Under review as a conference paper at ICLR 2026

IMLP: AN ENERGY-EFFICIENT CONTINUAL LEARNING
METHOD FOR TABULAR DATA STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data streams are rapidly emerging as a dominant modality for real-time
decision-making in healthcare, finance, and the Internet of Things (IoT). These
applications commonly run on edge and mobile devices, where energy budgets,
memory, and compute are strictly limited. Continual learning (CL) addresses
such dynamics by training models sequentially on task streams while preserving
prior knowledge and consolidating new knowledge. While recent CL work has
advanced in mitigating catastrophic forgetting and improving knowledge transfer,
the practical requirements of energy and memory efficiency for tabular data streams
remain underexplored. In particular, existing CL solutions mostly depend on replay
mechanisms whose buffers grow over time and exacerbate resource costs.

We propose a context-aware incremental Multi-Layer Perceptron (IMLP), a com-
pact continual learner for tabular data streams. IMLP incorporates a windowed
scaled dot-product attention over a sliding latent feature buffer, enabling constant-
size memory and avoiding storing raw data. The attended context is concate-
nated with current features and processed by shared feed-forward layers, yield-
ing lightweight per-segment updates. We evaluate IMLP against state-of-the-art
(SOTA) tabular models on real-world concept drift benchmark tabular datasets de-
signed to assess models under temporal distribution shifts. Compared to TabPFNv2
under the incremental concept drift, IMLP has 22.7% total energy reduction while
only a 0.05 final balanced accuracy drop. The results show that the proposed
attention-based feature memory design can effectively guide the energy consump-
tion while achieving the highest final accuracy in the abrupt concept drifts among
all network baselines.

1 INTRODUCTION

Tabular data, structured as a collection of features and instances, is one of the most common and
practical data types in practical machine learning applications, for example, in both high-stakes
domains and lower-stakes domains (Amrollahi et al.| 2022} Ramjattan et al., 2024 |Li et al., | 2025b).
As such domains increasingly rely on streaming data sources, tabular data streams are gaining
significant attention due to their ability to capture continuous, real-time updates rather than static
snapshots (Borisov et al.,|2022). In particular, most such scenarios often occur on edge devices, [oT
systems, and mobile platforms, where energy budgets, battery life, and computational resources are
severely constrained |Chang et al.|(2021).

To tackle those real-world dynamics, Continual Learning (CL) (Wang et al.,2024a)), also referred to as
lifelong learning (Lee & Lee,2020), enables models to incrementally acquire, update, accumulate, and
exploit knowledge over time. While significant progress has been made on overcoming catastrophic
forgetting (Kemker et al., 2018} [L1 et al., |2019; Bhat et al., 2022)) and knowledge transfer (Ke et al.|
2021} |L1 et al., [2024; [Shi et al., [2024a), much less is known about their computational analysis and
energy efficiency (Li et al.,[2023;; Trinci et al., 2024)).

Energy-efficient continual learning (EECL) has become a practical necessity for real-world applica-
tions that require real-time adaptation on resource-constrained platforms (Chavan et al.| 2023} [Shi
et al., 2024b; [Trinci et al.} 2024} [Xiao et al., [2024)). Meanwhile, most CL progress to date targets
image (Trinci et al. 2024} (Chavan et al.l 2023} Shi et al.l 2024b)) and language tasks (Li et al.| 2025a}
Wang et al., [2024b). In contrast, tabular data streams remain underexplored. Tabular models that

Under review as a conference paper at ICLR 2026

excel on static datasets do not transfer directly to non-stationary streams with tight memory, compute,
and energy budgets. Existing CL methods rarely target these constraints. In particular, replay-based
strategies rely on buffers that grow over time, increasing storage and compute, and hindering on-
device deployment. This gap motivates methods for tabular streaming CL that sustain accuracy under
distribution shift while operating at low energy cost, with fixed memory, and without storing raw
examples. Moreover, trade-offs between energy consumption and predictive performance matter in
lower-stakes domains, especially when the cost of electricity is taken into account. Achieving this
under strict resource budgets while mitigating catastrophic forgetting remains a central challenge for
Green Al (Henderson et al., 2020; Bouza et al., 2023; [Trinci et al.| [2024; |[R6zycki et al., [2025).

This paper introduces Incremental Multi-Layer Perceptron (IMLP), a novel method for energy-
efficient continual learning, particularly focusing on tabular data streams. IMLP augments a simple
MLP with self-attention capabilities, while maintaining efficiency in compute, memory, and energy
usage. To be specific: 1) IMLP employs a windowed scaled dot-product attention with a sliding
feature buffer, enabling the model to adaptively attend to the most relevant parts of the stream while
storing only latent features without needing to revisit raw historical data. 2) The resulting attended
representation is concatenated and passed through two shared feed-forward layers followed by a
classifier head, serving as the MLP learner for classification tasks. This design avoids the unbounded
memory growth inherent to replay baselines (Rebuffi et al.,[2017; |Li & Hoiem, [2017; Lopez-Paz &
Ranzato, |2017)), while remaining computationally lightweight on resource-constrained devices. To
evaluate hardware-grounded energy-accuracy trade-offs in CL on tabular data streams, we provide
quantitative Pareto AUC and global efficiency analysis.

2 RELATED WORK

Traditional tabular data models can be roughly categorized into three main groups: Gradient-Boosted
Decision Trees (GBDTSs) (Friedman, 2001)), Neural Networks (NNs) (Goodfellow et al.| 2016)), and
classic models (e.g., SVMs (Cortes & Vapnikl, [1995)), k-NN (Cover & Hart, |1967), linear model (Cox|,
1958)), and simple decision trees (Loh, 2011)).

GBDTs and their variants for CL. Traditional GBDTSs such as XGBoost (Chen & Guestrin, [2016)),
LightGBM (Ke et al., 2017}, and CatBoost (Prokhorenkova et al., |2019) remain strong baselines
for tabular classification due to their efficiency and robustness, especially on large or irregular static
datasets. However, they are not naturally suited for CL: (1) new data typically requires retraining
from scratch, since tree splits and boosting weights depend on the full dataset (Chen & Guestrin,
20165 Ke et al.|, [2017; |[Prokhorenkova et al.,[2019); (2) without access to past data, models trained
only on new samples overwrite previous knowledge, causing catastrophic forgetting (Wang et al.,
20244a); and (3) unlike NNs, GBDTs lack mechanisms for knowledge transfer across tasks (Ke et al.,
2021 Parisi et al., 2019; |De Lange et al.,[2021). Extensions such as online bagging and boosting (Oza
& Russell, [2001) or warm-starting (Pedregosa et al., 2011}, and adaptive XGBoost (Montiel et al.,
2020), partially mitigate these issues, but remain limited in long-term knowledge retention due to the
lack of representation reuse, especially when compared to neural CL methods.

Classic models in CL. Both standard SVMs (Cortes & Vapnikl [1995)) and decision trees (Lohl[2011)
are batch learners, requiring retraining on the full dataset when new tasks arrive. SVMs can be
extended to CL through incremental or online variants such as incremental SVM (Cauwenberghs &
Poggiol 2000), LASVM (Bordes et al., 2005), and NORMA (Kivinen et al., [2004), which handle
streaming updates but still face challenges with scalability, memory growth, and forgetting. k-
NNs (Cover & Hartl |1967) trivially avoid forgetting if all data is stored, but this violates the constraint
of no access to past raw inputs and is impractical under resource limits. Linear models (Cox)}, |1958)
are efficient but prone to forgetting under distribution shifts, as updates overwrite prior knowledge.
Incremental decision trees, such as Hoeffding Trees (Domingos & Hulten, 2000), and streaming
ensembles (Bifet et al., |2010; |Gomes et al., 2017} can adapt to data streams without full retraining.
Still, their accuracy degrades under severe drift, since they lack strong representation learning, and
ensemble methods can be computationally expensive.

Neural models in CL. Recent studies demonstrate that advanced NNs (Zabérgja et al., [2024; |Arik
& Pfister, [2021; [Kadra et al.l 2021} |Gorishniy et al.,[2023a; [Hollmann et al., 2025bj; | Ye et al., 2024;
Gorishniy et al.||2024) can surpass GBDTs on static tabular data in certain regimes, e.g., with well-
regularized MLPs (Kadra et al.| |2021)), attention-based models such as SAINT (Somepalli et al., 2021},

Under review as a conference paper at ICLR 2026

or meta-learned foundation models like TabPFN and its variants (Hollmann et al.| [2025b)). While
their training is typically computationally intensive than that of GBDTSs unless carefully tuned (Kadra
et al.l 2021)), NNs are generally better suited for streaming data, owing to their rich representations,
incremental updates via stochastic gradient descent, and flexible architectures. However, vanilla NNs
still suffer from catastrophic forgetting in the absence of CL strategies (Wang et al., [2024a)).

CL strategies with neural models. In NNs, CL strategies are commonly categorized into
regularization-based approaches (Kirkpatrick et al.|[2017|Zenke et al.,|2017), replay-based strate-
gies (Rebuffi et al., 2017; |Shin et al.,|2017), attention-based retrieval mechanisms (Chaudhry et al.,
2019; |Aljundi et al., |2017), and architectural methods (Rusu et al., [2016). Regularization-based
methods, such as EWC (Kirkpatrick et al.}[2017), SI (Zenke et al.,2017), MAS (Aljundi et al., [2017)),
and LwF (Li & Hoiem, [2016), mitigate forgetting by constraining updates to parameters deemed
important for previously learned tasks. Replay-based strategies, including iCaRL (Rebuffi et al.|
2017) and generative replay (Shin et al.,2017), maintain past knowledge by rehearsing stored samples
or synthetic data. Attention-based retrieval mechanisms, such as A-GEM with attention (Chaudhry’
et al.,2019) and attentive experience replay (Aljundi et al.l|2017)), employ attention to prioritize and
retrieve relevant past experiences. Architectural methods, exemplified by PNNs (Rusu et al., 2016)),
expand model capacity by freezing previously trained components and introducing new modules for
incoming tasks.

Despite recent progress, energy-efficient CL for tabular data streams remains largely unexplored (Cha-
van et al.| 2023} Trinci et al., |2024)). Real-world tables frequently undergo domain drift (e.g., quarterly
finance transactions, evolving sensor logs, healthcare data) without changes to the label space. Yet, no
standardized domain-incremental learning benchmark that considers energy-performance trade-offs
currently exists for tabular streams. Moreover, pre-trained transformers for tabular data (Gorishniy
et al., [2023b; [Hollmann et all 2025b) and feature-level or attention-based CL strategies (Pelle-
erini et al.l [2020; [Vaswani et al.l [2017a; [JTha et al.| [2023)) show promise for low-storage, privacy-
preserving CL, but their effectiveness under domain drift has not been systematically evaluated.
Here, we bridge this gap by introducing our method, establishing fair comparisons, and quantifying
energy—performance trade-offs.

