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Abstract

This paper presents COFFEE-GYM, a com-001
prehensive RL environment for training mod-002
els that provide feedback on code editing.003
COFFEE-GYM includes two major components:004
(1) COFFEE, a dataset containing humans’ code005
edit traces for coding questions and machine-006
written feedback for editing erroneous code; (2)007
COFFEEEVAL, a reward function that faithfully008
reflects the helpfulness of feedback by assess-009
ing the performance of the revised code in unit010
tests. With them, COFFEE-GYM addresses the011
unavailability of high-quality datasets for train-012
ing feedback models with RL, and provides013
more accurate rewards than the SOTA reward014
model (i.e., GPT-4). By applying COFFEE-015
GYM, we elicit feedback models that outper-016
form baselines in enhancing open-source code017
LLMs’ code editing, making them comparable018
with closed-source LLMs. We make the dataset019
and the model checkpoint publicly available.1020

1 Introduction021

Large language models (LLMs) have made great022

progress in code generation (Li et al., 2023; Roz-023

ière et al., 2023), e.g., achieving human-level per-024

formances in code generation benchmarks (Chen025

et al., 2021b). Such success makes them powerful026

tools for assisting human programmers (Köpf et al.,027

2023); however, they still produce errors (Guo et al.,028

2024a; OpenAI, 2023b). Therefore, code editing,029

i.e., resolving errors in code, remains an important030

task for code LLMs (Muennighoff et al., 2023).031

Studies have utilized natural language (NL) feed-032

back from LLMs as descriptive guidance in editing033

wrong codes for code LLMs. For instance, Self-034

Refine (Madaan et al., 2023) largely improves their035

code editing using GPT-4’s feedback. Yet, abilities036

to generate helpful feedback, as they report, are lim-037

ited to powerful closed-source LLMs (e.g., GPT-4).038

1https://huggingface.co/spaces/
Coffee-Gym/Project-Coffee-Gym

Incorrect Feedback: ... check your if-statement to ensure 
the elements not being at the same index.

Code Editing with Feedback

Correct Feedback: You're starting from index 1, but 
should be starting from index 0 to include all elements in 
the list from the very beginning.

Write a code that checks if there is at least 1 
set of 3 numbers in the list that add up to 0.

Wrong Code

from 

Users/

Code LLMs

def triples_sum_to_zero(l: list): 
     i  range(1, len l ): 
         j  range(i + 1, len l ):  
             k  range(j + 1, len l ):  
                 l[i] + l[j] + l[k] = = 0:  
                     True  
     False

for in ( )
for in ( )
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def triples_sum_to_zero(l: list): 
     i  range(len l ): for in ( )
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def triples_sum_to_zero(l: list): 
     i  range(1, len(l)):      


            for k in range(j + 1, len(l)):

                if i != j and j != k and k != i:

for in

60.4 62.1
64.6

73.8
72.5 74.4

Figure 1: A motivating example (Top) and Pass@1 ac-
curacy in HumanEvalFix (Bottom). We compare the
feedback from our model and various other models, both
paired with DeepSeekCoder-7B as the code editor. SFT
denotes the model trained on Code-Feedback (Zheng
et al., 2024) using the same backbone model as ours.

This can lead to a heavy reliance on closed-source 039

LLMs that may cause not only high computational 040

(e.g., API) cost but also security risks (Siddiq and 041

Santos, 2023; Greshake et al., 2023), limiting their 042

applicability for confidential codes. 043

This work aims to foster building open-source 044

feedback models that produce effective feedback 045

for code editing. An intuitive approach is to ap- 046

ply supervised fine-tuning (SFT) on open-source 047

code LLMs using feedback from GPT-4 (generated 048
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Figure 2: Comparison between COFFEE-GYM and the previous approach.

based on machines’ code editing) (Zheng et al.,049

2024). However, this simplified approach poorly050

aligns editing performance with the helpfulness of051

feedback (Bottom of Figure 1) (Liu et al., 2022).052

Inspired by the success of RLHF (Ouyang et al.,053

2022), we reformulate feedback modeling with re-054

inforcement learning (RL), where we align feed-055

back models with the helpfulness of feedback dur-056

ing training. Since the success of RL highly de-057

pends on the initial SFT model and a reliable re-058

ward function (Lightman et al., 2023; Lambert059

et al., 2024), we hereby identify 3 main challenges060

in applying RL to feedback generation for code061

editing: (1) limited scenarios of errors in model-062

generated code editing datasets for initializing SFT063

model, (2) the lack of pairwise (correct and wrong)064

feedback to train/test reward functions, (3) absence065

of validated implementation of reward models.066

We present COFFEE-GYM, a comprehensive067

RL environment addressing the above challenges068

in training feedback models for code editing. First,069

to tackle data scarcity in SFT initialization and re-070

ward modeling, we curate COFFEE, a dataset071

for code fixing with feedback, which consists of072

code editing traces of human programmers and hu-073

man annotated feedback. Unlike model-generated074

data (Figure 2), COFFEE includes (1) problems075

across various difficulties, including those current076

LLMs cannot solve; (2) pairs of correct and wrong077

feedback for reward modeling; (3) 36 test cases078

per problem to measure the feedback helpfulness079

in code editing.080

Next, to address the absence of validated (i.e., ,081

reliable) reward functions, we introduce COFFEEE-082

VAL, a reward function designed to reflect the help-083

fulness of feedback into reward calculation. In-084

stead of directly assessing feedback quality (Ra- 085

jakumar Kalarani et al., 2023), we simulate code 086

editing based on generated feedback, conduct unit 087

tests on the edited code, and use the test results to 088

measure feedback helpfulness. With the pairwise 089

feedback from COFFEE, we train a given code 090

editor to produce edited code that faithfully reflects 091

the helpfulness of the given feedback. 092

Through experiments, we validate COFFEE- 093

GYM’s efficacy in training feedback models. We 094

find that COFFEEEVAL provides more accurate 095

rewards, compared to the current SOTA reward 096

model, i.e., G-Eval (Liu et al., 2023c) with GPT-4. 097

Also, we show that the feedback models trained 098

with COFFEE-GYM generate more helpful feed- 099

back, achieving comparable performance to closed- 100

source feedback models in code editing. 101

2 Task Definition and Problem Statement 102

2.1 Code Editing with Natural Language 103

Feedback 104

The task of code editing aims to resolve errors in 105

given codes to produce a correct solution. Formally, 106

given a problem description q and a defective solu- 107

tion y, our goal is to learn a feedback model θ that 108

generates helpful feedback describing the errors 109

in y and provide helpful guidance on code editing: 110

ĉ = θ(q, y). Then, an editor model ϕ that takes 111

q, y, and the generated feedback ĉ as input and 112

generates the edited code: y′ = ϕ(q, y, ĉ). 113

In evaluating the edited code y′, the functional- 114

ity of the edited code is measured with Pass@k, 115

the standard metric that measures the number of 116

passed test cases ti within the given set T = 117

{t1, t2, . . . , tk} (Li et al., 2022, 2023; Muennighoff 118
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Figure 3: Overview of the data collection process of COFFEE.

