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Abstract1

Graphs provide a unified representation of semantic content and relational struc-2

ture, making them a natural fit for domains such as molecular modeling, citation3

networks, and social graphs. Meanwhile, large language models (LLMs) have4

excelled at understanding natural language and integrating cross-modal signals,5

sparking interest in their potential for graph reasoning. Recent work has explored6

this by either designing template-based graph templates or using graph neural7

networks (GNNs) to encode structural information.In this study, we investigate8

how different strategies for encoding graph structure affect LLM performance on9

text-attributed graphs. Surprisingly, our systematic experiments reveal that: (i)10

LLMs leveraging only node textual descriptions already achieve strong perfor-11

mance across tasks; and (ii) most structural encoding strategies offer marginal12

or even negative gains. We show that explicit structural priors are often unneces-13

sary and, in some cases, counterproductive when powerful language models are14

involved. This represents a significant departure from traditional graph learning15

paradigms and highlights the need to rethink how structure should be represented16

and utilized in the LLM era. Our study is among the first to systematically17

challenge the foundational assumption that structure is inherently beneficial18

for LLM-based graph reasoning, opening the door to new, semantics-driven19

approaches for graph learning.20

1 Introduction21

Graphs are fundamental data structures for modeling relationships across diverse domains. Their22

capacity to capture interactions makes them invaluable for both data representation and reasoning.23

Over the past decade, the machine learning community has widely adopted graphs to unify multimodal24

data [Dwivedi et al., 2022, McCallum et al., 2000, Sen et al., 2008a], with Graph Neural Networks25

(GNNs) emerging as the standard approach [Kipf and Welling, 2017, Veličković et al., 2018, Xu26

et al., 2019, Hamilton et al., 2017, Chen et al., 2018, Wang et al., 2023, Müller et al., 2024, Neubauer27

et al., 2024, Ying et al., 2021]. Recently, the rise of Large Language Models (LLMs) has opened new28

opportunities for integrating linguistic reasoning into graph learning, giving rise to graph foundation29

models.30

LLM-GNN hybrids aim to combine the generalization and reasoning abilities of LLMs with the31

structural inductive biases of GNNs. This integration has shown promise on textual attribute graphs,32

where nodes carry rich semantic content. Strategies, shown in Figure 1 such as prompt-based graph en-33

coding, hybrid model architectures, and structure-aware instruction tuning have been explored [Chen34

et al., 2024, Wang et al., 2024, Perozzi et al., 2024, He et al., 2024]. However, the role of structural35

information in these models remains uncertain. For example, Bechler-Speicher et al. [2024] show36

that GNNs may over-rely on structure even when it’s irrelevant, while structure-agnostic models like37

DeepSets [Zaheer et al., 2017] often generalize well. Additionally, standard graph benchmarks may38

fail to reflect real-world relational complexity, raising concerns about their validity [Bechler-Speicher39

et al., 2025].40
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Figure 1: We present a common paradigm for aligning graph type data into LLMs. On the left, one
needs to define the graph (citation network, molecule, protein, etc) and parameterize it with proper
structures. In the middle, we briefly delineate the strategies encoding graphs into a LLM-favored
representations: Template-based encoding will arrange each node inside graph according to a pre-
defined sequence, while GNN-based encoding is to have a pretrained or random initialized GNN
module to encode graphs into LLM hidden space. On the right is the pipeline to align graph modality
into LLMs.

In this work, we take a methodological perspective to re-examine the necessity of structural encodings41

in LLM-based graph learning. Through systematic experiments across multiple graph types, encoding42

templates, and modeling paradigms, we find that the inclusion of structural information, whether43

predefined positional encodings or message passing networks, often yields limited or no performance44

gains when rich semantic node features are present. In some cases, structural signals can even45

degrade performance due to oversmoothing or noise. We question the prevailing assumption that46

graph structure is inherently beneficial and suggest a shift toward more minimal, semantics-centered47

representations when using LLMs for graph-related tasks. Our study calls for a rethinking of graph48

learning in the era of powerful language models, advocating for the design of LLM frameworks49

that prioritize meaningful textual context over handcrafted structural encodings.50

2 Related Work51

Graph Learning: Graph learning offers a flexible framework for modeling relational and structural52

data across domains such as social networks, biology, and knowledge graphs. At the core of this53

field are Graph Neural Networks (GNNs), which learn node- and graph-level representations through54

message passing and neighborhood aggregation [Kipf and Welling, 2017, Hamilton et al., 2017].55

Variants like Graph Attention Networks [Veličković et al., 2018] and spectral methods [Bruna et al.,56

2013] have been developed to address limitations in scalability and expressiveness. Inspired by57

advances in NLP and vision, self-supervised learning has gained popularity in the graph domain, with58

methods such as GraphCL [You et al., 2020], G-BERT [Shang et al., 2019], and GPT-GNN [Hu et al.,59

