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Abstract

Graphs provide a unified representation of semantic content and relational struc-
ture, making them a natural fit for domains such as molecular modeling, citation
networks, and social graphs. Meanwhile, large language models (LL.Ms) have
excelled at understanding natural language and integrating cross-modal signals,
sparking interest in their potential for graph reasoning. Recent work has explored
this by either designing template-based graph templates or using graph neural
networks (GNNG5) to encode structural information.In this study, we investigate
how different strategies for encoding graph structure affect LLM performance on
text-attributed graphs. Surprisingly, our systematic experiments reveal that: (i)
LLMs leveraging only node textual descriptions already achieve strong perfor-
mance across tasks; and (ii) most structural encoding strategies offer marginal
or even negative gains. We show that explicit structural priors are often unneces-
sary and, in some cases, counterproductive when powerful language models are
involved. This represents a significant departure from traditional graph learning
paradigms and highlights the need to rethink how structure should be represented
and utilized in the LLM era. Our study is among the first to systematically
challenge the foundational assumption that structure is inherently beneficial
for LLM-based graph reasoning, opening the door to new, semantics-driven
approaches for graph learning.

1 Introduction

Graphs are fundamental data structures for modeling relationships across diverse domains. Their
capacity to capture interactions makes them invaluable for both data representation and reasoning.
Over the past decade, the machine learning community has widely adopted graphs to unify multimodal
data [Dwivedi et al., 2022, McCallum et al., 2000, Sen et al., 2008a], with Graph Neural Networks
(GNNss) emerging as the standard approach [Kipf and Welling, 2017, Velickovié et al., 2018, Xu
et al., 2019, Hamilton et al., 2017, Chen et al., 2018, Wang et al., 2023, Miiller et al., 2024, Neubauer
et al., 2024, Ying et al., 2021]. Recently, the rise of Large Language Models (LLMs) has opened new
opportunities for integrating linguistic reasoning into graph learning, giving rise to graph foundation
models.

LLM-GNN hybrids aim to combine the generalization and reasoning abilities of LLMs with the
structural inductive biases of GNNs. This integration has shown promise on textual attribute graphs,
where nodes carry rich semantic content. Strategies, shown in Figure 1 such as prompt-based graph en-
coding, hybrid model architectures, and structure-aware instruction tuning have been explored [Chen
et al., 2024, Wang et al., 2024, Perozzi et al., 2024, He et al., 2024]. However, the role of structural
information in these models remains uncertain. For example, Bechler-Speicher et al. [2024] show
that GNNs may over-rely on structure even when it’s irrelevant, while structure-agnostic models like
DeepSets [Zaheer et al., 2017] often generalize well. Additionally, standard graph benchmarks may
fail to reflect real-world relational complexity, raising concerns about their validity [Bechler-Speicher
etal., 2025].
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Figure 1: We present a common paradigm for aligning graph type data into LLMs. On the left, one
needs to define the graph (citation network, molecule, protein, etc) and parameterize it with proper
structures. In the middle, we briefly delineate the strategies encoding graphs into a LLM-favored
representations: Template-based encoding will arrange each node inside graph according to a pre-
defined sequence, while GNN-based encoding is to have a pretrained or random initialized GNN
module to encode graphs into LLM hidden space. On the right is the pipeline to align graph modality
into LLMs.

In this work, we take a methodological perspective to re-examine the necessity of structural encodings
in LLM-based graph learning. Through systematic experiments across multiple graph types, encoding
templates, and modeling paradigms, we find that the inclusion of structural information, whether
predefined positional encodings or message passing networks, often yields limited or no performance
gains when rich semantic node features are present. In some cases, structural signals can even
degrade performance due to oversmoothing or noise. We question the prevailing assumption that
graph structure is inherently beneficial and suggest a shift toward more minimal, semantics-centered
representations when using LLMs for graph-related tasks. Our study calls for a rethinking of graph
learning in the era of powerful language models, advocating for the design of LLM frameworks
that prioritize meaningful textual context over handcrafted structural encodings.

2 Related Work

Graph Learning: Graph learning offers a flexible framework for modeling relational and structural
data across domains such as social networks, biology, and knowledge graphs. At the core of this
field are Graph Neural Networks (GNNs), which learn node- and graph-level representations through
message passing and neighborhood aggregation [Kipf and Welling, 2017, Hamilton et al., 2017].
Variants like Graph Attention Networks [Veli¢kovi¢ et al., 2018] and spectral methods [Bruna et al.,
2013] have been developed to address limitations in scalability and expressiveness. Inspired by
advances in NLP and vision, self-supervised learning has gained popularity in the graph domain, with
methods such as GraphCL [You et al., 2020], G-BERT [Shang et al., 2019], and GPT-GNN [Hu et al.,
2020] employing contrastive or masked prediction objectives to improve generalization. However,
unlike in NLP and vision, graph pretraining lacks standardized benchmarks and consistent input
formats, making it harder to transfer models across domains. In response, graph foundation models
(GFMs) such as GraphMAE [Zhenyu Hou, 2023], GRAND [Feng et al., 2020], and GraphMVP [Liu
et al., 2022] aim to learn general-purpose graph representations. Despite their progress, challenges
like data heterogeneity and the absence of a shared vocabulary persist—fueling growing interest in
leveraging large language models (LLMs) to enhance graph representation learning.