et al., 2023). Each test case ti consists of an input119

xi and an expected output zi.120

2.2 Learning Feedback Models121

In this paper, we consider two widely used learning122

approaches to build open-source feedback models.123

Supervised fine-tuning. A straightforward ap-124

proach is to fine-tune an open-source code LLM θ125

on a dataset D = {(qi, yi, ci, y∗i )}Ni=1 of problem126

descriptions, incorrect codes, feedback annotations,127

and correct codes. The objective is to minimize128

the negative log-likelihood of the target feedback129

label y∗ given q and y. However, simply training to130

optimize the probability of the target sequence does131

not achieve much improvement for code editing,132

because it does not consider the impact of feedback133

on code editing (Liu et al., 2022).134

Reinforcement learning. Inspired by Ouyang135

et al. (2022), we adopt reinforcement learning (RL)136

to further align feedback generation to correct code137

editing. Specifically, we choose PPO (Schulman138

et al., 2017) and DPO (Rafailov et al., 2023) as139

reference RL algorithms and apply them on the140

feedback model θ initialized via SFT.141

The two key factors of RL are (1) pairwise pref-142

erence data and (2) reward modeling (Lambert143

et al., 2024). In our task, we consider a preference144

dataset where each input q and y comes with a pair145

of chosen and rejected feedback c+ and c−, and146

their preference ranking c+ ≻ c−. This dataset is147

then used to model the reward based on the pref-148

erence ranking. While in PPO a reward model is149

explicitly trained using c+ and c−, DPO relies on150

implicit reward modeling and directly optimizes151

the feedback model using the preference dataset.152

2.3 Problem Statement 153

Our goal is to promote rapid development of open- 154

source feedback models by facilitating RL for feed- 155

back generation on code editing. Specifically, we 156

aim to provide the two key components in RL for 157

feedback generation: 158

Dataset. The dataset required for our RL ap- 159

proach covers the following key aspects: (1) Cov- 160

erage of difficulty and diversity (q, y) to initialize 161

a good SFT model. (2) Pairwise feedback data 162

(c+ ≻ c− | q, y) to build datasets for training DPO 163

and a reward model for PPO. (3) Test cases for 164

unit test (T ) are required to implement our R, for 165

directly measuring the impact of c on the correct- 166

ness of code editing. 167

Reward model. The current standard of using 168

LLM as a reward model (Lee et al., 2023) to eval- 169

uate LLM outputs do not sufficiently models the 170

impact of feedback on code editing outcomes and 171

requires powerful LLMs (e.g., GPT-4) that incur 172

high API costs. Especially, the high computation 173

costs significantly limits the application of online 174

RL algorithms (e.g., PPO) in feedback modeling, 175

which require frequent and continuous API calls 176

for reward calculation. 177

3 Constructing COFFEE-GYM 178

We introduce COFFEE-GYM, a comprehensive RL 179

environment for training NL feedback model for 180

code editing. COFFEE-GYM consists of two major 181

components: (1) COFFEE, a dataset of human- 182

written edit traces with annotated NL feedback, and 183

(2) COFFEEEVAL, an accurate reward model that 184

measures feedback’s impact on code editing. 185
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S = input()

abc = [-1]*26

for c in S:

    abc[ord(c)-ord('a')] = S.index(c)

print(abc)

S = input()

abc = [-1]*26

for c in S:

    abc[ord(c)-ord('a')] = S.index(c)

print(*abc)

Given a word S consisting only of lowercase letters, write a 
program that prints the first occurrence of each letter in the 
word, or -1 if the letter is not included in the word.

Your code correctly initializes the list with -1 for each letter, 
but you need to print the values individually using the   
operator to unpack the list.

Input (i.e., word S)

... ...

Correct Output

# of instance 44,782
4.19
2.7

35.5

742
674.1

649.4

Avg. # of error lines per code
Avg. # of submissions per user
Avg. # of test cases per prob.

# of total prob. sets
Avg. solution len.

674.1Avg. wrong code len.
Avg. feedback len.

269.0Avg. description len.

zebra [4, 2 , -1, ..., 0]

Problem Description:

Dataset Statistics

Wrong Code:

q

y*

*c

Correct Code:

Correct Feedback:

Synthetic Test Cases:
The issue is that you need to use a dictionary to store the ...

~cIncorrect Feedback:

Figure 4: Example and statistics of COFFEE.

3.1 COFFEE: Human-written Code Edit186

Traces with Annotated Pairwise Feedback187

We curate COFFEE, a dataset of code fixing with188

feedback, from human-written code edit traces.189

COFFEE consists of problems of diverse levels190

of difficulty, including challenging problems that191

only human programmers can solve, and provides192

test cases for reward functions (Section 3.2). The193

overview of constructing COFFEE, data examples,194

and statistics are in Figure 3 and 4.195

3.1.1 Collecting Code Edit Traces from196

Human Programmers197

We collect human-authored code edits from an on-198

line competitive programming platform.2 In this199

platform, given a problem description q, human200

programmers keep submitting a new solution y un-201

til they reach a correct solution y∗ that passes all202

hidden test cases for q. Formally, for each q and the203

correct submission y∗n, we collect the submission204

history {ỹ1, ỹ2, ..., y∗n}, where {ỹk}n−1
k=1 are incor-205

rect solutions. We then construct (q, ỹ, y∗) triplets206

by pairing each incorrect solution ỹk with the cor-207

2https://www.acmicpc.net/
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(a) Distribution of average length of edit trace

(b) Diversity analysis on error codes using CodeBERT

(c) Pass@1 of GPT-4-Turbo compared to human

Figure 5: Analysis results of COFFEE. Experiment
details are in Appendix A.1.3.

