
Tree-of-Code: A Self-Growing Tree Framework for End-to-End Code
Generation and Execution in Complex Tasks

Anonymous ACL submission

Abstract

Solving complex reasoning tasks is a key real-001
world application of agents. Thanks to the pre-002
training of Large Language Models (LLMs)003
on code data, recent approaches like CodeAct004
successfully use code as LLM agents’ action,005
achieving good results. However, CodeAct006
greedily generates the next action’s code block007
by relying on fragmented thoughts, resulting008
in inconsistency and accumulative hallucina-009
tion. Moreover, CodeAct lacks action-related010
ground-truth (GT), making its supervision sig-011
nals and termination conditions questionable in012
multi-turn interactions. To address these issues,013
we propose Tree-of-Code (ToC), a self-growing014
framework that generates nodes through self-015
supervision, incorporating prompt and model016
exploration in a GT-free setting. Each node em-017
ploys CodeProgram, an end-to-end code gen-018
eration paradigm that aligns executable code019
logic with global reasoning. This approach020
uses task-level execution success as both node021
validity and stop-growing flags, bypassing pro-022
cess supervision to enable online applications.023
Experiments on two datasets with ten popular024
zero-shot LLMs show that ToC boosts accuracy025
by nearly 20% over CodeAct with fewer than026
1/4 turns. To further investigate the trade-off027
between efficacy and efficiency, ablation stud-028
ies on different ToC tree sizes and exploration029
mechanisms validate ToC’s superiority.030