3 IMLP: AN INCREMENTAL MLP FOR TABULAR DATA STREAMS

Owing to the general difficulty and diversity of challenges in CL, we focus on a simplified task
incremental learning setting (Parisi et al., |2019; |De Lange et al., 2021). In this setting, a model is
trained on a sequence of tasks {7; }/_, where the data for each task arrives incrementally at time ¢.

3.1 PROBLEM STATEMENT

Problem Setup. We consider a sequence of tasks {7;}7_,, where the training data for each task
arrives incrementally at time ¢. Each task 7 is associated with data (X},);) randomly drawn from
distribution D;, where & denotes the set of data samples and)/ is the corresponding ground truth
labels. Our goal is to design an incremental learner fy that updates online and minimizes the expected

risk ﬁt(ﬁ) across all observed tasks, with limited or no access to the data from earlier tasks ¢ < T,

T
f’i(e) = ZE(?QJG)ND’; [41(9)], (1)

t=0

where ¢;(0) represents the loss function of the model fy (X, H;) with input X;, parameter 6, and the
historical features H, at time ¢. Additionally, we aim to achieve energy efficiency.

Assumptions. We formalize this with standard non-convex optimization assumptions for NNs.
(A1) There exists Ry > 0 such that | X;||2 < Rx for all samples in the arrived stream T.

(A2) The precomputed latent features are {y-normalized, i.e., ||h: j||2 < 1 forallt, j.

(A3) Training is performed with weight decay and early stopping, so that for some Ry > 0,
[10ll2 < Ry throughout optimization.

Under review as a conference paper at ICLR 2026

3.2 ARCHITECTURE OVERVIEW

For efficient learning from the current task 7; while maintaining performance on previously learned
tasks, we propose an incremental multi-layer perceptron (IMLP) architecture, as shown in Figure[T]
We employ two strategies: (1) processing each task with an augmented MLP learner module M b

T i
O (9
Hl
FIFO: Write Updated Featurs ‘

Attention-based Feature Memory Feature Extraction (MLF)
[O
O O

Tabular Data Streams

T Te
(% [
i .

Incremental MLP model

o
3 B
I K; = 3 O <
2 g
H, € R b{ % O—>o—>O “g’_ o (Vi)
X Ry g 2 E] ' ; E
* _ Sl o o 5 |E
{ |_> X O &
5 d.+dy, FC1 FC2

Figure 1: IMLP architecture. IMLP sequentially takes 7; as raw input and outputs predictive
performance pg();).

that incorporates limited historical context H; in a window size W through a variant of scaled
dot-product attention (Vaswani et al., 2017b); and (2) maintaining an FIFO feature buffer with fixed
memory over time to handle the concept drifts (Hoens et al.,[2012)), which facilitates representation
reuse while keeping memory and computation cost constrained as new data evolves.

Given the current input X; € R% , a hidden dimension dj,, and a FIFO memory of the past L features.

We denote by Hy = [ht1,..., Iy, L]T € REXdn the matrix that stacks the latent features in the
window associated with time ¢, with learnable maps W, € R% >4 and W), € R *dn IMLP forms
g = W,X; + b, € R,)
Ky = HW),| +1.b) € RF, 3)
st = Kyqr € RV, 4)
1
gt = —— S¢, (5)
Vdp

a; = softmax(5;) € RY, (6)

where
;= LeXp(SW) forj=1,...,L(L<W),)

Zj:l exp(St,)

and 1, € R is the all-ones vector used to broadcast the bias by, to all L rows. h; € R is the
feature vector of the j-th most recent sample before X; (with 7 = 1 being the most recent). The j-th
row K; ; € R? is the key for the j-th past feature in the window.

The attention-based feature memory is the weighted sum of the keys ¢; = «, K. Finally, IMLP
concatenates the context with the current input 7; = [X;,¢;]" € R%*+dn and then feeds it to the
feature extractor f; 9 = ¢(7;) € R, where ¢(-) is a two-layer MLP, and the classifier outputs
Ut = Wers fr.o+beis where W, € RE*4n and b, denotes the weight matrix and bias, respectively.
This corresponds to the model’s performance py();) at the time ¢.

In the following, we detail the properties of the proposed attention-based feature memory design to
achieve EECL over tabular data streams.

3.3 CONVERGENCE ANALYSIS OF IMLP

Let A(Xy, Hy; 0ay,) := ¢, denote the attention-based context, where O = (Wy, by, Wi, by,) and H
collects the latent features in the window at the time ¢.

Under review as a conference paper at ICLR 2026

Lemma 3.1 (Bounded context vector). Under (A2), there exists B. > 0 (depending only on Wy, and
bi) such that ||ct||2 < B. for all i.

Lemma 3.2 (Smooth attention map). Under (A1)—(A3), the map (X, Hy, Outt) — A(Xy, Hy; Oatt)
is continuously differentiable, and its Jacobian with respect to 0.t is bounded on the compact set

K= {(Xt»Htagatt) : ||Xt||2 < Ry, Hht,jHQ <1, ||9att||2 < Re}' (8)
In particular, there exists Lty > 0 such that
LA(Xe, His 050) — A(Xs, Hi; 0|2 < w0520 — 65212, ©)

Sor all 9;12, agfﬂ ek.

Correspondingly, the full network can be written as

f@(Xh Ht) = Wcls ¢0 ([Xt§ A(Xty Ht; eatt)]) + b0137 (]O)
where ¢y is the two-layer ReLU feature extractor, and the per-sample loss is
,(0) = CE(softmax(fo(X;, Hy)), Vt)- (11)

Lemma 3.3 (Smooth network and loss). Under (A1)-(A3), fo(X:, Hy) is continuously differentiable
with bounded Jacobian on {0 : ||0||2 < Rg}, and (¢(0) has Lipschitz-continuous gradient on the
same set.

For a fixed segment (task) 7; with data (X;, Hy, ;), where { (X, ;, Hy i, Vi) }it | denotes the samples
in this segment, we define L, (6) := % St bei(0).

Theorem 3.4 (Segment-wise smooth empirical loss). Under (A1)—(A3), the empirical loss ﬁt(ﬁ)
is (i) bounded below; (ii) continuously differentiable on {0 : ||0||2 < Ry}, and (iii) has Lipschitz-
continuous gradient on this compact set.

Corollary 3.5 (Per-segment convergence of IMLP). Consider optimizing L.(0) with a stochastic
first-order method (e.g., SGD or Adam) under standard step-size conditions and weight decay, as in
our training loop. Then the iterates on segment T; converge to a first-order stationary point in the
sense that

IVL:(0x)]|l2 = 0 ask — oo, (12)

or, in the practical finite-epoch setting, reach a parameter 6* with small gradient norm c. In
particular, the attention-based feature memory acts as a bounded, smooth transformation of a finite
latent window, so IMLP behaves like a standard MLP with an augmented input s, and inherits the
usual segment-wise convergence guarantees of non-convex deep networks.

Remark on non-stationary streams. The analysis above is segment-wise. Under standard
assumptions, the attention-based feature memory yields a bounded, smooth network with
Lipschitz-continuous gradients, so first-order optimizers converge to a stationary point of the
empirical loss on each fixed segment 7;. However, we do not claim convergence to any global
limit when the data-generating process is non-stationary across t. Instead, the theory guarantees
that, conditional on the data observed in each segment, the optimization problem remains
well-behaved despite using attention over a finite feature memory.

Proofs of Lemmas [3.TH3.3and Theorem [3:4]are given in the appendix [A]

3.4 FIFO ATTENTION-BASED FEATURE MEMORY AND TIME COMPLEXITY

Unlike replay buffers that grow with the number of seen samples, our FIFO memory has constant
memory complexity in time. The attention module adds the query layer W, < Rdth*,bq €
R and key layer W), € R% > b, c R hence, the parameter memory for attention denotes
O(d, - dp, + d2), which is constant with respect to the stream length and number of tasks.

Under review as a conference paper at ICLR 2026

At time ¢, the FIFO buffer stores W latent feature vectors H; € RW>dn it costs O(Wd},) memory
per stream, independent of how long the stream has run. In the batched implementation, each FIFO

buffer holds W feature tensors, each of shape [B,d}]; hence, the runtime memory overhead is
O(BWdy,).

For a single forward step with batch size B, the total computational efficiency of IMLP is given
by query computation O(Bd,dy,), key computation O(BWd3), attention scores and weights
O(Bddy, + BWd; + BWdy,), as well as the rest of the network O(B(d, + dj,) - 512)), where 512
is the feature dimension of the FC1, FC2 layer in the feature extraction module using MLP. Therefore,
the incremental cost scales linearly in B and W, its per-step computational cost scales as

O(Bdh(ddb + Wdh)) = O(Bdh(dL + Wdh)) + O(Bdh(d“b + Wdy, + W)) + O(B(dz + dh)512), (13)

query and key attention scores and weights feature MLP

where for a fixed B and dj,, the incremental overhead of IMLP over a vanilla MLP is controlled and
linear in the window size W.

Therefore, FIFO attention-based feature memory adds O(d,dy, + d3) parameters and O(BWdy,)
runtime memory, while its per-step computational cost scales as O(Bdy,(d,, + Wdy)), yielding
constant memory in time with respect to the length of the data stream.

3.5 ENERGY EFFICIENCY ANALYSIS OF IMLP

Energy model and assumptions. We assume that for a fixed device and implementation, energy
is approximately linear in the number of floating-point operations (FLOPs), up to device-specific
constants and small overhead. Let Fi.;, denote the number of FLOPs required to perform one
forward-and-backward pass of IMLP on a single sample. We adopt a standard abstract energy model
with the following assumptions:

(A4) On a fixed hardware platform (GPU/CPU), there exist constants 0 < Nmin < Nmax Such that
the energy consumed per FLOP lies in [1min, Nmax)-

(AS) The additional system overhead per training step (e.g., kernel launches, bookkeeping) is
bounded by a constant Fy independent of the sample index and segment.

Lemma 3.6 (FLOP complexity per sample). Let C be the number of classes and di,, be the input
dimension. For a single sample (X, ;, Hy ;, V¢ i), the FLOP count of a forward-and-backward step of
IMLP satisfies

Flirain < Karch(dindh + Wd%l + di + dhC), (14)

for an architecture-dependent constant K., > 0 that does not depend on n; or t.

Theorem 3.7 (Per-segment energy complexity bound). Consider a segment T; with n; training
samples. Under (AH)-(AD) and Lemma[3.6] the total training energy consumed by IMLP on this
segment satisfies

Eémin S Ctrain Emax ny (dindh + Wd% + d% + dhC) + CO» (15)
for some hardware- and implementation-dependent constants Cygiy > 0 and Cy > 0. Similarly, the
inference energy on the test set of size n'*' admits

E" < Clingor 0 (dindp, + Wda + d3 + d,C) + Cp, (16)

with another constant Ciyper > 0 and overhead Cjy > 0.

