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Abstract
Ships, or vessels, often sail in and out of cluttered environments over the course of their trajectories.
Safe navigation in such cluttered scenarios requires an accurate estimation of the intent of neighbor-
ing vessels and their effect on the self and vice-versa well into the future. In manned vessels, this is
achieved by constant communication between people on board, nautical experience, and audio and
visual signals. In this paper we propose a deep neural network based architecture to predict intent
of neighboring vessels into the future for an unmanned vessel solely based on positional data.
Keywords: intent modeling, trajectory prediction, long short term memory networks, spatial atten-
tion, temporal attention

1. Introduction

Autonomous navigation is increasingly being adopted in land and airborne vehicles. The success
of autonomy in other modes of travel has led to its advent in the maritime industry with the de-
velopment of Autonomous Surface Vessels or ASVs. However, like all other autonomous vehicles,
ASVs also come with their safety and reliability concerns. These autonomous vessels, or other au-
tonomous agents in general, are expected to negotiate safely through crowded environments, like
harbors or urban streets, that involve complex social interactions.

Any autonomous agent that is required to safely navigate through such crowded environments
must possess the ability to actively and accurately forecast the future intent of neighboring entities
in order to adjust own trajectory accordingly to avoid collisions.

The problem of predicting the future intent of a vessel based on observations of its positional
data over several timesteps can be viewed as a sequence-to-sequence modeling tasks. Long Short
Term Memory Networks (LSTMs), introduced by Hochreiter and Schmidhuber (1997), are a spe-
cial variant of deep neural networks known for their ability to model long sequences. The primary
component of an LSTM is a gate-regulated cell state that allows LSTMs to remember information
from a longer history. Consequently, LSTMs are achieving almost human-level performance in
sequence generation tasks such as text generation, speech recognition, language translation, time
series prediction, and others. However, despite their success in learning and reproducing long se-
quences, LSTMs are not capable of modeling interactions between multiple correlated sequences
such as spatially co-located autonomous agents.

Inspired by the success of LSTMs in sequence modeling tasks and motivated by their inability to
capture dependencies between correlated sequences, in this work we propose a novel temporally and
spatially attentive deep learning architecture that aims to predict future intent for vessels by variably
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attending to observations of past spatial situations. Conceptually, in our architecture, LSTM hidden
states are no longer constrained to the LSTM they are associated with, and instead are also allowed
to ‘affect’ the cell states of other spatially close LSTMs. Our model is described in greater detail in
section 2.

For an agent attempting to navigate safely in a crowded environment, the agent’s domain can
be defined as the safe space surrounding the agent, the intrusion of which by any neighboring agent
would cause both to have a direct impact on each other’s future intent. The concept of ship domain
has been crucial for safe navigation and collision-avoidance in marine transportation. Several works
have used deterministic methods such as systems of equations to determine geometric dimensions
of the domain(Coldwell (1983); Goodwin (1975); Pietrzykowski and Uriasz (2009); Pietrzykowski
(2001)). In our work, we propose to use data-driven methods to determine a ship domain in order to
take into account the non-procedural knowledge that comes from nautical experience of a navigator
on board. We use this inferred domain to model the impact of a vessel on another based on their
distances and relative orientations. Such insights or information about a system’s so-called domain,
along with its decisions, can be used for knowledge transfer to other deep learning models, other
safety-critical domains using autonomy, or non-ML models applied to the same domain.

When trying to make a certain decision, the human brain has the natural capability to suppress
idle details and focus more on certain other details. Attention networks are variants of deep learning
models that mimic this capability of variably attending to different details in the input. They do this
by learning a weighting over inputs or internal features that governs the flow of information through
the network and consequently, the decision. Two variants of attention networks are relevant to our
work:
Temporal Attention. Given a sequential input data, a typical auto-encoder encodes the input into a
fixed embedding and decodes the embedding into a future sequence prediction under the assumption
that every future timestep is uniformly dependent on observed timesteps. This causes information
loss because in reality, different timesteps in an observed sequence variably affect future behavior.
Using temporal attention the model is able to overcome this limitation and learn what to ‘attend’ to
based on the input sequence and its prediction so far. Bahdanau et al. (2014) and Luong et al. (2015)
proposed temporal attention mechanisms that have been successfully applied to sequence model-
ing tasks such as sentence translation, image caption generation, dynamic visual control problems
(Vaswani et al. (2017); Xu et al. (2015); Mnih et al. (2014)).