1 Introduction031

Large language models (LLMs) significantly im-032

prove agents’ ability to leverage external tools.033

(Chen et al., 2023b; Hong et al., 2023; Paul, 2024).034

Effectively and efficiently handling complex real-035

world problems (Blount and Clarke, 1994), espe-036

cially those requiring multiple tools and calls (Li037

et al., 2023b; Wang et al., 2024), has become a key038

focus across industry and academia. Currently, the039

widely used paradigm, ReAct, (Yao et al., 2022),040

combines reasoning with action strategies, allow-041

ing for actions to be performed incrementally and 042

adjusted based on environmental feedback. 043

The application of code generation techniques 044

to complex task planning and execution has gar- 045

nered significant attention (Holt et al., 2024; Wen 046

et al., 2024a; Xu et al., 2024b), particularly with 047

the emergence of CodeAct (Wang et al., 2024) ap- 048

proaches. CodeAct moves the interaction unit from 049

ReAct’s individual tool calls to generating code 050

blocks with local reasoning while leveraging code 051

logic and libraries. Rather than JSON (Qin et al., 052

2023) or text (Park et al., 2023), it treats code as 053

action, utilizing LLM’s pre-trained coding skills 054

for efficient handling of complex tasks. 055

However, CodeAct treats each turn as an individ- 056

ual action rather than addressing the entire program, 057

following a step-by-step generation process. While 058

this approach may seem explorative, it has four 059

critical limitations: (I). CodeAct assumes that the 060

ground truth (GT) is known and uses GT match- 061

ing as a termination criterion, which is unrealistic 062

and unfeasible. (II). Fragmented thinking is inef- 063

ficient. For simple problems, stalled thinking is 064

not only unnecessary but also disrupts the logical 065

chains in the code (Wang et al., 2023; Guo et al., 066

2024). Moreover, as the number of turns increases, 067

repeatedly integrating prior thoughts causes con- 068

text overload, heightening model hallucinations (Ji 069

et al., 2023), increasing computational cost. (III). 070

CodeAct lacks exploration of diverse reasoning 071

paths. While it supports multi-turn interactions, 072

it follows a single reasoning process. In contrast, 073

solving complex problems often has multiple so- 074

lutions (Mialon et al., 2023), where different ap- 075

proaches can branch from different points, making 076

it difficult to set a standard answer for each turn. 077

(IV). Generated trajectory data is hard to reuse. 078

When using these trajectories for supervised fine- 079

tuning (SFT), they cannot be directly combined 080

into a single program response (Wang et al., 2024). 081

Reinforcement learning is also challenging due to 082

1

the lack of process supervision (Zelikman et al.,083

2024), leading to fundamental issues.084

Since defining and obtaining supervision signals085

for intermediate states is challenging, we propose086

using task-level feedback directly, treating task087

completion as a single step. We introduce CodePro-088

gram, an end-to-end code reasoning and generation089

paradigm, as a ‘turn,’ where the only environmen-090

tal supervision is execution success. To incorporate091

reflection and exploration, we design an outcome-092

driven refinement framework, Tree-of-Code (ToC),093

that enables multi-turn interactions with diverse094

solutions exploring the model and prompt pools095

as tree branches, where task-level CodePrograms096

serve as the nodes. The final output is determined097

by voting on the collected nodes, selected based on098

their successful execution. It’s important to note099

that, in this paper, a ‘turn’ refers to a single action100

of code generation. For our CodeProgram, a turn101

involves completing the entire program, rather than102

just a single task step (as in CodeAct).103

Although ToC’s name and structure are similar to104

’Tree-of-Thoughts’ (ToT) (Yao et al., 2024), their105

meanings fundamentally differ. Our concept might106

be closer to a Code ‘"Random Forest" (Rigatti,107

2017). While ToT enhances ’Chain-of-Thought’108

(CoT) (Wei et al., 2022) by exploring different109

thoughts within the same solution, ToC explores110

multiple distinct program solutions. In other words,111

each node in ToC represents a complete solution,112

and the tree as a whole captures different iterative113

optimizations (depth) across a variety of complete114

solutions (breadth). The core contributions of this115

paper are summarized as follows:116

1. We propose a self-growing Tree-of-Code117

(ToC) structure that automatically reflects and118

explores diverse, complete solution nodes119

without labeled data, facilitating complex120

tasks in multi-tool online scenarios.121

2. Each node in ToC, called a CodeProgram,122

is generated end-to-end. We are the first to123

define process-level supervision at the task-124

outcome level using execution success.125

3. Extensive experiments and ablation studies on126

two multi-tool, complex task datasets with ten127

models, demonstrate that ToC significantly128

enhances problem-solving accuracy and effi-129

ciency in real-world, zero-shot scenarios.130

Tool Agent
1 st turn 2 nd turn

Try Different Actions Step-by-Step

...

... n-1 th turn

A Conceptual Task for Illustration: Draw a circular smiley face with two black round
eyes and a black wide and slightly arched curved line as the mouth on a green background.

🟰 ❓ 🟰 ❓ 🟰 ❓ 🟰 ❓

n th turn

Program Agent

...

Diverse Completed Programs

Explore and Filter Completed Programs

 Successfully Executed Final
Program

one process

done correctly : wrong : correct :

/ : an action : a completed task Program Filter: Next Action:

: successfully executed
but uncorrectlly execution failed:

Action:

Figure 1: Illustration of our design motivation.

2 Design Motivation 131

In industry, complex tasks requiring multiple tools 132

and function calls, are typically driven by open- 133

ended user queries. This creates two key chal- 134

lenges: (1) For zero-shot queries, it is unrealistic to 135

pre-obtain task-level ground-truth (GT), which is 136

required for SFT (Chung et al., 2024) or reinforced 137

fine-tuning (ReFT) (Luong et al., 2024). More- 138

over, without GT, the termination criteria become 139

unclear. (2) Multi-turn interactions lack a stan- 140

dard trajectory, making it difficult to define the pro- 141

cess supervised signals (Luo et al., 2024). Current 142

methods often rely on ’LLM-as-judge’ to evalu- 143

ate whether the user’s needs are met at each step 144

(Chen et al., 2024; Li et al., 2024a). However, it 145

would require an API call after every step to check 146

progress, ultimately increasing both time and token 147

costs. Besides, the evaluation without objective sig- 148

nals demands strong analytical and reasoning skills 149

from LLMs. Existing methods deliberately avoid 150

these challenges by assuming GT is known (Wang 151

et al., 2024), matching task-level GT with action- 152

related outcomes at each step, like the tool agent 153

in Figure 1: the interaction turn stops only if they 154

match, or continues until the step limit is reached. 155

Since intermediate states are absent, if possible, 156

why not treat each complete end-to-end execution 157

as an atomic state? By iteratively exploring feasi- 158

ble solutions through parallel executions, we first 159

collect a batch of solutions, and then determine the 160

optimal one, as shown by the program agent in Fig- 161

ure 1. This idea inspires our node outcome-driven 162

reflection system specifically designed for multi- 163

tool interaction in real-world environments. Our 164

2

Thought 2 :
I apologize for the confusion. It seems there

is an issue with this tool. Let me try a

different approach.

CodeProgram
import math

......

def haversine_distance(lat1, lon1, lat2, lon2):

R = 6371 # Earth's radius in kilometers

geocoding_result = llm_errhandler(Geocoding,

address="San Francisco")

if geocoding_result['status'] == 'success':

(a) CodeAct

Thought 1 :
I can use the NearbyRestaurants API.