Proofs of Lemma [3.6|and Theorem [3.7]are given in the appendix [B]

Corollary 3.8 (Energy complexity over the full non-stationary stream). Let the data stream be
partitioned into T segments {T; }L_, with sizes {n;}1_,. Under the same assumptions as Theorem
the total training energy over the entire stream satisfies
T T
it N < Emax(z nt) (dindp, + Wd2 + d2 + dyC) + TCo, (17)

t=1 t=1

Under review as a conference paper at ICLR 2026

and the total inference energy satisfies

EM < Cluger 0 (dindy, + W3 + di + dy,C) + TGy, (18)

total —

Theoretically, for a fixed dy, W, and E,,,x, both training and inference energy grow at most linearly
in the total number of processed examples y_, n; and in the effective model size. The attention-based
feature memory only adds the bounded term Wdi and does not change this linear energy scaling.

Remark on the energy complexity bounds. The bounds above explain two aspects of our
empirical observations: (1) on a fixed device, IMLP has a predictable energy profile, scaling
linearly with the number of samples and epochs; and (2) The attention-based feature memory
contributes a controlled overhead proportional to Wd2, which remains small in our IMLP
because W and d, are fixed. Our measured Joule values are therefore consistent with an energy
complexity that is linear in the stream size, and the theoretical bounds clarify that this behavior
is not specific to a particular dataset, but a structural property of the IMLP architecture and
training procedure.

4 ENERGY-ACCURACY TRADE-OFFS

In many optimization problems, objectives are inherently conflicting; for instance, improving the
accuracy of a NN increases energy consumption or latency. A classical way to study such trade-offs
is through Pareto front analysis (Giagkiozis & Fleming} 2014).

Our convergence and energy bounds naturally lead to a bi-objective viewpoint, where we jointly
consider predictive performance and energy consumption. For a fixed segment 7;, an IMLP configu-
ration is determined by its architecture (dj, W) and optimization budget (e.g., number of iterations,
learning-rate schedule). Each such configuration yields a pair (E;(6), P;(6)), where E;(6) denotes
the total energy consumed on 7; and P;(6) = pg():) denotes the resulting segment-wise model
performance (e.g., balanced accuracy). We say that a configuration 8(1) Pareto-dominates 02 if

E(6W) < E,(0%)), P(0V) 2 P(6®), (19)
with at least one strict inequality. The Pareto set
Pyi={0:30" st E(0") < E(0), Py(0') > P(6) and one inequality is strict} (20)

collects all Pareto-efficient configurations, and its image in the energy—accuracy plane forms the
Pareto frontier.

Intuitively, on each segment 7;, our smoothness and Lipschitz-gradient assumptions imply that
stochastic first-order methods require on the order of 1/£? iterations to reach an e-stationary point
of the empirical loss f,t(ﬁ), ie., ||Vﬁt(9k) |l < e. Each iteration has a bounded computational cost
proportional to dy, dy, + Wdfl + di + dpC (Lemma , and our energy model (Theorem shows
that energy is proportional to this cost up to device-dependent constants. Combining these results
yields the scaling

. 2 2
dmdh+Wdh+dh+dhC>. o1

2

E;rain (8) -0 (

Thus, reducing the optimization tolerance ¢ leads to a more than linear increase in training energy,
with the rate governed by the architectural parameters (dj,, W). For any fixed architecture, attainable
pairs (Et(e), Pt(G)) therefore lie on or above a decreasing curve in the energy—accuracy plane:
improving performance inevitably requires a disproportionately large increase in energy.

5 EXPERIMENTS

Setup and Configuration. All experiments were conducted on a single workstation equipped with an
Intel® Core™ i5-8600K Processor, a NVIDIA GeForce RTX 2080 Ti GPU, 16GB DDR4 RAM, and

Under review as a conference paper at ICLR 2026

an NVMe SSD for data and model checkpoints. To obtain ground-truth measurements, we instrument
our CL pipeline with an ElmorLabs PMD-USB power meter (EImorLabs, 2023 and corresponding
PCI-E slot adapter (ElmorLabs|, 2025) for real-life energy consumption measurement.

Datasets and Baselines. We evaluate our method on real-world data streams using the River’s
INSECTS datasetsﬂ which are specifically chosen to represent challenging concept drift scenarios.
The datasets include tasks that exhibit both abrupt and incremental concept drift as the underlying
data distribution changes over time (Souza et all, 2020). We compare our IMLP model against a
comprehensive set of seven recent SOTA methods for tabular classification, covering three distinct
model categories: 1) foundation models: TaubPFNv2; 2) deep NN baselines: RealMLP, ModernNCA,
and MLP; and 3) GBDTs: CatBoost, XGBoost, and LightGBM. More details are in Appendix[C.2]

Evaluation Protocol. A crucial consideration for this study is that our selected baselines were pri-
marily developed for static, independent and identically distributed data. While an ideal comparison
in our incremental environment would involve creating a dedicated CL variant of each GBDT and
NN baseline, e.g., equipped with specialized components for memory and catastrophic forgetting mit-
igation, such an undertaking is outside the scope of this work. To establish a methodologically sound
comparison, we standardize the data flow for all models by applying our FIFO buffer mechanism.
This enforces a segmental training mode with a limited memory window, thereby comparing IMLP
against the SOTA under the same challenging, resource-constrained sequential protocol.

Statistical Analysis and Metrics. For a fair evaluation, all datasets undergo the same preprocessing
pipeline, with an 85%-15% stratified split used for training and validation/testing within the segmental
mode. To assess the statistical significance of performance differences across the evaluated scenarios,
we first conduct the Friedman test [1937). If the null hypothesis is rejected, we perform
post-hoc analyses using the Wilcoxon signed-rank test (Wilcoxonl[1945)) with Holm correction (Holm)
[1979), along with critical difference analysis (Nemenyi, 1963). All models are evaluated based on six
key metrics: balanced accuracy, log-loss, energy consumption, execution time, and the composite
Pareto (AUC and global efficiency) metrics that capture the crucial energy-accuracy trade-offs.

5.1 ABLATION STUDY: IMPACT OF ATTENTION, dj,, W, AND BUFFER STRATEGY CHOICES

Attention and Buffer Strategy Choices. We first ablated the core components, i.e., the attention
module and buffer strategy, on the Insects-abrupt-drift dataset to evaluate the impact of the attention
and buffer strategy choices on model performance and energy consumption. We compared our default
FIFO strategy against a similarity-based strategy, which replaces the most similar feature in the buffer
to maximize diversity. The results are presented in Figure[2]

5083 |
0.568] s
] "
I3

Disabled Enabled Similarity FIFO

Figure [2a] compares models with
and without attention, while Fig-
ure [2b] reports results for different
buffer replacement strategies. En-
abling attention substantially im-
proves the predictive performance
(the median balanced accuracy in-
creases from 0.376 to 0.568) but
also raises total energy consump-
tion by approximately 47.11%.
The FIFO strategy outperforms (a) Attention. (b) Buffer Strategy.

the diversity-maximizing similar-)))

ity strategy, which highlights the ~ Figure 2: Ablation study. (a) Attention. (b) Buffer strategy.
importance of recency in drifting streams. The results indicate that for handling concept drift in
data streams, temporal locality (preserving the most recent samples) is more critical than feature
diversity. Meanwhile, the similarity-based buffer strategy has a smaller influence on the total energy
consumption compared to the FIFO strategy. Overall, these ablations indicate that the buffer strategy
tends to trade additional energy for improved accuracy, while attention acts as the primary lever to
control the energy footprint at a given performance level.

o
3
o
3

o

Total Energy over All Streams (kJ)
ES

o
Y
o
Y
vl

o
0
o
o
IS

o
=

Balanced Accuracy
o
=

Balanced Accuracy

~

o
W
o
W

w
Total Energy over All Streams (kJ)

o
N
o
©

o

'"https://riverml.xyz/dev/api/datasets/Insects/

https://riverml.xyz/dev/api/datasets/Insects/

Under review as a conference paper at ICLR 2026

Impact of d;, and WW. We also ablated the window size W and hidden dimensions dj, on the model
performance and total energy cost under the non-stationary distributions, as depicted in Figure 3]

= <
0.7 4986 5.18 75: 0.7 i =
4.424 1S 8 i 4286 ts €
>0.6 © > @©
9) La® Qo6 <4288 o4
© 5 C 5
5 0 n 5 4@
gos z 8 0 z
g . 0. L3 <£ 2 0.5/] s f
e - 5 g 0.5 g
2 0. 1,8 ¢ o) o
< > 5 F2 >
£ o & <
0.3 et =
© o g 0.4 [}
o . rl ch rl uCJ
0.2 a — —
0 2 0 2
: : =l o
dy=64 dp=128 dn=256 d,=512 '9 w=1 W=5 W=10 W=15 W=20 =

(a) Hidden Dimensions dp,. (b) Window Sizes W.

Figure 3: Overview of the impact of d, and W under the Insects-abrupt-drift dataset.

Figurecompares with different hidden dimension values (d;, = 64, 128,256, 512) with a fixed
window size (W = 10), in which the median balanced accuracy improves significantly as the dj,
increases from 64 to 512. Correspondingly, the total energy consumption increases from 64 to 512.
Figure presents the results for different window sizes (W = 1,5, 10, 15, 20) with a fixed d;, = 256.
The median balanced accuracy slightly improves as the window size increases, plateauing around
W =10 to W = 20. However, its upward trend is not linearly dependent on the window size.

Therefore, the attention-based FIFO feature buffer module, including the hidden dimension setting,
significantly impacts the predictive performance improvement and energy consumption reduction
under the non-stationary distributions.

5.2 EVALUATION UNDER ABRUPT AND INCREMENTAL DRIFTS

Figure] compares the dynamic performance and energy consumed when data arrives in sequence on
the abrupt- and incremental-balanced drift scenarios.

1o —e— CATBOOST ~ —#— LIGHTGBM —#— MODERNNCA -~ TABPFNV2 8001 ¢ =8=-CATBOOST == - LIGHTGBM - =i=- MODERNNCA =l TABPFNV2
—v— MLP —— MLP —— REALMLP —a— XGBOOST 700{ - e L —4- REALMLP A= XGBOOST
>08 2 !
3 36001
3 o6 =500 X
< 3 \
24004 %
2 o4 s el Fone ™ o -

- AN ~ [S o AR Ty p
% o 300 *\\\‘,:\xf—:\ ,;.—)Z \ \§££ \\ r A’\\ ;
< £ 200 —— e _ g DS N e~ PR
302 2 T St SR e S/ IBRIGTIA e

100 S EPNPRATRTE . A 14 =
£l ——e--—-3-—-g---t--—3=
o] EZ3=zz3-o=3cco3-os3s-oas
0.0
0 5 10 15 20 25
Segment Number Segment Number
(a) Balanced accuracy under the abrupt drift. (b) Energy consumed under the abrupt drift.
1.0
—e— CATBOOST ~ —#— LIGHTGBM —o— MODERNNCA —s— TABPFNV2 5001 ¢ S8<"CATBOOST ™ =#="LIGHTGBM <= MODERNNCA " SW="TABPFNV2
—— IMLP —— MLp —— REALMLP —4— XGBOOST “ - e - e == REALMLP 4= XGBOOST
508 g 400 ‘\
© 3
E 0.6 23000 T4 x
o0 n , -
< 3 ’\\“ g g A R o g o
3 o VSN 2 YT A A N A RN
Soa4 52007 LTSN Ve g 5y \f_b\, RN ¥ \"!l YAy
p Voo >, OV 7 AP A
=) v vV 277\ A Lot A \if A
@02 1001 mmem——rmmmem i beemce e Ll s B
e et ———e———e———e———9
o e e — e~ —— =y
0.0
4 6 12 18 24 30 0 6 12 18 24 30
Segment Number Segment Number

(c) Balanced accuracy under the incremental drift. (d) Energy consumed under the incremental drift.
Figure 4: Overview of the model performance and energy consumption under different concept drifts.