LLMs as GFMs: Recent studies have advanced beyond traditional GNN-based graph foundation
models (GFMs) by exploring large language models (LLMs) as graph learners, leveraging their
strong generalization and multimodal capabilities. Fatemi et al. [2024] provides a comprehensive
analysis of how graph-to-text encoding strategies influence LLM performance, highlighting the
importance of task type, encoding method, and graph structure. Building on this, LLaGA [Chen et al.,
2024] introduces a unified framework that transforms graph data into LLM-friendly sequences using
structure-aware node reordering and projection, achieving strong generalization and interpretability.
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PromptGFM [Zhu et al., 2025] integrates in-text graph prompting and a learned graph vocabulary to
unify GNNs and LLMs, enabling scalable and transferable reasoning on textual attribute graphs. Ge
et al. [2025] improves graph prompting by showing that the sequential order of graph descriptions
significantly affects LLM reasoning performance on graph tasks. Similarly, LLM-BP [Wang et al.,
2025] enhances inference by combining task-adaptive LLM embeddings with belief propagation
guided by LLM-estimated homophily scores. Huang et al. [2024] investigate the role of structural
information when incorporated into natural language prompts, while our work focuses on modality
alignment and how LLMs internally process graph modality through adapters. Nevertheless, our
findings share a similar observation with Huang et al. [2024]: LLMs tend to interpret structure-aware
prompts more as contextual narratives rather than explicit topological signals.

In contrast, hybrid approaches like GraphToken [Perozzi et al., 2024] inject structural information
via GNN adapters and parameter-efficient prompts. Extensions such as G-Retriever [He et al.,
2024] and TEA-GLM [Wang et al., 2024] further integrate structural and textual features to achieve
strong performance across graph-text benchmarks. SKETCH [Zhou et al., 2025] fuses graphs with
LLMs by embedding structural and semantic aggregation into text encoding; Graphlnsight [Cao
et al., 2025] mitigates positional bias through strategic placement of key graph information and
RAG-style external retrieval to boost structural understanding; GALLa [Zhang et al., 2025] utilizes
GNN s to inject code structural information as an auxiliary task. Guan et al. [2025] investigate LLM
attention patterns on graph inputs and find that transformer attention fails to align with actual graph
connectivity—suggesting a gap in how LLMs internally process structural cues, rather than evaluating
their downstream utility. However, most of previous works hold the assumptions that LLMs share
the same inductive bias as GNNs, while we question such a belief and assess the role of structural
information for LLMs processing graphs.

Table 1: TAG Datasets selected in experiments.

Dataset Text Domain  Graph Structure
Cora [McCallum et al., 2000] Publication Homophilic
Citeseer [Giles et al., 1998] Publication Homophilic
Pubmed [Sen et al., 2008b] Publication Homophilic
School [Craven et al., 1998] Webpage Heterophilic
Roman Empire [Platonov et al., 2023] Wikipedia Heterophilic
Amazon Ratings [Platonov et al., 2023]  E-commerce Heterophilic

Table 2: To evaluate the utility of Laplacian embeddings for LLMs, we compare LLaGA’s ND
template with our heuristic templates, HN and CO, where HN-1 samples node sequences from the
I-hop neighborhood. As shown below, explicit structural encodings do not consistently enhance
performance and can even degrade it in some cases.

‘ Node Classification ‘ Link Prediction
Setting Dataset

| ND HN-1 co | ND HN-1
Cora 88.07% (0.74%) 88.56% (0.80%) 85.42% (1.78%) 85.56% (1.33%)  87.27% (1.56%)
Homophilic Citeseer 80.31% (0.81%) 80.20% (0.94%) 77.74% (0.31%) 86.73% (0.63%)  88.79% (0.84%)
Pubmed 92.56% (0.71%) 94.80% (0.17%) 94.84% (0.04%) 88.25% (0.31%)  90.98% (0.38%)
Shool 66.43% (3.69%) 82.02% (12.79%)  91.13% (1.66%) | 68.61% (0.21%)  68.12% (1.51%)
Heterophilic Roman Empire 48.56% (1.17%) 59.70% (2.42%) 62.24% (0.19%) 81.59% (0.50%)  83.81% (0.12%)
Amazon Ratings | 40.97% (0.56%) 41.67% (0.22%) 40.38% (1.14%) 80.26% (2.01%)  84.51% (0.53%)

Across Datasets 69.48% 74.49% 75.29% 81.83% 83.91%

o7 3 Do LLMs Read TAG as Expected?