rect one y∗n, i.e., {(q, ỹk, y∗n)}n−1
k=1 . 208

To ensure COFFEE is not biased toward coding 209

problems of a specific difficulty level, we collect 210

an equal number of problems from each of the 211

five difficulty levels in the platforms, ranging from 212

beginner to expert levels. We also ensure that COF- 213

FEE includes various solutions to each problem by 214

collecting submission histories from 100 different 215

users. Our analysis in Figure 5 shows that COFFEE 216

(1) includes problems that are challenging for both 217

human and LLMs and (2) covers more diverse error 218

cases than machine-generated codes. 219

3.1.2 Annotating Pairwise Feedback Data 220

We additionally annotate NL feedback that pro- 221

vides useful guidance on the necessary edits. 222

For each triplet (q, ỹ, y∗), we prompt GPT-3.5- 223

Turbo (OpenAI, 2023a) to describe how the correct 224

solution y∗ differs from the wrong code ỹ. The re- 225

sulting description c∗ serves as the correct feedback 226

that describes necessary changes on the wrong code 227

ỹ to obtain the correct code y∗. Along with c∗, we 228

also collect incorrect feedback c̃, which describes 229

the difference between two wrong solutions, ỹk−1 230

and ỹk (k ̸= n), to provide pairwise labels for both 231

correct and incorrect feedback to a single wrong 232

solution ỹ. We discuss details on feedback annota- 233

tion in Appendix A.1.1, including our prompt used 234

for feedback annotation and filtering techniques. 235
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3.1.3 Augmenting Synthetic Test Cases236

Finally, we include a set of hidden test cases T =237

{t1, t2, . . . , tk} for each edit instance (q, ỹ, y∗, c)238

in our dataset to assess whether the edited code is239

the correct solution to the problem. Each test case240

ti consists of an input xi and an expected output zi.241

As the programming platform does not make test242

cases publicly available, we annotate test cases by243

prompting GPT-3.5-Turbo to generate inputs xi for244

a given q and executing the correct code y∗ with245

xi to obtain the corresponding outputs zi. We filter246

out any invalid test cases with inputs that result247

in errors during execution. On average, we obtain248

35.5 test cases per problem.249

These test cases are used to measure the correct-250

ness of an edited code and estimate the helpfulness251

of the feedback as the COFFEEEVAL score, which252

we later use as supervision signals for training feed-253

back models (§3.2) in COFFEE-GYM. We provide254

details on test case generation in Appendix A.1.2.255

3.2 COFFEEEVAL: Unit-test-driven Feedback256

Evaluation257

We present COFFEEEVAL as our reliable reward258

function in COFFEE-GYM. The key idea is to mea-259

sure the helpfulness of feedback by gauging the260

correctness of the edited code produced by a small,261

but cheap editor model that properly aligns edit-262

ing with feedback. Specifically, given a problem263

description q, a wrong solution ỹ, and feedback264

ĉ from a feedback model θ, an editor model ϕ265

generates an edited code y′ by grounding on ĉ,266

i.e., y′ = ϕ(q, ỹ, ĉ). The COFFEEEVAL score is267

defined as the proportion of test cases for which268

the edited code y′ produces the expected output:269
270

COFFEEEVAL(q, ỹ, ĉ, ϕ, T )271

=
1

k

k∑
i=1

1 (ϕ(q, ỹ, ĉ)(xi) = zi) (1)272

where each element ti ∈ T consists of an input273

xi and an expected output zi, and 1 is a binary274

indicator function that returns 1 if the output of y′275

matches the expected output zi. By reflecting the276

correctness of the edited code, the resulting score277

serves as an accurate measure for the effectiveness278

of the generated feedback in code editing.279

3.2.1 Training a Faithful Code Editor to Align280

Editing with Feedback281

General code LLMs are trained to produce only282

correct codes, resulting in a bias toward correct283

editing regardless of feedback quality. To address 284

this, we train a code editor ϕ that aligns its output 285

with the helpfulness of the feedback by training the 286

model to generate both correct edits (q, y, c∗, y∗) ∈ 287

Dcorrect and incorrect edits (q, y, c̃, ỹ) ∈ Dwrong 288

in COFFEE. The training objective is defined as: 289
290

L(ϕ) = −
∑

(q,y,c∗,y∗)∈Dcorrect

log pϕ(y
∗ | q, y, c∗) 291

−
∑

(q,y,c̃,ỹ)∈Dwrong

log pϕ(ỹ | q, y, c̃) (2) 292

To prevent confusion during training, we follow 293

Wang et al. (2023a) and indicate the correctness 294

of the target code by prepending the keywords 295

[Correct] and [Wrong] to the code sequence. 296

By learning from both positive and negative ex- 297

amples, the editor learns to conduct code editing by 298

faithfully following the given feedback. It allows 299

us to use the editor’s output as a reliable metric 300

for evaluating feedback generation models in our 301

COFFEE-GYM environment. 302

4 Validating COFFEEEVAL 303

4.1 Experimental Setting 304

Implementation details. We implement COF- 305

FEEEVAL with DeepSeekCoder-7B model as the 306

backbone in all our experiments. For further details, 307

please refer to Appendix A.2.1. 308

4.2 Reliability of COFFEEEVAL 309

Baselines. We compare our COFFEEEVAL with 310

two evaluation methods: G-Eval (Liu et al., 2023c) 311

and Editing. For G-Eval, we directly assess feed- 312

back quality in Likert-scale (1 - 5) using score 313

rubrics (Kim et al., 2023). Editing baselines follow 314

the same evaluation scheme as COFFEEEVAL but 315

use general code LLMs for the editor ϕ. We con- 316

sider with three code LLMs, GPT-3.5-Turbo, GPT- 317

4-Turbo, and DeepSeek-Coder-7B. The prompt we 318

use for G-Eval is in Appendix B.4. 319

Evaluation. To measure the alignment between 320

feedback generation and code editing, we use test 321

set of COFFEE, where each c is annotated with 322

a binary label on its helpfulness. For Editing meth- 323

ods (including ours), we regard the output as posi- 324

tive prediction when the edited code passes all test 325

cases. Also, we provide Pearson correlation co- 326

efficients for both Editing and G-Eval methods to 327

analyze the correlation between the predicted score 328

and the ground-truth labels. 329
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Model Evaluation Pass@1 Scores Correlation Error

✓ Correct Feedback ↑ (TP) ✗ Wrong Feedback ↓ (FP) Precision ↑ Recall ↑ F1 ↑ Pearson ↑ MSE ↓

GPT-4-Turbo G-Eval - - - - - 0.135 0.415
GPT-3.5-Turbo G-Eval - - - - - -0.172 0.575

GPT-4-Turbo Editing 53.0 51.8 50.6 53.0 51.8 0.012 0.450
GPT-3.5-Turbo Editing 43.4 33.6 56.4 43.4 49.0 0.101 0.417
DeepSeek-Coder-7B Editing 36.0 28.8 55.6 36.0 43.7 0.077 0.428
DeepSeek-COFFEEEVAL (w/o WF) Editing 36.4 28.4 56.2 36.4 44.2 0.085 0.418
DeepSeek-COFFEEEVAL (Ours) Editing 52.0 28.4 64.7 52.0 57.7 0.149 0.408

Table 1: Performance of our evaluation protocol on the test sets of COFFEE compared to the baselines. Wrong
Feedback is abbreviated as WF due to limited space.