Abrupt drifts. Figure [fa shows that IMLP reacts strongly to abrupt drifts with immediate accuracy
degradation, while it also demonstrates a robust ability to recover in the following segment using

Under review as a conference paper at ICLR 2026

the new training data. For example, segments 9 and 16 show significant drops in balanced accuracy
(0.338 and 0.436); however, the accuracy recovers to 0.548 at segment 11 and 0.582 at segment 17,
respectively, and the final accuracy ranked second (lower than LightGBM equipped with FIFO buffer)
among the methods evaluated. The training energy required for such adaptation and recovery tends to
be significantly higher than that of the average non-drift segment, as IMLP is effectively retrained
from the previous segment’s state, which necessitates gradient updates across all layers. Additionally,
it must utilize the attention mechanism to analyze features from the memory buffer. Notably, the
results show that the FIFO buffer keeps the LightGBM stable and prevents forgetting, while it ensures
that this stability is maintained with the lowest computational cost and fastest adaptation speed among
the compared models, as shown in Figure 4]

Incremental drifts. Figure 4c|depicts that TabPFNv2 (0.716) outperforms under the incremental
concept drifts, followed by CatBoost (0.691), LightGBM (0.666), and IMLP (0.666), while it
consumes the highest total energy as shown in Figure Still, GBDTs keep the lowest energy
consumption. The IMLP’s energy profile is volatile because it is a gradient-based model operating
with an aggressive adaptation policy controlled by a performance-based early stopping mechanism.
This design means its energy consumption becomes a direct, fluctuating measure of the difficulty
of adapting to the new segment’s concept. Consequently, most NN baselines (MLP, RealMLP,
ModernNCA), when equipped with the FIFO buffer, exhibit similar energy volatility.

Energy-accuracy trade-offs. Table|[T]presents the trade-off analysis based on final balanced accuracy,
total energy consumed, quantitative Pareto AUC, and global Pareto efficiency.

In abrupt concept drift, IMLP achieves the

k Table 1: Trade-off analysis.
highest final balanced accuracy (0.675),

while costing 49.7% energy more than that 5. Methoa FinalAcc (1) TotalEnergy (1) AUC (1) Efficiency (1)
of ModernNCA. Compared to TabPFNv2 TabPENV2 0244 8316.162 0 0
i i 2 ReaMLP 0393 6325.562 0177 0
under the incremental concept dI:lft, IMLP £ v 0 e o0
has 22.7% total energy reduction while = ModemNCA 0.647 4424.620 0935 10
only a 0.05 final balanced accuracy drop. IMLP 0.675 6622.577 0435 10
. = TabPENV2 0716 9159.547 0 1.0
Both IMLP and ModernNCA remain a £ peumip 0354 6568.508 0 0
global Pareto efficiency of 1.0 in both con- § mLp 0.562 6500.125 039 0
drifts. indicatine that th 5 ModemNCA 0.620 5291275 0737 10
Cept rifts, n 1cat1ng that t €y are most g IMLP 0.666 7082.398 0.463 1.0

often on the neural-global Pareto frontier.

Summary of IMLP’s strengths. IMLP

offers several notable advantages over related tabular methods: (1) it is simple and inherently suitable
for streaming tabular learning without replaying past raw inputs; and (2) it is lightweight and tunable
in both computation and memory, with costs independent of the length of the data stream, yielding an
energy-efficient solution.

6 CONCLUSION

This paper addresses the critical gap of EECL on tabular data streams by introducing IMLP, a
novel incremental MLP model. IMLP employs a novel attention-based feature replay with context
retrieval and sliding buffer updates, integrated into a minibatch training loop for streaming tabular
learning. Experiments show that IMLP matches the accuracy of neural baselines under no replay
while substantially reducing runtime and energy costs. IMLP achieves up to 22.7% energy reduction
compared to TabPFNv2, while maintaining competitive average accuracy. Positioned optimally on
the neural Pareto frontier, IMLP consistently delivers efficiency gains across abrupt and incremental
concept drift datasets.

Limitations and Future Work. Despite these exciting findings, IMLP currently treats baselines on
River’s Insets benchmarks in an experimental setting. A promising next step is to compare the method
with up-to-date models on real-life lifelong settings, thereby enriching the benchmarks. Beyond that,
building a comprehensive evaluation framework would shed light on the influence of alternative CL
strategies for SOTA baselines. Ultimately, an important future direction for EECL is to extend IMLP
toward jointly optimizing the trade-offs between energy efficiency and predictive performance with
tunable parameters, ideally supported by theoretical guarantees or unified analytical frameworks for
different CL strategies on different models under non-stationary distributions.

10

Under review as a conference paper at ICLR 2026

Ethics statement. This work contributes to an energy-efficient alternative to full retraining for
tabular data streams. By a windowed scaled dot-product attention over a sliding latent feature buffer,
it enables lightweight computation and avoids unbounded memory growth in continual learning,
while achieving efficient energy consumption for deep networks. This method will be beneficial for
Green Al especially in resource-constrained tabular data learning. All experiments are conducted
on publicly available benchmark datasets and baselines. Regarding the large language model use,
ChatGPTs, Gemini, and Grammarly were used to assist us with writing and editing, retrieving related
work, coding improvement, but all the ideas, designs, plots, and analyses are our own.

11

Under review as a conference paper at ICLR 2026

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory
aware synapses: Learning what (not) to forget. CoRR, abs/1711.09601, 2017. URL http://arxiv.org/
abs/1711.09601.

Fatemeh Amrollahi, Supreeth P Shashikumar, Andre L Holder, and Shamim Nemati. Leveraging clinical data
across healthcare institutions for continual learning of predictive risk models. Scientific reports, 12(1):8380,
2022.

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 6679-6687, 2021.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Consistency is the key to further mitigating
catastrophic forgetting in continual learning. In Conference on Lifelong Learning Agents, pp. 1195-1212.
PMLR, 2022.

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging bagging for evolving data streams. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 135-150. Springer,
2010.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel classifiers with online and active
learning. Journal of machine learning research, 6(Sep):1579—-1619, 2005.

Vadim Borisov, Tobias Leemann, Kathrin Sefler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci. Deep
neural networks and tabular data: A survey. IEEE transactions on neural networks and learning systems, 35
(6):7499-7519, 2022.

Lucia Bouza, Aurélie Bugeau, and Loic Lannelongue. How to estimate carbon footprint when training deep
learning models? a guide and review. Environmental Research Communications, 5(11):115014, November
2023. ISSN 2515-7620. doi: 10.1088/2515-7620/acf81b. URL http://dx.doi.org/10.1088/
2515-7620/acf81bl

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine learning.
Advances in neural information processing systems, 13, 2000.

Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhaohui Cai, and Guoqing Tu. A survey of recent advances
in edge-computing-powered artificial intelligence of things. IEEE Internet of Things Journal, 8(18):13849—
13875, 2021.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, S. Dsouza, T. Ajanthan, and P. K. Dokania. Efficient lifelong learning
with a-gem. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1396-1405, 2019. doi: 10.1109/CVPR.2019.00153.

Vivek Chavan, Paul Koch, Marian Schliiter, and Clemens Briese. Towards realistic evaluation of industrial
continual learning scenarios with an emphasis on energy consumption and computational footprint. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11506-11518, 2023.

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z Chen, and Jian Wu. Danets: Deep abstract networks for tabular
data classification and regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp- 3930-3938, 2022.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785-794.
ACM, August 2016. doi: 10.1145/2939672.2939785. URL http://dx.doi.org/10.1145/2939672,
2939785.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on information theory,
13(1):21-27, 1967.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 20(2):215-232, 1958.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ale§ Leonardis, Gregory Slabaugh, and

Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE transactions
on pattern analysis and machine intelligence, 44(7):3366-3385, 2021.

12

http://arxiv.org/abs/1711.09601
http://arxiv.org/abs/1711.09601
http://dx.doi.org/10.1088/2515-7620/acf81b
http://dx.doi.org/10.1088/2515-7620/acf81b
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785

Under review as a conference paper at ICLR 2026

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 71-80, 2000.

ElmorLabs. Pmd-usb (power measurement device with usb). https://www.elmorlabs.com/product/
elmorlabs-pmd-usb-power-measurement-device-with-usb/} 2023. Accessed: 2025-01-
15.

ElmorLabs. Pmd pci-e slot power measurement adapter. https://www.elmorlabs.com/product/
pmd-pci-e-slot-power—-measurement—-adapter/, 2025. Accessed: 2025-01-15.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pp.
1189-1232, 2001.

Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
Journal of the American Statistical Association, 32(200):675-701, 1937. ISSN 01621459, 1537274X. URL
http://www. jstor.org/stable/2279372.

Ioannis Giagkiozis and Peter J Fleming. Pareto front estimation for decision making. Evolutionary computation,
22(4):651-678, 2014.

Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Ptharinger, Geoff
Holmes, and Talel Abdessalem. Adaptive random forests for evolving data stream classification. Machine
Learning, 106(9):1469-1495, 2017.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for
tabular data. Advances in neural information processing systems, 34:18932-18943, 2021.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem Babenko.
Tabr: Tabular deep learning meets nearest neighbors in 2023. arXiv preprint arXiv:2307.14338, 2023a.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for
tabular data, 2023b. URL |https://arxiv.org/abs/2106.11959.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning with parameter-
efficient ensembling. arXiv preprint arXiv:2410.24210, 2024.

Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. Knn model-based approach in classification.
In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", pp. 986-996.
Springer, 2003.

Peter Henderson, Jierui Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau. Towards the
systematic reporting of the energy and carbon footprints of machine learning. In Proceedings of the Workshop
on Challenges in Deploying and monitoring Machine Learning Systems (EMNLP), 2020. arXiv:2002.05651.

T Ryan Hoens, Robi Polikar, and Nitesh V Chawla. Learning from streaming data with concept drift and
imbalance: an overview. Progress in Artificial Intelligence, 1(1):89-101, 2012.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Korfer, Shi Bin Hoo, Robin Tibor
Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular foundation model. Nature,
637(8045):319-326, 2025a.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Koérfer, Shi Bin Hoo, Robin Tibor
Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular foundation model.
Nature, 01 2025b. doi: 10.1038/s41586-024-08328-6. URL https://www.nature.com/articles/
s41586-024-08328-6,

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2):
65-70, 1979. ISSN 03036898, 14679469. URLhttp://www. jstor.org/stable/4615733l

David Holzmiiller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and boosted
trees on tabular data. Advances in Neural Information Processing Systems, 37:26577-26658, 2024.