2020] employing contrastive or masked prediction objectives to improve generalization. However,60

unlike in NLP and vision, graph pretraining lacks standardized benchmarks and consistent input61

formats, making it harder to transfer models across domains. In response, graph foundation models62

(GFMs) such as GraphMAE [Zhenyu Hou, 2023], GRAND [Feng et al., 2020], and GraphMVP [Liu63

et al., 2022] aim to learn general-purpose graph representations. Despite their progress, challenges64

like data heterogeneity and the absence of a shared vocabulary persist—fueling growing interest in65

leveraging large language models (LLMs) to enhance graph representation learning.66

LLMs as GFMs: Recent studies have advanced beyond traditional GNN-based graph foundation67

models (GFMs) by exploring large language models (LLMs) as graph learners, leveraging their68

strong generalization and multimodal capabilities. Fatemi et al. [2024] provides a comprehensive69

analysis of how graph-to-text encoding strategies influence LLM performance, highlighting the70

importance of task type, encoding method, and graph structure. Building on this, LLaGA [Chen et al.,71

2024] introduces a unified framework that transforms graph data into LLM-friendly sequences using72

structure-aware node reordering and projection, achieving strong generalization and interpretability.73
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PromptGFM [Zhu et al., 2025] integrates in-text graph prompting and a learned graph vocabulary to74

unify GNNs and LLMs, enabling scalable and transferable reasoning on textual attribute graphs. Ge75

et al. [2025] improves graph prompting by showing that the sequential order of graph descriptions76

significantly affects LLM reasoning performance on graph tasks. Similarly, LLM-BP [Wang et al.,77

2025] enhances inference by combining task-adaptive LLM embeddings with belief propagation78

guided by LLM-estimated homophily scores. Huang et al. [2024] investigate the role of structural79

information when incorporated into natural language prompts, while our work focuses on modality80

alignment and how LLMs internally process graph modality through adapters. Nevertheless, our81

findings share a similar observation with Huang et al. [2024]: LLMs tend to interpret structure-aware82

prompts more as contextual narratives rather than explicit topological signals.83

In contrast, hybrid approaches like GraphToken [Perozzi et al., 2024] inject structural information84

via GNN adapters and parameter-efficient prompts. Extensions such as G-Retriever [He et al.,85

2024] and TEA-GLM [Wang et al., 2024] further integrate structural and textual features to achieve86

strong performance across graph-text benchmarks. SKETCH [Zhou et al., 2025] fuses graphs with87

LLMs by embedding structural and semantic aggregation into text encoding; GraphInsight [Cao88

et al., 2025] mitigates positional bias through strategic placement of key graph information and89

RAG-style external retrieval to boost structural understanding; GALLa [Zhang et al., 2025] utilizes90

GNNs to inject code structural information as an auxiliary task. Guan et al. [2025] investigate LLM91

attention patterns on graph inputs and find that transformer attention fails to align with actual graph92

connectivity—suggesting a gap in how LLMs internally process structural cues, rather than evaluating93

their downstream utility. However, most of previous works hold the assumptions that LLMs share94

the same inductive bias as GNNs, while we question such a belief and assess the role of structural95

information for LLMs processing graphs.96

Table 1: TAG Datasets selected in experiments.

Dataset Text Domain Graph Structure

Cora [McCallum et al., 2000] Publication Homophilic
Citeseer [Giles et al., 1998] Publication Homophilic
Pubmed [Sen et al., 2008b] Publication Homophilic
School [Craven et al., 1998] Webpage Heterophilic

Roman Empire [Platonov et al., 2023] Wikipedia Heterophilic
Amazon Ratings [Platonov et al., 2023] E-commerce Heterophilic

Table 2: To evaluate the utility of Laplacian embeddings for LLMs, we compare LLaGA’s ND
template with our heuristic templates, HN and CO, where HN-1 samples node sequences from the
1-hop neighborhood. As shown below, explicit structural encodings do not consistently enhance
performance and can even degrade it in some cases.

