∈ [0.0, 0.8] (uniform)

Architectural Variations:

• Skip Connections: use_skip ∈ {True,False}
• Skip Types: skip_type ∈ {Standard,ShakeShake, ShakeDrop}
• ShakeDrop Probability: shakedrop_prob ∈ [0.0, 1.0] (uniform)

Training Techniques:

• Data Augmentation: augmentation ∈ {None,MixUp}
• Augmentation Magnitude: aug_magnitude ∈ [0.0, 1.0] (uniform)

• Mixed Precision: use_amp ∈ {True,False}
• Gradient Clipping: max_grad_norm ∈ [0.1, 10.0] (log-uniform)

D.3.2 OPTIMIZATION ALGORITHM

We employ Optuna Akiba et al. (2019) with the following configuration:

• Sampler: Tree-structured Parzen Estimator (TPE) with multivariate optimization

• Pruner: MedianPruner with 50 startup trials and 50 warmup steps

• Trials per Task: 100 trials with early stopping (patience=100)

• Training Budget: 100 epochs per trial with early stopping (patience=10)

• Objective: Minimize 1− validation balanced accuracy

D.3.3 COMPUTATIONAL REQUIREMENTS

The hyperparameter optimization requires substantial computational resources:

• Total Runtime: Approximately 72 hours for all 36 tasks

• Trials per Task: 100 trials × 36 tasks = 3,600 total optimization runs

• Storage: SQLite databases for persistence and resumption

D.3.4 EXECUTION PROTOCOL

The optimization is ran through a parallelized bash script:

#!/bin/bash
N_TRIALS=100
EPOCHS=100
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DEVICE="cuda"
MAX_PARALLEL=22
DATA_ROOT="../data/full_datasets"

# Parallel execution across all tasks
printf "%s\n" "${TASK_IDS[@]}" | xargs -I {} -P ${MAX_PARALLEL} \

bash -c 'python mlp_c.py --task_id {} --n_trials ${N_TRIALS} \
--epochs ${EPOCHS} --device ${DEVICE} \
--storage "sqlite:///optuna_db/task_{}.db" \
--data_root ${DATA_ROOT}'

Each task generates optimized hyperparameters saved as YAML files:
tuning/task_{TASK_ID}_hyperparams.yml

D.3.5 INTEGRATION WITH MAIN EXPERIMENTS

The CLI automatically loads tuned hyperparameters when available:

tuning_f = f"tuning/task_{args.task}_hyperparams.yml"
if not args.no_tuning and os.path.isfile(tuning_f):

merge_dict(hp, load_yaml(tuning_f))

This ensures that all comparative results use optimized configurations, providing a fair evaluation
baseline that reflects the current state-of-the-art in hyperparameter optimization for tabular neural
networks.

D.3.6 REPRODUCIBILITY CONSIDERATIONS

To ensure reproducible optimization:

• Fixed random seed (42) across all Optuna samplers
• Deterministic trial ordering through study persistence
• Gradient clipping and mixed precision for numerical stability
• Model checksum verification for state consistency

D.4 HARDWARE REQUIREMENTS AND ENERGY MEASUREMENT

D.4.1 HARDWARE SETUP

All experiments were conducted on a single workstation with the following hardware configuration:

Compute Platform:

• CPU: Intel Core i5-8600K @ 3.60GHz (6 physical cores, 6 logical cores)
• GPU: NVIDIA GeForce RTX 2080 Ti Rev. A (CUDA Compute Capability 7.5)
• Memory: 15GB RAM
• Architecture: x86_64

Software Environment:

• Operating System: Debian GNU/Linux 12 (bookworm)
• Kernel Version: 6.1.0-32-amd64
• Compiler: GCC 12.2.0 (Debian 12.2.0-14)
• CUDA Toolkit: 11.8.89

Limitations:

• Memory constraints may limit batch sizes for larger models
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• Single-GPU configuration restricts parallel training capabilities
• Total system memory (15GB) may constrain certain memory-intensive operations

All timing measurements and energy consumption data reported in this work are specific to this hard-
ware configuration. Performance scaling to different hardware configurations should be considered
when reproducing results, particularly for:

• Different GPU architectures (compute capability variations)
• Systems with varying memory capacities
• Multi-GPU configurations

The reported absolute performance metrics should be interpreted relative to this baseline configuration,
with relative performance improvements being the primary focus for cross-system validation.

D.4.2 ENERGY MEASUREMENT SETUP

Hardware-based Measurement (Recommended): We employ an ElmorLabs PMD-USB power
measurement device with PCIe slot adapter for precise wall-power readings at 500-800Hz sampling
rate. This setup provides ground-truth energy measurements by capturing total system power draw
during training and inference phases.

Software-based Measurement (Alternative): For systems without dedicated power measurement
hardware, the framework can fall back to software-based energy estimation using NVIDIA’s Manage-
ment Library (nvidia-smi) or Intel’s RAPL interface. However, as noted by Yang et al. (2024), these
software solutions suffer from significant limitations:

• Sampling Coverage: NVIDIA’s power sensor samples only 25% of runtime on A100/H100
cards

• Estimation Error: Up to 65% under/over-estimation compared to calibrated external meters
• Temporal Resolution: Lower sampling rates lead to missed power spikes during intensive

operations

The energy monitoring can be disabled entirely by setting appropriate flags, though this removes the
energy-efficiency evaluation component of our NetScore-T metrics.
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