Vikramaditya Jakkula. Tutorial on support vector machine (svm). School of EECS, Washington State University,
37(2.5):3, 2006.

Soham Jana, Henry Li, Yutaro Yamada, and Ofir Lindenbaum. Support recovery with projected stochastic gates:
Theory and application for linear models. Signal Processing, 213:109193, 2023.

13

https://www.elmorlabs.com/product/elmorlabs-pmd-usb-power-measurement-device-with-usb/
https://www.elmorlabs.com/product/elmorlabs-pmd-usb-power-measurement-device-with-usb/
https://www.elmorlabs.com/product/pmd-pci-e-slot-power-measurement-adapter/
https://www.elmorlabs.com/product/pmd-pci-e-slot-power-measurement-adapter/
http://www.jstor.org/stable/2279372
https://arxiv.org/abs/2106.11959
https://www.nature.com/articles/s41586-024-08328-6
https://www.nature.com/articles/s41586-024-08328-6
http://www.jstor.org/stable/4615733

Under review as a conference paper at ICLR 2026

S. Jha et al. Neural processes for continual learning. In International Conference on Machine Learning, 2023.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on tabular
datasets. Advances in neural information processing systems, 34:23928-23941, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: a highly efficient gradient boosting decision tree. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 3149-3157, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and knowledge transfer
in continual learning. Advances in Neural Information Processing Systems, 34:22443-22456, 2021.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring catastrophic
forgetting in neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

S Kiebel and A Holmes. The general linear model. Academic Press. London, 2007.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with kernels. IEEE transactions
on signal processing, 52(8):2165-2176, 2004.

Cecilia S Lee and Aaron Y Lee. Clinical applications of continual learning machine learning. The Lancet Digital
Health, 2(6):279-e281, 2020.

Ao Li, Chong Zhang, Fu Xiao, Cheng Fan, Yang Deng, and Dan Wang. Large-scale comparison and demonstra-
tion of continual learning for adaptive data-driven building energy prediction. Applied Energy, 347:121481,
2023.

Xiaodi Li, Dingcheng Li, Rujun Gao, Mahmoud Zamani, and Latifur Khan. Lsebmcl: A latent space energy-
based model for continual learning. In 2025 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pp. 0690-0695. IEEE, 2025a.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual structure
learning framework for overcoming catastrophic forgetting. In International conference on machine learning,
pp. 3925-3934. PMLR, 2019.

Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin Yang, Rui
Zhang, Shui Yu, et al. Unleashing the power of continual learning on non-centralized devices: A survey.
IEEE Communications Surveys & Tutorials, 2025b.

Yujie Li, Xin Yang, Hao Wang, Xiangkun Wang, and Tianrui Li. Learning to prompt knowledge transfer for
open-world continual learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 13700-13708, 2024.

Zhizhong Li and Derek Hoiem. Learning without forgetting. CoRR, abs/1606.09282, 2016. URL http:
//arxiv.org/abs/1606.09282,

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935-2947, 2017.

Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge
discovery, 1(1):14-23,2011.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30, 2017.

David McElfresh and Ameet Talwalkar. Tabzilla benchmark. NeurIPS, 2023. Version 1.0, accessed May 2025.

Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, and Albert Bifet. Adaptive
xgboost for evolving data streams. In 2020 international joint conference on neural networks (IJCNN), pp.
1-8. IEEE, 2020.

Peter Bjorn Nemenyi. Distribution-free Multiple Comparisons. PhD thesis, Princeton University, 1963.

14

http://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282

Under review as a conference paper at ICLR 2026

Nikunj C Oza and Stuart J Russell. Online bagging and boosting. In International workshop on artificial
intelligence and statistics, pp. 229-236. PMLR, 2001.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural networks, 113:54-71, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

F. Pellegrini et al. Latent replay for on-device continual learning. IEEE Transactions on Neural Networks and
Learning Systems, 2020. doi: 10.1109/TNNLS.2020.2971234.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features, 2019. URL https://arxiv.org/abs/1706,
09516.

Reshawn Ramjattan, Daniele Atzeni, and Daniele Mazzei. Comparative evaluation of continual learning methods
in financial and industrial time-series data. In 2024 International Joint Conference on Neural Networks
(IJCNN), pp. 1-7. IEEE, 2024.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 2001-2010, 2017.

Steven J Rigatti. Random forest. Journal of insurance medicine, 47(1):31-39, 2017.

Lior Rokach and Oded Maimon. Decision trees. In Data mining and knowledge discovery handbook, pp.
165-192. Springer, 2005.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR, abs/1606.04671, 2016.
URLhttp://arxiv.org/abs/1606.04671.

Rafat Rézycki, Dorota Agnieszka Solarska, and Grzegorz Waligéra. Energy-aware machine learning models—a
review of recent techniques and perspectives. Energies, 18(11), 2025. ISSN 1996-1073. doi: 10.3390/
enl18112810. URL https://www.mdpi.com/1996-1073/18/11/2810!

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna Ebrahimi,
and Hao Wang. Continual learning of large language models: A comprehensive survey. ACM Computing
Surveys, 2024a.

Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neural networks:
An unstructured pruning framework. In The Twelfth International Conference on Learning Representations,
2024b.

H. Shin, J. K. Lee, J. Kim, J. Kim, and S. Kim. Continual learning with deep generative replay. In Advances in
Neural Information Processing Systems, pp. 2990-2999, 2017.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein. Saint:
Improved neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342,2021.

Vinicius MA Souza, Denis M dos Reis, Andre G Maletzke, and Gustavo EAPA Batista. Challenges in
benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, 34
(6):1805-1858, 2020.

Hind Taud and Jean-Franccois Mas. Multilayer perceptron (mlp). In Geomatic approaches for modeling land
change scenarios, pp. 451-455. Springer, 2017.

Tomaso Trinci, Simone Magistri, Roberto Verdecchia, and Andrew D. Bagdanov. How green is continual
learning, really? analyzing the energy consumption in continual training of vision foundation models. arXiv
preprint arXiv:2409.18664, 2024. Accepted to GreenFOMO Workshop at ECCV 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,

and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017a. URL http://arxiv,
org/abs/1706.03762.

15

https://arxiv.org/abs/1706.09516
https://arxiv.org/abs/1706.09516
http://arxiv.org/abs/1606.04671
https://www.mdpi.com/1996-1073/18/11/2810
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017b.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,
method and application. IEEE transactions on pattern analysis and machine intelligence, 46(8):5362-5383,
2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024b. URL
https://arxiv.org/abs/2302.00487.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83, 1945.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Hebbian learning based orthogonal
projection for continual learning of spiking neural networks. arXiv preprint arXiv:2402.11984,2024.

Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components analysis: A deep tabular
baseline two decades later. arXiv e-prints, pp. arXiv—2407, 2024.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela Van der Schaar. Vime: Extending the success of self-
and semi-supervised learning to tabular domain. Advances in neural information processing systems, 33:
11033-11043, 2020.

Guri Zabérgja, Arlind Kadra, Christian MM Frey, and Josif Grabocka. Is deep learning finally better than
decision trees on tabular data? arXiv preprint arXiv:2402.03970, 2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International conference on machine learning, pp. 3987-3995. PMLR, 2017.

16

https://arxiv.org/abs/2302.00487

Under review as a conference paper at ICLR 2026

A FORMAL PROPERTIES OF THE ATTENTION-BASED FEATURE MEMORY

We recall that the IncrementalMLP (IMLP) augments the input x; € R%n with a context vector ¢; € R2%°
obtained from a finite window of past latent features H; = {h; 1, ..., h;,w}, and then feeds the concatenated
vector [z;; ¢;] into a two-layer ReLU network followed by a linear classifier.

Attention-based feature memory. Given xz; and a set of past latent features H;, IMLP computes

qi = Wyaxi + b, € R, (22)
ki; = Wihij + b € R*, (23)
1
ei; = NoEG ki qi, (24)
exp(ei,s)
Oj = —————— (25)
! ngil EXP(ei,e)
w
C; = Zoq,jki,j. (26)
j=1

In practice, the latent features h; ; are £2-normalized after precomputation.

The feature extractor and classifier then read

2 = ReLlU (Walzi; ei] + b1), 27
2% = ReLU(W2z!" + b2), (28)
0; = stzfz) + beis, 29

p; = softmax(0;), (30)
() = CE(pi, i), (31

where 6 collects all network parameters, and CE denotes cross-entropy loss.

Assumptions. We make the following mild assumptions, which are standard in non-convex optimization for
neural networks:
(Al) (Bounded inputs) There exists R, > 0 such that ||z;||2 < R, for all samples in the segment.
(A2) (Bounded latent features) The precomputed latent features are £2-normalized, i.e., ||h; ;]2 < 1 for all
i,].
(A3) (Bounded parameters) Training is performed with weight decay and early stopping, so that for some
Ry > 0, ||6]]2 < Ry throughout optimization.
These assumptions hold in our implementation due to explicit normalization of h; ; and the use of weight decay
and patience-based early stopping.

Lemma A.1 (Bounded context vector). Suppose (A2) holds, and let |Wi||2—2 denote the operator norm of
Wi. Then there exists a constant B, > 0 depending only on Wy, and by, such that

lcillz < B foralli.

In particular, one can take B. = ||Wg||2—2 + ||bk]|2-

Proof. For each j, we have
iillz = [[Wihi; + bell2 < [Wkll2—2 [[hijll2 + bkllz < [[Wkll2—2 + [[bk]]2. (32)

Define B. := ||[Wk||2—2 + [|bk||2- Since (ci,1, - .., ai,w) is a probability vector, the context vector ¢; is a
convex combination of the keys:
w
i =Y aigkig.
=1

Thus

w w
lleilla <> aujllkigll < e yBe = Be.

j=1 j=1

17

Under review as a conference paper at ICLR 2026

Lemma A.2 (Smoothness and Lipschitzness of the attention map). Let A(xz;, H;;0att) 1= ¢ denote the
attention-based feature memory, where 04t collects (Wy, bq, Wi, bi,). Under assumptions (A1)—(A3), the map

(zi, Hi, Oate) — A(xs, Hy; Oatt)
is continuously differentiable, and its Jacobian with respect to Oast is bounded on the compact set
K= {(@i, Hi, Oass) : ||zill2 < Ra, ||hijll2 < 1, [[fatell2 < Ro}.

Consequently, there exists Layy > 0 such that for all (z;, H;) and all 9;2, 9;%2 in this set,

A (i, Hi; 054)) — A, Hi; 053012 < Late 10547 — 051 |2-

Proof. The attention map A is a composition of: (i) linear maps (z, h) — (Wyx + by, Wih + by), (ii) bilinear
inner products and scaling (k, ¢) — kTq /+/256, (iii) the softmax function on R", and (iv) a weighted sum
c= Zj ajk;. Each of these operations is smooth. Therefore, their composition is continuously differentiable

in (ZEZ', Hi, Gatt).