Spatial Attention. As mentioned earlier, a conventional LSTM lacks the ability to model in-
teractions across sequences. In our work, we attempt to overcome this limitation by modifying the
conventional LSTM architecture, allowing the hidden state associated with an LSTM to not only
recursively propagate to its own cell at the next time step, but also communicate some informa-
tion about its own cell to other spatially close cells. The amount of information communicated is
dependent on spatial weights, explained in greater detail in Section 2.3.

The goal of this work is to develop a deep learning based approach to predicting the future intent
of socially-interacting agents. This paper:
• improves on the sequence modeling capabilities of a conventional LSTM by adding the ability

to model relationships between interacting sequences, such as spatially co-located agents.
• introduces a novel interleaved temporal and spatial attention mechanism that enables variably

attending to observations of such correlations to generate predictions.
• adopts a data-driven approach for inferring useful knowledge such as ship domain based on

observation data, that can be used for knowledge transfer to other safety-critical domains.
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2. Model Architecture

Given N vessels present in a given area and actively transmitting AIS data at the beginning of an
observation time window ts = t0 to ts = Tobs, our model uses an LSTM-based autoencoder to
identically model the observed sequences of the N vessels. The observed sequence for a vessel
v is denoted by xv

t0:Tobs
and is composed of its positional information (latitude, longitude, speed,

heading) extracted from the AIS data.
2.1. Encoding Stage

At each timestep ts in the observed sequence spanning over time interval [t0, Tobs], the hidden
state of every vessel v, denoted by hvts is updated by feeding the hidden state from the previous
timestep hvts−1 and the observed features at ts, xv

ts to the encoder. However, the hidden state at ts
is also variably influenced by the hidden states of spatially close neighbors. As mentioned earlier,
a conventional LSTM cannot take this influence into consideration. To take this spatial effect into
account, we incorporate a spatial attention mechanism, explained in greater detail in Section 2.3. In
summary, the spatial attention mechanism aggregates variable amount of information from hidden
states of spatially close neighbors. The amount of information extracted from each neighbor is
computed based on a weighting mechanism, and is influenced by different factors such as distance
from v, relative bearing and relative heading with respect to v. The spatially-weighted hidden state
of v, h̃vts−1 is then fed into the encoder at the next time step to update the hidden state of the LSTM.
2.2. Decoding Stage

Every spatially weighted hidden state, h̃vts corresponding to every vessel v is a vector repre-
sentation of the spatial situation at ts. It summarises the orientation of neighbors around v, their
distances from v, their headings with respect to v and their resulting influence on v. The decoding
LSTM receives a sequence of these spatially weighted hidden states for each vessel v for every ts
in the observation time window [t0, Tobs]. Similar to the encoding stage, for every time step tp in
the prediction time window from Tobs + 1 to Tpred, the decoder computes the spatial influence of
the future intent of neighbors on the future intent of the self and vice versa using the same spatial
attention mechanism. This is analogous to a pedestrian altering their path if they anticipate colli-
sion with another pedestrian at a future time step. Further, in order to predict the intent of v given
a sequence of observed trajectory, it is useful to compare the anticipated situation at every timestep
tp in the prediction time window, [Tobs+1, Tpred] with the history of observed situations, h̃vts . This is
similar to a pedestrian using knowledge from past experiences to determine a safe future trajectory.
In the maritime domain, this is similar to a cargo ship recollecting from past experiences, the safest
way to maneuver around a fishing boat when the fishing boat is present at a certain distance and rel-
ative bearing from it. Therefore, to make the model better gauge the spatial influence of the future
intent of neighbors on the future intent of the self and vice versa, we interleave the spatial attention
mechanism with the temporal attention mechanism, as shown in Figure 1(b). The temporal atten-
tion mechanism compares the spatially weighted hidden state at a time step tp in the prediction time
window to all spatially weighted hidden states in [t0, Tobs]. This is analogous to a vessel reacting
similarly to situations it has observed previously and is used to make the model aware of similar-
ity in spatial situations, hence enabling it to learn from the encoded input and react similarly. The
temporally spatially weighted hidden state at a time step is then used to compute the hidden state
corresponding to v at the next time step, and the predicted intent at the next time step. The temporal
attention mechanism is explained in further detail in Section 2.4.
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(a) Spatial Attention Mechanism (b) Temporal Attention Mechanism

Figure 1: The spatial attention mechanism is used in the encoding and decoding stage to model the
spatial influence of neighbors on the intent of self and vice-versa. The temporal attention mechanism
is used in the decoding stage to enable learning from observed ‘situations’ by comparing the current
hidden state of each vessel with its history of spatially-weighted hidden states.