Code Action 1 :
NearbyRestaurants({'latitude': 37.7749,

'longitude': -122.4194, 'distance': 1000}

Execution 1 :
TypeError: tool_gen.<locals>.tool_function()

takes 0 positional arguments but 1 was given

Code Action 2 :
Geocoding(address='San Francisco')

Execution 2 :
'latitude': 37.7749, 'longitude': 122.4194

……

Query

(b) Tree-of-Code (ToC)

Task Query

Valid Collections

collect all Executed-Successfully nodes

Ans

majority vote from Valid Collections

Accepted

Awaited

Discarded

Reflect and Expand Nodes

Valid:

Invalid:

Node Execution Success

Node Execution Failure

Thoughts
Based on the previous implementations, we have

successfully find nearby restaurants‘ location.....

1. Add more informative output, including......

2. Round the distance to three decimal places.....

3. Add error handling for the case......

Execution n:
['Restaurant B','Restaurant D']

Execution
Coordinates for San Francisco: (37.7749, 122.4194)

Found 2 restaurants within 1km of San Francisco:

1. Restaurant B (0.000 km away)

2. Restaurant D (0.000 km away)

Layer 1 -

Layer 2 -

Layer3 -

Ans

Node InCorrect

Continue Next Action

Node Correct

Stop and Output answer

Vote and Output answer

Figure 2: An Overview of CodeAct and ToC. (a) CodeAct regards code as action with step-by-step reasoning. (b)
ToC applies execution-based reflection in the tree structure, where each node (CodeProgram) generates end-to-end
code with global planning as its thoughts. At each layer, nodes are executed in parallel; if executed successfully,
they are collected for voting. Note that the process supervision relies solely on the node’s execution success or
failure, rather than on the specific content executed (whether correct or incorrect), which would require pre-known
labels. The query is "Find nearby restaurants within 1km of San Francisco" from API-Bank level-3 dataset.

key contribution is a self-growing framework en-165

abling LLM agents to autonomously interact with166

code through zero-shot learning without GT su-167

pervision, whose implementation details will be168

subsequently presented.169

3 Tree-of-Code Method170

Following the design motivation, we need to col-171

lect all valid solutions and identify the one closest172

to the GT. By treating each tree node as a com-173

plete task-level solution and exploring different174

nodes for breadth while deepening through itera-175

tive refinement, we propose ToC (Tree-of-Code),176

an execution-based, self-growing, and self-filtering177

tree for handling real-world complex tasks.178

3.1 Overview of Tree-of-Code179

We represent the ToC framework as T = (N, S),180

where N denotes a set of nodes (N), and S rep-181

resents the stems (unidirectional arrows in Figure182

2) , modeling the reflection reasoning process of183

LLMs when expanding the nodes. The overview184

of ToC and how it works is illustrated in Figure 2.185

Let L denote the max depth, l the layer index, M186

the expanded layer’s max-width, m the node index,187

l ∈ {1, . . . , L}, m ∈ {1, . . . ,M}. We use T for188

the thoughts of the N , C for code, and E for its189

execution result. The next-layer N is denoted as: 190

N(l+1)-m = Sl→(l+1)(f,

l∑
j=0

(Tj-m+Cj-m+Ej-m)) 191

where f represents the basic information of the 192

task, such as the user’s query, and all tool descrip- 193

tions. The sum
∑l

j=0 indicates that each reflection 194

reasoning process for generating the next node re- 195

lies on the thoughts, code, and execution results 196

from all ancestor nodes in the history. The node 197

index is fixed for simplicity in the formula. 198

3.2 Tree Node Generation 199

Unlike tool agents like CodeAct, which treat each 200

intermediate action and environmental feedback as 201

a step, each node in our ToC represents a complete 202

task, effectively increasing the granularity of task 203

handling at each layer. 204

In other words, a single tree node (one turn) is 205

equivalent to multiple turns of CodeAct, with both 206

being directly comparable and serving the same 207

purpose (final response), significantly improving 208

efficiency. We refer to this end-to-end code rea- 209

soning and generation paradigm as CodeProgram. 210

Figure 4 illustrates how it works. 211

Specifically, the end-to-end code in CodePro- 212

gram serves as a bridge, aligning with natural lan- 213

guage reasoning and execution outcomes in the 214

environment. Besides, by decoupling the reasoning 215

3

Layer 1

1. We've added more detailed printing of the available
flights and hotels to better understand the data.
2. We removed the "luxury" preference from the hotel
booking function as it might not be a valid parameter.