On the compact set /C, all partial derivatives are bounded, hence the Jacobian Vy,,, A is bounded in operator
norm. This implies global Lipschitzness in fat; on X with some constant Lt > 0. O

We now consider the full network mapping
Jo(zi, Hi) := Was ¢o(i, Hi) + bas,

where ¢¢ denotes the two-layer ReLU feature extractor applied to [x;; A(zi, Hi; 0att)], and 6 collects both the
attention parameters and the MLP parameters.

Lemma A.3 (Smoothness of the network and loss). Under assumptions (A1)—(A3), the mapping

0 — fo(zi, H;)
is continuously differentiable with bounded Jacobian on {0 : ||0||2 < Rg}. Consequently, the per-sample loss

2;(0) = CE(softmax(fg(xi7 H;)), yi)
is continuously differentiable with Lipschitz-continuous gradient on this compact set.
Proof. By Lemmal[A.2] the attention map is smooth with bounded derivatives on bounded inputs. The feature
extractor is a composition of affine maps and ReLU activations:
¢o = ReLU o (W3 - +b2) o ReLU o (W7 - +b1),

which is piecewise linear and globally Lipschitz, and smooth almost everywhere with respect to 6 on any
compact subset of parameter space. Composition with the final linear classifier preserves these properties for f.

The softmax function and cross-entropy loss are smooth with bounded derivatives when their inputs are bounded,
which follows from Lemma and (A1)—(A3). Hence ¢;(0) is continuously differentiable with Lipschitz-
continuous gradient on {||0]| < Ry} O

We now move from individual samples to the empirical loss over a fixed segment (task) 7.

Theorem A.4 (Segment-wise smooth empirical loss). For a fixed segment T; with data {(x;, Hs, y;) } 2, define
the empirical loss

Lo(0) = nit S ().

i=1

Under assumptions (A1)—(A3), L. (0) is:
(i) bounded below, since €;(6) > 0 for all i;
(ii) continuously differentiable on {0 : ||0]| < Rs}; and

(iii) has Lipschitz-continuous gradient on {0 : ||0|| < Rp}.

Proof. Each per-sample loss ¢; () is non-negative and continuously differentiable with Lipschitz gradient on
the compact parameter set by Lemma[AZ3] A finite average of such functions preserves these properties. Thus

Ly is bounded below, continuously differentiable, and has Lipschitz-continuous gradient on {||0]| < Rg}. [

18

Under review as a conference paper at ICLR 2026

Corollary A.5 (Per-segment convergence of IMLP training). Consider optimizing L, (0) by a stochastic first-
order method (e.g., SGD or Adam) with standard hyperparameters and weight decay, as implemented in our
training loop. Under Theorem[A.4 and the usual step-size conditions from non-convex optimization theory, the
iterates {0y } produced by the optimizer on segment T; converge to a first-order stationary point of Ly, in the
sense that .

lim [[VLe(0)]l2 = 0,

k—oo

or, in the practical finite-epoch setting, reach a parameter 0* with small gradient norm ||V Ly (0*)]|2. In
particular, the attention-based feature memory, being a bounded and smooth transformation of a finite latent
feature window, does not alter the fundamental optimization character of the model: IMLP behaves like
a conventional MLP with an augmented input [x;; c;| and inherits the standard per-segment convergence
guarantees of non-convex deep networks.

Remark on non-stationary streams. The analysis above is segment-wise: for each fixed segment 7z, we

assume a finite dataset and study the optimization of the empirical risk Ly (0). This does not imply convergence
of the model to any limiting distribution when the underlying data-generating process is non-stationary across
t. Instead, our result shows that, conditional on the observed stream in each segment, the attention-based
feature memory yields a well-behaved optimization problem (smooth, with Lipschitz gradients), so that standard
optimizers can reliably minimize the empirical loss on that segment even in the presence of non-stationarity
across segments.

B ENERGY COMPLEXITY OF IMLP IN OUR EXPERIMENTAL SETTING

We now provide a simple energy-complexity characterization of IMLP in the experimental setup of Section 6.
The goal is not to predict the exact Joule values measured by our energy monitor, but to show that, under mild
hardware assumptions, the total energy consumed by IMLP is bounded and scales in a controlled way with the
model size and the number of training examples.

Setup. Recall that IMLP uses:

e input dimension diy,

e fixed hidden size H = 256,

* number of classes C,

* a finite feature-memory window of size W < Whax,

e at most E,.x training epochs per segment, enforced by early stopping (default E,.x = 100),
* mini-batch training with batch size B and Adam/AdamW optimization.

For a given segment 7; with n; training samples, our code performs at most Fax full passes over the segment
before stopping.

Hardware and energy model. Let Fiin denote the number of floating-point operations (FLOPs) required
to perform one forward-and-backward pass of IMLP on a single sample (including the attention-based feature
memory). We adopt a standard abstract energy model:

(H1) On a fixed hardware platform (GPU/CPU), there exist constants 0 < 7min < 7max such that the
energy consumed per FLOP lies in [9)min, 7Jmax]-

(H2) The additional system overhead per training step (e.g., kernel launches, bookkeeping) is bounded by a
constant £y independent of the sample index and segment.

These assumptions reflect that, for a fixed device and implementation, energy is approximately linear in the
number of FLOPs, up to device-specific constants and small overhead.

Lemma B.1 (FLOP complexity per sample). For a single sample (x;, H;,y;), the FLOP count of a forward-
and-backward step of IMLP satisfies

Erain SKarch(dinH + WH2 + I‘I2 + HC),

for some architecture-dependent constant Ky, > 0 that does not depend on n or t. In particular, since H=256
and W < Whnax are fixed in our experiments, Fiqin grows at most linearly in din and C.

Proof. We count FLOPs layer by layer:

19

Under review as a conference paper at ICLR 2026

¢ Attention block.

— Query: z; — q; = Wyx; + bg costs O(din H) FLOPs.
— Keys: each h; ; is mapped to k;; = Wihi; + by with cost O(H?); for W keys this is
O(WH?).

— Attention scores and softmax: computing e; ; = k; i/ VH costs O(W H), softmax costs
O(W), and forming ¢; = 3~ c jki,; costs O(W H). Altogether O(W H) FLOPs.

Thus the attention block has FLOP complexity O(din H + W H 2).
* Feature extractor. The two ReLU layers operate on dimensions (din—|—H) — 512 — H, which costs

O((din+H)-512) + O(512- H) = O(dw H + H?).

* Classifier. The final linear layer H — C' costs O(HC') FLOPs.

« Backward pass. The backward pass through these linear and ReL.U layers multiplies the forward
FLOP count by a constant factor (depending only on the layer type), which we absorb into Karch.

Summing these contributions gives
Flrain < Karen (dinH + WH2 + H2 =+ HC)
for some constant FKyen > 0. O

Theorem B.2 (Per-segment energy complexity bound). Consider a segment T; with n; training samples. Under
assumptions (H1)~(H2) and Lemma[B_1] the total training energy consumed by IMLP on this segment satisfies

E{"" < Chain Emax e (dinH + WH? + H* + HC) + Co,

for some hardware- and implementation-dependent constants Cyain > 0 and Co > 0. Similarly, the inference
energy on the test set of size n'*" admits

E < Coper ' (dinH + WH? + H> + HC) + Cj,

with another constant Ciger > 0 and overhead Cq > 0.

Proof. For each epoch, the optimizer processes all n; samples once (up to mini-batch granularity). Thus, the
total FLOP count per segment is at most

seg
Ft < Enax Nt Eraim

where Finin is bounded as in Lemma By (H1), energy per FLOP lies in [f)min, Jmax]|, SO there exists Clrain
such that

Ef™ < fmaxFy + (overhead) < Clin Emaxne (din H + WH? + H* + HC) + Co.

We rename Crgin as Clain for simplicity. The inference bound follows analogously, using only a forward pass per
sample (no backward pass) and absorbing the constant factor into Cinger. O

Corollary B.3 (Energy complexity over the full non-stationary stream). Let the data stream be partitioned into
T segments {T; yi—y with sizes {n:}1—,. Under the same assumptions as Theorem the total training energy
over the entire stream satisfies

T
E;[r::]z = Z Effmm < Clrain Emax (Z nt) (dinH + WH2 + H2 + HC) + TC(),

t=1 t=1

and the total inference energy satisfies

EM < Coger gy (din H + WH? + H? + HC) + TC.

total

In particular, for our experimental setting where H=256, W < Whax, and Emnax are fixed constants, both
training and inference energy grow at most linearly in the total number of processed examples ., n; and in

the effective model size. The attention-based feature memory only adds the bounded term W H? and does not
change this linear energy scaling.

20

Under review as a conference paper at ICLR 2026

Discussion. The bounds above explain two aspects of our empirical observations: (i) on a fixed device,
IMLP has a predictable energy profile, scaling linearly with the number of samples and epochs; and (ii) the
attention-based feature memory contributes a controlled overhead proportional to W H?, which remains small in
our experiments because W and H are fixed (W < 10, H = 256). Our measured Joule values are therefore
consistent with an energy complexity that is linear in the stream size, and the theoretical bounds clarify that this
behavior is not specific to a particular dataset, but a structural property of the IMLP architecture and training
procedure.

C EXTENDED EXPERIMENTS

C.1 DATASETS AND STREAM SEGMENTATION

We evaluate IMLP on 36 classification tasks from the TabZilla benchmark (McElfresh & Talwalkar, 2023)),
selected from OpenML based on three criteria: (1) sufficient data size to create meaningful segments, (2)
balanced representation of binary and multi-class problems, and (3) diverse feature dimensionalities and class
distributions. To simulate the data stream in incremental learning scenarios, Table [2]lists every OpenML task in
our benchmark together with basic statistics and the fixed stream segmentation applied in original row order
(rows 1 ...k form Segment 0, rows k+1 ... 2k form Segment 1, etc.).

1 Class counts show label ID : instances after preprocessing. Binary tasks list two numbers; multi-class tasks
list one count per class. For tasks with many classes, we show representative counts or use compact notation
(e.g., “25 x 300 for 25 classes with 300 instances each).

C.1.1 STREAM SEGMENTATION ALGORITHM

Our segmentation follows a principled approach to create balanced segments while minimizing data waste:

Algorithm 1 Optimal Segment Size Selection

Require: Dataset with IV training instances, bounds ki, = 500, kpax = 1000
Ensure: Segment size k* that minimizes remainder

1: best_remainder < N

2: k* kmin

3: for k = kuyin to min(kyax, N) do

4: num_segments < | N/k|

5: remainder <— N mod k

6: if remainder = O then

7: return k > Perfect division found
8: if remainder < best_remainder then

9: best_remainder < remainder
10: k* «+— k

11: return k*

The choice of segment size bounds (500—1000 instances) balances three considerations: (1) statistical power,
each segment must contain sufficient samples for reliable learning, (2) IMLP coherence, segments should be
large enough for the attention mechanism to learn meaningful feature relationships within each temporal chunk,
and (3) computational efficiency, larger segments would increase memory requirements and training time per
segment without proportional benefits.