Setting Dataset
Node Classification Link Prediction

ND HN-1 CO ND HN-1

Homophilic

Cora 88.07% (0.74%) 88.56% (0.80%) 85.42% (1.78%) 85.56% (1.33%) 87.27% (1.56%)

Citeseer 80.31% (0.81%) 80.20% (0.94%) 77.74% (0.31%) 86.73% (0.63%) 88.79% (0.84%)

Pubmed 92.56% (0.71%) 94.80% (0.17%) 94.84% (0.04%) 88.25% (0.31%) 90.98% (0.38%)

Heterophilic

Shool 66.43% (3.69%) 82.02% (12.79%) 91.13% (1.66%) 68.61% (0.21%) 68.12% (1.51%)

Roman Empire 48.56% (1.17%) 59.70% (2.42%) 62.24% (0.19%) 81.59% (0.50%) 83.81% (0.12%)

Amazon Ratings 40.97% (0.56%) 41.67% (0.22%) 40.38% (1.14%) 80.26% (2.01%) 84.51% (0.53%)

Across Datasets 69.48% 74.49% 75.29% 81.83% 83.91%

3 Do LLMs Read TAG as Expected?97

In standard graph learning, models aim to capture relationships between entities by combining98

semantic information, such as node features or textual descriptions, with structural information99
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derived from graph connectivity. While node attributes provide rich local context, structural links100

define how entities interact within a broader topology, a dual perspective widely credited for the101

effectiveness of Graph Neural Networks (GNNs) across many downstream tasks. Motivated by this,102

recent research integrating Large Language Models (LLMs) with graphs has largely focused on103

injecting structural signals into LLMs. Parameter-free methods like LLaGA pmlr-v235-chen24bh104

verbalize graph structure via handcrafted templates, whereas hybrid approaches such as GraphToken,105

G-Retriever, and TEA-GLM perozzi2024letgraphtalkingencoding, he2024gretriever, wang2024llms106

employ GNN-based adapters to encode structure into learned embeddings, combining the relational107

inductive biases of GNNs with the expressive capabilities of LLMs.108

These strategies generally fall into two categories: (1) template-based methods that incorporate109

neighbor aggregation or positional encodings, and (2) GNN-based methods that learn structural110

representations through neural encoders. Despite their architectural differences, both approaches111

often yield similar performance. In many text-rich graph tasks, the added structural information,112

whether hand-made or learned, contributes marginal gains or even degrades performance when strong113

node-level semantics are already present. This suggests that LLMs may primarily treat input graphs as114

unordered sets, relying more heavily on the content of selected node sequences than on the underlying115

graph topology. Our findings challenge the common assumption that structural information is essential116

for LLM-based graph modeling, and they call for a rethinking of how structure should be incorporated,117

if at all, into future graph foundation models for semantically rich settings.118

3.1 Preliminary119

We revisit recent LLM-Graph approaches, such as LLaGA [Chen et al., 2024] and GraphToken [Per-120

ozzi et al., 2024], focusing on modality fine-tuned node classification and linke prediction in textual121

attribute graphs (TAGs). Our analysis is guided by two key questions: (1) Are explicit structural122

encodings, like Laplacian embeddings, necessary for LLMs? (2) How does message passing networks123

like GNNs affect performance? We conduct most of our experiments using Vicuna-7b-v1.5 [Zheng124

et al., 2023].125

Datasets As summarized in Table 1, we evaluate our models on six real-world TAG datasets spanning126

diverse text domains and structural properties. These include citation networks, e-commerce platforms,127

historical Wikipedia articles, and web page graphs, covering both homophilic and heterophilic patterns.128

Additional experiment details are provided in Appendix.129

3.2 Template-Based Encoding130

In this subsection, we revisit the LLaGA framework pmlr-v235-chen24bh, with a particular emphasis131

on the Neighborhood Detail (ND) template. This template is built upon a predefined computational132

graph, typically a k hop B tree, and incorporates Laplacian-based positional encodings to inject133

structural priors into the LLM input. To rigorously evaluate the contribution of these structural134

components, we conduct a systematic ablation study in which both the handcrafted subgraph and135

the positional encodings are removed and replaced with a simple, order-invariant sequence of node136

descriptions.137

We benchmark the original ND template against two lightweight, structure-agnostic variants: (1)138

HN (Hop Neighbor), which randomly samples a subset of k-hop neighbors to construct the node139

sequence, and (2) CO (Center Only), which provides only the description of the central node. As140

shown in Table 2, the ND template fails to surpass the other two structure-free templates in both141

node classification task and link prediction task. And including such structural embeddings can be142

harmful for LLMs recognizing nodes in a heterophilic graph. Surprisingly, the CO variant performs143

competitively, particularly on heterophilic graphs, suggesting that in some cases, including only the144

central node may be sufficient, and that incorporating additional neighbor context can even degrade145

performance.146

These results indicate that for node classification on text-attributed graphs (TAGs), LLMs are often147

capable of extracting sufficient predictive signals from isolated node semantics, with minimal reliance148

on explicit structural information. This effectively transforms the graph reasoning task into a set-149

based problem. We observe a similar trend in link prediction tasks, where structural understanding is150

typically more critical. Even in this setting, augmenting the input with handcrafted structures such as151

Laplacian positional encodings provides limited benefit. Instead, a simple, unordered aggregation152
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of neighboring node descriptions enables the LLM to infer both node semantics and relational153

connectivity with surprising effectiveness.154

3.3 GNN-Based Encoding155

In contrast to LLaGA’s template-based structural encoding, several recent studies [Perozzi et al.,156

2024, He et al., 2024, Wang et al., 2024] have explored the integration of GNN-based modules to157

inject structural information into LLMs. To further investigate the necessity of such architectural158

components, we adopt the experimental setup introduced in the previous section and evaluate LLM159

performance in the absence of explicit structural cues. Our primary focus is on the GraphToken160

framework [Perozzi et al., 2024], which incorporates GNNs with dynamically constructed graphs161

during fine-tuning, enabling a flexible and adaptive representation of structural context.162
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Figure 2: Deeper GNNs lose generalizability.

