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Source prompt: “a man walks and then squats down.”

Figure 1: MotionCLR supports versatile motion generation and editing. The blue and red figures
represent original and edited motions. (a) Motion deemphasizing and emphasizing via adjusting the
weight of “jump”. (b) In-place replacing the action of “walks” with “jumps” and “dances”. (c)
Generating diverse motion with the same example motion. (d) Transferring motion style referring to
two motions (style and content reference). (e) Editing the sequentiality of a motion.

ABSTRACT
This research delves into the problem of interactive editing of human motion
generation. Previous motion diffusion models lack explicit modeling of the word-
level text-motion correspondence and good explainability, hence restricting their
fine-grained editing ability. To address this issue, we propose an attention-based
motion diffusion model, namely MotionCLR, with CLeaR modeling of attention
mechanisms. Technically, MotionCLR models the in-modality and cross-modality
interactions with self-attention and cross-attention, respectively. More specifically,
the self-attention mechanism aims to measure the sequential similarity between
frames and impacts the order of motion features. By contrast, the cross-attention
mechanism works to find the fine-grained word-sequence correspondence and
activate the corresponding timesteps in the motion sequence. Based on these key
properties, we develop a versatile set of simple yet effective motion editing methods
via manipulating attention maps, such as motion (de-)emphasizing, in-place motion
replacement, and example-based motion generation, etc. For further verification of
the explainability of the attention mechanism, we additionally explore the potential
of action-counting and grounded motion generation ability via attention maps. Our
experimental results show that our method enjoys good generation and editing
ability with good explainability. Codes will be public.

1 INTRODUCTION
Recently, text-driven human motion generation (Ahn et al., 2018; Petrovich et al., 2022; Tevet
et al., 2022b; Lu et al., 2024; Guo et al., 2024a; Hong et al., 2022; Wang et al., 2022; 2024) has
attracted significant attention in the animation community for its great potential to benefit versatile
downstream applications, such as games and embodied intelligence. As the generated motion quality
in one inference might be unsatisfactory, interactive motion editing is valued as a crucial task in the
community. To provide more interactive editing capabilities, previous works have tried to introduce
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some human-defined constraints into the editing framework, such as introducing a pre-defined
trajectory for a controllable generation (Xie et al., 2024a; Dai et al., 2024; Shafir et al., 2024) or
key-frames for motion in-betweening (Chen et al., 2023a; Tang et al., 2022; Harvey et al., 2020).

Despite such progress, the constraints introduced in these works are mainly in-modality (motion)
constraints, which require laborious efforts in the real animation creation pipeline. Such interaction
fashions strongly restrict the involving humans in the loop of creation. In this work, we aim to explore
a natural editing fashion of introducing out-of-modality signals, such as editing texts. For example,
when generating a motion with the prompt “a man jumps.”, we can control the height or times of
the “jump” action via adjusting the importance weight of the word “jump”. Alternatively, we can
also in-place replace the word “jump” into other actions specified by users. Moreover, in this work,
we would like to equip the motion generation model with such abilities without re-training.

However, the key limitation of existing motion generation models is that the modeling of previous
generative methods lacks explicit word-level text-motion correspondence. This fine-grained cross-
modality modeling not only plays a crucial role in text-motion alignment, but also makes it easier for
fine-grained editing. To show the problem, we revisit previous transformer-based motion generation
models (Tevet et al., 2022b; Zhang et al., 2024b; 2023b; Chen et al., 2023b). The transformer-
encoder-like methods (Tevet et al., 2022b; Zhou et al., 2024) treat the textual input as one special
embedding before the motion sequence. However, text embeddings and motion embeddings imply
substantially different semantics, indicating unclear correspondence between texts and motions.
Besides, this fashion over-compresses a sentence into one embedding, which compromises the
fine-grained correspondence between each word and each motion frame. Although there are some
methods (Zhang et al., 2024b; 2023b) to perform texts and motion interactions via linear cross-
attention, they fuse the diffusion timestep embeddings with textual features together in the forward
process. This operation undermines the structural text representations and weakens the input textual
conditions. Through these observations, we argue that the fine-grained text-motion correspondence in
these two motion diffusion fashions is not well considered. Therefore, it is urgent to build a model
with good explainability and clear modeling of fine-grained text-motion correspondence.

To resolve these issues, in this work, we propose a motion diffusion model, namely MotionCLR, with
a CLeaR modeling of the motion generation process and fine-grained text-motion correspondence.
The main component of MotionCLR is a CLR block, which is composed of a convolution layer, a
self-attention layer, a cross-attention layer, and an FFN layer. In this basic block, the cross-attention
layer is used to encode the text conditions for each word. More specifically, the cross-attention
operation between each word and each motion frame models the text-motion correspondence explicitly.
Meanwhile, the timestep injection of the diffusion process and the text encoding are modeled
separately. Besides, the self-attention layer in this block is designed for modeling the interaction
between different motion frames and the FFN layer is a common design for channel mixing.

Motivated by previous progress in the explainality of the attention mechanism (Vaswani et al., 2017;
Ma et al., 2023; Hao et al., 2021; Xu et al., 2015; Hertz et al., 2023; Chefer et al., 2021b;a), this work
delves into the mathematical properties of the basic CLR block, especially the cross-attention and
self-attention mechanisms. In the CLR block, the cross-attention value of each word along the time
axis works as an activator to determine the execution time of each action. Besides, the self-attention
mechanism in the CLR block mainly focuses on mining similar motion patterns between frames. Our
empirical studies verify these properties. Based on these key observations, we show how we can
achieve versatile motion editing downstream tasks (e.g. motion (de-)emphasizing, in-place motion
replacement, and motion erasing) by manipulating cross-attention and self-attention calculations. We
verify the effectiveness of these editing methods via both qualitative and quantitative experimental
results. Additionally, we explore the potential of action counting with the self-attention map and
show how our method can be applied to cope with the hallucination of generative models.

Before delving into the technical details of this work, we summarize our key contributions as follows.
• We propose an attention-based motion diffusion model, namely MotionCLR, with clear modeling

of the text-aligned motion generation process. MotionCLR achieves comparable generation
performance with state-of-the-art methods.

• For the first time in the human animation community, we clarify the roles that self- and cross-
attention mechanisms play in one attention-based motion diffusion model.

• Thanks to these observations, we propose a series of interactive motion editing downstream
tasks (see Fig. 1) via manipulating attention layer calculations. We additionally explore the
potential of our method to perform grounded motion generation when facing failure cases.
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2 RELATED WORK AND CONTRIBUTION

Text-driven human motion generation (Plappert et al., 2018; Ahn et al., 2018; Lin & Amer, 2018;
Ahuja & Morency, 2019; Bhattacharya et al., 2021; Tevet et al., 2022a; Petrovich et al., 2022; Hong
et al., 2022; Guo et al., 2022b; Zhang et al., 2024b; Athanasiou et al., 2022; Tevet et al., 2022b; Wang
et al., 2022; Chen et al., 2023b; Dabral et al., 2023; Yuan et al., 2023; Zhang et al., 2023a; Shafir
et al., 2024; Zhang et al., 2023b; Karunratanakul et al., 2023; Jiang et al., 2024; Zhang et al., 2024e;
Xiao et al., 2024; Xie et al., 2024a; Lu et al., 2024; Wan et al., 2024; Guo et al., 2024a; Liu et al.,
2024; Han et al., 2024; Xie et al., 2024b; Zhou et al., 2024; Petrovich et al., 2024; Barquero et al.,
2024; Wang et al., 2024; Huang et al., 2024; Zhang et al., 2024a) uses textual descriptions as input
to synthesize human motions. One of the main generative fashions is a kind of GPT-like (Zhang
et al., 2023a; Lu et al., 2024; Guo et al., 2024a; Jiang et al., 2024) motion generation method, which
compresses the text input into one conditional embedding and predicts motion in an auto-regressive
fashion. Besides, the diffusion-based method (Tevet et al., 2022b; Zhang et al., 2024b; 2023b; Zhou
et al., 2024; Chen et al., 2023b; Dai et al., 2024) is another generative fashion in motion generation.
Note that most work with this fashion also utilizes transformers (Vaswani et al., 2017) as the basic
network architecture. Although these previous attempts have achieved significant progress in the past
years, the technical design of the explainability of the attention mechanism is still not well considered.

Motion editing aims to edit a motion satisfying human demand. Previous works (Dai et al., 2024;
Dabral et al., 2023; Kim et al., 2023) attempt to edit a motion in a controlling fashion, like motion
inbetweening and joint controlling. There are some other methods (Raab et al., 2023; Aberman
et al., 2020b; Jang et al., 2022) trying to control the style of a motion. However, these works are
either designed for a specific task or cannot edit fine-grained motion semantics, such as the height or
times of a “jump” motion. Raab et al. (2024a) perform motion following via replacing the queries
in the self-attention. Goel et al. (2024) propose to edit a motion with an instruction. However, the
fine-grained text-motion correspondence in the cross-attention still lacks an in-depth understanding.
There are also some methods designed for motion generation (Li et al., 2002) or editing (Lee & Shin,
1999; Holden et al., 2016; Athanasiou et al., 2024), which are limited to adapt to diverse downstream
tasks. Compared to motion editing, the field of diffusion-based image editing has been largely
explored. Previous studies have achieved exceptional realism and diversity in image editing (Hertz
et al., 2023; Han et al., 2023; Parmar et al., 2023; Cao et al., 2023; Tumanyan et al., 2023; Zhang
et al., 2023c; Mou et al., 2024; Ju et al., 2024) by manipulating attention maps. Especially, although
Hertz et al. (2023) propose to introduce cross-attention into image editing, these techniques and
self-attention-based motion editing are still under-explored. However, relevant interactive editing
techniques and observations are still unexplored in the human animation community.