Methods Params. Open-source
HumanEvalFix COFFEE-TEST Average

Pass@1 ∆ Pass@1 ∆ Pass@1 ∆

GPT-4-Turbo (OpenAI, 2023b) - ✗ 83.5 - 43.8 - 63.6 -
GPT-3.5-Turbo (OpenAI, 2023a) - ✗ 75.0 - 32.2 - 53.6 -

DeepSeek-Coder (Guo et al., 2024a) 7B ✓ 60.4 - 33.8 - 47.1 -
+ Execution Feedback - ✓ 68.3 + 7.9 38.3 + 4.5 53.3 + 6.2
+ Self-Feedback 7B ✓ 67.7 + 7.3 28.3 - 5.5 48.0 + 0.9
+ OpenCodeInterpreter-DS-Coder Feedback 7B ✓ 64.6 + 4.2 30.5 - 3.3 47.5 + 0.5
+ OURS 7B ✓ 73.8 + 13.4 47.2 + 13.4 60.5 + 13.4
+ GPT-3.5-Turbo Feedback - ✗ 72.5 + 12.1 35.5 + 1.7 54.0 + 6.9
+ GPT-4-Turbo Feedback - ✗ 74.4 + 14.0 44.4 + 10.6 59.4 + 12.3

CodeGemma (CodeGemma Team et al., 2024) 7B ✓ 53.7 - 14.4 - 34.1 -
+ Execution Feedback - ✓ 61.6 + 7.9 15.0 + 0.6 38.3 + 4.2
+ Self-Feedback 7B ✓ 53 - 0.7 16.6 + 2.2 34.8 + 0.7
+ OpenCodeInterpreter-DS-Coder Feedback 7B ✓ 36.5 - 17.2 15 + 0.6 25.8 - 8.3
+ OURS 7B ✓ 59.7 + 6.0 31.1 + 16.7 45.4 + 11.4
+ GPT-3.5-Turbo Feedback - ✗ 57.3 + 3.6 22.2 + 7.8 39.8 + 5.7
+ GPT-4-Turbo Feedback - ✗ 65.8 + 12.1 22.7 + 8.3 44.3 + 10.2

OpenCodeInterpreter-DS-Coder (Zheng et al., 2024) 7B ✓ 65.8 - 30.5 - 48.1 -
+ Execution Feedback - ✓ 66.4 + 0.6 36.6 + 6.1 51.5 + 3.4
+ Self-Feedback 7B ✓ 62.1 - 3.7 21.1 - 9.4 41.6 - 6.5
+ DeepSeek-Coder Feedback 7B ✓ 56.1 - 9.7 28.3 - 2.2 42.2 - 5.9
+ OURS 7B ✓ 70.1 + 4.3 42.7 + 12.2 56.4 + 8.3
+ GPT-3.5-Turbo Feedback - ✗ 68.3 + 2.5 32.7 + 2.2 50.5 + 2.4
+ GPT-4-Turbo Feedback - ✗ 72.5 + 6.7 43.3 + 12.8 57.9 + 9.8

Table 2: Code editing results of our feedback model trained with COFFEE-GYM, i.e., PPO-COFFEEEVAL, on
HumanEvalFix and COFFEE-TEST. We pair our feedback model with an open-source code LLM as the code editor.

Figure 6: Ablation results on the number of test cases
used in COFFEEEVAL. The evaluation performance
decreases as the number of test cases declines.

4.3 Results and Analysis330

COFFEEEVAL faithfully aligns feedback qual-331

ity with editing performance. As shown in Ta-332

ble 1, DeepSeek-COFFEEEVAL achieves higher333

Pearson correlation and lower MSE than all G-Eval 334

and Editing baselines. In particular, our approach 335

shows even higher correlation than the G-Eval base- 336

line implemented with GPT-4-Turbo. The strong 337

performance of our COFFEEEVAL validates its ef- 338

fectiveness in assessing the quality of NL feedback 339

in the code editing task. 340

Code LLMs are skewed toward correct editing, 341

regardless of the feedback quality. While code 342

LLMs have shown promising results in code gener- 343

ation tasks, they do not faithfully reflect the help- 344

fulness of feedback on code editing. Especially, 345

GPT-4-Turbo, the current SOTA code LLM, shows 346

the highest Pass@1 among baselines, but it also 347

tends to generate correct code even with wrong 348
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feedback. These results suggest that the training349

process with our pairwise feedback data is an es-350

sential step in building a reliable reward model.351

The performance of COFFEEEVAL benefits from352

the number of test cases. Figure 6 compares353

the Pearson correlation coefficient and MSE with354

respect to the number of test cases. We observe355

that a higher number of test cases leads to more356

accurate evaluation on the feedback quality, which357

validates our design choice of COFFEE.358

5 Benchmarking Reference Methods of359

COFFEE-GYM360

In this section, we apply the feedback model361

trained using COFFEE-GYM on various open-362

source LLMs and assess its effectiveness in en-363

hance code editing performance. Furthermore, we364

comprehensively explore a wide range of training365

strategies available in our COFFEE-GYM to provide366

insights on building helpful feedback models.367

5.1 Effectiveness of COFFEE-GYM in368

Training Feedback Models369

5.1.1 Experimental Setting370

Implementation details. We train our feed-371

back model based on DeepSeekCoder-7B using372

COFFEE-GYM by applying PPO. Further details373

are in Appendix A.3.374

Benchmarks. We test the feedback model375

trained using COFFEE-GYM on HumanEval-376

Fix (Muennighoff et al., 2023), a widely used code377

editing benchmark. We carefully check if there378

is data leakage in COFFEE and verify there is no379

overlap between COFFEE and HumanEvalFix (Ap-380

pendix B.3). Additionally, we assess the effective-381

ness of our approach on a held-out test set named382

COFFEE-TEST. It consists of 180 (q, ỹ, y∗, T )383

pairs collected using the same process in §3.1 but384

with no overlapping q with COFFEE.3385

Baselines. We compare with the following base-386

lines that provides feedback for code editing: (1)387

Execution Feedback (Chen et al., 2023): exe-388

cution results of the generated code, e.g., error389

messages, without using any LLMs , (2) Self-390

Feedback (Madaan et al., 2023): NL feedback gen-391

3While we have considered other code editing benchmarks,
DebugBench (Tian et al., 2024) and CodeEditorBench (Guo
et al., 2024b), we find that these benchmarks have a critical
issue; even the ground-truth solution cannot pass the unit test.
A detailed discussion on this issue is in Appendix B.1.

