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Abstract

Uncertainty quantification for imaging-related inverse problems is drawing much
attention lately. Existing approaches towards this task define uncertainty regions
per pixel while ignoring spatial correlations. In this paper we propose PUQ
(Principal Uncertainty Quantification) – a novel definition of uncertainty that
takes into account spatial relationships within the image, thus providing reduced
uncertainty volume. Leveraging diffusion models, we derive uncertainty intervals
around principal components of the empirical posterior distribution, accompanied
by probabilistic guarantees. The proposed approach can operate globally on the
entire image, or locally on patches, resulting in informative and interpretable
uncertainty regions. We verify our approach on several inverse problems, showing
a significantly tighter uncertainty regions compared to baseline methods.

1 Introduction

Inverse problems in imaging (e.g. colorization) are typically ill-posed, implying that such problems
may have multiple solutions given the measurements. Uncertainty quantification aims to characterize
the range of possible solutions, their spread, and variability. This may have an important role in
various applications (e.g. astronomy and medical imaging) in which it is necessary to establish
statistical boundaries for possible deviations.

Prior work [1, 2] addressed uncertainty assessment by forming intervals for each pixel. While this
approach is simple, it disregards spatial correlations within the image, thus leading to an exaggerated
uncertainty range. The work in [3] has improved over the above by quantifying the uncertainty in a
latent space. However, by relying on a rigid and uncertainty-oblivious transformation, this method
suffers from severe limitations. Appendix A gives a detailed discussion on related work.

In this paper we propose a novel approach that accounts for spatial relationships while operating in
the image domain, thus enabling a full and clear interpretation of the quantified uncertainty region.
The proposed technique, termed Principal Uncertainty Quantification (PUQ), uses the principal
components of the empirical posterior probability density function (PDF), for describing the spread
of possible solutions. This approach reduces the uncertainty volume, as demonstrated hereafter.

Our work leverages recent advancements in Diffusion models, serving as stochastic solvers for inverse
problems. Diffusion models offer a systematic and well-motivated algorithmic path towards the
task of sampling from a prior PDF, Py , through the repeated application of a trained image-denoiser
[4, 5, 6]. An important extension of the above allows the sampler to become conditional, drawing
from the posterior PDF, Py|x, where x represents the observed measurements. This approach has
recently gained significant attention [6, 7, 8, 9], as it recovers a variety of candidate solutions while
targeting high perceptual quality.

∗Y. Romano is affiliated with the Department of Computer Science, Technion - Israel Institute of Technology.
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Figure 1: (a) Illustration of the sampling procedure for the approximation phase, both locally on
patches (first row) and globally on the entire image (second row). (b) Illustration of our PUQ
procedure in 2D (d = 2) for a single x ∈ X . The top row corresponds to the case when K = d = 2
(as in E-PUQ), while the bottom row depicts the case when K = 1 < d = 2 (as in DA-PUQ).

Our goal is to generalize the pixelwise uncertainty assessment so as to incorporate spatial correlations
between pixels. This is obtained by considering an instance-adaptive basis for a linear space that
replaces the standard one in the pixelwise approach. To optimize the volume of the uncertainty
region, we propose to compute and leverage the principal components of the candidate restorations,
as obtained by the diffusion-based sampler. Our method may be applied both globally (on the entire
image) or locally (on selected portions or patches), yielding a tighter and more accurate encapsulation
of statistically valid uncertainty regions.

Our method offers two conformal prediction [10, 11, 12] calibration options using the Learn-then-Test
[13] scheme, with a trade-off between precision and complexity. The former uses the entire set
of principal components, and the later extracts a predetermined subset of them. These calibration
procedures ensure the validity of the uncertainty region to contain the unknown true values with a
user-specified confidence probability, while also ensuring the recovery of the unknown true values
using the selected principal components. This approach allows for efficient navigation within the
uncertainty region of highly probable solutions.

In summary, the contributions of this paper are the following: (1) We introduce a generalized definition
of uncertainty that takes into account spatial correlations, thus providing tight uncertainty regions and
better posterior coverage; (2) We present two novel calibration procedures that accompany the above
by statistical guarantees; and (3) We provide a comprehensive empirical study to demonstrate the
effectiveness of the proposed approach.

2 Principal Uncertainty Quantification (PUQ)

Let Px,y be a probability distribution over X × Y , where X ,Y ⊂ [0, 1]d represent the input and the
output spaces, respectively, for the inverse problem at hand. E.g., for image colorization, Y could
represent full-color high-quality images, while X represents their colorless versions to operate on.