Our key insights and contribution over previous attention-based motion diffusion models (Tevet
et al., 2022b; Zhang et al., 2024b; 2023b; Zhou et al., 2024; Chen et al., 2023b; Dai et al., 2024) lie in
the clear explainability of the self-attention and cross-attention mechanisms in diffusion-based motion
generation models. The cross-attention module in our method models the text-motion correspondence
at the word level explicitly. Besides, the self-attention mechanism models the motion coherence
between frames. Therefore, we can easily clarify what roles self-attention and cross-attention
mechanisms play in this framework, respectively. To the best of our knowledge, it is the first time
in the human animation community to clarify these mechanisms in one system and explore how to
perform training-free motion editing involving humans in the loop.

3 BASE MOTION GENERATION MODEL AND UNDERSTANDING ATTENTION
MECHANISMS

In this section, we will introduce the proposed motion diffusion model, MotionCLR, composed
of several basic CLR modules. Specifically, we will analyze the technical details of the attention
mechanism to obtain an in-depth understanding of this.

3.1 HOW DOES MOTIONCLR MODEL FINE-GRAINED CROSS-MODAL CORRESPONDENCE?

Regarding the issues of the previous methods (see Sec. 1), we carefully design a simple yet effective
motion diffusion model, namely MotionCLR, with fine-grained word-level text-motion correspon-
dence. The MotionCLR model is a U-Net-like architecture (Ronneberger et al., 2015). Here, we
name the down/up-sampling blocks in the MotionCLR as sampling blocks. Each sampling block
includes two CLR blocks and one down/up-sampling operation. In MotionCLR, the atomic block is
the CLR block, which is our key design. Specifically, a CLR block is composed of four modules,
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Figure 2: System overview of MotionCLR architecture. (a) The basic CLR block includes four
layers. (b) The sampling (a.k.a. Samp.) block includes two CLR blocks and one down/up-sampling
operation. (c) MotionCLR is a U-Net-like architecture, composed of several Sampling blocks.

• Convolution-1D module, a.k.a. Conv1d(·), is used for timestep injection, which is disentangled
with the text injection. The design principle here is to disentangle the text embeddings and the
timestep embeddings for explicit modeling for both conditions.

• Self-attention module is designed for learning temporal coherence between different motion
frames. Notably, different from previous works (Tevet et al., 2022b; Zhou et al., 2024; Shafir et al.,
2024), self-attention only models the correlation between motion frames and does not include
any textual inputs. The key motivation here is to separate the motion-motion interaction from the
text-motion interaction of traditional fashions (Tevet et al., 2022b).

• Cross-attention module plays a crucial role in learning text-motion correspondence in the CLR
block. It takes word-level textual embeddings of a sentence for cross-modality interaction, aiming
to obtain fine-grained text-motion correspondence at the word level. Specifically, the attention map
explicitly models the relationship between each frame and each word, enabling more fine-grained
cross-modality controlling (Detailed comparison with previous methods in Appendix C.3).

• FFN module works as an additional feature transformation and extraction (Dai et al., 2022; Geva
et al., 2021), which is a necessary component in transformer-based architectures.

In summary, in the basic CLR block, we model interactions between frames and cross-modal cor-
respondence, separately and explicitly. More detailed comparisons with previous work are in Ap-
pendix C.3. We analyze both self-attention and cross-attention of MotionCLR in following sections.

3.2 MATHEMATICAL PRELIMINARIES OF ATTENTION MECHANISM IN MOTIONCLR

The general attention mechanism has three key components, query (Q), key (K), and value (V),
respectively. The output X′ of the attention mechanism can be formulated as,

X′ = softmax(QK⊤/
√
d)V, (1)

where Q ∈ RN1×d, K,V ∈ RN2×d. Here, d is the embedding dimension of the text or one-frame
motion. In the following section, we take t = 0, 1, · · · , T as diffusion timesteps, and f = 1, 2, · · · , F
as the frame number of motion embeddings X ∈ RF×d. For convenience, we name S = QK⊤ as
the similarity matrix and softmax(QK⊤/

√
d) as the attention map in the following sections.

The self-attention mechanism uses different transformations of motion features X as inputs,
Q = XWQ, K = XWK , V = XWV , (2)

where Q,K,V ∈ RF×d, F = N1 = N2. We take a deep look at the formulation of the self-attention
mechanism. As shown in Eq. (1), the attention calculation begins with a matrix multiplication
operation, meaning the similarity (S = QK⊤ ∈ RF×F ) between Q and K. Specifically, for each
row i of S, it obtains the frame most similar to frame i. Here

√
d is a normalization term. After

obtaining the similarity for all frames, the softmax(·) operation is not only a normalization function,
but also works as a “soft” max(·) function for selecting the frame most similar to frame i. Assuming
the j-th frame is selected as the frame most similar to frame i with the maximum activation, the final
multiplication with V will approximately replace the motion feature Vj at the i-th row of X′. Here,
the output X′ is the updated motion feature. In summary, we have the following remark.
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(a)

(b)

(c)

(d)

Figure 3: Empirical study of attention mechanisms. We use “a person jumps.” as an example. (a)
Key frames of generated motion. (b) The root trajectory along the Y -axis (vertical). The character jumps on
∼ 15− 40f, ∼ 60− 80f, and ∼ 125− 145f, respectively. (c) The cross-attention between timesteps and words.
The “jump” word is highly activated aligning with the “jump” action. (d) The self-attention map visualization.
It is obvious that the character jumps three times. Different jumps share similar local motion patterns.

Remark 1. The self-attention mechanism measures the motion similarity of all frames and aims to
select the most similar frames in motion features at each place (Detailed diagram in Appendix C).

The cross-attention mechanism of MotionCLR uses the transformation of a motion as a query, and
the transformation of textual words as keys and values,

Q = XWQ, K = CWK , V = CWV , (3)

where C ∈ RL×d is the textual embeddings of L word tokens, Q ∈ RF×d, K,V ∈ RL×d. Note
that W⋆ in Eq. (2) and Eq. (3) are not the same parameters, but are used for convenience. As shown
in Eq. (3), K and V are both the transformed text features. Recalling Eq. (1), the matrix multiplication
operation between Q and K measures the similarity (S = QK⊤) between motion frames and words
in a sentence. Similar to that in self-attention, the softmax(·) operation works as a “soft” max(·)
function to select which transformed word embedding in V should be selected at each frame. This
operation models the motion-text correspondence explicitly. Therefore, we have the second remark.

Remark 2. The cross-attention first calculates the similarity matrix to determine which word (a.k.a.
value in attention) should be activated at the i-th frame explicitly. The final multiplication operation with
values places the semantic features of their corresponding frames. (Detailed diagram in Appendix C)

3.3 EMPIRICAL EVIDENCE ON UNDERSTANDING ATTENTION MECHANISMS

To obtain a deeper understanding of the attention mechanism and verify the mathematical analysis of
attention mechanisms, we provide some empirical studies on some cases. Due to the page limits, we
leave more visualization results for empirical evidence in Appendix D.

As shown in Fig. 3, we take the sentence “a person jumps.” as an example. Besides the
keyframe visualization (Fig. 3a), we also visualize the root trajectory along the Y -axis (vertical
height, in Fig. 3b). As can be seen in Fig. 3, the character jumps at ∼ 15 − 40f, ∼ 60 − 80f, and
∼ 125−145f, respectively. Note that, as shown in Fig. 3c, the word “jump” is significantly activated
aligning with the “jump” action in the self-attention map. This not only verifies the soundness of
the fine-grained text-motion correspondence modeling in MotionCLR, but also meets the theatrical
analysis of motion-text (Q-K) similarity. This motivates us to manipulate the attention map to control
when the action will be executed. The details will be introduced in Sec. 4.

We also visualize the self-attention map in Fig. 3d. As analyzed in Sec. 3.2, the self-attention map
evaluates the similarity between frames. As can be seen in Fig. 3d, the attention map highlights nine
areas with similar motion patterns, indicating three jumping actions in total. Besides the time areas
that the “jmup” word is activated are aligned with the jumping actions. The highlighted areas in the
self-attention map are of line shapes, indicating the taking-off, in-the-air, and landing actions of a
jump with different detailed movement patterns.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

le
ng

th
 o

f m
ot

io
n:

 F

length of text: L

revising attention value

(a) Motion (de-)emphasizing via
in/de-creasing cross-attention value.

le
ng

th
 o

f m
ot

io
n:

 F

length of text: L

replace
V (value)

reference attention map edited attention map

(b) In-place motion replacement
via replacing self-attention map.

le
ng

th
 o

f m
ot

io
n:

 F

length of text: L

shifting

(c) Motion sequence shifting via
shifting cross-attention map.

Figure 4: Motion editing via manipulating attention maps.

4 VERSATILE APPLICATIONS VIA ATTENTION MANIPULATIONS

Analysis in Sec. 3.2 has revealed the roles that attention mechanisms play in MotionCLR. In this
section, we will show versatile downstream tasks of MotionCLR via manipulating attention maps.

Motion emphasizing and de-emphasizing. In the text-driven motion generation framework, the
process is driven by the input text. As discussed in Sec. 3.2, the verb of the action will be significantly
activated in the cross-attention map when the action is executed. As shown in Fig. 4a, if we
increase/decrease the attention value of a verb in the cross-attention map, the corresponding action
will be emphasized/de-emphasized. Besides, this method can also be extended to the grounded
motion generation, which will be introduced in Sec. 6.

Motion erasing. Motion erasing is a special case of motion de-emphasizing. We treat it as a special
case of motion de-emphasizing. When the decreased (de-emphasized) cross-attention value of an
action is small enough, the corresponding action will be erased.

In-place motion replacement. In real scenarios, we would like to edit some local motion contents
of the generated result. Assuming we generate a reference motion at first, we would like to replace
one action in the reference motion with another in place. Therefore, the batch size of inference
examples is two during the inference stage, where the first is the reference motion and the other is the
edited motion. As discussed in Sec. 3.2, the cross-attention map determines when an action happens.
Motivated by this, we replace the cross-attention map of the edited motion as the one of the reference
motion. As shown in Fig. 4b, we use the replaced attention map to multiply the value matrix (text
features) to obtain the output.