In standard graph learning, models aim to capture relationships between entities by combining
semantic information, such as node features or textual descriptions, with structural information
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derived from graph connectivity. While node attributes provide rich local context, structural links
define how entities interact within a broader topology, a dual perspective widely credited for the
effectiveness of Graph Neural Networks (GNNs) across many downstream tasks. Motivated by this,
recent research integrating Large Language Models (LLMs) with graphs has largely focused on
injecting structural signals into LLMs. Parameter-free methods like LLaGA pmlr-v235-chen24bh
verbalize graph structure via handcrafted templates, whereas hybrid approaches such as GraphToken,
G-Retriever, and TEA-GLM perozzi2024letgraphtalkingencoding, he2024gretriever, wang20241lms
employ GNN-based adapters to encode structure into learned embeddings, combining the relational
inductive biases of GNNs with the expressive capabilities of LLMs.

These strategies generally fall into two categories: (1) template-based methods that incorporate
neighbor aggregation or positional encodings, and (2) GNN-based methods that learn structural
representations through neural encoders. Despite their architectural differences, both approaches
often yield similar performance. In many text-rich graph tasks, the added structural information,
whether hand-made or learned, contributes marginal gains or even degrades performance when strong
node-level semantics are already present. This suggests that LLMs may primarily treat input graphs as
unordered sets, relying more heavily on the content of selected node sequences than on the underlying
graph topology. Our findings challenge the common assumption that structural information is essential
for LLM-based graph modeling, and they call for a rethinking of how structure should be incorporated,
if at all, into future graph foundation models for semantically rich settings.

3.1 Preliminary

We revisit recent LLM-Graph approaches, such as LLaGA [Chen et al., 2024] and GraphToken [Per-
ozzi et al., 2024], focusing on modality fine-tuned node classification and linke prediction in textual
attribute graphs (TAGs). Our analysis is guided by two key questions: (1) Are explicit structural
encodings, like Laplacian embeddings, necessary for LLMs? (2) How does message passing networks
like GNNs affect performance? We conduct most of our experiments using Vicuna-7b-v1.5 [Zheng
et al., 2023].

Datasets As summarized in Table 1, we evaluate our models on six real-world TAG datasets spanning
diverse text domains and structural properties. These include citation networks, e-commerce platforms,
historical Wikipedia articles, and web page graphs, covering both homophilic and heterophilic patterns.
Additional experiment details are provided in Appendix.

3.2 Template-Based Encoding

In this subsection, we revisit the LLaGA framework pmlr-v235-chen24bh, with a particular emphasis
on the Neighborhood Detail (ND) template. This template is built upon a predefined computational
graph, typically a £ hop B tree, and incorporates Laplacian-based positional encodings to inject
structural priors into the LLM input. To rigorously evaluate the contribution of these structural
components, we conduct a systematic ablation study in which both the handcrafted subgraph and
the positional encodings are removed and replaced with a simple, order-invariant sequence of node
descriptions.

We benchmark the original ND template against two lightweight, structure-agnostic variants: (1)
HN (Hop Neighbor), which randomly samples a subset of k-hop neighbors to construct the node
sequence, and (2) CO (Center Only), which provides only the description of the central node. As
shown in Table 2, the ND template fails to surpass the other two structure-free templates in both
node classification task and link prediction task. And including such structural embeddings can be
harmful for LLMs recognizing nodes in a heterophilic graph. Surprisingly, the CO variant performs
competitively, particularly on heterophilic graphs, suggesting that in some cases, including only the
central node may be sufficient, and that incorporating additional neighbor context can even degrade
performance.

These results indicate that for node classification on text-attributed graphs (TAGs), LLMs are often
capable of extracting sufficient predictive signals from isolated node semantics, with minimal reliance
on explicit structural information. This effectively transforms the graph reasoning task into a set-
based problem. We observe a similar trend in link prediction tasks, where structural understanding is
typically more critical. Even in this setting, augmenting the input with handcrafted structures such as
Laplacian positional encodings provides limited benefit. Instead, a simple, unordered aggregation
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of neighboring node descriptions enables the LLM to infer both node semantics and relational
connectivity with surprising effectiveness.

