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ABSTRACT
Unsupervised Domain Adaptation (UDA) aims to transfer knowl-
edge from a label-rich source domain to a target domain where
the label is unavailable. Existing approaches tend to reduce the
distribution discrepancy between the source and target domains or
assign the pseudo target labels to implement a self-training strat-
egy. However, the transferability or discriminability lackage of the
traditional methods results in the limited ability to generalize on
the target domain. To remedy this issue, a novel unsupervised do-
main adaptation framework called Domain-specific Conditional
Jigsaw Adaptation Network (DCJAN) is proposed for UDA, which
simultaneously encourages the network to extract transferable and
discriminative features. To improve the discriminability, a condi-
tional jigsaw module is presented to reconstruct class-aware fea-
tures of the original images by reconstructing that of corresponding
shuffled images. Moreover, in order to enhance the transferability,
a domain-specific jigsaw adaptation is proposed to deal with the
domain gaps, which utilizes the prior knowledge of jigsaw puzzles
to reduce mismatching. It trains conditional jigsaw modules for
each domain and updates the shared feature extractor to make the
domain-specific conditional jigsaw modules could perform well
not only on the corresponding domain but also on the other do-
main. A consistent conditioning strategy is proposed to ensure the
safe training of conditional jigsaw. Experiments conducted on the
widely-used Office-31, Office-Home, VisDA-2017, and DomainNet
datasets demonstrate the effectiveness of the proposed approach,
which outperforms the state-of-the-art methods.
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Figure 1: Comparison of traditional domain adaptation ap-
proaches and our proposed approach. (a) somemethods focus
on enhancing the transferability of both domains; (b) others
utilize the pseudo-labels of the target domain to improve
the discriminability of the target domain; (c) our method
enhances the transferability and discriminability simultane-
ously.
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1 INTRODUCTION
Currently, deep networks have achieved significant success on
diverse vision tasks, including image recognition [18, 22, 59, 66],
object detection [2, 19, 51, 52], semantic segmentation [7, 37, 53] and
so on. With training deep networks on large-scale and well-labeling
datasets, e.g., ImageNet [12] and MS COCO [33], it could easily at-
tain state-of-the-art performance on given tasks. The bottleneck of
applying the deep networks to real-world problems is that systems
based on deep networks are unstable running in volatile situations,
which is caused by the domain gaps between the training and real-
world scenes. The ideal solution for model adaptation is transferring
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the knowledge from the existing domain (dataset) to real-world
ones instead of annotating the extra data from the target domain
manually. Hence, the Unsupervised Domain Adaptation (UDA)
framework is recently proposed and widely studied to remedy the
domain gaps. It presents a task-guided knowledge transfer pipeline
and derives a number of UDA methods [8, 15, 24, 25, 38, 40, 41, 61],
which employ variant feature alignment strategies to obtain the
domain-invariant features.

Traditional UDA methods can be summarized into two types: 1)
the discrepancy metric-based methods, which tend to measure the
discrepancy across distributions [25, 38, 40, 41, 61]; 2) the adversar-
ial learning manner methods [8, 15, 24, 39], which learn domain-
invariant features by training feature extractor to confuse the do-
main classifier. All these approaches focus on building a model to
minimize the empirical risk on the labeled source domain and the
feature alignment loss across domains. Ideally, by jointly optimiz-
ing the total losses, the model learns domain-invariant features for
both domains, and the source-driven classifier generalizes well on
the target domain.

However, the greatest challenge for UDA task still exists which is
a conflict between discriminability and transferability. As shown in
Figure 1(a), the features of the target domain lose their discriminabil-
ity as overly penalizing domain variations, which results in that the
crucial discriminative information being suppressed [10]. It leads to
poor performance of target domain classification, particularly for
the classifier is source-driven. To increase the discriminability of
the target domain, recent works attempt to utilize pseudo labels of
the target domain to perform self-training on the unlabeled target
domain [17, 25, 39, 44, 46, 50, 68]. Nevertheless, as illustrated in
Figure 1(b), some pseudo-label-based UDA methods direct utilize
plausible pseudo labels, which causes the error accumulation of
noisy labels.

To alleviate the aforementioned issues, this paper presents a
Domain-specific Conditional Jigsaw Adaptation Network (DCJAN)
for UDA, which guides the model to focus on the target domain
as well as the source by considering both transferability and dis-
criminability enhancement. Three aspects are comprehensively
considered in DCJAN: 1) the self-learning in DCJAN builds up the
domain-based knowledge prior to narrow the gap of the domain
transfer; 2) the unity-knowledge prior is an extra constrain for the
domain adaptation which improves the precision of alignment; 3)
the class-aware consistency condition captures the cross-covariance
dependency between the feature representations and class predic-
tions. Specifically, the Jigsaw-solving task leveraged in DCJAN is
adopted as a self-learning module, which learns the relationship
between object-parts spatial correlation and the visual patch. This
distinguishes what “kind” of the patches belong to and then predicts
the original locations of the patches. This also constructs a fast and
easy knowledge broadcast manner among the clusters correspond-
ing to the source and target domain instead of transferring the
knowledge between two disordered distributions. Moreover, the
self-learning task constructs a mapping between object patch and
geometry location as the knowledge prior for the source and target
domain, respectively. It is a constrain in the latent semantic embed-
ding space, which demands the domain adaptation not only aligning
the feature and category information, but also the unity knowledge
prior, helping improve the precision of domain alignment. Finally,

the feature consistency condition constraints explicitly take jigsaw
discrepancy between different categories into account by utilizing
conditional jigsaw to reconstruct class-aware features of original
images from features of shuffled. It means that the model plays a
clustering role in model learning, which minimizes the distance
of intra-class in the embedding feature space, enforces the cluster
center separation, and improves the discriminability of the feature
representation.