Given an input measurement x ∈ Rd, we aim to quantify the uncertainty of the possible solutions to
the inverse problem, as manifested by the estimated d-dimensional posterior distribution, P̂y|x. The
idea is to improve upon the definition of pixelwise uncertainty intervals, as in [1], by considering
the spatial correlation between pixels. This is achieved by constructing uncertainty intervals using a
designated collection of orthonormal basis vectors for Rd instead of intervals over individual pixels.
We denote this collection by B̂(x) = {v̂1(x), v̂2(x) . . . v̂d(x)}, where v̂i(x) ∈ Rd. Note that these
vectors are instance-dependent, thus best adapted to their task. In our work we use the principal
components (PC) of samples from P̂y|x in order to incorporate semantic factors within the image.

Similar to previous work [1, 2], we use intervals centered around the conditional mean image,
µ̂(x) = E[y|x] ∈ Rd. The following function constructs prediction intervals along each basis-vector:

T (x; B̂(x))i :=
[
v̂i(x)

T
µ̂(x)− l̂(x)i, v̂i(x)

T
µ̂(x) + û(x)i

]
, (1)

where i ∈ {1, 2 . . . d} is a basis-vector index, and {l̂(x)i, û(x)i} ∈ R+ are the lower and upper
interval boundaries. If ŷ ∼ P̂y|x is a candidate solution, v̂i(x)

T
ŷ is its i-th projection, and this

value should fall within T (x; B̂(x))i with high probability. The uncertainty intervals using these
basis-vectors form a d-dimensional hyper-rectangle, referred to as the uncertainty region. in order
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Figure 2: Local Experiments: A comparison of E-PUQ (applied on patches α = δ = 0.1) with [1, 2].

to quantify the obtained uncertainty across different regions, we introduce a new metric called the
uncertainty volume, V(x; T (x; B̂(x))), given by

V(x; T (x; B̂(x))) :=
d
√∏d

i=1

[
û(x)i + l̂(x)i

]
. (2)

Naturally, our goal is to obtain the smallest possible volume while providing solid statistical guaran-
tees. Our proposed method thus consists of two phases, as illustrated in Figure 1. In the first, referred
to as the approximation phase, we use a conditional diffusion-model [8] to estimate the various
terms in Equation (1): the PCs B̂(x) = {v̂1(x), v̂2(x), . . . , v̂K(x)} (K ≤ d), the interval boundaries
{l̂(x)i, û(x)i}Ki=1, and µ̂(x). These estimations are used to construct heuristic uncertainty intervals in
the K-dimensional space. The above-described approximation phase is merely an estimation, as the
corresponding intervals may not contain the projected ground-truth values with a desired confidence.
Additionally, the basis vectors may not be able to recover the ground-truth pixel values within an
acceptable threshold if K < d. Therefore, a calibration-phase on an held-out set of data is in order.

The calibration phase we propose has two candidate procedures – a direct and complete one, and an
approximated and thus faster alternative. The choice between the two depends on the user, taking
into account the trade-off between precision and complexity. The two calibration strategies are the
following (the detailed steps of these calibration procedures are brought in Appendix B):

(1) Exact PUQ (E-PUQ): Assuming that d PCs can be constructed and maintained in full, this
calibration procedure is straightforward, involving only scaling of the intervals until they contain the
appropriate proportion of the projected ground-truth values, similar to previous work [1, 2].

(2) Dimension-Adaptive PUQ (DA-PUQ): We may choose the leading K < d PC’s while omitting
the rest. In this case, we should choose K while verifying a small guaranteed reconstruction error for
unseen data. K is dynamically determined per input image, to accommodate the inner complexity of
Py|x. Once K has been chosen, the calibration itself for the K intervals is done as in E-PUQ.

3 Experiments

We turn to present an empirical study of PUQ with three challenging tasks: image colorization, super-
resolution, and inpainting, using the CelebA-HQ dataset [14]. Our approximation phase samples
from the posterior, applied in our work by the SR3 conditional diffusion model [8]. The experiments
we present verify that our method satisfies both the reconstruction and coverage guarantees and
demonstrate that PUQ provides more confined uncertainty regions compared to prior work, including
im2im-uq [1] and Conffusion [2]. Appendix C brings more details on these experiments.
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Figure 3: Global Experiments: Left: Uncertainty regions provided by DA-PUQ. Each row shows
the measurement x, and original image y, the recovered image and how many PCs are used, and
the first two PCs along with their importance. Right: Images sampled uniformly from the estimated
global uncertainty regions - As can be seen, our images are realistic while the others are noisy and
perceptually flawed.