2.3. Spatial Attention
A socially interacting agent’s intent is not only influenced variably by neighbors depending on

their distance from it, it is also affected by other factors, such as relative bearing from the agent and
their heading angle. For instance, in the pedestrian domain, a human is most likely to be influenced
by neighboring pedestrians in its line-of-sight than those behind it. In the same way, in the maritime
domain, the effect of a neighbor on a vessel’s intent would vary with its orientation around the
vessel. To incorporate this multimodal spatial effect, we introduce a spatial attention mechanism
to model the influence of spatially close vessels on each other. While data-driven approaches to
vessel intent modeling are limited, several pioneering works that model human-human interaction
in the pedestrian domain have introduced some forms of spatial attention (Gupta et al. (2018); Alahi
et al. (2016); Sadeghian et al. (2019); Fernando et al. (2017)). However, these methods are replete
with limiting assumptions on the (equal) number of neighbors that identically affect the intent of a
pedestrian in each direction, or alternatively grid size. In contrast to these approaches, we let the
model deduce the vessel domain from the observed data. Any neighboring agent that violates this
area around a vessel would be deemed as a threat to its navigational safety and would cause the
vessel to initiate timely maneuvers to avoid risk of collision. We denote this domain by a learn-able
parameter S. This parameter S is treated like any other trainable parameter in the model and is
learned from training on observed data. At time t, the spatial influence of a neighboring vessel v2
on a vessel, v1 is dependent on three prominent factors: the distance of v2 from v1 at t, d21t ; the
heading angle of v2 with respect to v1 at t, denoted by φ21t ; and, the relative bearing of v2 with
respect to the heading of v1 at time t, denoted by θ21t . At a time step t, the spatial influence of v2 on
v1 is then determined by computing its spatial weight, w21

t ,

w21
t = ReLU(S(θ21t , φ

21
t )− d21t ) (1)

ReLU is a non-linear activation function commonly used in deep neural networks. For any
input i, ReLU(i) = max(0, i). Here, this activation function ensures that if the distance of v2
from v1, d21t is greater than the corresponding domain value S(θ21t , φ

21
t ), v2 would have no effect
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on the intent of v1. The spatially weighted hidden state of v1 is then computed as:

h̃v1t = w11
t h

v1
t + w21

t h
v2
t + . . .+ wN1

t hvNt (2)

This spatially weighted hidden state is then fed to the encoder or the decoder at the next time
step to update the hidden state corresponding to v1, hv1t+1. Our spatial attention mechanism is shown
in Figure 1(a).
2.4. Temporal Attention

At every timestep tp in the prediction time window [Tobs+1, Tpred], the decoder first uses the
spatial attention mechanism to summarise the ‘situation’ or the orientation of neighbors around v1
and their influence on v1 thereof. It then compares this spatially weighted hidden state h̃v1tp with all
h̃v1ts , ts ∈ [t0, Tobs], to understand from similar past experiences the best way to navigate through
this situation. This is done using a temporal attention mechanism, shown in Figure 1(b). In our
model, we specifically use the attention mechanism introduced by Luong et al. (2015). At each time
step tp in the prediction sequence, the LSTM associated with v computes a context vector, Cv

tp as
the weighted sum of (spatially-weighted) hidden states from the observed time window:

Cv
tp =

Tobs∑
ts=t0

= αtp h̃
v
ts (3)

The alignment vector αtp , with length equal to the number of time steps in the observed sequence, is
derived by comparing the current spatially-weighted hidden state h̃ptp with each spatially-weighted
hidden state h̃pts from the observed sequence:

αtp = align(h̃vts , h̃
v
tp) =

exp(score(h̃vts , h̃
v
tp)∑

s′ exp(score(h̃
v
ts′
, h̃vtp)