To isolate the contribution of structural model-163

ing, we begin by evaluating the impact of dif-164

ferent GNN backbones. Specifically, we replace165

the GNN with a simple multi-layer perceptron166

(MLP), while keeping all other components and167

training configurations constant. This ablation168

aims to determine whether semantic representa-169

tions alone can sustain downstream performance170

without relying on graph-specific inductive bi-171

ases. As reported in Table 3, although certain172

GNN architectures may exhibit advantages under173

specific domain conditions or structural regimes,174

the overall performance remains largely com-175

parable. This observation aligns with findings176

from [Perozzi et al., 2024], suggesting that the177

marginal gains introduced by structural modeling178

may not justify the added complexity.179

Furthermore, we observe that increasing the adapter depth in GraphToken consistently degrades180

performance when using a GNN module. As shown in Figure 2, deeper GNN-based adapters lead181

to a significant fluctuation in accuracy, while increasing the number of MLP layer only impacts182

marginally, indicating potential overfitting or vanishing gains with deeper structural modeling.183

Taken together with our earlier observations in the LLaGA setting, these results further challenge the184

prevailing assumption that structural encoding is critical for LLM-based graph reasoning, suggesting185

that for many node classification and link prediction tasks on text-attributed graphs, LLMs186

can achieve strong performance by leveraging rich semantic signals alone, rendering explicit187

structural augmentation either redundant or even detrimental in some cases.188

4 How Do LLMs Read Natural Graphs?189

We have previously demonstrated that structural information can be negligible or even detrimental190

when it interferes with node-level semantic understanding in the TAG setting. This observation aligns191

with the intuition that TAG connectivity is often highly correlated with the semantic descriptions of192

the nodes themselves. As such, LLMs may implicitly reconstruct the graph’s connectivity by simply193

processing the node sequences. However, this raises an important question: would LLMs behave194

similarly on graphs that naturally exist, such as molecular structures, where topology is intrinsic195

rather than semantically induced?196

To investigate this, we conduct experiments on molecular property prediction—a canonical graph-197

level task. Specifically, we select three datasets from MoleculeNet [Ramsundar et al., 2019]: BACE,198

BBBP, and HIV, chosen for their diversity in molecular properties and biomedical relevance. Full199

dataset statistics and preprocessing details are provided in the Appendix.200

4.1 Molecular Graphs201

Unlike TAG datasets such as citation networks or E-commerce graphs, molecular graphs are typically202

smaller in scale (fewer nodes) and exhibit lower average node degree, making their topological203

5



Submission Guidelines and Formatting Instructions for LoG Conference 2025

Table 3: This table evaluates whether message passing effectively aggregates useful neighbor infor-
mation. Comparing a simple MLP baseline with GNN-based adapters, we find that in the LLM setting,
message passing can lead to over-smoothing, even with skip connections, reducing the semantic
distinctiveness of target nodes. Best results are bolded, second best are underlined.

Setting Dataset
Node Classification

MLP GCN GAT GIN

Homophilic
Cora 87.09% (0.66%) 87.64% (0.84%) 88.25% (0.53%) 83.03% (5.41%)

Citeseer 79.39% (1.38%) 80.20% (0.13%) 79.74% (0.41%) 79.32% (1.11%)
Pubmed 94.76% (0.10%) 92.24% (1.23%) 92.01% (0.24%) 91.40% (0.63%)

Heterophilic
Shool 90.17% (3.62%) 67.87% (3.24%) 64.75% (0.00%) 70.02% (2.19%)

Roman Empire 65.39% (0.29%) 36.51% (18.06%) 36.97% (13.92%) 46.92% (22.37%)
Amazon Ratings 40.78% (0.35%) 40.52% (0.51%) 40.71% (0.23%) 38.76% (0.18%)

Across Datasets 76.26% 67.50% 67.07% 68.24%

Setting Dataset
Link Prediction

MLP GCN GAT GIN

Homophilic
Cora 90.72% (0.85%) 90.51% (1.19%) 91.05% (0.93%) 87.86% (1.20%)