A novel training strategy is designed for DCJAN to obtain domain-
invariant features. First, features are fed into the corresponding
domain-specific conditional jigsaw module for each domain, respec-
tively, and jointly update both the feature extractor and domain-
specific conditional jigsaw modules to reconstruct the features of
the original images. Second, the shared feature extractor is updated
to promote the reconstruction for each domain using the domain-
specific conditional jigsaw module of the other domain. In order to
safe conditional jigsaw reconstruction, the prediction consistency
conditioning strategy is presented to generate consistency-aware
weight. It measures the priority of all conditional jigsaw training
pairs and prevents the deterioration caused by conditional jigsaw
with inconsistent predictions.

Our contributions can be summarized as follows:
• An autoencoder-based jigsaw framework is proposed for UDA
that constructs a multitask pipeline by integrating jigsaw puz-
zle self-learning and conditioning constrain, making the model
to learn the conditional jigsaw for each category to boost the
discriminability.

• This work presents a novel jigsaw-based adaptation framework,
which performs the knowledge transferring not only supervised
by the direct feature space alignment but also under the guidance
of domain-specific jigsaw modules, which aligns the inherent
distribution structure (jigsaw puzzle) of both domains.

• To better train the DCJAN model, a novel training algorithm
is designed by considering interactive jigsaw weight updating
among both domains, which accelerates the model training and
improves the performance.

• Extensive experiments conducted on multiple UDA benchmarks,
Office-31, Office-Home, VisDA-2017, and DomainNet demon-
strate that the proposed method achieves the state-of-the-art
performance.

2 RELATEDWORKS
2.1 Unsupervised Domain Adaptation
The purpose of UDA is to transfer the knowledge from a label-
rich source domain to an unlabeled target domain. Recent works
[8, 11, 15, 23, 24, 36, 39, 55, 65] aim to learn domain-invariant fea-
tures along with the source and target domain. It can be mainly
summarized into two types, and the first one measures the dis-
crepancy between the source and target domains, then reduces the
domain gaps by minimizing the discrepancy. For instance, Deep
Domain Confusion (DDC) [61] utilizes the Maximum Mean Dis-
crepancy (MMD) to measure the distribution discrepancy. Margin
Disparity Discrepancy (MDD) is proposed in [67] to reduce the dis-
crepancy across domains. Another powerful line of research is the
adversarial training manner, which optimizes the two-player games
of generator and discriminator to obtain the domain-invariant fea-
tures. Domain Adversarial Neural Network (DANN) [15] learns
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Figure 2: Illustration of our proposed DCJAN. It consists of three modules: conditional jigsaw module, domain-specific jigsaw
adaptation module, and prediction consistency conditioning. For each image, the shuffled pipeline is shown in the left part,
and the joint features are constructed to perform asymmetric reconstruction from the shuffled to the original. Conditional
jigsaw module and domain-specific jigsaw adaptation module aim to enhance the discriminability and transferability under
the guidance of jigsaw. The consistency conditioning is utilized to accelerate the training of conditional jigsaw.

domain-invariant features by applying an adversarial training strat-
egy to train a feature generator and domain discriminator. A do-
main discriminator re-energize method is proposed in [24], which
relabels the well-aligned samples of the target domain as samples
of the source domain during the adversarial training phase. The
task-special classifier is reused as a discriminator in [6] to align
prediction-correlation across domains.

2.2 Pseudo-labels based Approaches
Traditional unsupervised domain adaptation approaches aim to
learn high transferability features. However, the discriminability
of the target domain would be decreased as the cost of the high
transferability. Recent domain adaptation methods [17, 21, 25, 35,
42, 50, 64] attempt to use pseudo labels of the target domain to
learn semantic features and enhance discriminability of the target
domain. Self-training technique is adopted to the unlabeled target
domain, [14] implements the self-ensembling methods to make the
student network keep the consistent prediction with the teacher
network for the unlabeled target domain. Cycle Self-Training (CST)
[35] trains the domain-specific classifier and updates the feature
extractor to make the output of domain-specific classifiers keep
consistency. Others use the pseudo label of the target domain to
apply class-specific feature alignment over different domains. [64]
presents a moving semantic transfer network, which pushes the
features of the same class but different domains closely. Conditional
Kernel Bures (CKB) metric [41] aims to characterize conditional
distribution discrepancy. Furthermore, the robust Pseudo-label loss
[17] leverages the pseudo labels of the target domain and mitigates
the negative transfer of the false pseudo labels. The negative trans-
fer is considered in [50], which minimizes the entropy of reliable
samples and maximizes the entropy of unreliable samples.