(4)

where score is called content-based function and is used to quantify the similarity of a source
hidden state and a target hidden state. An observed experience or situation being identical to the
current situation would cause the two spatially weighted hidden states being compared to be equal.
To allow such similar observed experiences to be assigned a higher score in Equation 4, we use dot
product to compute the score. This is because dot product is maximum when the two hidden states
being compared are ‘equal’, which would mean that the spatial situations being summarized by the
two spatially weighted hidden states being compared are identical. Therefore,

score(h̃vts , h̃
v
tp) = h̃vts · h̃

v
tp (5)

The soft attention context vector Cv
tp is computed at every tp ∈ [Tobs + 1, Tpred]. At every time

step, it is concatenated with the computed spatially weighted hidden state, h̃vtp and is further used to
update the hidden state of the decoder at the next timestep, tp + 1, hvtp+1 . A fully connected linear
layer is used to convert the updated hidden state into a predicted intent for v1 at tp + 1.

h̃vtp = concat(Cv
tp , h̃

v
tp) (6)

xv
tp+1 = linear(hvtp+1) (7)

where xv
tp+1 is the predicted position or intent at tp+1 for v.

For more details on the model architecture, please refer to the full technical report Sekhon and
Fleming (2019).
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3. Implementation

Dataset and Pre-processing. To evaluate our model, we use AIS records within U.S. coastal waters
from January 20171. Because we are interested in being able to predict intent in crowded envi-
ronments, we train and validate our model on available AIS data around San Diego Harbor (UTM
Zone 11) from January 2017. Vessels update their AIS information at different rates, and because
our model processes concurrent AIS information from all vessels within a certain area, we resample
and interpolate the raw AIS data to one minute intervals. We evaluate the intent prediction of our
model for 5 time steps (5 minutes) in the future given a history of positional data for all vessels in
a scene over the past 5 time steps. We extracted 8676 such samples from the processed AIS data,
using 80% for training, 10% for validation and the remaining 10% for testing the trained models.
We observed that in many cases, the recorded AIS speed and Heading values are not consistent with
the recorded positional data (latitude, longitude values). Therefore, we use only two input features,
i.e., latitude and longitude values.

Architecture Details. To substantiate our choice of architecture, we trained and evaluated our
model in an ablative setting:
• LSTM+Spatial+Temporal Attention. This refers to our proposed model, with a spatial attention

mechanism to incorporate the spatial interactions with other agents in close proximity and a
temporal attention mechanism to enable the model to learn variably from its history of observed
experiences.
• LSTM+Spatial Attention. This refers to our model with only the spatial attention mechanism

to incorporate spatial interactions with other neighbors in close proximity. This model does
not take into account temporal attention mechanism to understand the variable effect of ob-
served situations on the predicted intent. The encoding and decoding stage for this model are
essentially identical.
• LSTM+Temporal Attention. This model consists of a vanilla-LSTM with a temporal attention

mechanism. This model is agnostic to spatial interactions with neighbors in close proximity
while predicting intent for a certain vessel v. It, however, does incorporate the variable tempo-
ral effects of different timesteps in the observed time window for each vessel v while predicting
intent.
• Vanilla-LSTM. This baseline model consists of a single-layer vanilla-LSTM that tries to model

intent while being agnostic to any spatial or temporal influences.

4. Evaluation

We evaluate the performance of our model in different ablative settings on data from UTM Zone
112. We report performance on two metrics commonly used in the pedestrian domain for evaluating
trajectory prediction methods(Alahi et al. (2016); Gupta et al. (2018); Sadeghian et al. (2019)).
Average Displacement Error (ADE) is defined as the average displacement between the predicted
trajectory and ground truth trajectory over the prediction time span [Tobs+1, Tpred] across all the
vessels in the frame. Final Displacement Error (FDE) is the displacement error between the final
predicted positions and ground truth positions at the end of the prediction time span, i.e. at Tpred
averaged over all the vessels in the frame.

1. retrieved from https://marinecadastre.gov
2. Code available at: https://github.com/coordinated-systems-lab/VesselIntentModeling

6

https://marinecadastre.gov
https://github.com/coordinated-systems-lab/VesselIntentModeling


VESSEL INTENT MODELING

Metric Vanilla-LSTM LSTM LSTM LSTM + Spatial +
+ Temporal Attention + Spatial Attention + Temporal Attention

ADE 0.04567 0.04152 0.03912 0.03314
FDE 0.05377 0.05601 0.04292 0.03840

Table 1: Quantitative Results for all models on evaluation dataset from UTM Zone 11. The ADE
and FDE values are reported in nautical miles and are computed for predicted intent over 5 minutes
using observed AIS information from 5 minutes.