Citeseer 87.67% (2.71%) 89.32% (0.53%) 88.53% (0.46%) 78.34% (1.99%)
Pubmed 89.14% (0.19%) 89.11% (0.37%) 88.58% (0.38%) 87.54% (0.55%)

Heterophilic
Shool 59.40% (1.92%) 59.40% (3.26%) 62.78% (3.98%) 56.55% (1.25%)

Roman Empire 51.60% (0.62%) 52.64% (0.68%) 51.00% (1.02%) 53.63% (0.24%)
Amazon Ratings 72.59% (0.34%) 72.10% (1.04%) 66.24% (11.19%) 71.51% (0.19%)

Across Datasets 75.19% 75.51% 74.70% 72.57%

structures less complex. In such settings, template-based encoding strategies, often used to impose204

artificial tree-like computational paths, may introduce extraneous structural noise. Therefore, we205

adopt GNN-based adapters, which are more commonly used for molecular representation learning, to206

serve as stronger structure-aware baselines.207

Interestingly, as shown in Table 4, even a simple MLP head applied to the embeddings of the208

nodes (atom), without any explicit structural modeling, can perform on par with or even outperform209

GNN-based adapters. This further supports our hypothesis: LLMs can extract sufficient task-relevant210

information from node-level semantics alone, rendering explicit structural encoding less critical for211

downstream performance.212

To comprehensively evaluate the role of structural information in LLMs, we conducted experiments213

across three representative tasks. Across all three, the results consistently suggest that LLMs can214

operate effectively without leveraging explicit structural information, provided that high-quality node215

embeddings are available. Notably, the node representations used in our experiments are derived from216

a pretrained language encoder, ensuring rich semantic content.217

4.2 Pretrained Graph Encoder v.s. Pretrained Language Encoder218

An intriguing follow-up question emerges: what if we replace the language encoder with a pretrained219

graph encoder? Will structural information, as captured by the graph encoder, play a more central220

role in enhancing LLM performance?221

To further investigate the role of pretrained modality-specific encoders in processing naturally222

occurring graphs such as molecular structures, we compare embeddings from GraphMVP [Liu223

et al., 2022]—a state-of-the-art graph pretraining framework for molecules—against those from224

TinyBERT [Jiao et al., 2019], a compact yet effective pretrained language model. For a fair comparison225

in representation capacity, we match the embedding dimensionalities, using a 5-layer, 300-dimensional226

GraphMVP and a 4-layer, 312-dimensional TinyBERT. Figure 3 reports the average accuracy along227

with standard deviations across multiple runs. The results indicate that even in domains where228

structural priors are intrinsic, such as chemistry, pretrained graph encoders like GraphMVP do not229
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Table 4: We further investigate whether structural information provides tangible benefits for LLMs
in processing graph-structured data by evaluating three molecular property prediction datasets.
Consistent with our earlier findings on TAGs, we observe that plain node embeddings, devoid of any
explicit structural encoding, can achieve comparable or even superior performance to structure-aware
approaches on molecular tasks.

Dataset Molecular Property Prediction

MLP GCN GIN GAT

BACE 58.99% (1.66%) 58.77% (9.13%) 58.99% (5.52%) 57.46% (3.62%)
BBBP 54.57% (1.38%) 57.84% (0.49%) 60.29% (0.49%) 51.96% (1.47%)
HIV 96.85% (0.01%) 96.81% (0.03%) 96.79% (0.00%) 96.82% (0.03%)

consistently demonstrate a clear advantage in leveraging structural information for LLM-based230

processing. In contrast, a lightweight pretrained language encoder such as TinyBERT is sufficient to231

represent molecular graphs solely from sequences of atom-level descriptions, reinforcing our earlier232

conclusion that LLMs predominantly exploit semantic content rather than explicit structural cues.233

Figure 3: How Pretrained Encoders Impact
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This experiment further reinforces our central234

finding: LLMs tend to prioritize semantic con-235

tent over structural information when process-236

ing graph-related inputs. Even when structural237

signals are provided through specialized graph238

encoders, they fail to surpass the semantic rich-239

ness embedded within language-based represen-240

tations. Consequently, our observations point to241

a broader implication: the quality and expres-242

siveness of semantic embeddings, rather than243

explicit graph topology, serve as the dominant244

factors determining LLM performance on245

graph-centric reasoning tasks. This also chal-246

lenges the conventional assumption that graph-247

specific pretraining inherently offers a representa-248

tional advantage in capturing relational and com-249

positional patterns.250

5 What affects LLMs in understanding Graphs?251

While our experiments suggest that LLMs may not inherently benefit from explicit structural infor-252

mation, it is important to recognize that their ability to leverage such signals can vary significantly253

depending on factors such as pretraining corpus, optimization strategy, and model scale. To assess254

the robustness of our findings, we further investigate whether the observed trends hold consistently255

across different backbone LLM architectures and parameter sizes. This analysis aims to disentangle256

model-specific artifacts from generalizable behavior, and to evaluate whether the limited utility of257

structural encodings persists regardless of underlying model configurations.258

5.1 Scaling Ineffective259

It is widely acknowledged that increasing the parameter size of LLMs often leads to enhanced260

expressive power and improved performance across a broad range of tasks. To assess whether this261

scaling trend extends to graph-related tasks, we evaluate the impact of model size on the ability262

of LLMs to utilize structural information. Specifically, in Table 5, we compare the structure-aware263