3.1 Local Experiments on Patches

We apply E-PUQ on RGB patches of increasing size — 1x1, 2x2, 4x4, and 8x8 — for image
colorization, super-resolution, and inpainting tasks. The obtained results are illustrated and compared
to baseline methods in Figure 2. As can be seen, our method provides smaller uncertainty volumes,
and thus more confined uncertainty regions, when compared to previous work in all tasks and for
all patch resolutions, and while satisfying the same statistical guarantees in all cases. E-PUQ leads
to an improvement factor of ∼ ×100 in the uncertainty volumes in colorization and ∼ ×10 in
super-resolution and inpainting, when applied to the highest resolution of 8x8. Interestingly, as the
patch resolution increases, we observe a desired trend of uncertainty volume reduction, indicating
that our method takes into account spatial correlation to reduce uncertainty. Note that the standard
deviation of the interval-size of our approach is higher than that of the baseline methods. This happens
because the intervals of the first few PCs are wider than the remaining ones. However, the majority
of the interval sizes are significantly smaller, resulting in a much smaller uncertainty volume.

3.2 Global Experiments on Images

We turn to examine the effectiveness and validity of DA-PUQ when applied to complete images at
a resolution of 128× 128, and consider only the colorization task, as this task incorporates strong
spatial correlation. Under this setting, most of the image variability could be represented via the
first few PCs while maintaining a small reconstruction risk. Note that the E-PUQ procedure does
not apply to the global approach, as it requires computing and maintaining d = 128× 128× 3 PCs.
The results are brought in Figure 3. Our method can operate with as few as 2-6 PCs, emerging from
as few as 30 posterior samples, and yet maintain a guaranteed and small reconstruction risk, while
providing significantly smaller uncertainty volumes compared to our local results and previous work
[1, 2]. To illustrate of the tightness of the uncertainty region proposed, we sample from it, resulting is
valid and colorful solutions, whereas such sampling with [1, 2] results in regions that look like noise.

4 Concluding Remarks

We present “Principal Uncertainty Quantification” (PUQ), a novel and effective approach for quantify-
ing uncertainty for ill-posed image-to-image tasks. PUQ takes into account the spatial dependencies
between pixels in order to achieve significantly tighter uncertainty regions. This method can be
operated both locally or globally, with merits to each per the task being pursued. PUQ is shown to
outperform existing methods in image colorization, super-resolution and inpainting, by improving
substantially the uncertainty volume. Additionally, by allowing for a small reconstruction error, PUQ
produces tight uncertainty regions with a few axes and thus improves computational complexity and
interpretability at inference time.
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A Related Work

A promising recent approach towards solving inverse problems in imaging relies on generative AI
techniques. These new tools enable to sample from the posterior distribution of the output image
given the measurements. Denoising Diffusion Probabilistic Models (DDPM) [4, 5] is such a new
paradigm for regular and conditional image synthesis [15, 16, 17, 18, 19, 6, 7, 8, 9, 20, 21]. SR3 [8]
is the diffusion-based method we use in this work.

The field of uncertainty quantification has seen much progress in recent years [22, 23, 24, 25, 26]. A
key paradigm is conformal prediction (CP) [10, 11, 12] and risk-controlling methods [27, 13, 28].
These allow to rigorously quantify the prediction uncertainty of a machine learning model with a
user-specified probability guarantee. Only a few of these contributions have focused on uncertainty
assessment for image restoration problems, and these include im2im-uq [1] and Conffusion [2]. The
work reported in [29] is closely related as well, as it introduced a generalized, and thus improved,
calibration scheme for Conffusion [2]. These works employed a risk-controlling paradigm [27] to
provide prediction intervals over the pixel domain, ensuring the inclusion of ground-truth solutions.
Both these approaches share the same limitation of operating in the pixel domain and disregarding
spatial correlations within the image, thus leading to exaggerated volume of uncertainty.

An exception to the above is [3], which quantifies uncertainty in the latent space of GANs. Their
migration from the image domain to the latent space is a rigid, global, non-linear, non-invertible and
uncertainty-oblivious transformation. Therefore, quantification of the uncertainty in this domain is
quite limited. More specifically, rigidity implies that this approach cannot adapt to the complexity of
the problem by adjusting the latent space dimension; Globality suggests that it cannot be operated
locally on patches in order to better localize the uncertainty assessments; Being non-linear implies
that an evaluation of the uncertainty volume in the image domain is hard and next to impossible;
Non-invertability of this transformation means that some energy is lost from the image in the analysis
and not accounted for, thus hampering the validity of the statistical guarantees; Finally, note that the
latent space is, at best, associated with the image content, but does not represent the prime axes of the
uncertainty behavior. All these shortcomings are converted into advantages in our proposed approach
advocated in this paper. Note, however, that due to the above, and especially the inability to provide
certified volumes of uncertainty, a comparison of our method to [3] is impossible.