Motion sequence shifting. It is obvious that the generated motion is a combination of different
actions along the time axis. Sometimes, users would like to shift a part of the motion along the
time axis to satisfy the customized requirements. As shown in Fig. 4c, we can shift the motion
sequentiality by shifting the self-attention map. As discussed in Sec. 3.2, self-attention is only
related to the motion feature without related to the semantic condition, which is our motivation on
manipulating the self-attention map. Thanks to the denoising process, the final output sequence
should be a natural and continuous sequence.

Example-based motion generation. As defined by Li et al. (2023b), example-based motion gener-
ation aims to generate novel motions referring to an example motion. In MotionCLR system, this
task is a special case of the motion sequence shifting. That is to say, we can shuffle the queries of the
self-attention map to obtain the diverse motions referring to the example.

Motion style transfer. As discussed in the technical details of the self-attention mechanism, the
values mainly contribute to the contents of motion and the attention map determines the selected
indices of motion frames. When synthesizing two motion sequences (M1 and M2 respectively), we
only need to replace Qs in M2 with that in M1 to achieve the style of M2 into M1’s. Specifically,
queries (Qs) in M2 determine which motion feature in M2 is the most similar to that in M1 at each
timestep. Accordingly, these most similar motion features are selected to compose the edited motion.
Besides, the edited motion is with the motion content of M2 while imitating the motion style of M1.

We leave more technical details and pseudo codes in Appendix F.

5 EXPERIMENTS
5.1 MOTIONCLR MODEL EVALUATION

The implementations of the MotionCLR are in Appendix E.1. We first evaluate the generation
performance of the MotionCLR. We extend the evaluation metrics of previous works (Guo et al.,
2022a). (1) Motion quality: FID is adopted as a metric to evaluate the distributions between the
generated and real motions. (2) Motion diversity: MultiModality (MModality) evaluates the diversity
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Methods R-Precision↑ FID↓ MM-Dist↓ Multi-Modality↑
Top 1 Top 2 Top 3

TM2T (2022b) 0.424±0.003 0.618±0.003 0.729±0.002 1.501±0.017 3.467±0.011 2.424±0.093

T2M (2022a) 0.455±0.003 0.636±0.003 0.736±0.002 1.087±0.021 3.347±0.008 2.219±0.074

MDM (2022b) - - 0.611±0.007 0.544±0.044 5.566±0.027 2.799±0.072

MLD (2023b) 0.481±0.003 0.673±0.003 0.772±0.002 0.473±0.013 3.196±0.010 2.413±0.079

MotionDiffuse (2024b) 0.491±0.001 0.681±0.001 0.782±0.001 0.630±0.001 3.113±0.001 1.553±0.042

T2M-GPT (2023a) 0.492±0.003 0.679±0.002 0.775±0.002 0.141±0.005 3.121±0.009 1.831±0.048

ReMoDiffuse (2023b) 0.510±0.005 0.698±0.006 0.795±0.004 0.103±0.004 2.974±0.016 1.795±0.043

MoMask (2024a) 0.521±0.002 0.713±0.002 0.807±0.002 0.045±0.002 2.958±0.008 1.241±0.040

MotionCLR 0.542±0.001 0.733±0.002 0.827±0.003 0.099±0.003 2.981±0.011 2.145±0.043

MotionCLR∗ 0.544±0.001 0.732±0.001 0.831±0.002 0.269±0.001 2.806±0.014 1.985±0.044

Table 1: Comparison with different methods on the HumanML3D dataset. The “∗” notation denotes the
DDIM sampling inference design choice and the other is the DPM-solver sampling choice.

(a) The height of the character’s root. The highlighted
area is obvious when comparing different weights.

↓0.05

↓0.10

↑0.50

↑0.15

vinilla

(b) Visualization of the edited motions on different
(de-)emphasizing weight settings.

Figure 5: Motion (de-)emphasizing. Different weights of “jump” (↑ or ↓) in “a man jumps.”.

based on the same text and diversity calculates variance among features. (3) Text-motion matching:
Following Guo et al. (2022a), we calculate the R-Precision to evaluate the text-motion matching
accuracy and MM-Dist to show the distance between texts and motions. The results are shown
in Tab. 1, indicating a comparable performance with the state-of-the-art method. Especially, our
result has a higher text-motion alignment over baselines, owing to the explicit fine-grained cross-
modality modeling. As shown in Tab. 1, both DDIM and DPM-solver sampling work consistently
well compared with baselines. We leave more visualization and qualitative results in Appendix A.

5.2 INFERENCE ONLY MOTION EDITING

weight TMR-sim. (%) FID
- 0.60 52.059 0.776
- 0.50 52.411 0.394
- 0.40 53.294 0.235
- 0.30 53.364 0.225

baseline 53.956 0.217
+ 0.30 54.311 0.210
+ 0.40 54.496 0.208
+ 0.50 54.532 0.223
+ 0.60 54.399 0.648

Table 2: Abaltion on motion
(de-)emphasizing.

Motion (de-)emphasizing and motion erasing. For quantitative analy-
sis, we construct a set of prompts to synthesize motions, annotating the
key verbs in the sentence by human researchers. The metric here is the
TMR similarity (TMR-sim.) (Petrovich et al., 2023) used for measuring
the text-motion similarity (between 0 and 1, with % in table). The
comparison in Tab. 2 shows the de-emphasizing makes the motion less
similar to text, and emphasizing ones are more aligned at the beginning
of increasing weights. When weights are too large, the attention maps
are corrupted, resulting in artifacts. Therefore, the suggested value
of the weights ranges from −0.5 to +0.5. We mainly provide the visualization results of motion
(de-)emphasizing in Fig. 5. As shown in Fig. 5, the edited results are aligned with the manipulated
attention weights. Especially, as can be seen, in Fig. 5a, the height of the “jump” action is accurately
controlled by the cross-attention weight of the word “jump”. For an extremely large adjusting weight,
e.g. ↑1.0, the times of the jumping action also increase. This is because the low-activated timesteps of
the vanilla generated motion might have a larger cross-attention value to activate the “jump” action.
As motion erasing is a special case of motion de-emphasizing, we do not provide more quantitative
on this application. We provide some visualization results in Fig. 6. As can be seen in Fig. 6a, the
second jumping action is erased. Besides, the “waving hand” case shown in Fig. 6b shows that the
final 1/3 waving action is also removed. More experiments are in Appendix A.1 and A.2.

In-place motion replacement. Different from naïve replacing prompts for motion replacement,
in-place motion replacement not only replaces the original motion at the semantic level, but also needs
to replace motions at the exact temporal place. Fig. 7a and Fig. 7b show the root height trajectory and
the root horizontal velocity, respectively. In this case, the edited and original motion share the same
time zone to execute the action. Besides, the edited motion is semantically aligned with the “walk”.
Fig. 7c also shows results of replacing “runs” as“jumps” without changing the sitting action.
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(a) “a man jumps.” case. The second jumping action is erased.

(b) “waving hand” case. The final 1/3 waving action is removed.
Figure 6: Motion erasing results. Case study of “a man jumps.” and “waving hand” cases.

(a) Root height and the motion of “a man
jumps.” before editing.

(b) Root velocity and motion visualization of the edited “a man
jumps.”→“a man walks.” motion.

a man jumps and then sits.a man runs and then sits.

(c) Motion in-place replacement results of a motion including multiple actions.
Figure 7: In-place motion replacement. Replacing the “jumps” in “a man jumps.” as “walks”, the
edited motion and the vanilla motion share the same temporal area of the action execution.

(a) Prompt: “a person walks straight and then

waves.” Original (blue) vs. shifted (red) motion.
(b) Prompt: “a man gets up from the ground.”
Original (blue) vs. shifted (red) motion.

Figure 9: Comparison between original and shifted motions. Time bars are shown in different colors. (a)
The original figure raises hands after the walking action. The shifted one has the opposite sequentiality. (b) The
key squatting action is shifted to the end of the sequence, and the standing-by action is shifted to the beginning.

Motion sequence shifting. Here, we provide some comparisons between the original motion and
the edited one. In Fig. 9, we take “ ” and “ ” to represent different time bars, whose orders
represent the sequentially. As can be seen in Fig. 9a, the execution of waving hands is shifted to the
beginning of the motion. Besides, as shown in Fig. 9b, the squatting action has been moved to the
end of the motion. These results show that the editing of the self-attention map sequentiality has an
explicit correspondence with the editing motion sequentially. More results are in Appendix A.6.

80 60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

80
generated
example

Figure 8: t-SNE visualization of different
example-based generated results. Different
colors imply different driven examples.

Example-based motion generation. The example-based
motion generation (Li et al., 2023b) task has two basic
requirements. (1) The first one is the generated motions
should share similar motion textures (Li et al., 2002) with
the example motion. We observe the high-dimension struc-
ture of motions via dimensionality reduction. As the t-SNE
visualization results shown in Fig. 8, generated motions
driven by the same example are similar to the given exam-
ple (in the same color). (2) Besides, different generated
motions driven by the same example should be diverse. As
shown in Fig. 10, these generated results are diverse not
only in local motions (Fig. 10a) but also in the global trajectory (Fig. 10b). Furthermore, results
in Fig. 10 also share the similar motion textures. We leave more visualization results in Appendix A.7.

Motion style transfer. As shown in Fig. 11, in the MotionCLR framework, the style reference
motion provides style and the content reference motion provides keys and values. As can be seen
in Fig. 11, all edited results are well-stylized with style motions and keep the main movement content
with the content reference.
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(a) Examples (blue) and generated (red) motions. (b) Root trajectory visualization.
Figure 10: Diverse generated motions driven by the same example. Prompt: “a person steps
sideways to the left and then sideways to the right.”. (a) The diverse generated mo-
tions driven by the same example motion share similar movement content. (b) The root trajectories of diverse
motions are with similar global trajectories, but not the same.

style reference content reference transferred result

(a) Style reference: “the person dances very happily”, content reference: “the man is
walking”. The transferred result shows a figure walking in a back-and-forth happy pace.

style reference content reference transferred result

(b) Style reference: a man is doing hip-hop dance”, Content reference: a person runs
around a circle”. The stylized result shows a running motion with bent hands, shaking left and right.
Figure 11: Motion style transfer results. The style reference, content references, and the transferred results are
shown from left to right for each case.