2.3 Solving Jigsaw Puzzles
Recently, solving jigsaw puzzles [3, 9, 28, 34, 43, 45, 47] has shown
a remarkable advantage in self-supervised learning as the pretext
task. These methods aim to capture the rich universal representa-
tion in the pre-trained model, which is powerful to be task-specific
fined-tuned. Context Free Network (CFN) has been proposed in
[45] to utilize solving jigsaw puzzles for learning whether each tile
as an object part and how parts are combined to construct an ob-
ject. Pretext-Invariant Representation Learning (PIRL) algorithm is
presented in [43] , which learns invariant semantic information be-
tween the original images and the corresponding images randomly
shuffled along patches. A novel jigsaw clustering pretext task is
introduced in [9], which could take advantage of information from
both intra- and inter-images. Moreover, solving jigsaw puzzles also
be used in many specific tasks. [5] treats solving jigsaw puzzles
as an auxiliary task for improving semantic understanding in do-
main generalization task, and GraphJigsaw is proposed in [32] to
solving jigsaw puzzles at various stages with Graph Convolutional
Network (GCN) [26] in cartoon face recognition. [4] introduces the
jigsaw puzzle task into Partial Domain Adaptation to help reduce
the domain gap in multi-task learning manner.

3 DOMAIN-SPECIFIC CONDITIONAL JIGSAW
ADAPTATION

3.1 Preliminary
In UDA setting, given a labeled source domain 𝑆 = {(𝑥𝑠

𝑖
, 𝑦𝑠
𝑖
)}𝑛𝑠
𝑖=1 and

an unlabeled target domain 𝑇 = {𝑥𝑡
𝑖
}𝑛𝑡
𝑖=1, where 𝑛𝑠 and 𝑛𝑡 denote

the number of samples of the source and target domain, respectively.
The label of the source domain is denoted as 𝑦𝑠

𝑖
∈ {1, 2, · · · , 𝐾},

where 𝐾 is the number of classes, and both domains share the same

6329



MM ’22, October 10–14, 2022, Lisbon, Portugal Qi He, Zhaoquan Yuan, Xiao Wu, & Jun-Yan He

  

  

Object label 

Permutation 
index 

Object label 

… 
… 

… 

… 
… 

… 
Rec 

Traditional  

DCJAN (Ours) 

Original 

Original  

Shuffled 

Shuffled 

Feature  
Extractor 

Conditioning 

Conditioning 

Feature  
Extractor 

Figure 3: The difference between the traditional method and
our proposed DCJAN method. Top: traditional methods in-
sert solving jigsaw puzzle as an auxiliary classification task;
Bottom: the proposed method combines the solving jigsaw
puzzle and UDA task by replacing the prediction head of
permutation index with an asymmetric reconstruction task.

label space. UDA attempts to learn a feature extractor F and classi-
fier C on the both labeled source and the unlabeled target domains,
which could make a precise prediction on the target domain.

3.2 Overview
The proposed Domain-specific Conditional Jigsaw Adaptation Net-
work (DCJAN) will be introduced in this section. It attempts to
keep the high transferability for both domains and make the target
domain play an important role in the model training procedure as
well as the source domain, such that the transferability and dis-
criminability of the target domain can be improved at the same
time. The framework of proposed DCJAN is shown in Figure 2. It
contains three components: Conditional Jigsaw module, Domain-
Specific Jigsaw Adaptation module, and Prediction Consistency
Conditioning.

Conditional Jigsaw: It is a variant of the solving jigsaw puzzle
method, which replaces the prediction head with an asymmetric
autoencoder to solve conditional jigsaw puzzles by reconstructing
class-aware joint features of original images from shuffled images.

Domain-Specific Jigsaw Adaptation: In this part, domain-
specific jigsaw modules are trained for each domain. It aims to
align the features across domains by optimizing feature extractor
F with the proposed conditional jigsaw task.

Prediction Consistency Conditioning: The component mea-
sures the easy/hard-to-reconstruct examples. It leverages the consis-
tency of the prediction between original images and corresponding
shuffled images to perform the better reconstruction.

3.3 Conditional Jigsaw
To endow themodel the ability to pay attention to the target domain
as well as the source domain, the self-supervision is used in [13, 57,
58]. Here, the solving jigsaw puzzle technique is considered to UDA
task. It is mainly used in self-supervised learning as a pretext task
to enhance the understanding of the spatial relationship of images.
In traditional solving jigsaw puzzles approaches, the extra shuffled
images need to be generated from the original images as the inputs
of jigsaw puzzles algorithms. Concretely, the original images are

equally divided into 𝑛 × 𝑛 patches, and the shuffled images are
re-assigned on these patches with random permutations, and the
random permutations need to be recorded.

Traditional solving jigsaw puzzles algorithms put these shuffled
images into the network, then get through a prediction head to
predict the permutation used in building the shuffled images (the
permutation was manually defined as class labels). Hence, if the
prediction is equal to the predefined label, it can be seen as suc-
cessfully solving the jigsaw puzzle of this image. Recent works add
solving jigsaw puzzles methods into the object recognition as an
auxiliary task to improve the understanding of images, but they do
not take the discriminability into account. For instance, considering
that humans can correctly recognize an object even if the image
is shuffled along with patches, the intuitive humanlike method is
to leverage shuffled images to solve the jigsaw puzzle and keep
the consistency on the object predictions of original images and
corresponding shuffled images simultaneously. Hence, an asymmet-
ric reconstruction-based jigsaw puzzles solution and a conditional
constraint are proposed to achieve this goal. The difference between
traditional and the proposed method is shown in Figure 3. Tradi-
tional methods aim to learn the process of solving jigsaw puzzles,
but ours could learn the results of jigsaw puzzles for each category.
It is more powerful to capture the spatial relationships of object of
different classes.