ND template with the structure-free HN template using two model variants: LLaMA2-7B and264

LLaMA2-13B [Touvron et al., 2023].265

Our results reinforce the patterns observed in previous experiments. Despite increasing the backbone266

model size, the tendency of LLMs to overlook explicit structural encodings remains consistent.267

Notably, scaling up to 13B parameters does not enhance the model’s ability to leverage structural268

information. In fact, in most cases, the structure-free HN template outperforms the structure-aware269
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ND template, further suggesting that model scale alone does not improve sensitivity to structural270

signals in graph-based tasks.271

Table 5: Switching LLM backbones preserves our finding that structure may be unnecessary for
LLMs processing graphs. Even with weak semantic content, LLMs still reveal the same pattern.

Model Architecture Dataset
Node Classification Link Prediction

ND HN-1 ND HN-1

Llama2-7B
Cora 87.76%(0.21%) 88.01%(0.56%) 85.48%(0.38%) 87.04%(0.75%)

School 70.98%(0.83%) 92.09%(2.49%) 61.82%(2.88%) 69.09%(1.92%)

Llama2-13B
Cora 87.58%(0.59%) 87.45%(0.19%) 84.24%(0.89%) 86.05%(0.55%)

School 69.30%(3.24%) 89.45%(3.40%) 61.21%(1.28%) 67.15%(1.52%)

Semantic Content Dataset
Node Classification Link Prediction

ND HN-1 ND HN-1

sparse
Cora 83.96%(2.74%) 82.17%(0.56%) 69.19%(1.15%) 74.81%(0.85%)

School 56.95%(6.19%) 73.62%(7.21%) 63.63%(0.63%) 65.09%(3.93%)

full
Cora 83.39%(0.37%) 84.81%(0.46%) 70.81%(1.89%) 75.84%(0.74%)

School 59.47%(3.97%) 60.19%(1.10%) 63.15%(5.91%) 70.06%(3.30%)

5.2 Semantic Content272

To further assess the robustness of our findings, we investigate whether the reliance on structural273

information changes under weaker semantic content. Specifically, we reduce the descriptive richness274

of each node by comparing two settings: (1) full node descriptions, such as full abstracts or complete275

webpage content, and (2) sparse descriptions, limited to titles of papers or webpages. We generate276

node embeddings using three widely used pretrained models: RoBERTa-large [Liu et al., 2019],277

BERT-large [Devlin et al., 2018], and T5-XXL [Raffel et al., 2020].278

Even under reduced semantic conditions, the structure-free HN template consistently matches or279

outperforms the structure-aware ND template (see Table 5). These results suggest that LLMs are280

capable of extracting meaningful relational patterns from minimal semantic cues, without the need281

for explicit structural encodings. This further reinforces our conclusion that structural augmentation282

provides limited benefits, even when node-level semantics are sparse.283

5.3 How about Large Reasoning Models?284

Large Reasoning Models (LRMs) aim to replicate human-like problem solving by drawing con-285

clusions from structured rules and evidence. In this context, template-based graph encodings can286

be viewed as implicit reasoning prompts that guide the model’s attention. This motivates us to287

explore whether explicit structural signals, like Laplacian positional encodings, can enhance reason-288

ing performance. We conduct a preliminary evaluation using OpenReasoning-Nemotron-7B [Wasi289

Uddin Ahmad, 2025], a large-scale model post-trained for reasoning in math, science, and code290

domains on Cora and School datasets.291

Consistent with our earlier observations, we find that LRMs, despite their specialized training for292

structured reasoning, do not exhibit significant improvements when structural encodings such as293

Laplacian embeddings are included. These results further reinforce our central finding: even in294

models explicitly designed for reasoning, the addition of graph structural signals does not necessarily295

translate to better generalization or task performance. This suggests that the current generation of296

reasoning models primarily rely on semantic representations and may underutilize explicit graph297

structure unless such reasoning is explicitly aligned with the model’s pretraining or task formulation.298
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Figure 4: Left: Though reasoning model can perform structured decision-making, it does not rely on
structure information. Right: Altering the node sequence via GDC can gain some enhancement at a
time.
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6 Can LLMs Better Leverage Structure?299