5.3 ABLATION STUDY

Ablation R-Precision↑ FID↓
Top 1 Top 2 Top 3

(1) 0.512 0.705 0.792 0.544
(2) 0.509 0.703 0.788 0.550

MotionCLR 0.544 0.732 0.831 0.269

Table 3: Ablation studies between different
technical design choices.

We provide some ablation studies on some technical de-
signs. (1) The setting w/o separate word modeling shows
poorer qualitative results with the w/ separate word setting.
The separate word-level cross-attention correspondence
benefits better text-to-motion controlling, which is critical
for motion fine-grained generation. (2) The setting of in-
jecting text tokens before motion tokens performs worse
than the MotionCLR. This validates the effectiveness of
introducing the cross-attention for cross-modal correspondence. The ablation studies additionally
verify the basic motivation of modeling word-level correspondence in MotionCLR.

5.4 ACTION COUNTING FROM ATTENTION MAP

er
ro

r 
ra

te
 (
%
)

Figure 12: Action counting error rate com-
parison. Root trajectory (Traj.) vs. attention
map (Ours). “σ” is the smoothing parameter.

As shown in Fig. 3, the number of executed actions in a
generated motion sequence can be accurately calculated
via the self-attention map. We directly detect the number
of peaks in each row of the self-attention map and finally
average this of each row. In the technical implementa-
tion, to avoid sudden peaks from being detected, we apply
average downsampling and Gaussian smoothing (parame-
terized by standard deviation σ). We leave more technical
details in Appendix G.

We construct a set of text prompts corresponding to dif-
ferent actions to perform the counting capability via the
self-attention map. The counting number of actions is
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vinilla 
result

edited 
retuslt

Figure 13: Comparison between w/ vs. w/o grounded motion generation settings. The root height and motion
visualization of the textual prompt “a person jumps four times”.

labeled by professional researchers. The details of the evaluation set are detailed in Appendix E.3. As
the “walking” action is composed of sub-actions of two legs, the atomic unit of this action counting is
set as 0.5. We compare our method to counting with the vertical root trajectory (Traj.) peak detection.
As shown in Fig. 12, counting with the self-attention map mostly works better than counting with root
trajectory. Both settings use Gaussian smoothing to blur some jitters. Our method does not require
too much smoothing regularization due to the smoothness of the attention map, while counting with
root trajectory needs this operation. This case study reveals the effectiveness of understanding the
self-attention map in MotionCLR.

6 FAILURE CASES ANALYSIS AND CORRECTION

There are few generative methods that can escape the curse of hallucination. In this section, we
will discuss some failure cases of our method and analyze how we can refine these results. The
hallucination of counting is a notoriously tricky problem for generative models, attracting significant
attention in the community and lacking a unified technical solution. Considering that this problem
cannot be thoroughly resolved, we try to partially reveal this issue by additionally providing temporal
grounds. For example, if the counting number of an action is not aligned with the textual prompt, we
can correct this by specifying the temporal grounds of actions. Technically, the temporal mask can be
treated as a sequence of weights to perform the motion emphasizing and de-emphasizing. Therefore,
grounded motion generation can be easily achieved by adjusting the weights of words.

Specifically, we show some failure cases of our method. As shown in Fig. 13, the generated result
of “a person jumps four times” fails to show four times of jumping actions, but seven
times. To meet the requirement of counting numbers in the textual prompts, we additionally input a
temporal mask, including four jumping timesteps, to provide temporal grounds. From the root height
visualization and the motion visualization, the times of the jumping action have been successfully
corrected from seven to four. Therefore, our method is promising for grounded motion generation to
reveal the hallucination of deep models.

Moreover, other editing fashions are also potential ways to correct hallucinations of generated results.
For example, the motion sequence shifting and in-place motion replacement functions can be used
for correcting sequential errors and semantic misalignments, respectively.

7 CONCLUSION AND FUTURE WORK

Conclusion. In this work, we propose a diffusion-based motion generation model, MotionCLR.
With this model, we carefully clarify the self-attention and the cross-attention mechanisms in the
MotionCLR. Based on both theoretical and empirical analysis of the attention mechanisms in
MotionCLR, we developed versatile motion editing methods. Additionally, we not only verify the
action counting ability of attention maps, but also show the potential of motion corrections. We build
a user interface in Appendix B to demonstrate how can our method support interactive editing.

Limitation and future work. As shown in Sec. 6, our model can also not escape the hallucination
curse of generative models. Therefore, we leave the grounded motion generation as future work.
As discussed in Lu et al. (2024), the CLIP model used in MotionCLR is still a bit unsatisfactory.
Therefore, we will provide token-level text-motion alignment encoders to provide textual conditions.
Similar to other generative models, our method also meets some issues on some extreme and OOD
examples, which will be resolved by our future scalable generation solution.

Broader impact statement. The development of MotionCLR, a diffusion-based motion generation
model, has the potential to impact various fields of motion synthesis and editing significantly.
However, the complexity of the MotionCLR and its performance limitations under certain conditions
may lead to errors or inaccuracies in practical applications. This could result in negative consequences
in critical fields such as humanoid simulation and autonomous driving. Therefore, it is necessary to
further optimize the model and carefully assess its reliability before widespread deployment.
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A SUPPLEMENTAL EXPERIMENTS

A.1 WHAT IS THE SELF-ATTENTION MAP LIKE IN MOTION (DE-)EMPHASIZING?

This experiment is an extension of the experiment shown inm Fig. 5.

We provide more examples of how increasing or decreasing weights impact motion (de-)emphasizing
and erasing. As seen in Fig. 14, the attention maps illustrate that reducing the weights (e.g., ↓ 0.05
and ↓ 0.10) results in less activations, while increasing weights (e.g., ↑ 0.33 and ↑ 1.00) leads to more
activations. The vanilla map serves as a reference without any adjustments. However, as indicated,
excessively high weights such as ↑ 1.00 introduce some artifacts, emphasizing the need for careful
tuning of weights to maintain the integrity of the generated motion outputs. This demonstrates the
importance of careful weight tuning to achieve the desired motion emphasis or erasure.

Compared to Fig. 14a, Fig. 14b shows two fewer trajectories. This reduction is due to the de-
emphasizing effect, where the character’s second jump was not fully executed, resulting in just an arm
motion (Fig. 5b). Consequently, the two actions became distinguishable, leading to fewer detected
two trajectories. In Fig. 14c, the second jumping has been completely erased, resulting in only one
trajectory, further demonstrating how de-emphasizing significantly affects motion execution.

(f) ↑1.00(e) ↑0.33

(b) ↓0.05 (c) ↓0.10(a) vinilla

(d) vinilla

Figure 14: Additional visualization results for different (de-)emphasizing weights. The self-
attention maps show how varying the different weights (e.g., ↓ 0.05, ↓ 0.10, ↑ 0.33, and ↑ 1.00)
affect the emphasis on motion.
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A.2 WHAT IS THE DIFFERENCE BETWEEN MOTION (DE-)EMPHASIZING IN MOTIONCLR AND
ADJUSTING CLASSIFIER-FREE GUIDANCE WEIGHTS?

In this part, we would like to discuss the difference between reweighting the cross-attention map and
adjusting classifier-free guidance weights.

As shown in Tab. 4, we ablate how different ws affect the results. The results suggest that adjustment
of w impacts the quality of generated results, making w = 2.5 an effective choice. When w increases,
the text-motion alignment increases consistently, and the generation quality (FID) requires a trade-off.

w 1 1.5 2 2.5 3 3.5
FID 0.801 0.408 0.318 0.217 0.317 0.396

TMR-sim. (%) 51.987 52.351 53.512 53.956 54.300 54.529

Table 4: Differnent editing results when changing ws. In MotionCLR, w = 2.5 is the default
design choice for the denoising sampling. All TMR-sim. metrics are timed by 100.

However, as the classifier-free guidance mainly works for the semantic alignment between text and
motion, it cannot control the weight of each word. We take the “a man jumps.” as an example
for a fair comparison, which is the case used in the main text1. As shown in Fig. 15, the generated
motions with different w values illustrate that w cannot influences both the height and frequency of
the jump. Nevertheless, the classifier-free guidance is limited in its ability to control more detailed
aspects, such as the exact height and number of actions. Therefore, while w improves text-motion
alignment, it cannot achieve fine-grained adjustments.

Figure 15: The effect of varying w in classifier-free guidance on generated motions. While
changing w influences the general alignment between the text “a man jumps.” and the generated
motion, it does not provide precise control over finer details like jump height and frequency.

1Suggested to refer to Fig. 5 for comparison.
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A.3 MORE EXPERIMENTAL RESULTS OF IN-PLACE MOTION REPLACEMENT

Semantic similarity of edited motions. In the in-place motion replacement application, we measure
the editing quality and the text-motion similarity. To verify this, we construct a set of prompts, tagged
with the edited words. In Tab. 5, we compare our method (ours replaced) with the unedited ones
(unreplaced) and the generated motions directly changing prompts (pseudo-GT). As can be seen
in Tab. 5, the motions of the three groups have similar qualities. Besides, the edited motion is similar
to the pseudo-GT group, indicating the good semantic alignment of the edited results.

FID ↓ TMR-sim.→
direct (pseudo GT) 0.315 0.543

unreplaced 0.325 0.567
unreplaced (unpaired T-M) 0.925 0.490

ours replaced 0.330 0.535

Table 5: Comparison between the generation result with directly changing prompts and the in-
place replacement in MotionCLR. The semantics of editing results are similar to the motion directly
generated by the changed prompt. The setting difference between “unreplaced” with “unreplaced
(unpaired T-M)” is that the latter texts are edited sentences. All TMR-sim. are not multiplied by 100.