3.3 GNN-Based Encoding

In contrast to LLaGA’s template-based structural encoding, several recent studies [Perozzi et al.,
2024, He et al., 2024, Wang et al., 2024] have explored the integration of GNN-based modules to
inject structural information into LLMs. To further investigate the necessity of such architectural
components, we adopt the experimental setup introduced in the previous section and evaluate LLM
performance in the absence of explicit structural cues. Our primary focus is on the GraphToken
framework [Perozzi et al., 2024], which incorporates GNNs with dynamically constructed graphs
during fine-tuning, enabling a flexible and adaptive representation of structural context.

To isolate the contribution of structural model-

ing, we begin by evaluating the impact of dif- Cora Accuracy vs Number of Adaptr Layors __
ferent GNN backbones. Specifically, we replace =
the GNN with a simple multi-layer perceptron = * w7 optms van o s, S0

79.27%

(MLP), while keeping all other components and
training configurations constant. This ablation
aims to determine whether semantic representa-
tions alone can sustain downstream performance
without relying on graph-specific inductive bi- <«
ases. As reported in Table 3, although certain
GNN architectures may exhibit advantages under
specific domain conditions or structural regimes,
the overall performance remains largely com-
parable. This observation aligns with findings .
from [Perozzi et al., 2024], suggesting that the
marginal gains introduced by structural modeling
may not justify the added complexity.

40

1 5

3
Number of Layers

Figure 2: Deeper GNNs lose generalizability.

Furthermore, we observe that increasing the adapter depth in GraphToken consistently degrades
performance when using a GNN module. As shown in Figure 2, deeper GNN-based adapters lead
to a significant fluctuation in accuracy,

, indicating potential overfitting or vanishing gains with deeper structural modeling.

Taken together with our earlier observations in the LLaGA setting, these results further challenge the
prevailing assumption that structural encoding is critical for LLM-based graph reasoning, suggesting
that for many node classification and link prediction tasks on text-attributed graphs, LLMs
can achieve strong performance by leveraging rich semantic signals alone, rendering explicit
structural augmentation either redundant or even detrimental in some cases.

4 How Do LLMs Read Natural Graphs?

We have previously demonstrated that structural information can be negligible or even detrimental
when it interferes with node-level semantic understanding in the TAG setting. This observation aligns
with the intuition that TAG connectivity is often highly correlated with the semantic descriptions of
the nodes themselves. As such, LLMs may implicitly reconstruct the graph’s connectivity by simply
processing the node sequences. However, this raises an important question: would LLMs behave
similarly on graphs that naturally exist, such as molecular structures, where topology is intrinsic
rather than semantically induced?

To investigate this, we conduct experiments on molecular property prediction—a canonical graph-
level task. Specifically, we select three datasets from MoleculeNet [Ramsundar et al., 2019]: BACE,
BBBP, and HIV, chosen for their diversity in molecular properties and biomedical relevance. Full
dataset statistics and preprocessing details are provided in the Appendix.

4.1 Molecular Graphs

Unlike TAG datasets such as citation networks or E-commerce graphs, molecular graphs are typically
smaller in scale (fewer nodes) and exhibit lower average node degree, making their topological
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Table 3: This table evaluates whether message passing effectively aggregates useful neighbor infor-
mation. Comparing a simple MLP baseline with GNN-based adapters, we find that in the LLM setting,
message passing can lead to over-smoothing, even with skip connections, reducing the semantic
distinctiveness of target nodes. Best results are bolded, second best are underlined.

Node Classification

Setting Dataset ‘
| MLP GCN GAT GIN
Cora 87.09% (0.66%) 87.64% (0.84%) 88.25% (0.53%) 83.03% (5.41%)
Homophilic Citeseer 79.39% (1.38%) 80.20% (0.13%) 79.74% (0.41%) 79.32% (1.11%)
Pubmed 94.76% (0.10%)  92.24% (1.23%) 92.01% (0.24%) 91.40% (0.63%)
Shool 90.17% (3.62%) 67.87% (3.24%) 64.75% (0.00%) 70.02% (2.19%)
Heterophilic Roman Empire 65.39% (0.29%) 36.51% (18.06%) 36.97% (13.92%) 46.92% (22.37%)
Amazon Ratings | 40.78% (0.35%)  40.52% (0.51%) 40.71% (0.23%) 38.76% (0.18%)
Across Datasets 76.26 % 67.50% 67.07% 68.24%
Setting Dataset ‘ Link Prediction
| MLP GCN GAT GIN
Cora 90.72% (0.85%) 90.51% (1.19%) 91.05% (0.93%) 87.86% (1.20%)
Homophilic Citeseer 87.67% (2.71%) 89.32% (0.53%) 88.53% (0.46%) 78.34% (1.99%)
Pubmed 89.14% (0.19%) 89.11% (0.37%) 88.58% (0.38%) 87.54% (0.55%)
Shool 59.40% (1.92%) 59.40% (3.26%) 62.78% (3.98%) 56.55% (1.25%)
Heterophilic Roman Empire 51.60% (0.62%) 52.64% (0.68%) 51.00% (1.02%) 53.63% (0.24%)