Although structural information appears to have limited influence on LLM performance, we observed300

that the GraphToken framework, when paired with an MLP adapter, occasionally outperforms the301

structure-free CO template. While MLPs lack explicit message-passing mechanisms, they may still302

benefit from implicit structural cues preserved in the ordering of the input node sequence. Inspired by303

this observation, we hypothesize that optimizing node sequence selection can better expose latent304

structural signals to the LLM and potentially improve the performance.305

To investigate this, we did a preliminary study to incorporate Graph Diffusion Convolution306

(GDC) [Gasteiger et al., 2019], a graph transformation technique designed to capture long-range307

dependencies using a sparsified generalized form of graph diffusion. GCD implicitly generates a308

new graph by graph diffusion as well as a following sparsification step, so the information can be309

aggregated from a larger neighborhood. As a result, applying GDC can also effectively condenses the310

input node sequence into a sparse, center-focused subset, resulting in improved LLM performance in311

most cases (as illustrated in Figure 4). While this does not overturn our main finding, it highlights312

a promising direction: certain graph transformations, especially those capturing longer-range infor-313

mation, may provide a structured yet minimal signal that LLMs can exploit more effectively. Future314

work may further investigate how to integrate such transformations with semantic guidance to better315

align graph structure with LLM capabilities.316

7 Limitations317

In this work, we primarily assess the role of structural information in Text-Attributed Graphs (TAGs),318

which are inherently two-dimensional and predominantly encode topological relationships. However,319

structural information is not limited to topology; it can also encompass geometric properties, such320

as three-dimensional coordinates, that often exert a more pronounced influence on downstream321

performance. A promising direction for future research is to investigate domains where geometric322

information is both intrinsic and indispensable for accurate modeling, including 3D molecular323

conformations and protein structures.324

8 Conclusion and Future Directions325

In this study, we revisited LLM-based approaches on solving TAG tasks and conducted a comprehen-326

sive evaluation of structural encoding strategies. We find that LLMs tend to treat graphs as unordered327

sets, showing minimal sensitivity to explicit structural information provided either through input328

templates or model-level components such as GNNs. These results challenge the longstanding belief329

that structure is essential for graph reasoning and instead highlight the central role of semantics in330

LLM-based graph learning. Our work establishes a new empirical foundation for understanding331

how LLMs interact with graph data and emphasizes the importance of designing more effective332

node sequencing strategies, rather than structural encodings, to fully harness the capabilities of333

LLMs on TAG tasks.334
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A Dataset Details499

In this section, we will introduce our used datasets in details:500

• Cora: The Cora dataset is a classic citation network where each node represents a machine501

learning research paper, and edges indicate citation relationships between papers. Each paper is502

described by a sparse bag-of-words feature vector, and the task is to classify papers into one of503

seven predefined categories such as neural networks or case-based reasoning. Total 2,708 nodes504

will be classified into {’Theory’, ’Neural Networks’, ’Probabilistic Methods’, ’Reinforcement505

Learning’, ’Case Based’, ’Rule Learning’, ’Genetic Algorithms’}506

• Citeseer: Citeseer is another widely-used citation network dataset in which nodes represent507

research papers and edges denote citation links. Each node includes word-based features and be-508

longs to one of six scientific categories. These labels {’artificial intelligence’, ’human-computer509

interaction’, ’information retrieval’, ’database’, ’agents’, ’machine learning’} will be associated510

to 3,186 nodes in Citeseer.511

• Pubmed: The Pubmed dataset is a large-scale citation graph composed of scientific papers from512

the biomedical domain. Each node represents a paper described by a TF/IDF-weighted word513

vector from the paper’s abstract, and edges correspond to citation links. Pubmed contains 19,717514

nodes, and nodes are partitioned into 3 label categories: {Diabetes Mellitus Type1, Diabetes515

Mellitus Type2, Diabetes Mellitus Experimental}516

• School: School dataset is a collection of 4 common heterophilic graph datasets: Cornell, Texas,517

Washington, and Wisconsin. All of these 4 datasets are from the WebKB collection, where518

represent web pages from {Cornell University, University of Texas, University of Washington,519

University of Wisconsin} correspondingly and edges capture hyperlinks between them. Model520

needs to classify each node (webpage) into 5 categories: ’project’, ’course’, ’student’, ’faculty’,521

’staff’, and ’student’. The total number of nodes in School dataset is 872.522

• Roman Empire: Roman Empire dataset is a synthetic temporal graph dataset designed to evaluate523

temporal graph learning models. There are 17 labels in total: {’passive subject’, ’coordinating524

conjunction’, ’active subject’, ’object of preposition’, ’adverbial modifier’, ’adjective modifier’,525