erated by the code editor itself, (3) OpenCodeInter- 392

preter Feedback (Zheng et al., 2024): a code LLM 393

especially trained on Code-Feedback dataset. We 394

also provide the results of feedback from closed- 395

source LLMs, GPT-3.5-Turbo and GPT-4-Turbo, 396

but these models are not our main focus as we aim 397

to develop open-source feedback models. 398

5.1.2 Results 399

In Table 2, we compare the performance of our 400

best feedback model with other feedback methods 401

using various open-source models. Consistent with 402

the findings from Chen et al. (2023), we observe 403

improvements across all code LLMs when using 404

Execution Feedback. However, we find that open- 405

source code LLMs, despite their capabilities in 406

the code domain, struggle to generate helpful NL 407

feedback for code editing (Self-Feedback), high- 408

lighting the complexity of producing effective feed- 409

back. Notably, our approach demonstrates com- 410

parable performance to GPT-3.5/4-Turbo, signifi- 411

cantly closing the performance gap between closed- 412

source and open-source models in the task of feed- 413

back generation for code editing. 414

5.2 Comparing Different Training Strategies 415

in COFFEE-GYM 416

5.2.1 Experimental Setting 417

Training strategies. For training algorithm, we 418

explore DPO, PPO, and Rejection Sampling (RS). 419

In RS, we sample 10 ĉ from SFT model, and collect 420

ĉ with top-1 COFFEEEVAL score as labels for the 421

next iteration of SFT. For PPO, we use COFFEEE- 422

VAL as the reward model. We use 3 variants for 423

DPO: (1) DPO-TS: We construct preference pair by 424

selecting the teacher model’s feedback (i.e., GPT- 425

3.5-Turbo) as c+, and the student model’s (SFT) 426

response as c− (Tunstall et al., 2023), (2) DPO-CW: 427

We directly use the labeled feedback pair (c∗, c̃). 428

(3) DPO-COFFEEEVAL: We sample 10 ĉ, same 429

as RS, and we construct preference pair with ĉ of 430

top-1 and bottom-1 COFFEEEVAL score. 431

5.2.2 Results 432

COFFEE provides helpful train data for SFT. 433

In Figure 7, we find that SFT-COFFEE pro- 434

vides more helpful feedback than SFT-CODE- 435

FEEDBACK trained on Code-Feedback. This re- 436

sults suggest that COFFEE serves as a valuable re- 437

source for fine-tuning feedback models. 438

COFFEE and COFFEEEVAL allow informative 439

preference pair construction for DPO. DPO- 440
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Figure 7: End-to-end validation results of the reference
methods in COFFEE-GYM on COFFEE-TEST.

COFFEEEVAL achieves the best results among441

DPO variants, closely followed by DPO-CW,442

which utilizes correct-wrong pairs from COFFEE.443

However, DPO-TS significantly underperforms444

even with the correct feedback c+ sampled from445

the teacher. We conjecture that the teacher’s feed-446

back may not always be superior to the student’s,447

leading to suboptimal preference pairs.448

PPO is the most effective training algo-449

rithm. PPO-COFFEEEVAL outperforms DPO-450

COFFEEEVAL and RS-COFFEEEVAL, despite us-451

ing the same reward model. We hypothesize that452

online RL methods like PPO allow for continuous453

updates on the reference model and lead to better454

alignment compared to offline methods like DPO,455

which learn from a fixed initial model.456

5.3 Analysis457

Fine-grained analysis by error type. In Fig-458

ure 8a, we compare the baselines with our approach459

across different error types. Our feedback model460

is particularly effective at correcting Missing logic461

and Function misuse errors, which can greatly ben-462

efit from NL feedback by providing a detailed ex-463

planation for editing.464

Human evaluation on feedback quality. To pro-465

vide a more accurate analysis of the feedback qual-466

ity, we conduct human evaluation using qualified467

workers from MTurk.4 The results in Figure 8b468

show that the feedback from our model is rated469

as more helpful and informative compared to the470

baselines, supporting the findings in §5.2.471

6 Related Work472

Code editing. Code LLMs have shown promis-473

ing code generation capabilities by training on mas-474

sive code corpora (Li et al., 2023; Wang et al.,475

2023b). Despite their promising capabilities, there476

4The details of our human evaluation are in Appendix B.5.

(a) Error type analysis on HumanEvalFix (b) Human evaluation on generated feedback

4.4

4.2

4.0

3.8

3.6

3.4

Error Detection

4.4

4.2

4.0

3.8

3.6

3.4

Error Correction

Ours

Self-Feedback

Execution Feedback

Direct Editing ChatGPT GPT4

SFT

Ours

OpenCodeInterpreter

Figure 8: (a) Breakdown of editing performance on
HumanEvalFix by different error types. (b) Human
evaluation of the feedback generated on HumanEvalFix.
See Appendix B.5 for details on human evaluation.

remains a possibility of errors, making code edit- 477

ing tasks essential for ensuring code quality and 478

correctness (Muennighoff et al., 2023). In response 479

to this necessity, recent studies have focused on as- 480

sessing the code editing capabilities of code LLMs, 481

by proposing new benchmarks for the task (Tian 482

et al., 2024; Guo et al., 2024b). 483

Refining with external feedback. In code edit- 484

ing, two types of widely used external feedback 485

are execution feedback (Gou et al., 2023; Chen 486

et al., 2023) and NL feedback (Madaan et al., 2023; 487

Shinn et al., 2023). Recently, Zheng et al. (2024) 488

explored both types of feedback and demonstrate 489

that NL feedback outperforms execution feedback. 490

Concurrent to our work, Ni et al. (2024) explored 491

building feedback model, but they do not provide 492

the dataset used nor the model checkpoint. 493

RL in code generation tasks. A line of research 494

has explored improving LLMs’ code generation 495

with RL by leveraging the unit test results as re- 496

ward (Le et al., 2022; Liu et al., 2023a; Shen et al., 497

2023). While the design of COFFEEEVAL is largely 498

inspired by this line of work, we show that build- 499

ing reward model for feedback learning using unit 500

test results is non-trivial, since code LLMs do not 501

faithfully reflect feedback into editing (Table 1). 502

7 Conclusion 503

In this paper, we present a comprehensive study 504

on building open-source feedback models for code 505

editing. We introduce COFFEE-GYM, an environ- 506

ment for training and evaluating feedback models, 507

and share valuable insights from our experiments. 508

We hope our work will encourage researchers to 509

further explore feedback model development us- 510

ing COFFEE-GYM and our findings, advancing the 511

field of code editing with NL feedback. 512
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Limitations513