In the proposed approach, the predicting permutation head in
traditional methods is replaced with an asymmetrical reconstruc-
tion task. It reconstructs the features of original images from that of
corresponding shuffled images. The purpose of the reconstruction
task is solve the jigsaw puzzle in the feature level. To keep con-
sistent prediction, we apply the multilinear conditioning strategy
of [39], which is defined as the outer product of multiple random
vectors, to capture the multi-modal information and joint distribu-
tions of task-specific features and prediction categories. By using
multi-modal information, it could attain optimizing the solving
jigsaw puzzle under the guidance of conditional constrict.

Given the inputs 𝑥𝑠
𝑖
, 𝑥𝑡
𝑗
and the corresponding patch shuffled

inputs 𝑥𝑠
𝑖
, 𝑥𝑡
𝑗
from the source and target domains, where 𝑖 ∈ [1,

2, · · · , 𝑛𝑠 ] and 𝑗 ∈ [1, 2, · · · , 𝑛𝑡 ], we get the features 𝑓 𝑠𝑖 , 𝑓
𝑡
𝑗
, 𝑓 𝑠
𝑖
, 𝑓 𝑡
𝑗

and the predicted probability 𝑝𝑠
𝑖
, 𝑝𝑡
𝑗
, 𝑝𝑠
𝑖
, 𝑝𝑡
𝑗
, where 𝑓 = F (𝑥) and

𝑝 = C(𝑓 ). Then, the joint distributions of 𝑓 and 𝑝 can be computed
with bilinear map as follows:

𝑔𝑠𝑖 = 𝑓
𝑠
𝑖 ⊗ 𝑝𝑠𝑖 , 𝑔

𝑡
𝑗 = 𝑓

𝑡
𝑗 ⊗ 𝑝𝑡𝑗 , (1)

where ⊗ denotes the bilinear map operator and 𝑔 denotes the joint
feature. After computing the multimodal information, the condi-
tional jigsaw module is utilized to reconstruct the joint features 𝑔
of the original images from 𝑔 of the shuffled images.

𝑔𝑠
𝑟𝑒𝑐 (𝑖) = J

(
𝑓 𝑠𝑖 ⊗ 𝑝𝑠𝑖

)
, 𝑔𝑡
𝑟𝑒𝑐 ( 𝑗) = J

(
𝑓 𝑡𝑗 ⊗ 𝑝𝑡𝑗

)
, (2)

where J is the conditional Jigsaw module for feature reconstruc-
tion. Finally, the objective function of conditional jigsaw can be
formulated as follows:

L𝑐 𝑗 (F ,J , C)=
1
𝑛𝑠

𝑛𝑠∑︁
𝑖=1
𝐷

(
𝑔𝑠
𝑟𝑒𝑐 (𝑖) , 𝑔

𝑠
𝑖

)
+ 1
𝑛𝑡

𝑛𝑡∑︁
𝑗=1
𝐷

(
𝑔𝑡
𝑟𝑒𝑐 ( 𝑗) , 𝑔

𝑡
𝑗

)
, (3)

where 𝐷 is the distance loss function. Following [17] to use sphere
feature space, so the cosine similarity is selected to be the distance
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loss function. Moreover, to satisfy minimizing optimization, 𝐷 is
defined as 𝐷 (𝑔𝑟𝑒𝑐 , 𝑔) = 1.0 − 𝑐𝑜𝑠 (𝑔𝑟𝑒𝑐 , 𝑔).

3.4 Domain-Specific Jigsaw Adaptation
This section introduces the details of that the novel jigsaw adapta-
tion aligns the feature space of both domains under the guide of
the conditional jigsaw puzzle task.

The conditional jigsaw module take the target domain into ac-
count, but it does not deal with the domain gaps between the source
and target domains. Hence, a novel domain adaptation method
based on the conditional jigsaw module is proposed to align fea-
tures under the guidance of prior jigsaw puzzle knowledge.

The mainstream of feature alignment adds an extra domain dis-
criminator to make extracted features fool the domain discrimina-
tor. In contrast, the proposed approach aims to align features with
domain-specific conditional jigsaw. Two domain-specific Jigsaw
modules are trained on source domain and target domain samples,
respectively. That is, J𝑠 reconstructs shuffled features to the orig-
inal features on the source domain, and J𝑡 reconstructs features
on the target domain. Due to the domain gap, it is hard to let the
trained domain-specific conditional jigsaw modules reconstruct
the corresponding features from the shuffled of the other domain.
Therefore, the feature extractor F is updated to achieve that the
domain-specific jigsaw module trained on the target domain could
solve conditional jigsaw puzzles on inputs of the source domain.
Meanwhile, the training strategy is also applied to features of the
target domain. In this way, the features extracted by F are domain-
invariant for both domains.

In order to train domain-specific jigsaw modules, Eqn. 2 can be
rewritten as follows:

𝑔𝑠
𝑟𝑒𝑐 (𝑖) = J𝑠

(
𝑓 𝑠𝑖 ⊗ 𝑝𝑠𝑖

)
, 𝑔𝑡
𝑟𝑒𝑐 ( 𝑗) = J𝑡

(
𝑓 𝑡𝑗 ⊗ 𝑝𝑡𝑗

)
, (4)

where J𝑠 ,J𝑡 are the domain-specific conditional jigsaw modules
trained on the source and target domain, respectively.