’relative clause’, ’noun compound modifier’, ’appositive modifier’, ’prepositional marker’,526

’passive auxiliary’, ’possessive modifier’, ’direct object’, ’null’, ’conjoined element’, ’auxiliary527

verb’, ’main predicate’, ’determiner’}, and Roman Empire contains 24,492 nodes.528

• Amazon Ratings: The Amazon Ratings dataset represents a temporal bipartite graph where529

nodes are users and products, and edges correspond to product ratings over time. There are530

24,492 comments with 5 different rating scales: {’excellent – exceeded all expectations’, ’very531

good – almost perfect, just shy of excellent’, ’decent – some good, some bad’, ’good – solid532

experience with minor flaws’, ’terrible – extremely disappointing’}533

• BACE: contains bioactivity data for small molecules that inhibit human β-secretase 1 (BACE-1),534

a key target in Alzheimer’s disease drug discovery. Each molecule is labeled as active or inactive,535

making it a binary classification task for molecular binding affinity.536

• BBBP: consists of compounds labeled according to their ability to penetrate the blood-brain537

barrier, which is crucial in central nervous system drug design. This is also a binary classification538

task.539

• HIV: includes information on over 40,000 compounds tested for their ability to inhibit HIV540

replication. Each molecule is labeled as active or inactive against HIV, making it another binary541

classification problem aimed at identifying potential antiretroviral candidates.542

Each dataset follow the same train-test split ratio 8:2.543
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B Experiment Configuration544

dataset training epoch total training time

Cora 5 ∼ 16mins
Citeseer 5 ∼ 10mins
Pubmed 1 ∼ 9mins
School 13 ∼ 3mins

Roman Empire 1 ∼ 10mins
Amazon Ratings 1 ∼ 10mins

BACE 12 ∼ 5mins
BBBP 8 ∼ 5mins
HIV 3 ∼ 8mins

Table 6: Configuration and efficiency estimation for each dataset.

Each dataset is trained on 8 A6000 GPUs, and the training batch size is set to 4 per GPU for all545

dataset, and the learning rate for template-based encoding is 2e-3 and for GNN-based encoding is546

1e-4. We use AdamW optimizer and DeepSpeed to perform the multi-GPU training. We use the547

vicuna-7b [Zheng et al., 2023] as our main LLM backbone for all experiments. We report average548

results from 3 random seed runs. For GraphToken experiments, we set the number of adapter layer at549

1 for each adapter module. Setting adapter layer at 1 usually offers the best performance, and model550

will easily lose its expressivity with a deeper adapter layer. All models and experiments are built551

using Hugging Face [Wolf et al., 2020] and torch geometric [Fey and Lenssen, 2019] packages.552

C Prompts553

• Cora: Given a node-centered graph: < graph >, each node represents a paper, we need to554

classify the center node into 7 classes: Case Based, Genetic Algorithms, Neural Networks,555

Probabilistic Methods, Reinforcement Learning, Rule Learning, Theory, please tell me which556

class the center node belongs to?557

• Citeseer: Given a node-centered graph: < graph >, each node represents a paper, we need558

to classify the center node into 6 classes: Agents, Machine Learning, Information Retrieval,559

Database, Human-Computer Interaction, Artificial Intelligence, please tell me which class the560

center node belongs to?561

• Pubmed: Given a node-centered graph: < graph >, each node represents a paper about Diabetes,562

we need to classify the center node into 3 classes: Diabetes Mellitus Experimental, Diabetes563

Mellitus Type1, Diabetes Mellitus Type2, please tell me which class the center node belongs to?564

• School: In a graph of a university website, each node represents a web page, and each edge565

indicates that one web page links to another via a hyperlink. The web pages can belong to one of566

the following categories: project, faculty, course, student, staff. Here is a node-centered graph:567

< graph >, what is the category?568

• Roman Empire: In an article, words that have dependency relationships (where one word depends569

on another) are connected, forming a dependency graph. Based on the connections between570

words, determine the syntactic role of each word. Given that a word described in a node-centered571

graph: < graph >, what is this word syntactic role?572

• Amazon Ratings: n a product graph dataset, edges connect products that are frequently purchased573

together. Based on the connections between products (books, music CDs, DVDs, VHS tapes),574

predict the average rating given by reviewers for the products. Given that a product described in575

a node-centered graph: < graph >, what is the product rating?576

• BACE: Given the following molecule < graph >, determine whether it is active or inactive as a577

BACE-1 inhibitor.578

• BBBP: Determine whether the following molecule < graph > can penetrate the blood-brain579

barrier (BBB) based on its SMILES representation.580

• HIV: This molecule is represented by the following < graph >. Predict whether it is active or581

inactive against HIV replication.582
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The < graph > serves as a placeholder token, which will be replace by the input node sequence583

during training and inference stages.584
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