Inspired by the above contributions, this work proposes a novel alternative uncertainty quantification
approach that takes spatial relationships into account. Our work provides tight uncertainty regions,
compared to prior work, with user-defined statistical guarantees through the use of a CP-based
paradigm. Specifically, we adopted the Learn then Test [13] procedure that provides statistical
guarantees for controlling multiple risks in a general setting.

B Description of E-PUQ and DA-PUQ

Below is a formal and detailed description of the approximation phase and the two calibration
procedures: E-PUQ and DA-PUQ.

B.1 Approximation Phase

This phase estimates the necessary terms for the uncertainty intervals, as defined in Equation (1).
Leveraging recent advances in diffusion models, we generate high-quality samples from P̂y|x. For-
mally, we define fθ : X × Z → Y as a stochastic regression solver for an inverse problem, where Z
is the noise seed space. Given an input instance x, we propose to generate K samples, denoted by
{fθ(x, zi)}Ki=1, where, fθ(x, zi) ∼ P̂y|x. These are used to estimate the PCs of possible solutions
and their singular values using the SVD decomposition of the generated samples around the mean
image. The singular values serve as importance weights, denoted by ŵ(x) ∈ RK . Additionally, the
samples are utilized to estimate the conditional mean, µ̂(x), and the lower and upper bounds, l̃(x)
and ũ(x), necessary for Equation (1). l̃(x) and ũ(x) are obtained by calculating quantiles of the
projected samples onto each PC, with a user-specified miscoverage ratio α ∈ (0, 1). To capture the
full spread and variability of P̂y|x, it is necessary to generate at least K = d samples to feed to the
SVD procedure. Alternatively, we suggest working locally on patches, where d is small and fully

7



Figure 4: An illustration of uncertainty regions (in red) of 2d posterior distributions and considering
three different PDF behaviors, shown in blue, orange, and green. These regions are defined by two
intervals, where l̂(x) and û(x) represent the 0.05 and 0.95 quantiles over the dashed black axes.
The top row presents regions in the pixel domain using standard basis vectors that ignores spatial
correlations. The lower row presents the regions using the principal components as the basis. The
uncertainty volume is indicated in the top left corner of each plot. The 90% coverage guarantee is
satisfied by all regions. However, the lower row regions that take spatial dependencies into account,
are significantly smaller than the pixelwise corresponding regions in the upper row.

controlled by the user by specifying the patch size to work on. Algorithm 1 formally summarizes the
approximation phase.

Algorithm 1 Approximation Phase
Require: Instance x ∈ X . Conditional stochastic generative model fθ : X → Y or fθ : X → Ypatch. Maximal

PCs / samples number K ≤ d. Misscoverage ratio α ∈ (0, 1).
▷ Generate samples drawn from P̂y|x

1: for i = 1 to K do
2: ŷi(x)← fθ(x, zi)
3: end for

▷ Compute conditional mean
4: µ̂(x)← 1

K

∑K
i=1 ŷi(x)

▷ Apply SVD decomposition and extract the PCs and weights
5: Ŷ (x)← [ŷ1(x), ŷ2(x) . . . ŷK(x)] ∈ Rd×K

6: Ŷ (x)− µ̂(x) · 1T
K = V̂ (x)Σ̂(x)Û(x)T

7: B̂(x)← {v̂1(x), v̂2(x) . . . v̂K(x)}, where v̂i(x) = [V̂ (x)]i
8: ŵ(x)←

[
σ̂1(x)

2, . . . , σ̂K(x)2
]
/c ∈ RK , where σ̂i(x) = [Σ̂(x)]i and c =

∑K
j=1 σ̂j(x)

2.
▷ Compute α/2 and 1− α/2 empirical quantiles of projected samples onto each PC

9: for i = 1 to K do
10: l̃(x)i ← Q̂α/2({v̂i(x)T (ŷj(x)− µ̂(x))}Kj=1)

11: ũ(x)i ← Q̂1−α/2({v̂i(x)T (ŷj(x)− µ̂(x))}Kj=1)
12: end for
Ensure: K PCs B̂(x), importance weights ŵ(x), conditional mean µ̂(x), lower and upper bounds l̃(x) and

ũ(x).