Then the cross domains conditional jigsaw reconstruction be-
tween features and conditional jigsaw module can be depicted as:

𝑔𝑠
𝑟𝑒𝑐 (𝑖) = J𝑡

(
𝑓 𝑠𝑖 ⊗ 𝑝𝑠𝑖

)
, 𝑔𝑡
𝑟𝑒𝑐 ( 𝑗) = J𝑠

(
𝑓 𝑡𝑗 ⊗ 𝑝𝑡𝑗

)
, (5)

where 𝑔𝑠
𝑟𝑒𝑐 (𝑖) and 𝑔

𝑡
𝑟𝑒𝑐 ( 𝑗) denote the reconstruction results by re-

placing the corresponding domain-specific conditional jigsaw mod-
ule with the other. For instance, the difference between 𝑔𝑠

𝑟𝑒𝑐 (𝑖) and
𝑔𝑠
𝑟𝑒𝑐 (𝑖) is that𝑔

𝑠
𝑟𝑒𝑐 (𝑖) is the output of 𝐽𝑠 and𝑔

𝑠
𝑟𝑒𝑐 (𝑖) is the output of 𝐽𝑡

while the input is the same. The domain-specific jigsaw adaptation
objective function is defined as following:

L 𝑗𝑎 (F , C) =
1
𝑛𝑠

𝑛𝑠∑︁
𝑖=1

𝐷

(
𝑔𝑠
𝑟𝑒𝑐 (𝑖) , 𝑔

𝑠
𝑖

)
+ 1
𝑛𝑡

𝑛𝑡∑︁
𝑗=1

𝐷

(
𝑔𝑡
𝑟𝑒𝑐 ( 𝑗) , 𝑔

𝑡
𝑗

)
, (6)

where 𝐷 is the distance loss function introduced in Sec. 3.3.

3.5 Prediction Consistency Conditioning
Considering the conditional jigsaw reconstruction procedure may
be deteriorated by the hard-to-reconstruct examples. These exam-
ples have inconsistent predictions of the classifier between the
original and the corresponding shuffled images. However, the con-
ditional jigsaw module treats all samples with equal importance. It
prevents the convergence of solving conditional jigsaw puzzles.

Algorithm 1: DCJAN for UDA
Input: source dataset and target dataset 𝑫𝒔 and 𝑫𝒕 , feature

extractor F , classifier C and domain-specific
conditional jigsaw module J𝑠 , J𝑡 .

1 while not converge do
2 Sample training batch 𝑩𝒔 ,𝑩𝒕 from 𝑫𝒔 ,𝑫𝒕 , respectively;
3 Generate the shuffled images batch �̂�𝒔 , �̂�𝒕 from the

corresponding inputs 𝑩𝒔 ,𝑩𝒕 ;
4 Calculate the cross-entropy loss L𝑐𝑒 (F , C) of the

source domain using Eqn. 7;
5 Compute L𝑐 𝑗 (F ,J , C) using Eqn. 3 with J𝑠 ,J𝑡 and

consistency-aware weight;
6 Apply feature alignment and compute L 𝑗𝑎 (F , C) using

Eqn. 6 with consistency-aware weight;
7 Back-propagate with the total loss Eqn. 8;
8 Update the total parameters;
9 end
Output: Learned feature extractor F and classifier C

Towards safe reconstruct, we quantify the inconsistency of clas-
sifier prediction between the original images and shuffled images by
the Kullback–Leibler Divergence (KLD), 𝐷 (𝑝, 𝑝) = ∑𝐾

𝑖 𝑝𝑖 ∗ 𝑙𝑜𝑔(
𝑝𝑖
𝑝𝑖
),

where 𝐾 is the number of categories. Those easy-to-reconstruct ex-
amples are given priority in jigsaw puzzle procedure (L𝑐 𝑗 and L 𝑗𝑎)
by reweighting each example with the consistency-aware weight
𝑤 (𝐷 (𝑝, 𝑝)) = 1 + 𝑒−𝐷 (𝑝,𝑝) . By reweighting loss functions Eqn. 3
and Eqn. 6 with consistency-aware weights, the model training is
accelerated and the performance is improved.

3.6 Training Procedure
In training phase, it needs to minimize the conditional jigsaw re-
construction loss across domains and the domain-specific jigsaw
adaptation loss at the same time. Besides, the network trains on the
source domain by minimizing the cross entropy loss,

L𝑐𝑒 (F , C) = − 1
𝑛𝑠

𝑛𝑠∑︁
𝑖=1

𝑦𝑠𝑖 𝑙𝑜𝑔𝑝
𝑠
𝑖 , (7)

where 𝑦𝑠
𝑖
indicates the one-hot coding of ground-truth label of the

i-th sample of the source domain.
Therefore, the overall objective can be formulated as:

L𝑐𝑒 (F , C) + L𝑐 𝑗 (F ,J , C) + L 𝑗𝑎 (F , C) . (8)
Algorithm 1 shows the whole training procedure, which com-

bines the novel conditional jigsaw and domain-specific jigsaw adap-
tation into UDA to enhance the transferability and discriminability.