When the optimal segment size k™ leaves a remainder r = N mod k*, we apply round-robin redistribution: the
first segments each receive one additional instance, ensuring segment sizes differ by at most 1. This maintains
temporal ordering while achieving optimal balance.

C.2 DATA RETRIEVAL AND PREPROCESSING PROTOCOL

C.2.1 DATASET ACQUISITION
All datasets are retrieved via the OpenML Python API (v0.15.2) with local caching enabled. We use the default

target attribute specified in each OpenML task definition. Raw data is downloaded in DataFrame format to
preserve both feature names and categorical indicators.

21

Under review as a conference paper at ICLR 2026

Table 2: Statistics of datasets. OpenML classification tasks and stream-segmentation parameters used
in this study. # Inst, stands for the number of instances, # Feat. stands for the number of features.
Seg. size stands for the segment size bound. # Segs stands for the number of segments. Numbers are
produced by the data-processing pipeline and reproduced by the helper script in

ID Name #Inst. #Feat. Class balance Seg. size #Segs
146820 wilt 4,839 5 4,578; 261 514 8
14964 artificial-characters 10,218 7 1,196; 600; 1,192; 1,416; 808; 579 15

1,008; ...
14969 GesturePhaseSegmentation 9,873 32 2,741;998; 2,097, 1,087; 2,950 839 10
14951 eeg-eye-state 14,980 14 8,257;6,723 749 17
146206 magic 19,020 10 12,332; 6,688 951 17
167211 Satellite 5,100 36 75;5,025 867 5
167141 churn 5,000 29 4,293;707 850 5
168910 fabert 8,237 800 933; 1,433; 1,927; 1,515; 979; 500 14
948; 502
168912 sylvine 5,124 20 2,562;2,562 871 5
190410 philippine 5,832 308 2,916;2,916 708 7
2074 satimage 6,430 36 1,531; 703; 1,356; 625; 707, 683 8
1,508

28 optdigits 5,620 64 554;571;557;572; 568; 558; ... 597 8

32 pendigits 10,992 16 1,143;1,143; 1,144, 1,055; 1,144, 519 18
146607 SpeedDating 8,378 442 6,998; 1,380 712 10
168908 christine 5418 1,611 2,709; 2,709 921 5
14952 PhishingWebsites 11,055 38 4,898; 6,157 522 18

3510 JapaneseVowels 9,961 14 1,096;991; 1,614; 1,473,782, ... 529 16
3735 pollen 3,848 5 1,924; 1,924 545 6
3711 elevators 16,599 18 5,130; 11,469 641 22
3896 ada_agnostic 4,562 48 3,430; 1,132 646 6
14970 har 10,299 561 1,722; 1,544 1,406; 1,777; 1,906; 547 16
1,944
3686 house_16H 22,784 16 6,744; 16,040 842 23
3897 eye_movements 10,936 27 3,804; 4,262; 2,870 715 13
3904 jml 10,885 21 8,779; 2,106 514 18
43 spambase 4,601 57 2,788; 1,813 782 5
3954 MagicTelescope 19,020 10 12,332; 6,688 951 17
9952 phoneme 5,404 5 3,818; 1,586 574 8
3950 musk 6,598 267 5,581;1,017 701 8
9960 wall-robot-navigation 5,456 24 2,205;2,097; 328; 826 515 9
3889 sylva_agnostic 14,395 216 13,509; 886 941 13
9985 first-order-theorem-proving 6,118 51 1,089; 486; 748; 617; 624; 2,554 520 10
3481 isolet 7,797 617 25 x 300 (class 0...24) 552 12
45 splice 3,190 227 767, 768; 1,655 542 5
9986 gas-drift 13,910 128 2,565;2,926; 1,641; 1,936; 3,009; 563 21
1,833
9987 gas-drift-different-conc. 13,910 129 2,565;2,926; 1,641; 1,936; 3,009; 563 21
1,833
168909 dilbert 10,000 2,000 1,988;2,049; 1,913; 2,046; 2,004 500 17
99901 Insects Abrupt 52,847 33 Balanced (6 classes) 1,957 27
99902 Insects Incremental 57,017 33 Balanced (6 classes) 1,629 35

C.2.2 FEATURE PREPROCESSING PIPELINE

Our preprocessing pipeline follows scikit-learn best practices with separate transformers for numerical and
categorical features:

22

Under review as a conference paper at ICLR 2026

Numerical Features:

1. Imputation: Missing values filled with column medians

2. Standardization: Zero mean, unit variance scaling via StandardScaler

Categorical Features:

1. Imputation: Missing values filled with constant ‘missing’
2. Encoding: One-hot encoding with drop="first’ to avoid multicollinearity

3. Unknown handling: handle_unknown="‘ignore’ for robust inference

The ColumnTransformer ensures preprocessing consistency across all data splits. After transformation, all
features are converted to £1oat 32 for memory efficiency.

C.2.3 TARGET PROCESSING AND TASK TYPE DETECTION

Target variables are processed based on OpenML task type:

* Binary classification: 2 unique labels — LabelEncoder — {0, 1}
¢ Multi-class classification: C' > 2 unique labels — LabelEncoder — {0, ..., C-1}

* Regression: Direct conversion to float32 (not used in this study)

C.2.4 DATA SPLITTING STRATEGY

Our splitting protocol ensures a realistic evaluation:

1. Test Set Isolation: A stratified 15% test split is carved out before any stream processing, using
random_seed=42 for reproducibility.

2. Training Stream Creation: The remaining 85% forms the chronologically ordered training stream,
preserving the original row order from OpenML.

3. Per-Segment Validation: Each segment (or cumulative data) is further split with stratified 15%
validation, using random_seed=42+segment_1idx to ensure different splits per segment while
maintaining reproducibility.

This approach simulates realistic continual learning where: 1) The test set represents future unseen data, 2) Each
segment represents a temporal chunk of arriving data, 3) Validation splits enable early stopping without future
data leakage, and 4) All models use consistent 15% validation splits for hyperparameter selection and early
stopping criteria.

C.2.5 MODEL TRAINING PROTOCOLS

Our experimental design follows two distinct training protocols based on model type:

Cumulative Training: Traditional baselines (XGBoost, LightGBM, CatBoost, kNN, SVM, Decision Trees,
Random Forest, and neural baselines like TabNet, SAINT) are retrained from scratch at each segment using all
available data up to that point. For the segment, these models train on the union U;‘F:O T: where T: denotes the
t-th data segment. This protocol maximizes baseline performance by leveraging all historical data, representing
the standard approach in tabular learning.

Incremental Training: Our proposed IMLP trains only on the current segment S; while accessing previous
feature representations through the attention mechanism. This protocol tests true incremental learning capabilities
without replay of raw historical data.

Both protocols use identical validation procedures: each model’s hyperparameters are selected via early stopping
on the 15% validation split, ensuring fair comparison despite different training paradigms.

C.2.6 REPRODUCIBILITY MEASURES

All steps are deterministic with fixed random seeds, including 1) Global seed: random_seed = 42, 2)
Per-segment validation: random_seed = 42 + segment_idx, and 3) Preprocessing: Deterministic
transformers with fixed parameters.

23

© 0 N R W N —

Under review as a conference paper at ICLR 2026

C.3 DATASET SUMMARY REGENERATION SCRIPT

For full reproducibility, we provide a helper script that regenerates Table[2] from the processed data:

dataset_summary.py (runs in < 2 seconds)
import json, csv, gzip, numpy as np, pathlib

def regenerate_dataset_summary () :
"""Regenerate the dataset summary CSV from processed metadata."""
META = pathlib.Path ("processed_datasets_summary.json")
ROOT = pathlib.Path("full_datasets")
OUT = pathlib.Path("dataset_summary.csv")

Load processing metadata
with META.open() as f:
meta = json.load(f)

rows = []

for tid, m in meta.items () :
Load target labels to compute class balance
y = np.load(gzip.open (ROOT/m["dataset_name"]/"y_full.npy.gz"))
counts = np.bincount (y.astype (int))

rows.append ({
"task_id": int (tid),
"name": m["original_name"],
"instances": int (m["num_instances"]),
"features": int (m["num_features"]),
"class_balance": ";".join(map(str, counts)),
"segment_size": int (m["segment_size"]),
"num_segments": int (m["num_segments"])

b

Write CSV output

with OUT.open ("w", newline="") as f:
writer = csv.DictWriter (f, fieldnames=rows[0].keys())
writer.writeheader ()
writer.writerows (rows)

print (f"Wrote {OUT} with {len(rows)} tasks")

if _ name_ == "_ main__
regenerate_dataset_summary ()

".

Running this script in the project root recreates the CSV that backs Table[2] The script requires the preprocessed

datasets, but no pipeline re-execution.

24

Under review as a conference paper at ICLR 2026

C.4 BASELINES

We implement most of the baseline methods according to the publicly available codebases and integrate them
into the same backbone for benchmarking.

¢ XGBoost (Chen & Guestrin, 2016). https://github.com/dmlc/xgboost

e LightGBM (Ke et al.|[2017). https://github.com/microsoft/LightGBM
CatBoost (Prokhorenkova et al.} 2019). https://github.com/catboost/catboost
e TabPFN v2 (Hollmann et al.| [2025a). https://github.com/automl/TabPFN

* TabM (Gorishniy et al.|2024). https://github.com/yandex-research/tabm

¢ Real-MLP (Holzmiuller et al) [2024). https://github.com/dholzmueller/
realmlp-td-s_standalone

e TabR (Gorishniy et all [2023a). https://github.com/yandex—research/
tabular—-dl-tabr

ModernNCA (Ye et al.}[2024). https://github.com/YyzHarry/ModernNCA

e MLP (Taud & Mas| 2017). https://scikit-learn.org/stable/modules/neural_|
networks_supervised.html

TabNet (Arik & Pfister,2021). https://github.com/dreamquark—-ai/tabnet
¢ DANet (Chen et al.,[2022). https://github.com/QwQ2000/DANets

e ResNet (Gorishniy et all [2021). https://github.com/yandex—research/
tabular-dl-revisiting-models

e STG (Jana et al.}|2023). https://github.com/runopti/stg
* VIME (Yoon et al.,2020). https://github.com/jsyoon0823/VIME

* k-NN (Guo et al.}[2003). https://scikit-learn.org/stable/modules/neighbors|
html

e SVM (Jakkulal 2006). https://scikit-learn.org/stable/modules/svm.html

¢ Linear Model (Kiebel & Holmes| [2007). https://scikit-learn.org/stable/modules/
linear_model.html

¢ Random Forest (Rigatti, 2017). https://scikit-learn.org/stable/modules/
ensemble.html#random—-forests

Decision Tree (Rokach & Maimon, 2005). https://scikit-learn.org/stable/
modules/tree.html

In revisions, we changed the evaluation protocol and only include the recent SOTA works.