Ablation study of different attention layers. To further explore the impact of attention manipulation
in in-place motion replacement, we conduct an ablation study by varying the layers in MotionCLR
for manipulation, shown in Tab. 6. The table lists the results for different ranges of manipulated
attention layers. It can be observed that manipulating different attention layers influences the editing
quality and the semantic similarity (TMR-sim.). In particular, manipulating the layers from 1 to 18
achieves the best semantic consistency, demonstrating the effectiveness of editing across multiple
attention layers for maintaining semantic alignment in the edited motion. The less effectiveness of
manipulating middle layers is mainly due to the fuzzy semantics present in the middle layers of the
U-Net. As these layers capture more abstract with reduced temporal resolution, the precise details
and localized information become less distinct. Consequently, manipulating these layers has a limited
impact on the final output, as they contribute less directly to the fine-grained details for the task.

begin end FID↓ TMR-sim.↑
8 11 0.339 0.472
5 14 0.325 0.498
1 18 0.330 0.535

Table 6: The ablation study of manipulating different attention layers. The “begin” and “end”
represent the beginning and the final layer for manipulation. All TMR-sim. are not multiplied by 100.
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A.4 COMPARISON WITH MANIPULATION NOISY MOTIONS IN THE DIFFUSION PROCESS

As the diffusion denoising process can manipulate the motion directly in the denoising process,
this is a baseline for comparison with our motion shifting and example-based motion generation
applications. Here, for convenience, we only take the example-based motion generation application
as an example for discussion. In this section, we conduct a comparison between our proposed editing
method and diffusion manipulation in the motion space, focusing on the FID and diversity metrics.
The 200 samples used in this experiment were constructed by researchers. As depicted in Tab. 7,
the “Diff. manipulation” serves for our comparison. Our method achieves an FID value of 0.427,
indicating a relatively high generation quality, while the “Diff. manipulation” achieves a higher
FID of 0.718, demonstrating worse fidelity. Conversely, in terms of diversity, the “MotionCLR
manipulation” exhibits a higher diversity (Div.) score of 2.567 compared to the 1.502 of the “Diff.
manipulation.” These results verify our method is better than manipulating noisy motions in the
denoising process. The main reason for the better quality and diversity mainly relies on the many
times of manipulation of self-attention, but not the motion. Directly manipulating the motion results
in some jitters, making more effort for models to smooth. Besides, the shuffling times of manipulating
the self-attention maps are higher than the baseline, contributing to the better diversity of our method.

FID ↓ Div. ↑
Diff. manipulation 0.718 1.502
MotionCLR manipulation 0.427 2.567

Table 7: Comparison on FID and diversity values with manipulating self-attention in the motion
space of the denoising process.
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A.5 MOTION GENERATION RESULT VISUALIZATION

We randomly chose some examples of the motion generation results in Fig. 16. The visualization
results demonstrate that MotionCLR can generate coherent and realistic human motions based on
diverse textual descriptions. The generated sequences capture various actions ranging from simple
gestures to more complex movements, indicating the capability to handle a wide range of human
behaviors. Overall, the qualitative results suggest that MotionCLR effectively translates textual
prompts into human-like motions with a clear understanding of texts. This demonstrates the potential
for applications in scenarios requiring accurate motion generation based on natural language inputs.

a person walks forward, turns 
and then sits on a chair.

a person side steps to their left, 
before side stepping to their right.

person takes one step backward 
to their left

person walks forwards slowly 
and normally without swinging 

arms

a person waves, takes a step back a person holds their arms out in 
front of them, squats, then 
swivels from side to side

a person takes a few steps, 
squats twice, then turns and 

walks back

a person is waving with his hand. a man kicks with something or 
someone with his right leg.

someone seems to be looking for 
a balance not to fall

a person appears to be hitting a 
ball with their right hand.

a man walks clockwise in a 
circle

Figure 16: Human motion generation result of MotionCLR.
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A.6 MORE VISUALIZATION RESULTS OF MOTION SEQUENCE SHIFTING

We present further comparisons between the original and edited motions in Fig. 17. The time bars,
indicated by “ ” and “ ,” represent distinct phases of the motion, with their sequential
arrangement reflecting the progression of the motion over time.

In Fig. 17a, we observe that the action of crossing the obstacle, originally positioned earlier in
the sequence, is shifted towards the end in the edited version. This adjustment demonstrates the
model’s capacity to rearrange complex motions effectively while maintaining coherence. Similarly,
Fig. 17b shows the standing-by action being relocated to the end of the motion sequence. This change
emphasizes the model’s ability to handle significant alterations in the temporal arrangement of actions.
These results collectively indicate that our editing process, driven by the attention map sequentiality,
exhibits a high level of correspondence with the intended edits to the motion’s sequence. The model
accurately captures and replicates the desired modifications, ensuring that the restructured motion
retains a natural and logical flow, thereby validating the effectiveness of our motion editing approach.

(a) Prompt: “ the person is walking
forward on uneven terrain.” Original
(blue) vs. shifted (red) motion.

(b) Prompt: “a person walks then
jumps.” Original (blue) vs. shifted (red)
motion.

Figure 17: Comparison between original motion and the shifted motion. The shifted time bars are shown in
different colors. (a) The original figure crosses the obstacle after the walking action. The shifted motion has the
opposite sequentiality. (b) The key walking and jumping actions are shifted to the beginning of the sequence,
and the standing-by action is shifted to the end.
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A.7 MORE VISUALIZATION RESULTS ON EXAMPEL-BASED MOTION GENERATION

We provide some visualization results to further illustrate the effectiveness of our approach in gener-
ating diverse motions that adhere closely to the given prompts. In Fig. 18, the example motion of “a
person kicking their feet” is taken as the reference, and multiple diverse kick motions
are generated. These generated motions not only exhibit variety but also maintain key characteristics
of the original example. Similarly, in Fig. 19, the example motion of “a person walking in
a semi-circular shape while swinging arms slightly” demonstrates the capa-
bility to generate diverse walking motions that maintain the distinct features of the source motion. The
generated trajectories, as visualized in Fig. 18b and Fig. 19b, show that the diverse motions follow
different paths while retaining similarities with the original motion, confirming the effectiveness of
our method.

(a) The example motion (blue) and
the generated diverse motion (red).

(b) The trajectory visualizations of the example motion
and diverse motions.

Figure 18: Diverse generated results of blue example generated by the prompt “a person
kicks their feet.”. The example-based generated kick motions are diverse and similar to
the source example.

(a) The example motion (blue) and
the generated diverse motion (red).

(b) The trajectory visualizations of the example motion
and diverse motions.

Figure 19: Diverse generated results of blue example generated by the prompt “person walks
in a semi circular shape while swinging arms slightly.”. The example-
based generated walking motions are diverse and similar to the source walking example.
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A.8 DETAILED VISUALIZATION RESULTS OF GROUNDED MOTION GENRATION

(a) The root height comparison. The red area denotes the timesteps to execute actions.

vinilla 
result

edited 
retuslt

(b) The motion visualization. The vanilla generated result (blue) vs. edited result (red) w/ temporal grounds.

Figure 20: Comparison between w/ vs. w/o grounded motion generation settings. The root height
and motion visualization of the textual prompt “a person jumps four times”.

As depicted in Fig. 20, we provide a detailed comparison between the motion generation results
with and without grounded settings. While the main text (Sec. 6) has already discussed the general
differences between these settings, here in the appendix, we further extract and visualize the root
height trajectory separately for a clearer and more detailed comparison. This approach helps in
highlighting the effectiveness of our method in addressing motion hallucination issues and ensuring
that the generated movements closely align with the given textual prompts.

In Fig. 20a, the root height comparison distinctly shows the difference between the edited and vanilla
results. The red-shaded regions indicate the time steps where the specified actions (“jumps four
times”) should occur. Without grounded motion generation, the vanilla result tends to generate
more than the required number of jumps, resulting in motion hallucination. However, with the
incorporation of temporal grounding, our edited result accurately performs the action four times,
aligning with the textual prompt. Fig. 20b further visualizes the motion sequences. It is evident that
the temporal grounding guides the motion generation process, ensuring consistency with the input
prompt. The edited result follows the correct sequence of actions, demonstrating the advantage of
using grounded motion settings to avoid common hallucinations in generative models.

Overall, these detailed visualization results confirm the importance of incorporating temporal ground-
ing into motion generation tasks, as it helps mitigate hallucinations in generative models, ensuring
the generated motions are more faithfully aligned with the intended textual descriptions.
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B USER INTERFACE FOR INTERACTIVE MOTION GENERATION AND EDITING

To have a better understanding of our task, we build a user interface with Gradio (Abid et al., 2019).
We introduce the demo as follows.

In Fig. 21, we illustrate the steps involved in generating and visualizing motions using the interactive
interface. Fig. 21a displays the initial step where the user provides input text such as “a man jumps”
and adjusts motion parameters. Once the settings are finalized, the system begins processing the
motion based on these inputs, as seen in the left panel. Fig. 21b showcases the generated motion
based on the user’s input. The interface provides a rendered output of the skeleton performing the
described motion. This presentation allows users to easily correlate the input parameters with the
resulting animation. The generated motion can further be edited by adjusting parameters such as the
length of the motion, emphasizing or de-emphasizing certain actions, or replacing actions altogether,
depending on user requirements. This process demonstrates how the interface facilitates a workflow
from input to real-time motion visualization.

(a) Motion generation interface example. (b) Generated Motion Example

Figure 21: Motion generation and its output examples.

The logical sequence of operations is as follows:

1. Input the text: Users start by entering text describing the motion (e.g., “a man jumps.”) or
set the frames of motions to generate (as shown in Fig. 21a).

2. Generate the initial motion: The system generates the corresponding skeleton motion sequence
based on the input text (as shown in Fig. 21b).

3. Motion editing: We show some downstream tasks of MotionCLR here.
• Motion emphasizing/de-emphasizing: Users can select a specific word from the text (e.g.,

“jumps”) and adjust its emphasis using a weight slider (range [-1, 1]) (as seen in Fig. 22a). For
example, setting the weight to 0.3 will either increase the jump motion’s intensity.