Scope of editing. COFFEE-GYM tackles the task514

of code editing with a particular focus on correcting515

errors in codes. This leaves room for improvement516

in our RL approach to consider the efficiency and517

readability of the edited codes. Also, we mainly518

focus on editing incorrect source codes in a compet-519

itive programming setting. Some examples from520

our feedback model (Appendix C.2) suggest that521

our approach can be further applied to practical522

programming problems, e.g., those that involve ma-523

chine learning libraries. In future studies, COFFEE-524

GYM can be further expanded to real-world soft-525

ware engineering settings with additional training526

on general code corpora (Li et al., 2023).527

Using synthetic test cases for measuring reward.528

While running synthetic test cases and using the529

resulting pass rates might be a promising proxy530

for calculating reward in preference tuning, there531

might be edge cases where even erroneous codes532

pass the synthetic test cases. Further research can533

incorporate Liu et al. (2023b) to make more chal-534

lenging test cases that can rigorously identify erro-535

neous codes without missing edge cases.536

Single programming language. Our implemen-537

tation of COFFEE-GYM is limited to a single pro-538

gramming language, i.e., Python. However, future539

work might apply a similar strategy as ours to ex-540

pand our model to a multilingual setting, where541

the model is capable of understanding and editing542

diverse programming languages such as Java.543

Single parameter size and architecture. Lastly,544

we implement the feedback models only with one545

parameter size and architecture. However, fu-546

ture work can apply our method to models with547

larger parameter sizes (e.g., DeepSeek-Coder 70B),548

which is expected to perform better in code editing.549

Our framework can also be further applied to other550

architectures, as our method is model-agnostic.551

Ethical Considerations552

While our dataset originates from online competi-553

tive programming platforms, we have ensured the554

exclusion of personal information to maintain pri-555

vacy standards. Additionally, we are aware of the556

potential risks associated with texts generated by557

language models, which can contain harmful, bi-558

ased, or offensive content. However, based on our559

assessments, this risk is mostly mitigated in our560

work. Lastly, there exists a risk of hallucination in 561

the process of feedback generation and code edit- 562

ing, leading to incorrect edits. This emphasizes the 563

need for careful application in our approach. 564
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A Details of COFFEE-GYM798

A.1 Details of COFFEE799

A.1.1 Feedback Annotation800

We annotate both correct and wrong feedback for801

our dataset using GPT-3.5-Turbo. We apply top-802

p sampling and temperature, where p = 0.95 and803

T = 0.7. We limit the number of generation tokens804

to 500. We leave out submission histories where805

the LLM fails to find any errors. We also filter806

out submissions from different users whose cor-807

rect solutions are identical, as these solutions are808

usually copied from the web without undergoing809

editing processes. With collected user’s submis-810

sion history {ỹ1, ỹ2, ..., y∗n}, we sample correct edit811

pair {ỹk, y∗n}n−1
k=1 to annotate correct feedback and812

user’s wrong edit traces {ỹk, ỹk+1}n−2
k=1 to annotate813

wrong feedback. The prompts used for annotating814

correct and wrong feedback are demonstrated in815

Appendix D.1 and Appendix D.2.816

A.1.2 Synthesizing Test Cases817

We prompt GPT-3.5-Turbo to synthesize input818

test cases given a problem description with three819

demonstrations. For each test case, we execute the820

correct code to obtain the corresponding output. If821

execution was successful, we then pair these inputs822

and outputs to create sample input-output pairs. On823

average, we synthesize 35 test cases per problem.824

We provide the prompt for the test case generation825

in Appendix D.3.826

A.1.3 Data Analysis827

We conduct following experiments to explore orig-828

inal features in COFFEE dataset.829

Length of edit trace We analyze the distribution830

of average length of edit trace by problem level. In831

Figure 5.a, we observe a steady increase in the aver-832

age length of edit traces from human programmers833

with increasing difficulty levels. This suggests that834

problems in COFFEE are challenging for human835

programmers, as they tend to make more incorrect836

submissions for problems with higher difficulty837

levels.838

Code diversity. To assess the diversity of human-839

written codes compared to machine-generated840

codes, we conduct a similarity analysis on error841

codes. Specifically, we sample problems from842

COFFEE where more than 100 users submitted so-843

lutions and collect the wrong code from these users.844

We also sample an equal number of wrong codes845

from ChatGPT and GPT-4 with top-p sampling of 846

p = 0.95 and temperature T = 0.6. For each set 847

of incorrect solutions sampled from user solutions, 848

ChatGPT, and GPT-4, we use CodeBERT (Feng 849

et al., 2020) to compute embeddings for incorrect 850

solutions and measure cosine similarity for all pos- 851

sible pairs in the set. 852

Figure 5.b shows the histogram of the number 853

of problems by the average embedding similarity 854

of incorrect solution pairs. We find that machine- 855

generated codes (i.e., ChatGPT, GPT4) tend to be 856

more similar to each other than human-generated 857

codes, indicating that collecting human-generated 858

code allows for more diverse set of wrong code 859

samples. 860

Code complexity To show that problems in COF- 861

FEE are challenging for code LLMs, we measure 862

the code generation performance of GPT-4 using 863

Pass@1 and compare it with the solve rate of hu- 864

man programmers. Note that the latter is given 865

as the metadata from the programming platform 866

and computed as the proportion of correct solu- 867

tions among all solutions submitted for problems 868

in COFFEE. The results (Figure 5.c) suggest that 869

even the state-of-the-art LLM, i.e., GPT-4, strug- 870

gles to produce correct solutions for problems in 871

COFFEE and lags behind human programmers. 872

A.2 Details of COFFEEEVAL 873

A.2.1 Implementation Details 874

We use DeepSeekCoder-7b5 as our backbone 875

model using QLoRA (Dettmers et al., 2023), in- 876

corporating 4-bit quantization with a learning rate 877

of 5e-5 and a batch size of 4 for 2 epochs. The train- 878

ing is run on 8 NVIDIA GeForce RTX 3090 GPUs. 879

Regarding the LoRA configuration, we specify the 880

dimension of low-rank matrices as 64, and alpha 881

as 16. 882

A.2.2 Training Details 883

Following the approach of Wang et al. (2023a), we 884

train the editor in two phases. The initial phase in- 885

cludes the keywords [Correct] and [Wrong] 886

in the code sequence, while the second phase trains 887

the model without these keywords. 888

Phase I. We finetune our editor model ϕ us- 889

ing pairwise data of correct edits (q, y, c∗, y∗) ∈ 890

Dcorrect and incorrect edits (q, y, c̃, ỹ) ∈ Dwrong 891

5https://huggingface.co/deepseek-ai/
deepseek-coder-6.7b-instruct
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in COFFEE. During this phase, we additionally ap-892