D IMLP IMPLEMENTATION DETAILS

D.1 ARCHITECTURE OVERVIEW AND DESIGN RATIONALE
IMLP extends the standard MLP architecture with an attention-based memory mechanism designed specifically

for tabular continual learning. The key innovation lies in storing and retrieving feature representations rather
than raw data, enabling privacy-preserving incremental learning with constant memory requirements.

D.1.1 COMPARISON WITH STANDARD MLP

Table] contrasts IMLP with a standard MLP of equivalent capacity:

D.2 LAYER-WISE ARCHITECTURE SPECIFICATION
Design Choices:

* Hidden size 256: Balances expressiveness with computational efficiency across all datasets
¢ No dropout/normalization: Empirically found to hurt performance in continual learning setting
¢ ReLU activations: Simple, stable gradients for incremental training

* Fixed architecture: Same capacity across all 36 datasets for fair comparison

25

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://github.com/catboost/catboost
https://github.com/automl/TabPFN
https://github.com/yandex-research/tabm
https://github.com/dholzmueller/realmlp-td-s_standalone
https://github.com/dholzmueller/realmlp-td-s_standalone
https://github.com/yandex-research/tabular-dl-tabr
https://github.com/yandex-research/tabular-dl-tabr
https://github.com/YyzHarry/ModernNCA
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://github.com/dreamquark-ai/tabnet
https://github.com/QwQ2000/DANets
https://github.com/yandex-research/tabular-dl-revisiting-models
https://github.com/yandex-research/tabular-dl-revisiting-models
https://github.com/runopti/stg
https://github.com/jsyoon0823/VIME
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html

Under review as a conference paper at ICLR 2026

Table 4: Architectural comparison between standard MLP and IMLP.

Component MLP IMLP IMLP Notes

Input processing din — 512 din — 256 Query projection
Memory mechanism None Attention Key-value retrieval
Feature extraction 512 — 256 (din + 256) — 512 — 256 Context-augmented
Memory complexity o) ow) W = window size
Time complexity o) O(W -d) d = hidden dim
Privacy Requires raw data Feature-only No raw data storage

Table 5: Detailed layer-wise specification of IMLP architecture.

Component Output dim. Activation Notes
Input feature vector din - Raw tabular features after preprocessing
Attention Module

Query projection Q) 256 - Linear(d;y, 256)

Key projection K 256 - Linear(256, 256) applied to each stored
feature

Context computation 256 - Scaled dot-product attention over win-
dow

Feature Extraction

Concatenated input (z, c) din + 256 - Only if attention enabled; ¢ = context
vector
FC 1 512 ReLU Linear(d;, + 256, 512)
FC2 256 ReLU Linear(512, 256)
Classification Head
Classifier C - Linear(256, C')) where C' = number of
classes

D.3 ATTENTION MECHANISM DESIGN

D.3.1 SCALED DOT-PRODUCT ATTENTION

IMLP uses a simplified attention mechanism to retrieve relevant historical features. For a batch of size B:

Q =W, -z e RP**5 (query from current input) (33)

K = Wi - Hyaekea € RP*W X255 (keys from previous features) (34)
Scores = bmm(K, Q") € RP*W ! (35)
o = softmax (Scores.squeeze()) € R?*™W (36)
Context = bmm(a.unsqueeze(1), K) € R?*!1*2%6 (37)

where:

o Hyacked = stack({hi—w, ..., hi—1}) € REXWx256
¢ bmm denotes batch matrix multiplication
¢ No scaling factor is applied (unlike standard scaled dot-product attention)
¢ Values equal keys: V = K
D.3.2 WINDOW MANAGEMENT STRATEGY

The sliding window maintains a FIFO queue of the most recent WW feature vectors:

26

Under review as a conference paper at ICLR 2026

Algorithm 2 Sliding Window Update

Require: Current input z, previous features Hyy.,, window size W
Ensure: Updated window H,ey
1: heurrent < FeatureExtractor(x, Context(x))
2: Hpew + Hprev U {hcurrent}
3: if [Hpew| > W then
4: Hyew < Hpew[1 :] > Remove oldest feature
5

: return H .,

D.3.3 FEATURE NORMALIZATION

To improve attention stability, stored features are L2-normalized during precomputation:

. hy

. 38
Till> T € G

where ¢ = 1078 prevents division by zero. This normalization ensures attention weights focus on feature
directions rather than magnitudes and is applied in the _precompute method during segmental training.

27

I T Y N R N

Under review as a conference paper at ICLR 2026

D.4 COMPLETE IMPLEMENTATION

import torch
import torch.nn as nn
import torch.nn.functional as F

class IncrementalMLP (nn.Module) :

mmn

Incremental MLP with attention-based feature replay for continual
— learning.

Args:

45
46
47
48
49
50
51
52
53
54

input_size (int): Number of input features

num_classes (int): Number of output classes

Whether to use attention mechanism
Size of sliding memory window

use_attention (bool):
window_size (int):

_ init_ (self,
window_size=10) :

super () .__init__ ()
self.window_size
self.use_attention
self.hidden_size

Attention projections
nn.Linear (input_size,
nn.Linear (256,

self.query
self.key

Feature extraction pathway
total_input_size
self.feature_extractor

nn.Linear (total_input_size,

nn

nn.Linear (512, self.hidden_size),
nn

Classification head
self.classifier

compute_context (self,
Compute attention-weighted context from previous features.

Args:
x (Tensor) :

<
Returns:

Tensor: Context vector [B, 256]
if not prev_features or self.window_size == 0:

return torch.zeros(x.size (0),

Stack previous features:
stacked_prev

input_size, num_classes, use_attention=True,

window_size
use_attention

(256 if use_attention else 0)
nn.Sequential (

input_size +

nn.Linear (self.hidden_size, num_classes)

prev_features):

Current input batch [B, D]
prev_features (List[Tensor]): Previous feature vectors [W x

device=x.device)

[B, W, 256]
torch.stack (prev_features,

Compute keys and queries
keys = self.key(stacked_prev) # [B, W, 256]
query = self.query (x) .unsqueeze (1) # [B, 1, 256]

Scaled dot-product attention

scores = torch.bmm(keys, query.transpose(l, 2)).squeeze(-1) # [B,
- W]

28

61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Under review as a conference paper at ICLR 2026

attention_weights = F.softmax(scores, dim=1) # [B, W]

Compute weighted context
context = torch.bmm(attention_weights.unsqueeze (1),
— keys) .squeeze (1) # [B, 256]

return context

def forward(self, x, prev_features=None) :
mmn

Forward pass with optional attention over previous features.

Args:
X (Tensor): Input features [B, D]
prev_features (List[Tensor]): Previous features for attention

Returns:

Tuple[Tensor, Tensor]: (logits, current_features)
mmn
Compute attention context
context = torch.zeros(x.size(0), 256, device=x.device)
if self.use_attention and prev_features:

context = self.compute_context (x, prev_features)

Concatenate input with context
if self.use_attention:

augmented_input = torch.cat ([x, context], dim=1)
else:

augmented_input = x

Extract features and classify
features = self.feature_extractor (augmented_input)

logits = self.classifier (features)

return logits, features

D.5 COMPUTATIONAL COMPLEXITY ANALYSIS

D.5.1 TIME COMPLEXITY

For each forward pass with batch size B, input dimension dj,, hidden dimension d;, = 256, and window size
W:

Query projection: O(B - din - d) (39
Key projection: O(B-W -dj) (40
Attention scores: O(B - W - dp) @1
Context aggregation: O(B-W -dp) (42)
Feature extraction: O(B - (din 4 dp) - 512) (43)
Total: O(B - (din - dp, + W - d1,)) (44)

For typical values (W = 10, dj, = 256, din < 2000), the attention overhead is O(W - di) = O(655,360)
operations per sample.

D.5.2 MEMORY COMPLEXITY
IMLP maintains constant memory usage per segment:

¢ Model parameters: ~ 1.2M parameters (fixed)
« Feature buffer: W x 256 x 4 bytes = 10,240 bytes for W = 10
¢ Attention matrices: B x W x 256 x 4 bytes during computation

Unlike replay-based methods, memory usage does not grow with the number of segments, enabling indefinite
continual learning.

29

Under review as a conference paper at ICLR 2026

D.5.3 COMPARISON WITH REPLAY METHODS

Table [compares IMLP with alternative continual learning approaches:

Table 6: Complexity comparison of continual learning approaches.

Method Memory Time per step Privacy
Naive retraining O(T - N) O(T - N) Requires raw data
Experience replay ~ O(M) O(N + M) Requires raw data
Generative replay o) O(N +G) Private
IMLP (ours) OoWwW) ON+W-d?) Private

where T' = number of tasks, N = samples per task, M = replay buffer size, G = generative model cost, W =
window size, d = feature dimension.

D.6 HYPERPARAMETER CONFIGURATION
IMLP uses the following default hyperparameters across all experiments:

Table 7: IMLP hyperparameter configuration.

Parameter Value Description

Window size (W) 10 Number of previous feature vectors stored
Hidden dimension 256 Feature representation size

Learning rate 10~ Adam optimizer learning rate

Batch size 128 Training batch size

Weight decay 10~° L2 regularization strength

Early stopping patience 10 Epochs without improvement before stopping
Max epochs 100 Maximum training epochs per segment
Normalization e 10~® Small constant for L2 normalization

The window size W = 10 was chosen to balance memory efficiency with sufficient historical context. The
hidden dimension of 256 provides adequate representational capacity while maintaining computational efficiency
across diverse tabular datasets.

30

	Introduction
	Related Work
	IMLP: an Incremental MLP for Tabular Data Streams
	Problem Statement
	Architecture Overview
	Convergence Analysis of IMLP
	FIFO Attention-based Feature Memory and Time Complexity
	Energy Efficiency Analysis of IMLP

	Energy-Accuracy Trade-offs
	Experiments
	Ablation Study: Impact of Attention, dh, W, and Buffer Strategy Choices
	Evaluation under Abrupt and Incremental Drifts

	Conclusion
	Formal Properties of the Attention-Based Feature Memory
	Energy Complexity of IMLP in Our Experimental Setting
	Extended Experiments
	Datasets and Stream Segmentation
	Stream Segmentation Algorithm

	Data Retrieval and Preprocessing Protocol
	Dataset Acquisition
	Feature Preprocessing Pipeline
	Target Processing and Task Type Detection
	Data Splitting Strategy
	Model Training Protocols
	Reproducibility Measures

	Dataset Summary Regeneration Script
	Baselines

	IMLP Implementation Details
	Architecture Overview and Design Rationale
	Comparison with Standard MLP

	Layer-wise Architecture Specification
	Attention Mechanism Design
	Scaled Dot-Product Attention
	Window Management Strategy
	Feature Normalization

	Complete Implementation
	Computational Complexity Analysis
	Time Complexity
	Memory Complexity
	Comparison with Replay Methods

	Hyperparameter Configuration