• In-place replacement: If users want to change the action, they can select the “replace” op-
tion. For example, replacing “jumps” with “walks” will regenerate the motion, showing a
comparison between the original and new edited motions (as shown in Fig. 22b).

• Example-based motion generation: Users can generate motion sequences based on predefined
examples by setting parameters like chunk size and diffusion steps. After specifying the number
of motions to generate, the system will create multiple variations of the input motion, providing
diverse options for further refinement (as illustrated in Fig. 22d). The progress bars of the
process are visualized in Fig. 22c.

We leave a interactive_demo.mp4 in the supplementary for demonstration.
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(a) Motion (de-)Emphasizing interface. (b) In-place replacement example.

(c) Example-based motion generation progress. (d) Example-based motion generation results.

Figure 22: Different interfaces and supporting functions for interactive motion editing.
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C DETAILED DIAGRAM OF ATTENTION MECHANISMS

C.1 MATHEMATICAL VISUALIZATION OF SELF-ATTENTION MECHANISM

In the main text (Eq. (2)), we introduced the self-attention mechanism of MotionCLR, which utilizes
different transformations of motion as inputs. The motion embeddings serve as both the query (Q),
key (K), and value (V), capturing the internal relationships within the sequence of motion frames.

motion embs. (F x d), F=6motion embs. (F x d), F=6

Q (motions) KT (motions) similarity

F

F

d

d F

F

softmax

soft max

At timestep f, which motion 
feature should be selected?

(a) S = QK⊤.

similarity

soft max

At timestep f, which motion 
feature should be selected?

QKT

motion embs. (F x d), F=6

V (motions)

F

d

X’

F

F

(b) X′ = softmax(S/
√
d)V.

Figure 23: Mathematical Visualization of Self-attention Mechanism. This figure takes F = 6 as
an example. (a) The similarity calculation with queries and keys (different frames). (b) The similarity
matrix picks “value”s of the attention mechanism and updates motion features.

Fig. 23 provides a detailed mathematical visualization of this process:

(1) Similarity Calculation. In the first step, the similarity between the motion embeddings at
different frames is computed using the dot product, represented by S = QK⊤. This measurement
reflects the internal relationship/similarity between different motion frames within the sequence.
Fig. 23a illustrates how the softmax(·) operation is applied to the similarity matrix to determine
which motion feature should be selected at a given frame f .

(2) Feature Updating. Next, the similarity scores are used to weight the motion embeddings (V)
and generate updated features X′, as shown by the equation X′ = softmax(QK⊤/

√
d)V. Here,

the similarity matrix applies its selection of values (V) to update the motion features. This process
allows the self-attention mechanism to dynamically adjust the representation of each motion frame
based on its relevance to other frames in the sequence.

In summary, the self-attention mechanism aims to identify and emphasize the most relevant mo-
tion frames in the sequence, updating the features to enhance their representational capacity for
downstream tasks. The most essential capability of cross-attention is to order the motion features.

C.2 MATHEMATICAL VISUALIZATION OF CROSS-ATTENTION MECHANISM

In the main text (Eq. (3)), we introduced the cross-attention mechanism of MotionCLR, which utilizes
the transformation of motion as a query (Q) and the transformation of text as a key (K) and value
(V) to explicitly model the correspondence between motion frames and words.

Fig. 24 provides a detailed mathematical visualization of this process:

(1) Similarity Calculation. In the first step, the similarity between the motion embeddings (Q)
with F frames and the text embeddings (K) with N words is computed through the dot product,
represented by S = QK⊤. This similarity measurement reflects the relationship between motion
frames and words. Fig. 24a shows how the softmax(·) operation is applied to the similarity matrix
to determine which word should be activated at a given frame f .

(2) Feature Updating. Next, the similarity scores are used to weight the text embeddings (V) and
generate updated features X′, as shown by the equation X′ = softmax(QK⊤/

√
d)V. Here, the

similarity matrix applies its selection of values (V) to update the features. This process establishes
an explicit correspondence between the frames and specific words.

In summary, the similarity calculation process determines which frame(s) should be selected, and the
feature updating process (multiplication with V) is the execution of the frame(s) placement.
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Figure 24: Mathematical Visualization of Cross-attention Mechanism. This figure takes F = 6
and N = 5 as an example. (a) The similarity calculation with queries and keys. (b) The similarity
matrix picks “value”s of the attention mechanism and updates features.

C.3 THE BASIC DIFFERENCE WITH PREVIOUS DIFFUSION-BASED MOTION GENERATION
MODELS IN CROSS-MODAL MODELING

As discussed in the main text (see Sec. 1), despite the progresses in human motion generation (Zhang
et al., 2024d; Cai et al., 2024; Zhang et al., 2024c; Guo et al., 2024c; Raab et al., 2024b; Kapon et al.,
2024; Cohan et al., 2024; Fan et al., 2024; Xu et al., 2024; 2023a;b; Yao et al., 2022; Feng et al.,
2023; Ao et al., 2023; Yao et al., 2024; Zhang et al., 2024f; Liu et al., 2010; Aberman et al., 2020a;
Karunratanakul et al., 2024; Li et al., 2024; 2023a; Gong et al., 2023; Zhou & Wang, 2023; Zhong
et al., 2023; Zhu et al., 2023; Athanasiou et al., 2023; Zhong et al., 2024; Guo et al., 2024b; Zhang
et al., 2024c; Athanasiou et al., 2024; Zhao et al., 2023; Zhang et al., 2022; 2020; Diomataris et al.,
2024; Pinyoanuntapong et al., 2024; Diller & Dai, 2024; Peng et al., 2023; Hou et al., 2023; Liu
et al., 2023; Cong et al., 2024; Cui et al., 2024; Jiang et al., 2022; Kulkarni et al., 2024; Tessler et al.,
2024; Liang et al., 2024; Ghosh et al., 2023; Wu et al., 2024), there still lacks a explicit modeling
of word-level cross-modal correspondence in previous work. To clarify this, our method models a
fine-grained word-level cross-modal correspondence.

AR Transformer

text

EOS

Denoising Transformer encoder

text

��

��−1 �

�

text

��

cross-attention

a

man

walks

to

right

(a) MDM-like fashion (b) Auto-regressive fashion (c) Word-level correspondence

��−1

Figure 25: Comparison with previous diffusion-based motion generation models. (a) MDM-like
fashion: Tevet et al. (2022b) and its follow-up methods treat text embeddings as a whole and mix
them with motion representations using a denoising Transformer. (b) Auto-regressive fashion: Zhang
et al. (2023a) and its follow-up methods concatenate the text with the motion sequence and feed them
into an auto-regressive transformer without explicit correspondence modeling. (c) Our proposed
method establishes fine-grained word-level correspondence using cross-attention mechanisms.

As illustrated in Fig. 25, the major distinction between our proposed method and previous diffusion-
based motion generation models lies in the explicit modeling of word-level cross-modal correspon-
dence. In the MDM-like fashion Tevet et al. (2022b) (see Fig. 25a), previous methods usually utilize
a denoising transformer encoder that treats the entire text as a single embedding, mixing it with
the motion sequence. This approach lacks the ability to capture the nuanced relationship between
individual words and corresponding motion elements, resulting in an over-compressed representation.
Although we witness that Zhang et al. (2024b) also introduces cross-attention in the motion generation
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process, it still faces two problems in restricting the fine-grained motion editing applications. First
of all, the text embeddings are mixed with frame embeddings of diffusion, resulting in a loss of
detailed semantic control. Our approach disentangles the diffusion timestep injection process in
the convolution module to resolve this issue. Besides, the linear cross-attention in MotionDiffuse
is different from the computation process of cross-attention, resulting in a lack of explanation of
the word-level cross-modal correspondence. The auto-regressive (AR) fashion (Zhang et al., 2023a)
(Fig. 25b) adopts a simple concatenation of text and motion, where an AR transformer processes
them together. However, this fashion also fails to explicitly establish a fine-grained correspondence
between text and motion, as the AR transformer merely regards the text and motion embeddings as
one unified sequence.

Our approach (shown in Fig. 25c) introduces a cross-attention mechanism that explicitly captures
the word-level correspondence between the input text and generated motion sequences. This allows
our model to maintain a clear and interpretable mapping between specific words and corresponding
motion patterns, significantly improving the quality and alignment of generated motions with the
textual descriptions. By integrating such a word-level cross-modal modeling technique, our method
not only achieves more accurate and realistic motion generation but also supports fine-grained word-
level motion editing. This capability enables users to make precise adjustments to specific parts of
the generated motion based on textual prompts, addressing the critical limitations present in previous
diffusion-based motion generation models and allowing for more controllable and interpretable
editing at the word level.
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D MORE VISUALIZATION RESULTS OF EMPIRICAL EVIDENCE

In the main text, we introduced the foundational understanding of both cross-attention and self-
attention mechanisms, emphasizing their ability to capture temporal relationships and dependencies
across motion sequences. As a supplement, we provide a new, more detailed example here. As shown
in Fig. 26, this visualization illustrates how different attention mechanisms respond to a complex
sequence involving both walking and jumping actions. Specifically, we use green dashed boxes to
highlight the “walk” phases and red dashed boxes to indicate the “jump” phases. This allows us to
clearly distinguish the temporal patterns associated with each action. Besides, we observed that the
word “jump” reaches its highest activation during the crouching phase, which likely correlates with
this moment being both the start of the jumping action and the “power accumulation phase”. This
suggests that the attention mechanism accurately captures the preparatory stage of the movement,
highlighting its capability to recognize the nuances of motion initiation within complex sequences.
The cross-attention map effectively aligns key action words like “walk” and “jump” with their
respective motion segments, while the self-attention map reveals repeated motion patterns and
similarities between the walking and jumping cycles.