pend keyword tokens t∗ and t̃ ([Correct] and893

[Wrong] respectively) with the target code se-894

quences y∗ and ỹ. Therefore, the training objective895

for the initial phase is defined as:896
897

L(ϕ) =898

−
∑

(q,y,c∗,y∗)∈Dcorrect

log pϕ(t
∗, y∗ | q, y, c∗)899

−
∑

(q,y,c̃,ỹ)∈Dwrong

log pϕ(t̃, ỹ | q, y, c̃) (3)900

Phase II. After training the editor in Phase I, we901

continually train the editor model using the same902

dataset but without the keyword tokens. Thereby,903

the training object for Phase II is defined as:904
905

L(ϕ) = −
∑

(q,y,c∗,y∗)∈Dcorrect

log pϕ(y
∗ | q, y, c∗)906

−
∑

(q,y,c̃,ỹ)∈Dwrong

log pϕ(ỹ | q, y, c̃) (4)907

We used the same hyperparameter settings in both908

phases and the prompt for training the code editor909

in Appendix D.3.1,910

A.3 Details of Reference Methods in911

COFFEE-GYM912

Preference Tuning. Given a problem descrip-913

tion, a wrong code, and the corresponding prefer-914

ence set, we apply Direct Preference Optimization915

(DPO) (Rafailov et al., 2023) to train our critic.916

That is, we tune critic model to be biased towards917

helpful feedback.918

PPO. PPO optimizes the following objective:919
920

LPPO(θ) =921

Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(5)

922

where rt(θ) is the probability ratio between the923

current policy θ and the old policy θold, Ât is an924

estimator of the advantage function at timestep t,925

and ϵ is a hyperparameter that controls the clipping926

range.927

DPO. From SFT model we sample 10 feedback928

strings and score them with COFFEEEVAL. Among929

the 10 feedback collect feedback with top-1 score930

and bottom-1 score and construct preference pair,931

i.e., (c+, c−), for DPO training. Using this dataset,932

we additionally conduct DPO training on SFT933

model.934

Rejection sampling. From SFT model we sam- 935

ple 10 feedback strings and score them with COF- 936

FEEEVAL. Among the 10 feedback we only collect 937

feedback with top-1 score and construct dataset for 938

further training. Using this dataset, we additionally 939

conduct SFT. 940

Terms and License. For our implementation and 941

evaluation, we use Huggingface, TRL and vLLM 942

library.6 Both libraries are licensed under Apache 943

License, Version 2.0. We have confirmed that all 944

of the artifacts used in this paper are available for 945

non-commercial scientific use. 946

B Experimental Details 947

B.1 Benchmarks 948

For our experiments, we consider the following 949

benchmarks: 950

HumanEvalFix HumanEvalFix is a task of Hu- 951

manEvalPack, manually curated using solutions 952

from HumanEval (Chen et al., 2021a) for the task 953

of code editing. Given an (i) incorrect code func- 954

tion, which contains a subtle bug, and (ii) several 955

unit tests (i.e., test cases), the model is tasked to 956

correct/fix the function. The dataset consists of 164 957

samples from the HumanEval solutions, and each 958

sample comes with human-authored bugs across 959

six different programming languages, thus cover- 960

ing 984 bugs in total. The bugs are designed in a 961

way that the code is executed without critical fail- 962

ure but fails to produce the correct output for at 963

least one test case. 964

We have confirmed that the dataset is licensed 965

under the MIT License and made available for non- 966

commercial, scientific use. 967

Reason for exclusion. We excluded Debug- 968

Bench and CodeEditorBench for the following rea- 969

sons: 970

• DebugBench (Tian et al., 2024) is a debug- 971

ging benchmark consisting of 4253 instances 972

with 4 major categories and 18 minor types 973

of bugs. The metric is based on the test suites 974

provided by LeetCode, requiring API calls 975

for evaluation. Due to the huge amount of 976

API calls, LeetCode blocked the access dur- 977

ing the evaluation, which lacked the accurate 978

scoring. Also, some questions were graded in- 979

correctly even though ground-truth solutions 980

6https://huggingface.co/
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Figure 9: Analysis on train-test overlap between COF-
FEE and HumanEval.