B.2 Calibration Goals and Notations

The interval-valued function T , defined in Equation (1), should produce valid intervals that contain a
user-specified fraction of the projected ground-truth values, defined as {v̂i(x)T y}Ki=1, where x is an
unseen test instance, y ∈ Rd is its unknown ground-truth, and B̂(x) := {v̂1, . . . , v̂K} are the selected
axes of the uncertainty region. We define a user-specified risk level, α ∈ (0, 1), on the coverage of
{v̂i(x)T y}Ki=1 in the uncertainty intervals in Equation (1). This is achieved by using the following
holistic expression that aggregates the effect of all the intervals:

E

[
d∑

i=1

ŵi(x) · 1
{
v̂i(x)

T y ∈ T (x;B(x))i
}]

> 1− α, (3)
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where ŵi(x) ∈ [0, 1] s.t.
∑d

i=1 ŵi(x) = 1 are weight factors that set the importance of covering the
projected ground-truth values along each interval.

As demonstrated in Figure 4, if the orthonormal basis in Equation (1) is chosen to be the standard
one, we get the pixel-based intervals that disregard spatial correlations within the image, thus
leading to an exaggerated uncertainty region. In this work we address this limitation by transitioning
to an instance-adapted orthonormal basis of Rd that allows the description of uncertainty using
axes that are not necessarily pixel-independent, thereby providing tighter uncertainty regions. Our
choice of a linear and orthonormal representation comes as a natural extension of the pixelwise
approach, retaining much of the simplicity and efficiency of treating each axis separately. Note
that the orthogonality enables the decomposition of y around µ̂(x) via its projected values, y =

µ̂(x) +
∑d

i=1

[
v̂i(x)

T (y − µ̂(x))
]
v̂i(x), which we refer to as the exact reconstruction property.

When operating in high dimensions (e.g. on the full image), providing uncertainty intervals for
all the d-dimensions poses severe challenges, both in complexity and interpretability. In this case,
constructing and maintaining the basis vectors becomes infeasible. Moreover, the uncertainty
quantification using these intervals may be less intuitive compared to the conventional pixelwise
approach because of the pixel-dependency between the basis vectors, which makes it difficult to
communicate the uncertainty to the user. To mitigate these challenges, we propose an option of using
K ≪ d basis vectors that capture the essence of the uncertainty. We later discuss how to dynamically
adjust K to provide fewer uncertainty axes. While reducing the number of basis vectors benefits
in interpretability and complexity, this option does not fulfill the exact reconstruction property that
was discussed earlier. Therefore, we propose an extension to the conventional coverage validity of
Equation (3) that takes into account the reconstruction error of the decomposed ground-truth images.
Specifically, the user sets a ratio of pixels, q ∈ R, and a maximum acceptable reconstruction error
over this ratio, β ∈ (0, 1). This approximation allows us to reduce the number of basis vectors used
to formulate B̂(x), such that the reconstruction will be valid according to the following condition:

E

[
Q̂q

(
∣∣∣∣∣∣
K∑
j=1

v̂j(x)
T ycv̂j(x)− yc

∣∣∣∣∣∣
i


d

i=1

)]
≤ β , (4)

where yc := y − µ̂(x) is the ground-truth image centered around µ̂(x), and Q̂q(·) is the empirical
quantile function defined by the smallest z satisfying 1

d

∑d
i=1 1{zi ≤ Q̂q(z)} ≥ q. As an example,

setting q = 0.9 and β = 0.05 would mean that the maximal reconstruction error of 90% of the
ground-truth pixels is no more than 5% of the [0, 1] dynamic range.

In order to refine the approximation phase and obtain valid uncertainty axes and intervals that satisfy
the guarantees of Equation (3) and Equation (4) with high probability, it is necessary to apply a
calibration phase over an held-out set of calibration data, denoted by Scal := {(xi, yi)}ni=1. We
propose two different options based on particular conditions on the number of PCs to be constructed
and maintained during the calibration procedure or during inference, when applied either globally or
locally. Below we outline each of these options in more details.

B.3 Exact PUQ

The Exact PUQ (E-PUQ) procedure provides the complete uncertainty of the d-dimensional posterior
distribution, Py|x. In this case, the exact reconstruction property discussed earlier is satisfied, and
Equation (4) is fulfilled with 0% error (β = 0) across 100% (q = 1.0) of the pixels. Therefore, the
calibration is simple, involving only a scaling of intervals to ensure Equation (3) is satisfied with high
probability, similar to previous work [1, 2].