(a) Horizontal distance

(b) Vertical height

(c) Cross-attention map

(d) Self-attention map

(e) Motion Visualization

Figure 26: Empirical study of attention patterns. We use the example “a person walks stop and
then jumps.” (a) Horizontal distance traveled by the person over time, highlighting distinct walking and
jumping phases. (b) The vertical height changes of the person, indicating variations during walking and jumping
actions. (c) The cross-attention map between timesteps and the described actions. Notice that “walk” and
“jump” receive a stronger attention signal corresponding to the walk and jump segments. (d) The self-attention
map, which clearly identifies repeated walking and jumping cycles, shows similar patterns in the sub-actions. (e)
Visualization of the motion sequences, demonstrating the walking and jumping actions.

Continuing with another case study, in Fig. 27, we examine how attention mechanisms respond
to a sequence that primarily involves walking actions with varying intensity. In this instance,
we observe that both the horizontal distance (Fig. 27a) and vertical height (Fig. 27b) reflect the
man walks straight. The cross-attention map (Fig. 27c) reveals how the word “walks” related to
walking maintains consistent activation, indicating that MotionCLR has a word-level understanding
throughout the sequence. The self-attention map (Fig. 27d) further emphasizes repeated walking
patterns, demonstrating that the mechanism effectively identifies the temporal consistency and
structure of the walking phases. The motion visualization (Fig. 27e) reinforces this finding, showing
a clear, uninterrupted walking motion.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

More importantly, we can observe that the walking action consists of a total of five steps: three steps
with the right foot and two with the left foot. The self-attention map (Fig. 27d) clearly reveals that
steps taken by the same foot exhibit similar patterns, while movements between different feet show
distinct differences. This observation indicates that the self-attention mechanism effectively captures
the subtle variations between repetitive motions, further demonstrating its sensitivity to nuanced
motion capture capability within the sequence.

Besides, different from the jumping, the highlights in the self-attention map of the walking are
rectangular. The reason is that the local movements of walking are similar. In contrast, the jumping
includes several sub-actions, resulting in the highlighted areas in the self-attention maps being
elongated.

(a) Horizontal distance

(b) Vertical height

(c) Cross-attention map (e) Motion Visualization

(d) Self-attention map

Figure 27: Empirical study of attention patterns in a consistent walking sequence. We use the example: “a
man walks.”. (a) The horizontal distance traveled over time reflects a steady walking motion. (b) Vertical
height changes indicate minimal variation, characteristic of walking actions. (c) The cross-attention map shows
that the “walks” word maintains consistent activation. (d) The self-attention map highlights the repeated
walking cycles, capturing the temporal stability. (e) Visualization of the motion sequence.
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E IMPLEMENTATION AND EVALUATION DETAILS

E.1 IMPLEMENTATION DETAILS

The MotionCLR model is trained on the HumanML3D dataset with one NVIDIA A-100 GPU based
on PyTorch (Paszke et al., 2019). The latent dimension of the motion embedding is 512. We take
the CLIP-ViT-B model to encoder text as word-level embeddings. The training process utilizes a
batch size of 64, with a learning rate initialized at 2e− 4 and decaying at a rate of 0.9 every 5, 000
steps. Additionally, a weight decay of 1e− 2 is employed to regularize the model parameters. For the
diffusion process, the model is trained over 1, 000 diffusion steps. We incorporate a probability of 0.1
for condition masking to facilitate classifier-free guidance learning. During training, dropout is set at
0.1 to prevent overfitting, and all networks in the architecture follow an 8-layer Transformer design.

In the inference stage, all steps of the denoising sampling are set as 10 consistently. For the motion
erasing application, we set the erasing weight as 0.1 as default. MotionCLR supports both DDIM-
sampling (Song et al., 2021) and DPM-soler-sampling (Lu et al., 2022) methods, with 1, 000 as full
diffusion steps. For the in-placement motion replacement and the motion style transfer application,
as the motion semantics mainly depend on the initial denoising steps, we set the manipulating steps
until 5 as default. For motion (de-)emphasizing, we support both multiplications (larger than 1 for
emphasizing, lower than 1 for de-emphasizing) and addition (larger than 0 for emphasizing, lower
than 0 for de-emphasizing) to adjust the cross-attention weights. For the example-based motion
generation, the minimum manipulating time of a motion zone is 1s (a.k.a. chunk size=20 for the 20
FPS setting). At each step, all attention maps at all layers will be manipulated at each denoising
timestep. Users can adjust the parameters freely to achieve interactive motion generation and editing
(more details of user interface in Appendix B).

E.2 COMPARED BASELINES

Here, we introduce details of baselines in Tab. 1 for our comparison.

TM2T (Guo et al., 2022b) explores the reciprocal generation of 3D human motions and texts. It
uses motion tokens for compact representation, enabling flexible generation for both text2motion and
motion2text tasks.

T2M (Guo et al., 2022a) generates diverse 3D human motions from text using a two-stage approach
involving text2length sampling and text2motion generation. It employs a motion snippet code to
capture semantic contexts for more faithful motion generation.

MDM (Tevet et al., 2022b) uses a diffusion-based approach with a transformer-based design for
generating human motions. It excels at handling various generation tasks, achieving satisfying results
in text-to-motion tasks.

MLD (Chen et al., 2023b) uses a diffusion process on motion latent space for conditional human
motion generation. By employing a Variational AutoEncoder (VAE), it efficiently generates vivid
motion sequences while reducing computational overhead.

MotionDiffuse (Zhang et al., 2024b) is a diffusion model-based text-driven framework for motion
generation. It provides diverse and fine-grained human motions, supporting probabilistic mapping
and multi-level manipulation based on text prompts.

T2M-GPT (Zhang et al., 2023a) combines a VQ-VAE and GPT to generate human motions from the
text. With its simple yet effective design, it achieves competitive performance and outperforms some
diffusion-based methods on specific metrics.

ReMoDiffuse (Zhang et al., 2023b) integrates retrieval mechanisms into a diffusion model for motion
generation, enhancing diversity and consistency. It uses a Semantic-Modulated Transformer to
incorporate retrieval knowledge, improving text-motion alignment.

MoMask (Guo et al., 2024a) introduces a masked modeling framework for 3D human motion
generation using hierarchical quantization. It outperforms other methods in generating motions and
is applicable to related tasks without further fine-tuning.
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E.3 EVALUATION DETAILS

Motion (de-)emphasizing. To evaluate the effectiveness of motion (de-)emphasizing application, we
construct 100 prompts to verify the algorithm. All of these prompts are constructed by researchers
manually. We take some samples from our evaluation set as follows.

... ...
3 the figure leaps high
4 a man is waving hands
... ...

Each line in the examples represents the index of the edited word in the sentence, followed by
the corresponding prompt. These indices indicate the key verbs or actions that are subject to the
(de-)emphasizing during the evaluation process. The prompts were carefully selected to cover a
diverse range of actions, ensuring that our method is tested on different types of motion descriptions.
For instance, in the prompt “3 the figure leaps high”, the number 3 indicates that the
word “leaps” is the third word in the sentence and is the target action for (de-)emphasizing. This
format ensures a systematic evaluation of how the model responds to adjusting attention weights on
specific actions across different prompts.

Example-based motion generation. To further evaluate our example-based motion generation algo-
rithm, we randomly constructed 7 test prompts. We used t-SNE (Pedregosa et al., 2011) visualization
to analyze how closely the generated motions resemble the provided examples in terms of motion
textures. For each case, the generated motion was assessed based on two criteria: (1) similarity to the
example, and (2) diversity across different generated results from the same example.

Action counting. To thoroughly evaluate the effectiveness of our action counting method, we
constructed a test set containing 70 prompts. These prompts were manually designed by researchers
to ensure diversity. Each prompt corresponds to a motion sequence generated by our model, and the
ground truth action counts were labeled by researchers based on the observable actions within the
generated motions.
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F DETAILS OF MOTION EDITING

In this section, we will provide more technical details about the motion editing algorithms.

F.1 PSEUDO CODES OF MOTION EDITING

Motion (de-)emphasizing. Motion (de-)emphasizing mainly manipulate the cross-attention weights
of the attention map. Key codes are shown in the L16-18 of Code 1.

1 def forward(self, x, cond, reweighting_attn, idxs):
2 B, T, D = x.shape
3 N = cond.shape[1]
4 H = self.num_head
5

6 # B, T, 1, D
7 query = self.query(self.norm(x)).unsqueeze(2).view(B, T, H, -1)
8 # B, 1, N, D
9 key = self.key(self.text_norm(cond)).unsqueeze(1).view(B, N, H, -1)

10

11 # B, T, N, H
12 attention = torch.einsum(’bnhd,bmhd->bnmh’, query, key) / math.sqrt(D

// H)
13 weight = self.dropout(F.softmax(attention, dim=2))
14

15 # reweighting attention for motion (de-)emphasizing
16 if reweighting_attn > 1e-5 or reweighting_attn < -1e-5:
17 for i in range(len(idxs)):
18 weight[i, :, 1 + idxs[i]] = weight[i, :, 1 + idxs[i]] +

reweighting_attn
19

20 value = self.value(self.text_norm(cond)).view(B, N, H, -1)
21 y = torch.einsum(’bnmh,bmhd->bnhd’, weight, value).reshape(B, T, D)
22 return y

Code 1: Pseudo codes for motion (de-)emphasizing.

In-place motion replacement. The generation of two motions (B=2) are reference and edited
motions. As the cross-attention map determines when to execute the action. Therefore, replacing the
cross-attention map directly is a straightforward way, which is shown in L16-17 of Code 2.