were given. Therefore, we decided not to use981

DebugBench for evaluation.982

• CodeEditorBench (Guo et al., 2024b) is the983

framework designed for evaluating the perfor-984

mance of code editing. Code editing is cate-985

gorized into four scenarios, debugging, trans-986

lation, polishing, and requirement switching,987

where our main focus is on debugging. Sim-988

ilar to DebugBench, ground-truth solutions989

could not pass the unit test for some ques-990

tions. Also, functions imported from external991

python files and some specific packages were992

used in questions without details, which made993

the question imprecise. So, we sent CodeEdi-994

torBench out of our scope.995

B.2 Metrics996

We use Pass@1 score to measure the code edit-997

ing performance for all benchmarks. Specifically,998

Pass@1 is computed as the expected value of the999

correct rate per problem, when n samples were1000

generated to count the number of correct samples c1001

for each problem.1002

Pass@1 = E
Problems

[ c
n

]
× 100 (6)1003

B.3 Analysis on Train-test Overlap1004

A possible concern is that the training data in COF-1005

FEE might overlap with the test data in the code1006

benchmark (i.e., HumanEval). Therefore, we fol-1007

low Odena et al. (2021) and measure the amount of1008

identical codes (based on the number of repeated 1009

lines) between the training and test data. Figure 9 1010

reports both the fraction and the absolution number 1011

of line overlaps between COFFEE and HumanEval. 1012

We observe that most solutions in COFFEE do not 1013

contain lines that appear in the benchmark dataset 1014

which we evaluate our models on. 1015

B.4 Feedback Quality Evaluation 1016

To assess the feedback quality in Likert-scale, we 1017

use G-Eval (Liu et al., 2023c) and prompt GPT-4- 1018

Turbo to evaluate the feedback quality. Specifically, 1019

given problem description, input and output format, 1020

wrong code, and the corresponding feedback, we 1021

prompt GPT-4 to classify the feedback into one of 1022

the following five categories. 1023

• Completely incorrect: Feedback has no valid 1024

points and is entirely misleading. 1025

• Mostly incorrect: Feedback has some valid 1026

points but is largely incorrect or misleading. 1027

• Neutral or somewhat accurate: Feedback is 1028

partially correct but contains significant inac- 1029

curacies or omissions. 1030

• Mostly correct: Feedback is largely accurate 1031

with only minor mistakes or omissions. 1032

• Completely correct: Feedback is entirely ac- 1033

curate and provides a correct assessment of 1034

the code. 1035

We apply same top-p sampling and temperature in 1036

Table A.1.1 and include the prompt used for the 1037

evaluation in Appendix D.3.2. 1038

B.5 Human Evaluation on Quality of 1039

Feedback 1040

Preparing feedback for the evaluation. We aim 1041

to analyze the quality of the feedback generated 1042

for code editing. We randomly sample 100 codes 1043

from COFFEE-TEST to assure the correctness of 1044

our evaluation. For generating feedbacks, we use 1045

the erroneous codes provided in the dataset. 1046

Details on human evaluation. We conduct hu- 1047

man evaluation by using Amazon Mechanical Turk 1048

(AMT), which is a popular crowd sourcing plat- 1049

form. As we need workers who have enough expe- 1050

rience with Python, we conduct a qualification test 1051

to collect a pool of qualified workers. In result, we 1052

recruit 186 workers who have passed the test, and 1053
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Figure 10: Performance on test cases from HumanEval,
measured under the iterative edit setting.

task them to evaluate the quality of the feedback1054

on Likert scale, ranging from 1 to 5. Each sample1055

is evaluated by three different raters to ensure the1056

reliability. Based on our estimates of time required1057

per task, we ensure that the effective pay rate is at1058

least $15 per hour. We use the evaluation interface1059

in Figure 11.1060

B.6 Iterative Editing.1061

Inspired by Zheng et al. (2024), we consider a prac-1062

tical setting where models are tasked with itera-1063

tive code generation with feedback. We employed1064

OpenCoderInterpreter-DS-7b as our codeLLM and1065

used our feedback model to provide evaluations on1066

the generated code. Our experiments included com-1067

parisons with reference methods in COFFEE-GYM.1068

As shown in Figure 10, using our feedback model1069

consistently enhanced performance over successive1070

iterations. Consistent with our main experiment1071

findings, both PPO and DPO improved feedback1072

quality more effectively than rejection sampling.1073

These results underscore the practical applications1074

of our approach.1075

C Case Study1076

C.1 SFT vs. PPO1077

In Figure 12, we present examples of generated1078

feedback. Although the feedback generated by the1079

SFT model appears plausible, it provides unnec-1080

essary feedback which may confuse the editor in1081

feedback-augmented code editing. In contrast, our1082

model (PPO) provides focused and helpful feed-1083

back on the incorrect part without unnecessary in-1084

formation. This result aligns with Figure 8, demon-1085

strating that our model generates more accurate and1086

helpful feedback compared to other models.1087

C.2 Practical Programming Problems 1088

To further explore that our feedback model (PPO- 1089

COFFEEEVAL) can be applied to practical program- 1090

ming problems, we conduct empirical case studies 1091

on NumpyEval and PandasEval (Zan et al., 2022). 1092

As shown in Figure 13 and Figure 14, even when 1093

the problem description is provided in Python com- 1094

ments rather than natural language format, our 1095

model generates helpful feedback, sometimes in- 1096

cluding the necessary editing code. This demon- 1097

strates the potential for using our model in practical 1098

scenarios, where users’ queries can take various 1099

forms and formats. 1100

D Prompts for Our Experiments 1101

D.1 Correct Feedback Annotation Prompt 1102

Generate an explanation, analyzation,
and plan to generate code prompt for
the last task considering the example
task instances. Your plan should show
enough intermediate reasoning steps
towards the answer. Construct the plan
as much as you can and describe the
logic specifically. When constructing
the plan for the code prompt, actively
use ’if else statement’ to take
different reasoning paths based on the
condition, ’loop’ to efficiently
process the repititive instructions, ’
dictionary’ to keep track of
connections between important variables
.

[Example 1]
Example task instances:
{example_instances_of_task1}

Output format:
{output_format_of_task1}

Explanation:
{analysis_of_task1}

...

[Example 4]
Example task instances:
{example_instances_of_target_task}

Output format:
{output_format_of_target_task}

Explanation:

1103
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D.2 Wrong Feedback Annotation Prompt1104

1105

Generate feedback that guides the
refinement from Code before editing to
Code after editing. Assume that the
code after editing is 100% correct and
your feedback should specifically guide
the editing to the code after editing.
Please point out only the guidance
from the code before editing to the
code after editing. Do not provide
feedback on the code after editing or
any feedback beyond the code after
editing.

[Example 1]
Problem Description:
{description}

Code before editing:
{wrong_code}

Code after editing:
{next_wrong_code}

Feedback for Refining the Code:
{feedback}

...

[Example 4]
Problem Description:
{description}

Code before editing:
{wrong_code}

Code after editing:
{next_wrong_code}

Feedback for Refining the Code:

1106

D.3 Test Case Generation Prompt1107

Given the input format and python code,
please provide at least 30 challenging
test input values to evaluate its
functionality.For every start of
samples, please attach <start> token to
indicate that the input string has
started. Also, for every end of samples
, please attach <end> token to indicate
that the input string has ended.

input format:
{input format}

python code:
{python code}

Sample:

1108

D.3.1 Code Editor Prompt 1109

1110

Provide feedback on the errors in the
given code and suggest the correct code
to address the described problem.
Description:
{description}
- output format: {output_format}
- input format: {input_format}

Incorrect code:
‘‘‘python
{wrong_code}
‘‘‘
Feedback:{feedback}

Correct code:

1111

D.3.2 G-Eval Prompt 1112

You will be provided with feedback on
the given incorrect code. Classify the
accuracy of this feedback using a
Likert scale from 1 to 5, where:

1 (Completely incorrect): This feedback
has no valid points and is entirely
misleading.
2 (Mostly incorrect): This feedback has
some valid points but is largely
incorrect or misleading.
3 (Neutral or somewhat accurate): This
feedback is partially correct but
contains significant inaccuracies or
omissions.
4 (Mostly correct): This feedback is
largely accurate with only minor
mistakes or omissions.
5 (Completely correct): This feedback
is entirely accurate and provides a
correct assessment of the code.
Just generate a score from 1 to 5 based
on the accuracy of the feedback.
Description:
{description}
- output format: {output_format}
- input format: {input_format}

Incorrect code:
‘‘‘python
{wrong_code}
‘‘‘
Feedback:{feedback}

Score:

1113
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Figure 11: The interface used for human evaluation on the feedback.
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Figure 12: Examples of the feedback from SFT and PPO model in COFFEE-GYM.

Figure 13: Examples of the feedback from the PPO model on NumpyEval.
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Figure 14: Examples of the feedback from the PPO model on PandasEval.
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