def main():

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(LOC[2]) # Removed "luxury"
preference as it might not be valid

 # Step 3: Calculate the total budget
 ……
 rounded_budget = round(total_budget) # Round to nearest
integer

 return rounded_budget

result = llm_errhandler(main)
if result["status"] == "success":
 print(f"Final result: {result['result']}")
else:
 print(f"Error occurred: {result['error']}")

Best hotel: {'location': '"C"', 'preferences': ['wifi',
'pool'], 'price_per_night': 110, 'rating': 5}
Total budget for the trip: $1370

You are at LOC[4]. Plan a luxury trip to LOC[2] on 2023-10-05,
staying in the highest-rated hotel for 7 nights. Always choose
the cheaper flight. Give me the total budget for the trip.

4. max: Finds the maximum value among the given arguments.
5. min: Finds the minimum value among the given arguments.
6. sum: Sums the given float arguments.

1. find_flights: Finds flights based on source, destination and date.
2. book_hotel: Books a hotel based on location and preferences.
3. budget_calculator: Calculates the total budget for a trip.

1. The result is wrapped in the llm_errhandler for error
handling.
2. The main issue in the previous attempts was that we
were using "LOC[4]" and "LOC[2]" as literal strings,
which are not valid locations for the find_flights function.

def main():
 # Step 1: Find flights
 flights = find_flights(LOC[4], LOC[2], "2023-10-05")

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(LOC[2], "luxury")

 # Step 3: Calculate the total budget

 return total_budget

result = llm_errhandler(main)
if result["status"] == "success":
 print(f"Final result: {result['result']}")
else:
 print(f"Error occurred: {result['error']}")

Cheapest flight: {'from_location': '"E"',
'to_location': '"C“’, 'date': '2023-10-05', 'price':
600} ERR: Error occurred: max() arg is an
empty sequence

1. Find flights from LOC[4] to LOC[2] on 2023-10-05.
2. Book the highest-rated hotel in LOC[2] for 7 nights.
3. Calculate the total budget for the trip.

def main():
 # Step 1: Find flights
 flights = find_flights("LOC[4]", "LOC[2]", "2023-10-05")
 # Choose the cheaper flight
 cheaper_flight = min(flights, key=lambda flight: flight["price"])
 print(f"Selected flight: {cheaper_flight}")

 # Step 2: Book the highest-rated hotel
 hotels = book_hotel(“LOC[2]”, "luxury")
 # Choose the highest-rated hotel
 best_hotel = max(hotels, key=lambda x: x['rating'])
 print("Best hotel:", best_hotel)

 # Step 3: Calculate the total budget
 total_budget = budget_calculator(cheapest_flight['price'],
best_hotel['price_per_night'], 7)
 print(f"Total budget for the trip: ${total_budget:.2f}")

 return total_budget

main()

ERR: “LOC[4]” and “LOC[2]” are invalid. We can
not find the required flights.
“book_hotel” function can not find “LOC[2]” .

Layer 2 Layer 3

Figure 3: Illustrative example of a branch of ToC. We demonstrated the process of a node expanding into deeper
levels. Based on the user query, tool descriptions, and previous execution outcomes, ToC first thinks about how to
do it and then writes the end-to-end code. The example is selected from M3ToolEval dataset.

process from code execution, we achieve flexibility216

while ensuring consistency.217

3.2.1 Code as Reasoning218

On the one hand, CodeProgram leverages the219

concept of "code-as-reasoning" to generate code,220

where the process of writing code itself mirrors the221

reasoning process.222

On the other hand, global reasoning is essential223

for guiding CodeProgram’s complete code genera-224

tion in a single end-to-end flow. This approach en-225

ables the seamless integration of various reasoning226

techniques for large language models (LLMs), such227

as prompt engineering (Chen et al., 2023a), Chain-228

of-Thoughts (CoT) (Wei et al., 2022), Tree-of-229

Thoughts (ToT) (Yao et al., 2024), in-context learn-230

ing (Kojima et al., 2022), self-reflection (Zhang231

et al., 2024), and System2 reasoning (Frankish,232

2010; OpenAI, 2024b). Additionally, longer chains233

of thought have consistently been shown to enhance234

task performance (Zelikman et al., 2024).235

Building on this foundation of global reason-236

ing, we write the root prompt based on previous237

work (Wang et al., 2024) to guide the generation of238

step-by-step CoT thoughts and the corresponding239

complete code. LLMs are prompted to first analyze240

and break down the problem, generate reasoning-241

based thoughts for solving it, and then produce242

the complete code that reflects and executes that243

reasoning. The thoughts and codes are enclosed us-244

ing the "<thought>-</thought>" and "<execute>-245

</execute>" tags, respectively. The root prompt is246

shown in Appendix A.247

CodeProgram

Methods: CoT, ToT, In-
context learning, Self-
Reflection, System2...