Amazon Ratings

72.59% (0.34%)

72.10% (1.04%)

66.24% (11.19%)

71.51% (0.19%)

Across Datasets

75.51%

74.70%

72.57%

75.19%

structures less complex. In such settings, template-based encoding strategies, often used to impose
artificial tree-like computational paths, may introduce extraneous structural noise. Therefore, we
adopt GNN-based adapters, which are more commonly used for molecular representation learning, to
serve as stronger structure-aware baselines.

Interestingly, as shown in Table 4, even a simple MLP head applied to the embeddings of the
nodes (atom), without any explicit structural modeling, can perform on par with or even outperform
GNN-based adapters. This further supports our hypothesis: LLMs can extract sufficient task-relevant
information from node-level semantics alone, rendering explicit structural encoding less critical for
downstream performance.

To comprehensively evaluate the role of structural information in LLMs, we conducted experiments
across three representative tasks. Across all three, the results consistently suggest that LLMs can
operate effectively without leveraging explicit structural information, provided that high-quality node
embeddings are available. Notably, the node representations used in our experiments are derived from
a pretrained language encoder, ensuring rich semantic content.

4.2 Pretrained Graph Encoder v.s. Pretrained Language Encoder

An intriguing follow-up question emerges: what if we replace the language encoder with a pretrained
graph encoder? Will structural information, as captured by the graph encoder, play a more central
role in enhancing LLM performance?

To further investigate the role of pretrained modality-specific encoders in processing naturally
occurring graphs such as molecular structures, we compare embeddings from GraphMVP [Liu
et al., 2022]—a state-of-the-art graph pretraining framework for molecules—against those from
TinyBERT [Jiao et al., 2019], a compact yet effective pretrained language model. For a fair comparison
in representation capacity, we match the embedding dimensionalities, using a 5-layer, 300-dimensional
GraphM VP and a 4-layer, 312-dimensional TinyBERT. Figure 3 reports the average accuracy along
with standard deviations across multiple runs. The results indicate that even in domains where
structural priors are intrinsic, such as chemistry, pretrained graph encoders like GraphM VP do not
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Table 4: We further investigate whether structural information provides tangible benefits for LLMs
in processing graph-structured data by evaluating three molecular property prediction datasets.
Consistent with our earlier findings on TAGs, we observe that plain node embeddings, devoid of any
explicit structural encoding, can achieve comparable or even superior performance to structure-aware
approaches on molecular tasks.

Dataset \ Molecular Property Prediction

| MLP GCN GIN GAT

BACE | 58.99% (1.66%) 58.77% (9.13%) 58.99% (5.52%) 57.46% (3.62%)
BBBP | 54.57% (1.38%) 57.84% (0.49%) 60.29% (0.49%) 51.96% (1.47%)
HIV 96.85% (0.01%) 96.81% (0.03%) 96.79% (0.00%)  96.82% (0.03%)

consistently demonstrate a clear advantage in leveraging structural information for LLM-based
processing. In contrast, a lightweight pretrained language encoder such as TinyBERT is sufficient to
represent molecular graphs solely from sequences of atom-level descriptions, reinforcing our earlier
conclusion that LLMs predominantly exploit semantic content rather than explicit structural cues.

This experiment further reinforces our central

finding: LLMs tend to prioritize semantic con-

tent over structural information when process-

Pretrained Graph Encoder v.. Pretrained Language Encoder ing graph-related inputs. Even when structural

0 e 74150 95 51001 signals are provided through specialized graph

TinyBERT encoders, they fail to surpass the semantic rich-

ness embedded within language-based represen-

tations. Consequently, our observations point to

a broader implication: the quality and expres-

siveness of semantic embeddings, rather than

55904155 explicit graph topology, serve as the dominant

60 I w5010 factors determining LLM performance on
49.7613.64 51.63+1.66 - . . .

graph-centric reasoning tasks. This also chal-

lenges the conventional assumption that graph-

specific pretraining inherently offers a representa-

tional advantage in capturing relational and com-

positional patterns.

Figure 3: How Pretrained Encoders Impact
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5 What affects LLMs in understanding Graphs?