1 def forward(self, x, cond, manipulation_steps_end):
2 B, T, D = x.shape
3 N = cond.shape[1]
4 H = self.num_head
5

6 # B, T, 1, D
7 query = self.query(self.norm(x)).unsqueeze(2).view(B, T, H, -1)
8 # B, 1, N, D
9 key = self.key(self.text_norm(cond)).unsqueeze(1).view(B, N, H, -1)

10

11 # B, T, N, H
12 attention = torch.einsum(’bnhd,bmhd->bnmh’, query, key) / math.sqrt(D

// H)
13 weight = self.dropout(F.softmax(attention, dim=2))
14

15 # replacing the attention map directly
16 if self.step <= manipulation_steps_end:
17 weight[1, :, :, :] = weight[0, :, :, :]
18

19 value = self.value(self.text_norm(cond)).view(B, N, H, -1)
20 y = torch.einsum(’bnmh,bmhd->bnhd’, weight, value).reshape(B, T, D)
21 return y

Code 2: Pseudo codes for in-place motion replacement.
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Motion sequence shifting. Motion sequence shifting aims to correct the atomic motion in the
temporal order you want. We only need to shift the temporal order of Qs, Ks, and Vs in the
self-attention to obtain the shifted result. Key codes are shown in the L13-24 and L32-36 of
Code 3.

1 def forward(self, x, cond, time_shift_steps_end, time_shift_ratio):
2 B, T, D = x.shape
3 H = self.num_head
4

5 # B, T, 1, D
6 query = self.query(self.norm(x)).unsqueeze(2)
7 # B, 1, T, D
8 key = self.key(self.norm(x)).unsqueeze(1)
9 query = query.view(B, T, H, -1)

10 key = key.view(B, N, H, -1)
11

12 # shifting queries and keys
13 if self.step <= time_shift_steps_end:
14 part1 = int(key.shape[1] * time_shift_ratio)
15 part2 = int(key.shape[1] * (1 - time_shift_ratio))
16 q_front_part = query[0, :part1, :, :]
17 q_back_part = query[0, -part2:, :, :]
18 new_q = torch.cat((q_back_part, q_front_part), dim=0)
19 query[1] = new_q
20

21 k_front_part = key[0, :part1, :, :]
22 k_back_part = key[0, -part2:, :, :]
23 new_k = torch.cat((k_back_part, k_front_part), dim=0)
24 key[1] = new_k
25

26 # B, T, N, H
27 attention = torch.einsum(’bnhd,bmhd->bnmh’, query, key) / math.sqrt(D

// H)
28 weight = self.dropout(F.softmax(attention, dim=2))
29 value = self.value(self.text_norm(cond)).view(B, T, H, -1)
30

31 # shifting values
32 if self.step <= time_shift_steps_end:
33 v_front_part = value[0, :part1, :, :]
34 v_back_part = value[0, -part2:, :, :]
35 new_v = torch.cat((v_back_part, v_front_part), dim=0)
36 value[1] = new_v
37 y = torch.einsum(’bnmh,bmhd->bnhd’, weight, value).reshape(B, T, D)
38 return y

Code 3: Pseudo codes for motion sequence shifting.
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Example-based motion generation. To generate diverse motions driven by the same example, we
only need to shuffle the order of queries in self-attention, which is shown in L13-23 of Code 4.

1 def forward(self, x, cond, steps_end, _seed, chunk_size, seed_bar):
2 B, T, D = x.shape
3 H = self.num_head
4

5 # B, T, 1, D
6 query = self.query(self.norm(x)).unsqueeze(2)
7 # B, 1, T, D
8 key = self.key(self.norm(x)).unsqueeze(1)
9 query = query.view(B, T, H, -1)

10 key = key.view(B, N, H, -1)
11

12 # shuffling queries
13 if self.step == steps_end:
14 for id_ in range(query.shape[0]-1):
15 with torch.random.fork_rng():
16 torch.manual_seed(_seed)
17 tensor = query[0]
18 chunks = torch.split(tensor, chunk_size, dim=0)
19 shuffled_index = torch.randperm(len(chunks))
20 shuffled_chunks = [chunks[i] for i in shuffled_index]
21 shuffled_tensor = torch.cat(shuffled_chunks, dim=0)
22 query[1+id_] = shuffled_tensor
23 _seed += seed_bar
24

25 # B, T, T, H
26 attention = torch.einsum(’bnhd,bmhd->bnmh’, query, key) / math.sqrt(D

// H)
27 weight = self.dropout(F.softmax(attention, dim=2))
28 value = self.value(self.text_norm(cond)).view(B, N, H, -1)
29 y = torch.einsum(’bnmh,bmhd->bnhd’, weight, value).reshape(B, T, D)
30 return y

Code 4: Pseudo codes for example-based motion generation.

Motion style transfer. In the generation of two motions (B=2), we only need to replace the query of
the second motion with the first one, which is shown in L13-14 of Code 5.

1 def forward(self, x, cond, steps_end):
2 B, T, D = x.shape
3 H = self.num_head
4

5 # B, T, 1, D
6 query = self.query(self.norm(x)).unsqueeze(2)
7 # B, 1, T, D
8 key = self.key(self.norm(x)).unsqueeze(1)
9 query = query.view(B, T, H, -1)

10 key = key.view(B, N, H, -1)
11

12 # style transfer
13 if self.step <= self.steps_end:
14 query[1] = query[0]
15

16 # B, T, T, H
17 attention = torch.einsum(’bnhd,bmhd->bnmh’, query, key) / math.sqrt(D

// H)
18 weight = self.dropout(F.softmax(attention, dim=2))
19 value = self.value(self.text_norm(cond)).view(B, N, H, -1)
20 y = torch.einsum(’bnmh,bmhd->bnhd’, weight, value).reshape(B, T, D)
21 return y

Code 5: Pseudo codes for motion style transfer.
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F.2 SUPPLEMENTARY FOR MOTION STYLE TRANSFER

As discussed in the main text, motion style transfer is accomplished by replacing the query (Q) from
the content sequence (M2) with that from the style sequence (M1). This replacement ensures that
while the content features from M2 are preserved, the style features from M1 are adopted, resulting
in a synthesized motion sequence that captures the style of M1 with the content of M2.

Q K V

Map

Out

Q K V

Map

Out

K V

Map

Q

Out

(a) Direct generating 
style reference.

(b) Direct generating 
content reference.

(c) Generating 
transfered result.

Figure 28: The illustration of motion style transfer process. (a) Direct generating style reference: The
style information is generated directly using the query (Q), key (K), and value (V) from the style
reference motion sequence (blue). (b) Direct generating content reference: The content information
is generated directly from the content reference motion sequence (orange). (c) Generating transferred
result: The final transferred motion sequence combines the style from the style reference sequence
with the content from the content reference sequence, using Q from the style reference (blue) and K,
V from the content reference (orange).

Fig. 28 provides a visual explanation of this process. The self-attention mechanism plays a crucial
role, where the attention map determines the correspondence between the style and content features.
The pseudo code snippet provided in Code 5 exemplifies this process. By setting “query[1]
= query[0]” in the code, the query for the second motion (M2) is replaced by that of the first
motion (M1), which effectively transfers the motion style from M2 to M1. In summary, this motion
style transfer method allows one motion sequence to adopt the style characteristics of another while
maintaining its own content.
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G DETAILS OF ACTION COUNTING IN A MOTION

The detailed process of action counting is described in Code 6. The attention map is first smoothed
using a Gaussian filter to eliminate noise, ensuring that minor fluctuations do not affect peak detection.
We then downsample the smoothed matrix to reduce computational complexity and normalize it
within a 0-1 range for consistent peak detection across different motions.

The pseudo code provided demonstrates the complete process, including peak detection using height
and distance thresholds. The experimental results indicate that this approach is more reliable and
less sensitive to noise compared to using the root trajectory, thus confirming the effectiveness of our
method in accurately counting actions within a generated motion sequence.

1 """
2 Input: matrix (the attention map array with shape (T, T))
3 Output: float (counting number)
4 """
5

6 # Apply Gaussian smoothing via gaussian_filter in scipy.ndimage
7 smoothed_matrix = gaussian_filter(matrix, sigma=0.8)
8

9 # Attention map down-sampling
10 downsample_factor = 4
11 smoothed_matrix = downsample_matrix(smoothed_matrix, downsample_factor)
12

13 # Normalize the matrix to 0-1 range
14 normalized_matrix = normalize_matrix(smoothed_matrix)
15

16 # Detect peaks with specified height and distance thresholds
17 height_threshold = normalized_matrix.mean() * 3 # you can adjust this
18 distance_threshold = 1 # you can adjust this
19 peaks_positions_per_row = detect_peaks_in_matrix(normalized_matrix,

height=height_threshold, distance=distance_threshold)
20

21 # Display the peaks positions per row
22 total_peak = sum([len(i) if len(i) > 0 else 0 for i in

peaks_positions_per_row])
23 sum_ = sum([1 if len(i) > 0 else 0 for i in peaks_positions_per_row])
24

25 return total_peak / sum_

Code 6: Pseudo codes for action counting.

Evaluation on alignment between attention maps and actions. Given that our work represents
an early exploration into the area of motion editing through manipulation of cross-/self-attention, a
comprehensive evaluation protocol for this task is still hard in the research community. Despite this
limitation, we have made efforts to develop a preliminary quantitative evaluation to bridge this gap.

To better quantify the alignment between attention weights and motion, we employ the Intersection
over Union (IoU) metric. The IoU metric is used to measure the overlap between regions of high
attention and regions of significant motion intensity, defined as follows.

• We consider attention values above 65% of the maximum value as indicating active regions
associated with specific actions.

• Similarly, we define active regions in root velocity based on the intensity of motion.

• The IoU is calculated between the attention-derived active regions and the corresponding
motion intensity regions, providing a measure of temporal correspondence.

Table 8 presents the IoU results under different temporal shifts, demonstrating a strong alignment
between the attention weights and the motion execution areas.

The IoU metric serves as a complementary evaluation to the action counting metric discussed
in Sec. 5.4. The high IoU values indicate a good temporal correspondence between attention weights
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adjusting weight -0.1 0 +0.1
IoU (%) 74.3 75.5 76.2

Table 8: IoU values for alignment between attention maps and actions under different temporal areas.

and the execution of actions, thereby enhancing the quantitative assessment of our proposed motion
manipulation approach.

We believe that the development of more advanced metrics in the future would further benefit the
evaluation of motion editing and attention-based motion manipulation. This initial exploration lays
the groundwork for more comprehensive assessment methods in subsequent research.
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