Table 1 shows the ADE and FDE values for different variants of our model. Since the vanilla-
LSTM does not incorporate spatial interactions and solely uses the vessel’s own observed history
to predict its intent, the vanilla-LSTM and its variant with temporal attention perform the worst.
The vanilla-LSTM + spatial attention model is able to perform better than the models without any
spatial attention mechanism because of its ability to understand the causal relationship between
a vessel’s neighborhood and its intent. Adding temporal attention to this model further improves
performance because the model is then able to learn from past “situations” as observed by the self
and variably attend to these while predicting intent, alongwith understanding and incorporating
spatial influences. The hidden layer dimensions of LSTM across all models is 6. Despite the
LSTM encoder and decoder being single-layer LSTMs with very small hidden dimensions, our
model performs well because of its interleaved spatial and temporal attention mechanisms that are
able to intelligently capture the complex cause-effect relationships among neighbors, their observed
experiences and each vessel’s individual intent. Please see the full technical report for other training
and implementation details (Sekhon and Fleming (2019)).

(a) Learned Domain for various
φ21

(b) Learned Domain for φ21=90o

Figure 2: Vessel domain parameter as learned by our spatially and temporally attentive model via
training on vessel AIS data from UTM Zone 11, January 2017.

5. Discussion

As mentioned earlier, prior literature on data-driven modeling intent of interacting agents model
spatial interactions under strong assumptions such as uniform influence of all neighbors in a certain
grid space. By virtue of introducing a learnable vessel domain parameter, our model is able to
differentiate and variably attend to different agents at the same distance from an agent, based on
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Figure 3: Robustness of learned domain parameter to random initializations for 120o < φ21 ≤ 180o

their relative headings and relative bearings from the self. The vessel domain parameter as learned
by our spatially and temporally attentive model is shown in Figure 2(a). In general, the model learns
a farther distance from the self for relative bearings that fall in the line-of-sight of the vessel, and
closer distances from the self for relative bearings that fall behind the vessel. Further, the model
learns a farther distance for all neighbors v2 that are approaching v1 head-on, with 120o ≤ φ21 <
180o. This implies that between two neighbors, both at equal distances from v1 and heading in the
same direction, v1 would be more influenced by the one that is approaching it head-on than another
with the same relative heading but at a different relative bearing from v1. Figure 2(b) shows the
vessel domain as learned by the model for a vessel v2 with φ21 = 90o for various θ21 values. As
can be seen from the figure, the model attends more to v2 when it tries to cross it from its starboard
side, as compared to other relative bearings. This is understandable because neighbors with the
same orientation at other relative bearings have no influence on its intent or high-level trajectory,
and pose no immediate risk of collision to v1.

In practice, deep neural networks are initialized to random weights before beginning the training
process. Since this randomness causes the optimal parameter search to initiate at a different point
and progress differently each time the model is trained on the same dataset, it may cause the model
to converge at a different parameter configuration each time. To evaluate the robustness of our
model to randomness in learning, we train our model using 5 different random initialization seeds.
Figure 3 shows the learned domain values for a scenario with a neighboring vessel v2 at a relative
heading (120o < φ21 ≤ 180o) with respect to v1 for 5 different random initializations. As can be
seen from the figure, the model is nearly able to reproduce the learned domain parameter across all
the initializations.

6. Conclusion

In this work, we propose a learning-based method for modeling intent of vessels, hence enabling
safe navigation in cluttered environments such as harbors. Despite being trained on only posi-
tional data, our novel architecture is able to accurately model vessel intent and is also able to infer
knowledge such as vessel domain from observed data. Our model can be used alongside other
sophisticated data sources, such as sensors like LiDARs, radars, etc. for improved accuracy and
user trust in safety-critical scenarios. While we validate our approach on the maritime domain, this
method can be easily adopted to model intent and spatial interactions for other socially interacting
autonomous agents, such as pedestrians, automobiles and unmanned aerial vehicles.
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