While our experiments suggest that LLMs may not inherently benefit from explicit structural infor-
mation, it is important to recognize that their ability to leverage such signals can vary significantly
depending on factors such as pretraining corpus, optimization strategy, and model scale. To assess
the robustness of our findings, we further investigate whether the observed trends hold consistently
across different backbone LLM architectures and parameter sizes. This analysis aims to disentangle
model-specific artifacts from generalizable behavior, and to evaluate whether the limited utility of
structural encodings persists regardless of underlying model configurations.

5.1 Scaling Ineffective

It is widely acknowledged that increasing the parameter size of LLMs often leads to enhanced
expressive power and improved performance across a broad range of tasks. To assess whether this
scaling trend extends to graph-related tasks, we evaluate the impact of model size on the ability
of LLMs to utilize structural information. Specifically, in Table 5, we compare the structure-aware
ND template with the structure-free HN template using two model variants: LLaMA2-7B and
LLaMAZ2-13B [Touvron et al., 2023].

Our results reinforce the patterns observed in previous experiments. Despite increasing the backbone
model size, the tendency of LLMs to overlook explicit structural encodings remains consistent.
Notably, scaling up to 13B parameters does not enhance the model’s ability to leverage structural
information. In fact, in most cases, the structure-free HN template outperforms the structure-aware



270
271

272

273
274
275
276
277
278

279

281
282
283

284

285
286
287

289
290
291

292
293
294
295
296
297
298

Submission Guidelines and Formatting Instructions for LoG Conference 2025

ND template, further suggesting that model scale alone does not improve sensitivity to structural
signals in graph-based tasks.

Table 5: Switching LLM backbones preserves our finding that structure may be unnecessary for
LLMs processing graphs. Even with weak semantic content, LLMs still reveal the same pattern.

Node Classification Link Prediction

Model Architecture  Dataset ‘

| ND HN-1 | ND HN-1
Llama2-7B Cora 87.76%(0.21%) 88.01%(0.56%) | 85.48%(0.38%) 87.04% (0.75%)
School | 70.98%((0.83%) 92.09%(2.49%) | 61.82%(2.88%) 69.09% (1.92%)
Llama2-13B Cora 87.58%(0.59%) 87.45%(0.19%) | 84.24%(0.89%) 86.05% (0.55%)
School | 69.30%(3.24%) 89.45%(3.40%) | 61.21%(1.28%) 67.15%/(1.52%)

. ‘ Node Classification Link Prediction
Semantic Content Dataset

| ND HN-1 | ND HN-1
sparse Cora 83.96% (2.74%) 82.17%(0.56%) | 69.19%(1.15%) 74.81%(0.85%)
P School | 56.95%(6.19%) 73.62%(7.21%) | 63.63%(0.63%) 65.09% (3.93%)
full Cora 83.39%(0.37%) 84.81% (0.46%) | 70.81%(1.89%) 75.84%/(0.74%)
School | 59.47%(3.97%) 60.19%(1.10%) | 63.15%(5.91%) 70.06% (3.30%)

5.2 Semantic Content

To further assess the robustness of our findings, we investigate whether the reliance on structural
information changes under weaker semantic content. Specifically, we reduce the descriptive richness
of each node by comparing two settings: (1) full node descriptions, such as full abstracts or complete
webpage content, and (2) sparse descriptions, limited to titles of papers or webpages. We generate
node embeddings using three widely used pretrained models: RoBERTa-large [Liu et al., 2019],
BERT-large [Devlin et al., 2018], and T5-XXL [Raffel et al., 2020].

Even under reduced semantic conditions, the structure-free HN template consistently matches or
outperforms the structure-aware ND template (see Table 5). These results suggest that LLMs are
capable of extracting meaningful relational patterns from minimal semantic cues, without the need
for explicit structural encodings. This further reinforces our conclusion that structural augmentation
provides limited benefits, even when node-level semantics are sparse.

5.3 How about Large Reasoning Models?

Large Reasoning Models (LRMs) aim to replicate human-like problem solving by drawing con-
clusions from structured rules and evidence. In this context, template-based graph encodings can
be viewed as implicit reasoning prompts that guide the model’s attention. This motivates us to
explore whether explicit structural signals, like Laplacian positional encodings, can enhance reason-
ing performance. We conduct a preliminary evaluation using OpenReasoning-Nemotron-7B [Wasi
Uddin Ahmad, 2025], a large-scale model post-trained for reasoning in math, science, and code
domains on Cora and School datasets.

Consistent with our earlier observations, we find that LRMs, despite their specialized training for
structured reasoning, do not exhibit significant improvements when structural encodings such as
Laplacian embeddings are included. These results further reinforce our central finding: even in
models explicitly designed for reasoning, the addition of graph structural signals does not necessarily
translate to better generalization or task performance. This suggests that the current generation of
reasoning models primarily rely on semantic representations and may underutilize explicit graph
structure unless such reasoning is explicitly aligned with the model’s pretraining or task formulation.
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Figure 4: Left: Though reasoning model can perform structured decision-making, it does not rely on
structure information. Right: Altering the node sequence via GDC can gain some enhancement at a
time.
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6 Can LLMs Better Leverage Structure?