4 EXPERIMENTS
4.1 Datasets
We evaluated the proposed approach on the following standard
benchmarks for UDA.

Office-31 [54]. Office-31 is a traditional domain adaptation dataset.
It consists of three domain partitions: Amazon, Webcam and DSLR
(abbr. A, W and D), and contains 31 categories. Three domains
contain 2,817, 498 and 795 images, respectively.
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Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50). (Avg* denotes values except D→W and
W→D)

Method A→W W→A A→D D→A D→W W→D Avg Avg*
ResNet-50 [20] 68.4±0.2 60.7±0.3 68.9±0.2 62.5±0.3 96.7±0.1 99.3±0.1 76.1 65.1
DANN [15] 82.0±0.4 67.4±0.5 79.7±0.4 68.2±0.4 96.9±0.2 99.1±0.1 82.2 74.2
CDAN [39] 94.1±0.1 69.3±0.3 92.9±0.2 71.0±0.3 98.6±0.1 100.0±0.0 87.7 81.8
CAN [25] 94.5±0.3 77.0±0.3 95.0±0.3 78.0±0.3 99.1±0.2 99.8±0.2 90.6 86.1
SRDC [60] 95.7±0.2 77.1±0.1 95.8±0.2 76.7±0.3 99.2±0.1 100.0±0.0 90.8 86.3
TSA [30] 96.0 76.8 95.4 76.7 98.7 100.0 90.6 86.2
SCDA [31] 94.8 76.4 94.6 77.5 98.2 100.0 90.3 85.8
FixBi [44] 96.1±0.2 79.4±0.3 95.0±0.4 78.7±0.5 99.3±0.2 100.0±0.0 91.4 87.3
MSTN [64] 91.3 65.6 90.4 72.7 98.9 100.0 86.5 80.0
MSTN+S [17] 94.6±0.3 76.0±0.6 91.3±0.7 75.4±0.7 98.5±0.2 100.0±0.0 89.3 84.3
RSDA-MSTN [17] 96.1±0.2 78.9±0.3 95.8±0.3 77.4±0.8 99.3±0.2 100.0±0.0 91.1 87.1
DCJAN (Ours) 97.3±0.2 79.7±0.2 96.4±0.2 79.4±0.5 99.3±0.2 100.0±0.0 92.0 88.2

Office-Home [63]. Office-Home is a well-organized benchmark
but more challenging than Office-31 for visual domain adaptation,
which contains 15,500 images of four different domains about the
office and home scenes: Artistic, Clipart, Product and Real world
(abbr. Ar, Cl, Pr and Rw) with 65 classes.

VisDA-2017 [49]. VisDA-2017 is a large-scale visual domain
adaptation dataset, which is composed of 12 categories come from
two domains: synthetic and real. The synthetic domain includes
152,397 images and the real domain includes 55,388 images.

DomainNet [48]. DomainNet is the largest and more challeng-
ing domain adaptation dataset. It consists of six diverse domains:
Clipart, Infograph, Painting, Quickdraw, Real and Sketch (abbr. clp,
inf, pnt, qdr, rel and skt), which has about 0.6 million images
drawn from 345 categories.

4.2 Implementation Details
The proposed model is implemented with deep learning toolkit
Pytorch. A ResNet-50 [20] network pre-trained on ImageNet [12]
is served as the feature extractor F , the last Fully-Connected (FC)
layer is replaced with task-specific FC layers as the classifier C
for the four benchmarks. The domain-specific conditional jigsaw
modules J𝑠 and J𝑡 are conducted with FC layers trained from
scratch. The full network is trained with back-propagation, where
the parameters trained from scratch with a learning rate are 10
times that of the pre-trained parameters. We adopt mini-batch
stochastic gradient descent (SGD) optimizer with a momentum
0.9 for fully network optimization. Following the setting of [16],
the initial learning rate 𝜂 is set to 0.01 and weight decay is 0.005.
The learning rate 𝜂 is adjusted by 𝜂 = 0.01

(1+𝛼𝑝)𝛽 , where 𝛼 = 10, 𝛽 =
0.75 and 𝑝 is the training progress linearly changing from 0 to 1.
The average classification accuracy is reported on three random
experiments.

4.3 Performance Comparison
The proposed method is compared with several state-of-the-art
methods on four public benchmarks. Moreover, the variants of
DANN andMSTN proposed in [17] are the baselines of our methods
for comparing state-of-the-arts. The best accuracy is indicated in
bold and the second best one is underlined.

Results on Office-31. Table 1 presents the results of transfer
tasks on Office-31 dataset, where results of existing methods are
reported in their respective papers. We observe that the proposed
method outperforms the comparison methods on almost all transfer
tasks and achieves an accuracy of 92.0% on average. Particularly, our
method improves baseline MSTN-S from 84.3% to 88.2% on average*
(except for the easy transfer tasks D→W and W→D), revealing
that DCJAN can enhance the discriminability on this cross-domain
dataset.

Results onOffice-Home. The results on theOffice-Home dataset
are summarized in Table 2. Office-Home is a more challenging
dataset with large domain discrepancy than the Office-31 dataset
for domain adaptation. Our method empowers the baseline with
4.7% improvement and strongly improves tasks with the larger do-
main discrepancy, e.g., Ar→ Cl, Ar→ Pr, Cl→ Ar tasks. Based on
these results, we can refer that the proposed DCJAN could enhance
transferability.