Supervision signals

Rewards

OutComes: Successful /
Failed ? Error Types &

Messages？

Thoughts
SFT

ReFT

Training Label

Reasoning Execution Code

Data Pair: (Thoughts + Code, Label)

Figure 4: Illustration of the CodeProgram in ToC.

3.2.2 Two Helper Tools 248

CodeProgram struggles with environmental explo- 249

ration when LLMs must rely on tool outputs to 250

determine the next steps. For instance, in web 251

browsing tasks, the next action can only be decided 252

after viewing the page content, and a final summary 253

answer can only be provided after considering all 254

tool outputs. Thus, to maintain end-to-end flow, we 255

introduce two functions: a general res_handler, 256

which defines a prompt to generate results that meet 257

the prompt requirements for final summarization, 258

and a specific next_action for web tasks, which 259

decides the next action from a given set of possible 260

browsing actions based on the page content, visited 261

URLs, and task query. Their tool descriptions and 262

functions are shown in Appendix B. 263

They help better understand the semantic rela- 264

tionships between tools, ensuring a smooth, cohe- 265

sive sequence of tool calls during code generation. 266

In the Appendix B.3, we also provide an example 267

demonstrating how these helper tools work. 268

4

3.2.3 Execution Outcome as Process Label269

The code solution is task-level, and its execution270

outcome is a self-provided annotation that can be271

directly used as labels. Note that we focus solely272

on task execution success, using a simple true/false273

label to filter feasible solutions and approximate274

more effective ones. This label is weak but avail-275

able, simple, and useful—unlike pre-known GT or276

correctness judgments.277

Benefiting from our end-to-end paradigm (a278

direct, complete task-level response to a single279

query), we can select "successfully executed" sam-280

ples for SFT and use various rich comments (such281

as specific results or error messages) as rewards for282

ReFT by repeating the CodeProgram in different283

settings (i.e., multi-nodes). In this context, the code284

acts as a verifier. This verification-then-refinement285

concept also inspires the development of a multi-286

layer Tree-of-Code (ToC).287

Thanks to task-level granularity, the code’s exe-288

cution outcomes align with both the task query and289

the thought-code output, enabling the generation290

of valuable data for potential future training.291

3.3 Tree Expansion292

We initialize from a root node and recursively ex-293

pand the tree. The expansion process follows: (1)294

The breadth-first search (BFS) strategy is applied,295

with each parent node branching into M = 3 child296

nodes. (2) Whether the node continues to grow de-297

pends solely on the evaluation of its own execution298

state (success or failure). For each Nl,299 {
stop and collect, if El ̸= None or error,
grow N(l+1), otherwise.

300

(3) Expansion continues until all child nodes stop301

or the maximum depth (L) of 3 is reached.302

Execution-based Reflection. We can not guaran-303

tee that one node solution will be correct on the304

first attempt. Treating task-level execution errors as305

continuation signals, we propose execution-based306

reflection, which enables LLMs to self-reflect, iden-307

tify errors, refine thoughts, and improve code. As308

long as execution fails, self-reflection continues309

iteratively, generating next-layer new nodes. The310

prompt for reflection is shown in Appendix A.2.1.311

This also allows the branch to grow into deeper312

layers, where each node in the trajectory provides313

process supervision signals based on its outcome.314

Note that the definition of ’turn’ is equivalent to315

that of ’layer’; both terms carry the same meaning.316

Tool Available
find_flights, book_hotel, budget_calculator, max, min, sum

Task Query
You are at LOC[4]. Plan a luxury trip to LOC[2] on 2023-10-05, staying in the highest-rated

hotel for 7 nights. Always choose the cheaper flight. Give me the total budget for the trip.

Execution Res
No hotels found in C.

Reflection
Add error handling.

 Varying LLMs and Prompts

$ 1370

Reflection
Directly Estimate data.

$ 1900

Reflection
Correct Value Err.

 Exploration: Varying LLMs and Prompts

1370

Reasoning
First Thought

Execution Res
TypeError: Loc[C] is not a Dict.

......
......