Formally, for each input instance x and its corresponding ground-truth y ∈ Rd in Scal, we use
the estimators obtained in the approximation phase to get d PCs of possible solutions, B̂(x), their
corresponding importance weights ŵ(x), the conditional mean µ̂(x), and the lower and upper bounds,
denoted by l̃(x) and ũ(x). We then define the scaled intervals to be those specified in Equation (1),
with the upper and lower bounds defined as û(x) := λũ(x) and l̂(x) := λl̃(x), where λ ∈ R+ is a
tunable parameter that controls the scaling. Notably, the size of the uncertainty intervals decreases as
λ decreases. We denote the scaled uncertainty intervals by Tλ(x; B̂(x)).
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The following weighted coverage loss function is used to guide our design of λ:

L(x, y;λ) :=
d∑

i=1

ŵi(x) · 1
{
v̂i(x)

T y ̸∈ Tλ(x; B̂(x))i

}
. (5)

This loss is closely related to the expression in Equation (3), and while it may seem arbitrary at first,
this choice is a direct extension to the one practiced in [1, 2].

Our goal is to ensure that the expectation of L(x, y;λ) is below a pre-specified threshold, α ∈ (0, 1),
with high probability over the calibration data. This is accomplished by a conformal prediction based
calibration scheme, and in our paper we use the LTT [13] procedure, which guarantees the following:

P
(
E[L(x, y; λ̂)] ≤ α

)
≥ 1− δ , (6)

for a set of candidate values of λ, given as the set Λ̂. δ ∈ (0, 1) is an error level on the calibration
set and λ̂ is the smallest value within Λ̂ satisfying the above condition, so as to provide the smallest
uncertainty volume over the scaled intervals, as defined in Equation (2), which we denote by Vλ̂.

Put simply, the above guarantees that more than 1− α of the ground-truth values projected onto the
full d PCs of P̂y|x are contained in the uncertainty intervals with probability at least 1− δ, where the
latter probability is over the randomness of the calibration set. The scaling factor takes into account
the weights to ensure that uncertainty intervals with high variability contain a higher proportion of
projected ground-truth values than those with low variability. This is particularly important for tasks
with strong pixel correlations, where the first few PCs capture most of the variability in possible
solutions. We summarize the E-PUQ procedure in Algorithm 2.

Algorithm 2 Exact PUQ Procedure
Require: Calibration set Scal := {xi, yi}ni=1. Scanned calibration parameter values Λ = [1 . . . λmax]. Approxi-

mation phase estimations B̂, ŵ, µ̂, ũ, l̃. Misscoverage ratio α ∈ (0, 1). Calibration error level δ ∈ (0, 1).
1: for (x, y) ∈ Scal do
2: B̂(x), ŵ(x), µ̂(x), ũ(x), l̃(x)← Apply Algorithm 1 to

x, with the choice of K = d samples
3: for λ ∈ Λ do

▷ Scale uncertainty intervals
4: û(x)← λũ(x) and l̂(x)← λl̃(x)

5: Tλ(x; B̂(x))← Equation (1) using µ̂(x), û(x), l̂(x)
▷ Compute weighted coverage loss, Equation (5)

6: L(x, y;λ)←
7:

∑d
i=1 ŵi(x) · 1

{
v̂i(x)

T y ̸∈ Tλ(x; B̂(x))i
}

8: end for
9: end for

10: Λ̂ ← Extract valid λs from LTT [13] applied on {L(x, y;λ) : (x, y) ∈ Scal, λ ∈ Λ} at risk level α and
error level δ, referring to Equation (6).

▷ Compute the minimizer for the uncert. volume, Equation (2)
11: λ̂← argminλ∈Λ̂

{
1
n

∑n
i=1 Vλ(xi; B̂(x))

}
Ensure: Given a new instance x ∈ X , obtain valid uncertainty intervals for it, Tλ̂(x; B̂(x)).

B.4 Dimension-Adaptive PUQ

The E-PUQ procedure assumes the ability to construct and maintain d PCs, which can be computa-
tionally challenging both locally and globally. Furthermore, an uncertainty quantification over these
axes may be less intuitive, due to the many axes involved, thus harming the method’s interpretability.
To address these, we propose the Dimension-Adaptive PUQ (DA-PUQ) procedure, which describes
the uncertainty region with fewer axes, K ≤ d. The use of only a few leading dimensions, e.g.,
K = 3, can lead to a more interpretable uncertainty region, enabling an effective visual navigation
within the obtained uncertainty range.

While this approach does not satisfy the exact reconstruction property, the decomposed ground-truth
values can still be recovered through the K PCs with a small user-defined error in addition to the
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coverage guarantee. By doing so, we can achieve both the guarantees outlined in Equation (3) and
Equation (4) with high probability.