Results on VisDA-2017. The results on the VisDA-2017 dataset
are reported in Table 3. The proposed method enhances the baseline
by 14.5% and surpasses state-of-the-arts with ResNet-50 backbone.
It proves the powerful ability of our proposed method for enhancing
transferability and discriminability.

Results on DomainNet. The results on the DomainNet dataset
are reported in Table 4. Our method improves the baseline by
4.2% and surpasses state-of-the-art methods. It shows the proposed
method has a great ability of generalization on complex datasets.

4.4 Ablation Study
To have a clear understanding of each component of the proposed
approach, we conduct comprehensive ablation studies on the Office-
31 dataset with DANN+S [17] as the baseline model.

Effects of each component. Ablation studies are conducted to
investigate the effects of each component of our proposed method,
the details are depicted in Table 5. The proposed conditional jigsaw
improves the baseline on average by 3.3% and 4.9% for average*
(except tasks D→W and W→D) by enhancing the discriminability.
We observe that the domain-specific jigsaw adaptation module mas-
sively improves the performance on the feature alignment method,
indicating the proposed feature adaptation approach is compati-
ble with others. Moreover, the consistency conditioning strategy
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Table 2: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
ResNet-50 [20] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [15] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [39] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
SRDC [60] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
TSA [30] 57.6 75.8 80.7 64.3 76.3 75.1 66.7 55.7 81.2 75.7 61.9 83.8 71.2
SCDA [31] 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1
FixBi [44] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
CST [35] 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0
MSTN [64] 49.8 70.3 76.3 60.4 68.5 69.6 61.4 48.9 75.7 70.9 55.0 81.1 65.7
MSTN+S [17] 51.9 72.3 78.3 63.7 69.9 73.5 63.5 52.1 80.2 73.6 57.7 82.7 68.3
RSDA-MSTN [17] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
DCJAN (Ours) 61.2 77.9 81.2 68.8 76.0 77.4 67.2 59.4 81.3 76.0 63.2 85.9 73.0

Table 3: Accuracy (%) on VisDA-2017 for unsupervised do-
main adaptation (ResNet-50).

Method Synthetic→Real
CDAN [39] 70.0
MDD [67] 74.6
CST [35] 80.6

DANN [15] 63.7
DANN+S [17] 67.6

RSDA-DANN [17] 75.8
DCJAN (Ours) 82.1
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Figure 4: Measures of discriminability and transferability on
learned features. (a) Classification error rate on each repre-
sentation; (b) A-distance.

also shows the ability to improve performance, which makes the
asymmetric reconstruction training pay attention to samples that
keep the predictions consistency between the original and shuffled
image. Overall, our method improves the baseline by an average
from 86.7% to 91.1% and from 80.5% to 86.9% on average*. This
shows that each component of DCJAN is effective for unsupervised
domain adaptation tasks.

Ideal Joint Hypothesis. The ideal joint hypothesis is estimated
to demonstrate the discriminability of feature embeddings, which
can be achieved by training a multi-layer perceptrons (MLP) classi-
fier with the pre-trained feature extractor on all source and target
data with labels. As the analyzed in [10], it serves as a good descrip-
tion of discriminability. In Figure 4(a), although the pre-trained
ResNet has a lower Error Rate than domain adversarial networks,
our proposed approach significantly enhances the discriminability
compared with baseline.

(a) DANN (b) DCJAN (Ours)

Figure 5: The T-SNE visualization of embedded features on
the taskA→W.Colors represent domains (red: source domain
A; blue: target domain W).

Distribution discrepancy. The domain discrepancy could be
measured by the A-distance [1]. The A-distance is defined as 𝑑𝐴 =

2(1− 2𝜖), where 𝜖 is the error rate of a domain classifier trained for
distinguishing the source and target domain. It is used to quantify
the transferability of feature embeddings. As shown in Figure 4(b),
the A-distance is calculated on tasks A→W and W→D, which indi-
cates the A-distance is smaller than DANN. It means that DCJAN
could also enhance the transferability.

Comparison with different conditioning. The proposed con-
sistency conditioning strategy is compared with the entropy con-
ditioning strategy [39], which is proposed to reweight training ex-
amples for safety feature alignment by measuring the entropy. As
shown in Table 6, although the entropy conditioning improves the
performance by giving priority to samples having lower entropy,
our consistency conditioning is more suitable for the proposed
method.

Visualization. The task-specific features are visualized by us-
ing t-SNE [62] on transfer tasks A→W and W→A with Office-31
dataset in Figure 5. For DANN, the target domain features are wan-
dering around the cluster of the source domain features. However,
for the proposed method, the target domain features are closely
embedded in the corresponding source domain feature cluster. It
shows that the transferability and discriminability of DCJAN are
better than DANN.
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Table 4: Accuracy (%) on DomainNet for unsupervised domain adaptation (ResNet-50). In each sub-table, the column-wise
domains are selected as the source domain and the row-wise domains are selected as the target domain. (* denotes implemented
according to the original source code)