Output

$ 1370

Execution Res
KeyError: ‘cost’

res[‘result’][‘cost’]

Execution Res
ValueError: max() arg
is an empty sequence

Execution Res
Try another destination or

remove the 'luxury'.

Reflection
Find more ditails.

 Exploration: Varying LLMs and Prompts

Reflection & Reasoning
Correct Type Err.

Figure 5: A detailed example illustrating ToC’s
execution-based reflection and expansion.

Since these supervision signals are inherently em- 317

bedded within the CodeProgram node, the growth 318

process is self-driven. Therefore, the whole tree is 319

end-to-end generated. 320

Figure 3 shows an example of a branch of ToC 321

while Figure 5 demonstrates execution-based reflec- 322

tion and tree expansion. Additionally, our flexible 323

tree-structured framework allows for the integra- 324

tion of any reflection method for tree expansion. 325

Exploration strategy. Generating code in a single 326

pass presents two main limitations on diversity: 327

• 1) Limited strategy: It easily leads to cognitive 328

narrowing, where the fundamental reasoning 329

mechanism remains unchanged. 330

• 2) Limited robustness: If an error occurs, the 331

only option for the user is to re-run the whole 332

process, without any proactive adjustments, 333

which leads to inefficiencies. 334

Research (Renze and Guven, 2024) has shown 335

that performance benefits from diverse perspectives 336

of error identification, which encourages models to 337

generate multiple solutions (ie. nodes in ToC). 338

To enhance the diversity of ToC, we introduce 339

randomness into the expansion process by varying 340

5

LLMs and prompts, inspired by the random for-341

est (Rigatti, 2017). At the system level, different342

LLMs from our list, introduced in Section 4.1, are343

explored randomly with a consistent temperature344

setting of 0.1. At the instruction level, prompts345

are randomly selected from a diverse pool, created346

through self-evolution and human crafting.347

The random exploration mechanisms operate at348

each node individually, while the prompt pool is349

created just once for the entire system.350

Specifically, we used ten LLMs to generate ten351

diverse prompts through prompt evolution from the352

root prompt (see Appendix A). The evolution pro-353

cess ensures the core content remains consistent354

while promoting orthogonal or divergent expres-355

sions. Six distinct prompts were manually selected356

and the following modifications were then applied:357

(1) adding detailed usage examples (beyond just358

printing "Hello world") to three prompts; (2) adjust-359

ing the format with line breaks and indentation; (3)360

randomly rearranging components, including the361

reflection part, usage examples, role instructions,362

tool descriptions, and chat history.363

3.4 Final Result Generator364

Once valid outputs from successfully executed365

nodes are collected, the same LLM makes the final366

decision by performing a majority vote and summa-367

rization to determine the most likely answer. Ties368

are rare in our observations, so we always choose369

the most frequent answer without special handling.370

4 Experiment and Analysis371

4.1 Setup372

Datasets. Following CodeAct, our evaluation is373

based on M3ToolEval1 (M3) (Wang et al., 2024)374

and the test set of API-Bank2 (Li et al., 2023b). M3375

consists of 82 tasks utilizing 100 tools in code/J-376

SON/txt action space respectively across 5 types377

of scenarios, including DNA sequencer, message378

decoder, trade calculator, travel itinerary planning,379

and web browsing. API-Bank contains 314 tool-380

use dialogues and 73 API tools, including level-1,381

2, 3. Unlike CodeAct, which evaluates only on382

level-1, we focus directly on the 50 most challeng-383

ing level-3 tasks, on which nearly all non-GPT4384

models score 0%, according to the original paper.385

1https://github.com/xingyaoww/code-act/tree/
main/scripts/eval/m3tooleval

2https://huggingface.co/datasets/
liminghao1630/API-Bank/tree/main

Considering API-Bank only supports JSON format, 386

we make following modifications to adapt it for 387

code interaction: (1) functionalize all API tools, 388

(2) add output examples to each function descrip- 389

tion (Figure 6). We include all tool signatures in 390

the prompt context and let LLMs inherently search 391

and select tools, instead of using ToolSearch API, 392

deemed the least essential in (Li et al., 2023b). (3) 393

determine correctness by matching the response 394

to the expected final output through conditional 395

keywords, not by API call matching. 396

Example of the Function Signature in API-Bank level-3
UserMoviePreferences():
 description: "API for retrieving user preferences for
movie recommendations. Here is an example of the output:
result = {'api_name': 'UserMoviePreferences', 'input':
{'user_name': 'John'}, 'output': {'preferences': ['Action',
'Comedy', 'Drama']}, 'exception': None}"
 input_parameters:{
 'user_name': {'type': 'str', 'description': 'Name of
the user.'},
 }
 output_parameters:{
 'preferences': {'type': 'list', 'description': 'List
of movie preferences.'},
 }

Figure 6: Example of the function signature in level-3.