Although structural information appears to have limited influence on LLM performance, we observed
that the GraphToken framework, when paired with an MLP adapter, occasionally outperforms the
structure-free CO template. While MLPs lack explicit message-passing mechanisms, they may still
benefit from implicit structural cues preserved in the ordering of the input node sequence. Inspired by
this observation, we hypothesize that optimizing node sequence selection can better expose latent
structural signals to the LLM and potentially improve the performance.

To investigate this, we did a preliminary study to incorporate Graph Diffusion Convolution
(GDC) [Gasteiger et al., 2019], a graph transformation technique designed to capture long-range
dependencies using a sparsified generalized form of graph diffusion. GCD implicitly generates a
new graph by graph diffusion as well as a following sparsification step, so the information can be
aggregated from a larger neighborhood. As a result, applying GDC can also effectively condenses the
input node sequence into a sparse, center-focused subset, resulting in improved LLM performance in
most cases (as illustrated in Figure 4). While this does not overturn our main finding, it highlights
a promising direction: certain graph transformations, especially those capturing longer-range infor-
mation, may provide a structured yet minimal signal that LLMs can exploit more effectively. Future
work may further investigate how to integrate such transformations with semantic guidance to better
align graph structure with LLM capabilities.

7 Limitations

In this work, we primarily assess the role of structural information in Text-Attributed Graphs (TAGs),
which are inherently two-dimensional and predominantly encode topological relationships. However,
structural information is not limited to topology; it can also encompass geometric properties, such
as three-dimensional coordinates, that often exert a more pronounced influence on downstream
performance. A promising direction for future research is to investigate domains where geometric
information is both intrinsic and indispensable for accurate modeling, including 3D molecular
conformations and protein structures.

8 Conclusion and Future Directions

In this study, we revisited LLM-based approaches on solving TAG tasks and conducted a comprehen-
sive evaluation of structural encoding strategies. We find that LLLMs tend to treat graphs as unordered
sets, showing minimal sensitivity to explicit structural information provided either through input
templates or model-level components such as GNNs. These results challenge the longstanding belief
that structure is essential for graph reasoning and instead highlight the central role of semantics in
LLM-based graph learning. Our work establishes a new empirical foundation for understanding
how LLMs interact with graph data and emphasizes the importance of designing more effective
node sequencing strategies, rather than structural encodings, to fully harness the capabilities of
LLMs on TAG tasks.
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A

Dataset Details

In this section, we will introduce our used datasets in details:

Cora: The Cora dataset is a classic citation network where each node represents a machine
learning research paper, and edges indicate citation relationships between papers. Each paper is
described by a sparse bag-of-words feature vector, and the task is to classify papers into one of
seven predefined categories such as neural networks or case-based reasoning. Total 2,708 nodes
will be classified into {"Theory’, "Neural Networks’, Probabilistic Methods’, *Reinforcement
Learning’, ’Case Based’, 'Rule Learning’, *Genetic Algorithms’}

Citeseer: Citeseer is another widely-used citation network dataset in which nodes represent
research papers and edges denote citation links. Each node includes word-based features and be-
longs to one of six scientific categories. These labels { artificial intelligence’, "human-computer
interaction’, *information retrieval’, database’, *agents’, *machine learning’} will be associated
to 3,186 nodes in Citeseer.

Pubmed: The Pubmed dataset is a large-scale citation graph composed of scientific papers from
the biomedical domain. Each node represents a paper described by a TF/IDF-weighted word
vector from the paper’s abstract, and edges correspond to citation links. Pubmed contains 19,717
nodes, and nodes are partitioned into 3 label categories: {Diabetes Mellitus Typel, Diabetes
Mellitus Type2, Diabetes Mellitus Experimental }

School: School dataset is a collection of 4 common heterophilic graph datasets: Cornell, Texas,
Washington, and Wisconsin. All of these 4 datasets are from the WebKB collection, where
represent web pages from {Cornell University, University of Texas, University of Washington,
University of Wisconsin} correspondingly and edges capture hyperlinks between them. Model
needs to classify each node (webpage) into 5 categories: “project’, *course’, “student’, *faculty’,
’staff’, and ’student’. The total number of nodes in School dataset is 872.