ResNet-50 [20] clp inf pnt qdr rel skt Avg. CDAN [39] clp inf pnt qdr rel skt Avg. SWD [27] clp inf pnt qdr rel skt Avg.
clp - 14.2 29.6 9.5 43.8 34.3 26.3 clp - 13.5 28.3 9.3 43.8 30.2 25.0 clp - 14.7 31.9 10.1 45.3 36.5 27.7
inf 21.8 - 23.2 2.3 40.6 20.8 21.7 inf 18.9 - 21.4 1.9 36.3 21.3 20.0 inf 22.9 - 24.2 2.5 33.2 21.3 20.0
pnt 24.1 15.0 - 4.6 45.0 29.0 23.5 pnt 29.6 14.4 - 4.1 45.2 27.4 24.2 pnt 33.6 15.3 - 4.4 46.1 30.7 26.0
qdr 12.2 1.5 4.9 - 5.6 5.7 6.0 qdr 11.8 1.2 4.0 - 9.4 9.5 7.2 qdr 15.5 2.2 6.4 - 11.1 10.2 9.1
rel 32.1 17.0 36.7 3.6 - 26.2 23.1 rel 36.4 18.3 40.9 3.4 - 24.6 24.7 rel 41.2 18.1 44.2 4.6 - 31.6 27.9
skt 30.4 11.3 27.8 3.4 32.9 - 21.2 skt 38.2 14.7 33.9 7.0 36.6 - 26.1 skt 44.2 15.2 37.3 10.3 44.7 - 30.3
Avg. 24.1 11.8 24.4 4.7 33.6 23.2 20.3 Avg. 27.0 12.4 25.7 5.1 34.3 22.6 21.2 Avg. 31.5 13.1 28.8 6.4 36.1 26.1 23.6

GDCAN [29] clp inf pnt qdr rel skt Avg. MSTN+S* [17] clp inf pnt qdr rel skt Avg. DCJAN clp inf pnt qdr rel skt Avg.
clp - 18.2 41.9 16.5 58.7 44.0 35.9 clp - 16.7 36.2 12.5 51.9 42.6 31.9 clp - 18.7 41.3 13.5 56.2 47.3 35.4
inf 37.2 - 36.2 7.4 37.7 27.6 29.2 inf 30.1 - 30.2 2.5 43.5 26.4 26.5 inf 36.1 - 36.6 4.5 50.3 31.8 31.8
pnt 47.8 19.1 - 9.4 61.0 39.6 35.4 pnt 41.5 18.1 - 4.1 53.1 36.2 30.6 pnt 46.3 19.2 - 6.3 58.4 41.5 34.3
qdr 31.3 6.4 14.6 - 25.1 20.9 19.7 qdr 23.1 2.3 7.2 - 14.9 16.3 12.7 qdr 28.1 4.3 10.3 - 21.8 19.8 16.8
rel 52.3 20.4 48.5 9.8 - 37.6 33.7 rel 48.8 20.6 46.1 5.8 - 39.4 32.1 rel 55.7 23.5 51.2 6.1 - 46.2 36.5
skt 55.8 18.6 46.7 16.7 57.8 - 39.1 skt 52.1 17.9 41.5 14.2 50.6 - 35.2 skt 58.5 20.6 46.2 14.5 56.1 - 39.2
Avg. 44.9 16.5 37.6 12.0 48.1 33.9 32.2 Avg. 39.1 15.1 32.2 7.8 42.8 32.1 28.1 Avg. 44.9 17.2 37.1 9.0 48.5 37.3 32.3

Table 5: Effect of proposed components on Office-31. (Avg* denotes values except D→W and W→D)

Baseline Conditional Jigsaw Conditioning A→W W→A A→D D→A D→W W→D Avg Avg*jigsaw adaptation√
93.2 71.0 87.5 70.3 98.0 100.0 86.7 80.5√ √
95.2 76.0 93.5 77.0 98.4 100.0 90.0 85.4√ √ √
96.3 76.4 94.3 77.8 98.7 100.0 90.6 86.2√ √ √
96.2 76.2 94.3 77.5 98.6 100.0 90.5 86.0√ √ √ √
96.7 77.5 95.1 78.1 99.0 100.0 91.1 86.9

Table 6: Effect of conditioning strategies on Office-31.

Method A→W W→A A→D D→A Avg
w/o conditioning 95.2 76.0 93.5 77.0 85.4

+ Entropy conditioning 95.6 76.3 93.9 77.4 85.8
+ Consistency conditioning 96.2 76.2 94.3 77.5 86.0

DANN  DANN  DCJAN (Ours) DCJAN (Ours) 

Figure 6: The Grad-CAM based visualization on VisDA-2017.
The first row is the result of original images and the second
row is the result of shuffled images.

The Grad-CAM [56] algorithm is utilized to visualize how the
learned model predicts the shuffled images. It is an analytic tech-
nique to display the contribution level region of images for CNN
models predicting by utilizing target gradients. As shown in Figure
6, DCJAN could understand the semantics of images and keeps

prediction consistency between the original image and shuffled
image, which is contrasted sharply with DANN.

5 CONCLUSION
This paper proposes a Domain-specific Conditional Jigsaw Adapta-
tion Network (DCJAN) to ameliorate the absence of transferability
or discriminability in traditional methods. By introducing jigsaw
puzzles into UDA to achieve that model could take the target do-
main into account as well as the source domain. The proposed
conditional jigsaw module improves the semantic understanding
of each class, and the proposed domain-specific jigsaw adaptation
and prediction consistency conditioning to efficiently enhance the
transferability and discriminability. Comprehensive experiments on
several cross-domain datasets demonstrate the efficacy of DCJAN.
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