Models. We include the following ten models 397

in our model pool for evaluation: the GPT family 398

from OpenAI (Achiam et al., 2023; Bubeck et al., 399

2023; OpenAI, 2024a), including gpt-3.5-turbo- 400

1106, gpt-4o-mini-2024-07-18, gpt-4o-2024-08-06, 401

and gpt-4-1106-preview checkpoints, excels in gen- 402

eration capabilities. From the Anthropic’s Claude 403

family (Anthropic, 2023, 2024), we select claude- 404

instant-1, claude-2, claude-3-haiku-20240307, and 405

claude-3-5-sonnet-20240620 known for their code 406

generation and problem-solving capabilities. Be- 407

sides, we incorporate open-sourced deepseek-chat 408

from DeepSeek (Guo et al., 2024) and qwen2.5- 409

72b-instruct from Alibaba (Bai et al., 2023). 410

Baselines. ReAct (Yao et al., 2022) combines 411

reasoning and action in a dynamic, step-by-step 412

interaction, providing a flexible approach to task- 413

solving. We use JSON as the action space. Code- 414

Act (Wang et al., 2024) utilizes a block of code as 415

the LLM agent’s action, enabling more efficient 416

multi-turn interactions. 417

Metrics. The evaluation includes accuracy and 418

averaged turns. Accuracy represents the percent- 419

age of complex tasks that are correctly solved. 420

Each LLM-generated code is considered one turn. 421

For the parallel generation, the number of threads 422

counts as turns in terms of resource usage, but 423

when considering time, multiple parallel genera- 424

tions count as one turn. We use the latter approach. 425

We also record the average number of output words 426

6

https://github.com/xingyaoww/code-act/tree/main/scripts/eval/m3tooleval
https://github.com/xingyaoww/code-act/tree/main/scripts/eval/m3tooleval
https://huggingface.co/datasets/liminghao1630/API-Bank/tree/main
https://huggingface.co/datasets/liminghao1630/API-Bank/tree/main

Mechanism M3ToolEval API-Bank level-3
Avg Turns Correct Output Words Avg Turns Correct Output Words

ReAct 8.2 38.1 % 1.86 k 9.5 8.2 % 1.66 k
CodeAct 7.0 49.4 % 1.91 k 8.9 19.2 % 1.82 k
Tree-of-Code (3-3) 1.7 ↓ 67.1 % ↑ 0.44 k ↓ 2.1 ↓ 38.0 % ↑ 0.39 k ↓

Table 1: Performance comparison of the baselines and our ToC in terms of averaged turns, output words, and
accuracy on two datasets. Note: all numerical results presented in this paper are rounded.

for the API cost evaluation.427

4.2 ToC vs. CodeAct and ReAct428

We primarily compare the ToC framework, which429

is comprised of CodeProgram nodes, with the430

CodeAct and ReAct framework, which are com-431

prised of steps, using the M3 and the level-3432

datasets. For ToC, we randomly sample the LLM433

and prompt from the LLM list and prompt pool,434

respectively, at each node exploration. For Code-435

Act and ReAct, we report the average results across436

all LLMs used in this paper. Table 1 shows ToC437

achieves consistent superior performance (nearly438

20% higher) with significantly fewer interaction439

steps and averaged output words (nearly 1/4), high-440

lighting its efficiency in handling complex tool-use441

scenarios. Specifically, Figure 7 shows the com-442

parison of ReAct, CodeAct, and ToC on the five443

tasks in the M3, where ToC achieves near-perfect444

accuracy on all tasks except the web browsing task.445

Figure 7: Comparison across five tasks in the M3.