Roman Empire: Roman Empire dataset is a synthetic temporal graph dataset designed to evaluate
temporal graph learning models. There are 17 labels in total: { passive subject’, ’coordinating
conjunction’, "active subject’, "object of preposition’, ’adverbial modifier’, ’adjective modifier’,
’relative clause’, 'noun compound modifier’, ’appositive modifier’, *prepositional marker’,
"passive auxiliary’, *possessive modifier’, *direct object’, 'null’, *conjoined element’, *auxiliary
verb’, "main predicate’, *determiner’}, and Roman Empire contains 24,492 nodes.

Amazon Ratings: The Amazon Ratings dataset represents a temporal bipartite graph where
nodes are users and products, and edges correspond to product ratings over time. There are
24,492 comments with 5 different rating scales: { excellent — exceeded all expectations’, *very
good — almost perfect, just shy of excellent’, ’decent — some good, some bad’, ’good — solid
experience with minor flaws’, “terrible — extremely disappointing’ }

BACE: contains bioactivity data for small molecules that inhibit human -secretase 1 (BACE-1),
a key target in Alzheimer’s disease drug discovery. Each molecule is labeled as active or inactive,
making it a binary classification task for molecular binding affinity.

BBBP: consists of compounds labeled according to their ability to penetrate the blood-brain
barrier, which is crucial in central nervous system drug design. This is also a binary classification
task.

HIV: includes information on over 40,000 compounds tested for their ability to inhibit HIV
replication. Each molecule is labeled as active or inactive against HI'V, making it another binary
classification problem aimed at identifying potential antiretroviral candidates.

Each dataset follow the same train-test split ratio 8:2.
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B Experiment Configuration

dataset ‘ training epoch | total training time
Cora 5 ~ 16mins
Citeseer 5 ~ 10mins
Pubmed 1 ~ 9mins
School 13 ~ 3mins
Roman Empire 1 ~ 10mins
Amazon Ratings 1 ~ 10mins
BACE 12 ~ 5mins
BBBP 8 ~ 5mins
HIV 3 ~ 8mins

Table 6: Configuration and efficiency estimation for each dataset.

Each dataset is trained on 8 A6000 GPUs, and the training batch size is set to 4 per GPU for all
dataset, and the learning rate for template-based encoding is 2e-3 and for GNN-based encoding is
le-4. We use AdamW optimizer and DeepSpeed to perform the multi-GPU training. We use the
vicuna-7b [Zheng et al., 2023] as our main LLM backbone for all experiments. We report average
results from 3 random seed runs. For GraphToken experiments, we set the number of adapter layer at
1 for each adapter module. Setting adapter layer at 1 usually offers the best performance, and model
will easily lose its expressivity with a deeper adapter layer. All models and experiments are built
using Hugging Face [Wolf et al., 2020] and torch geometric [Fey and Lenssen, 2019] packages.

C Prompts

e Cora: Given a node-centered graph: < graph >, each node represents a paper, we need to
classify the center node into 7 classes: Case Based, Genetic Algorithms, Neural Networks,
Probabilistic Methods, Reinforcement Learning, Rule Learning, Theory, please tell me which
class the center node belongs to?

* Citeseer: Given a node-centered graph: < graph >, each node represents a paper, we need
to classify the center node into 6 classes: Agents, Machine Learning, Information Retrieval,
Database, Human-Computer Interaction, Artificial Intelligence, please tell me which class the
center node belongs to?

* Pubmed: Given a node-centered graph: < graph >, each node represents a paper about Diabetes,
we need to classify the center node into 3 classes: Diabetes Mellitus Experimental, Diabetes
Mellitus Typel, Diabetes Mellitus Type2, please tell me which class the center node belongs to?

» School: In a graph of a university website, each node represents a web page, and each edge
indicates that one web page links to another via a hyperlink. The web pages can belong to one of
the following categories: project, faculty, course, student, staff. Here is a node-centered graph:
< graph >, what is the category?

* Roman Empire: In an article, words that have dependency relationships (where one word depends
on another) are connected, forming a dependency graph. Based on the connections between
words, determine the syntactic role of each word. Given that a word described in a node-centered
graph: < graph >, what is this word syntactic role?

* Amazon Ratings: n a product graph dataset, edges connect products that are frequently purchased
together. Based on the connections between products (books, music CDs, DVDs, VHS tapes),
predict the average rating given by reviewers for the products. Given that a product described in
a node-centered graph: < graph >, what is the product rating?

* BACE: Given the following molecule < graph >, determine whether it is active or inactive as a
BACE-1 inhibitor.

* BBBP: Determine whether the following molecule < graph > can penetrate the blood-brain
barrier (BBB) based on its SMILES representation.

» HIV: This molecule is represented by the following < graph >. Predict whether it is active or
inactive against HIV replication.
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ss3 The < graph > serves as a placeholder token, which will be replace by the input node sequence
584 during training and inference stages.
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