To satisfy both the coverage and reconstruction guarantees while enhancing interpretability, we use a
dynamic function, k̂(x) : X → N, and a scaling factor to control the reconstruction and coverage
risks. The function k̂(x) determines the number of top PCs (out of K) to include in the uncertainty
region, focusing on the smallest number that can satisfy both Equation (3) and (4), so as to increase
interpretability.

Formally, for each input instance x and its corresponding ground-truth value y ∈ Rd in Scal, we use
the estimators obtained in the approximation phase to estimate K ≤ d PCs of possible solutions,
denoted by B̂(x), their corresponding importance weights, denoted by ŵ(x), the conditional mean
denoted by µ̂(x), and the lower and upper bounds denoted by l̃(x) and ũ(x), respectively. We then
introduce a threshold λ1 ∈ (0, 1) for the decay of the importance weights over the PCs of solutions
to x. The adaptive number of PCs to be used is defined as follows:

k̂(x;λ1) := min
1≤k≤K

{
k s.t.

k∑
i=1

ŵi(x) ≥ λ1

}
. (7)

Obviously, the importance weights are arranged in a descending order, starting from the most
significant axis and ending with the least significant one. Furthermore, let q ∈ (0, 1) be a specified
ratio of pixels, and β ∈ (0, 1) be a maximum allowable reconstruction error over this ratio. The
reconstruction loss function to be controlled is defined as:

L1(x, y;λ1) := Q̂q



∣∣∣∣∣∣
k̂(x;λ1)∑
j=1

v̂j(x)
T ycv̂j(x)− yc

∣∣∣∣∣∣
i


d

i=1

 , (8)

where Q̂q(·) selects the empirical q-quantile of the reconstruction errors, and yc = y − µ̂(x) is the
ground-truth image centered around µ̂(x).

At the same time, we also control the coverage risk over the k̂(x) PCs, with α ∈ (0, 1) representing
a user-specified acceptable misscoverage rate and λ2 ∈ R+ representing the calibration factor
parameter. To control this coverage risk, we define the coverage loss function to be the same as in
Equation (5), but limited to the k̂(x) PCs, that is:

L2(x, y;λ1, λ2) :=

k̂(x;λ1)∑
i=1

ŵi(x) · 1
{
v̂i(x)

T y ̸∈ Tλ2
(x; B̂(x))i

}
. (9)

Finally, using the reconstruction loss function of Equation (8) and the coverage loss function of
Equation (9), we seek to minimize the uncertainty volume, defined in Equation (2), for the scaled
intervals where any unused axes (out of d) are fixed to zero. We denote this uncertainty volume as
Vλ1,λ2

. The minimization of Vλ1,λ2
is achieved by minimizing λ1 and λ2, while ensuring that the

guarantees of Equation (3) and Equation (4) hold with high probability over the calibration data.
This can be provided, for example, through the LTT [13] calibration scheme, which guarantees the
following:

P
(

E[L1(x, y; λ̂1)] ≤ β

E[L2(x, y; λ̂1, λ̂2)] ≤ α

)
≥ 1− δ , (10)

where λ̂1 and λ̂2 are the minimizers for the uncertainty volume among valid calibration parameter
results, Λ̂, obtained through the LTT procedure. In other words, we can reconstruct a fraction q of
the ground-truth pixel values with an error no greater than β, and a fraction of more than 1− α of
the projected ground-truth values onto the first k̂(x; λ̂1) PCs of Py|x are contained in the uncertainty
intervals, with a probability of at least 1 − δ. A detailed description of the DA-PUQ procedure is
given in Algorithm 3.
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Algorithm 3 Dimension-Adaptive PUQ Procedure

Require: Calibration set Scal := {xi, yi}ni=1. Scanned calibration parameter values Λ1 ← [1 . . . λ1max]

and Λ2 ← [1 . . . λ2max]. Maximal PCs number K ≤ d. Approximation phase estimators B̂, ŵ, µ̂, ũ, l̃.
Recovered pixels ratio q ∈ (0, 1). Reconstruction error β ∈ (0, 1). Misscoverage ratio α ∈ (0, 1).
Calibration error level δ ∈ (0, 1). For an effective calibration, α, β, δ should be close to 0 while q should be
close to 1.

1: for (x, y) ∈ Scal do
2: B̂(x), ŵ(x), µ̂(x), ũ(x), l̃(x)← Apply Algorithm 1 to

x, with the choice of K samples
3: for λ1 ∈ Λ1 do

▷ Compute adaptive dimensionality, Equation (7)
4: k̂(x;λ1)← mink

{
k :

∑K
i=1 ŵi(x) ≥ λ1

}
▷ Compute reconstruction loss, Equation (8)

5: yc ← y − µ̂(x)
6: L1(x, y;λ1)←

Q̂q

({∣∣∣∣∑k̂(x;λ1)
j=1 v̂j(x)

T ycv̂j(x)− yc

∣∣∣∣
i

}d

i=1

)
7: for λ2 ∈ Λ2 do

▷ Scale uncertainty intervals
8: û(xi)← λ2ũ(x) and l̂(x)← λ2 l̃(x)

9: Tλ2(x; B̂(x))← Eq. (1) using µ̂(x), û(x), l̂(x)
▷ Compute weighted coverage loss, Equation (5)

10: L2(x, y;λ1, λ2)←
∑k̂(x;λ1)

i=1 ŵi(x)·
1
{
v̂i(x)

T y ̸∈ Tλ2(x; B̂(x))i
}

11: end for
12: end for
13: end for
14: Λ̂ ← Extract valid λs from LTT [13] applied on {(L1(x, y;λ1),L2(x, y;λ1, λ2)) :

(x, y) ∈ Scal, λ1 ∈ Λ1, λ2 ∈ Λ2} at risk levels (β, α) and error level δ, referring to Equation (10)
▷ Compute the minimizers for the uncer. volume, Equation (2)

15: λ̂1, λ̂2 ← argminλ1,λ2∈Λ̂

{
1
n

∑n
i=1 Vλ1,λ2(xi; B̂(xi))

}
Ensure: Given a new instance x ∈ X , obtain valid uncertainty intervals for it, Tλ̂2

(x; B̂(x)) over k̂(x; λ̂1) ≤ K
PCs.

C Experimental Details

This section provides details of the experimental methodology employed in the experiments of
this work, including the datasets used, architectures implemented, and the procedural details and
hyperparameters of our method.

C.1 Datasets and Preprocessing

Our machine learning system was trained using the Flickr-Faces-HQ (FFHQ) dataset [30], which
includes 70,000 face images at a resolution of 128x128. We conducted calibration and testing on
the CelebA-HQ (CelebA) dataset [14], which also consists of face images and was resized to match
the resolution of our training data. To this end, we randomly selected 2,000 instances from CelebA,
of which 1,000 were used for calibration and 1,000 for testing. For the colorization experiments,
a grey-scale transformation was applied to the input images. For the super-resolution experiments,
patches at a resolution of 32x32 were averaged to reduce the input image resolution by a factor of
4 in each dimension. For the inpainting experiments, we randomly cropped pixels from the input
images during the training phase, either in squares or irregular shapes; while for the calibration and
testing data, we cropped patches at a resolution of 64x64 at the center of the image.

C.2 Architecture and Training

In all our experiments, we applied the approximation phase using recent advancements in conditional
image generation through diffusion-based models, while our proposed approximation phase in
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Algorithm 1 can accommodate any stochastic regression solvers for inverse problems, such as
conditional GANs [31]. In all tasks, we utilized the framework for conditional diffusion-based
models proposed in the SR3 work [8], using a U-Net architecture. For each of the three tasks, we
trained a diffusion model separately and followed the training regimen outlined in the code of [8].
To ensure a valid comparison with the baseline methods, we implemented them using the same
architecture and applied the same training regimen. All experiments, including the baseline methods,
were trained for 10,000 epochs with a batch size of 1,024 input images.

C.3 PUQ Procedures and Hyperparameters

Our experimental approach consists of 2 sets of experiments: local experiments on patches and global
experiments on entire images. For the local experiments, we conducted 4 experiments of the E-PUQ
procedure on RGB patch resolutions of 1x1, 2x2, 4x4, and 8x8. We used K = 3, K = 12, K = 48,
and K = 192 PCs for each resolution, respectively. We set α = δ = 0.1 to be the user-specified
parameters of the guarantee, defined in Equation (6). For the global experiments, we used entire
images at a resolution of 128x128, in which we applied the DA-PUQ procedure. As global working
is suitable for tasks that exhibit strong pixel correlation, we applied this experiment only on the task
of image colorization. We set q = 0.95, β = α = δ = 0.1, to be the user-specified parameters
of the guarantee of Equation (10), and used K = 100 PCs. In all experiments, we employed a
computationally stable version of the uncertainty volume, defined in Equation (2), which is expressed
as follows:

V(x; T (x;B̂(x))) ≈ exp

(
1

d

d∑
i=1

log
(
û(x)i + l̂(x)i + ϵ

))
− ϵ ,

where we have selected ϵ = 1e− 10.
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