4.2.1 Our one-turn vs. The multi-turn446

Furthermore, we explore the performance of one-447

layer ToC (1-x) with the fixed model. As a node448

in ToC, CodeProgram enables the complete solu-449

tion in a single turn by leveraging code’s ability450

to handle long logic chains. Table 2 shows that,451

with a significant advantage in the number of turns452

(one vs. multi-turn: averaged 7.0/8.9), our perfor-453

mance on some models even surpasses multi-turn454

CodeAct and ReAct, particularly with the Claude455

series. Compared to CodeProgram, ie. ToC (1-1),456

the single layer, three nodes ToC (1-3) with ran-457

dom prompts significantly boosts performance. Its458

average accuracy already surpasses CodeAct, high-459

lighting the effectiveness of prompt randomness.460

We highlight the best-performing models in bold. 461

Experimental results show that the top models dif- 462

fer between the CodeAct and ToC, and even within 463

CodeAct, performance varies by dataset. For M3, 464

gpt-4 performs best, while for API-Bank level-3, 465

gpt-4o excels, likely because API-Bank level-3 em- 466

phasizes tool usage over scenario understanding, 467

with simpler problem expressions. For ToC, claude- 468

3-5-sonnet stands out due to its strong prompt- 469

following ability, which is key for aligning rea- 470

soning with code and tool selection. 471

4.3 Analysis and Ablation Studies 472

Varying tree sizes. We test the performance of 473

the top model, claude-3-5-sonnet, on different tree 474

sizes to evaluate the trade-off between efficacy 475

and efficiency. Table 3 shows impressive results: 476

with proper prompts and no additional training, the 477

model achieves 84.1% accuracy (3-3) on the M3, 478

10.9% higher than 73.2% (1-1). 479

It seems the "nodes per Layer" contribute more 480

than Layers, likely because our tree structure is 481

designed to enhance exploration. Increasing the 482

number of nodes certainly introduces more diverse 483

prompts and model variations, whereas adding 484

more layers (ie. more turns) mainly accumulates 485

histories without significantly improving decision- 486

making, especially with models that have limited 487

contextual understanding. 488

Prompt exploration. Ablation results in Table 4 489

confirm the effectiveness of prompt exploration. By 490

comparing the random model with the fixed model 491

(claude-3-5-sonnet), prompt exploration proves to 492

be more critical in scenarios with lower diversity. 493

5 Related Work 494

LLM Code Generation for Complex Tasks. Re- 495

cent works integrating LLMs with code have 496

largely focused on task completion in program- 497

ming domains like software development (Qian 498

et al., 2024; Wang et al., 2023), programming as- 499

sistance (Islam et al., 2024; Wen et al., 2024b), and 500

scientific problems (Chen et al., 2022; Gao et al., 501

2023; Hong et al., 2024). These studies primar- 502

7

Model
M3ToolEval API-Bank level-3

ReAct CodeAct ToC (1-1) ToC (1-3) ReAct CodeAct ToC (1-1) ToC (1-3)

claude-instant-1 28.0% (8.7) 18.0% (8.9) 30.5% (1) 35.3% (1) 0.0% (10.0) 2.0% (10.0) 6.0% (1) 18.0% (1)

claude-2 40.2% (8.2) 54.9% (7.2) 57.3% (1) 59.8% (1) 0.0% (10.0) 20.0% (8.9) 8.0% (1) 18.0% (1)

claude-3-haiku 24.4% (9.0) 9.8% (9.4) 29.3% (1) 31.7% (1) 10.0% (9.4) 0.0% (10.0) 6.0% (1) 8.0% (1)

claude-3-5-sonnet 48.8% (7.7) 73.2% (5.7) 73.2% (1) 82.9% (1) 14.0% (9.3) 32.0% (7.8) 48.0% (1) 52.0% (1)

gpt-3.5-turbo-1106 18.3% (8.9) 25.6% (8.6) 12.2% (1) 17.1% (1) 14.0% (9.2) 2.0% (9.9) 4.0% (1) 8.0% (1)

gpt-4-1106-preview 54.9% (7.5) 75.6% (5.4) 72.0% (1) 73.2% (1) 18.0% (8.2) 30.0% (8.2) 34.0% (1) 38.0% (1)

gpt-4o-mini-2024-07-18 32.9% (8.4) 47.6% (7.0) 31.7% (1) 42.7% (1) 10.0% (9.6) 16.0% (9.5) 14.0% (1) 20.0% (1)

gpt-4o-2024-08-06 35.4% (8.5) 56.1% (6.7) 51.2% (1) 62.2% (1) 14.0% (9.4) 36.0% (7.8) 28.0% (1) 32.0% (1)

qwen2.5-72b-instruct 50.0% (7.9) 70.7% (5.6) 51.2% (1) 59.8% (1) 2.0% (9.9) 30.0% (8.2) 24.0% (1) 32.0% (1)

deepseek-chat 47.6% (7.6) 62.2% (5.9) 40.2% (1) 52.4% (1) 0.0% (9.8) 24.0% (8.6) 22.0% (1) 26.0% (1)

Avg. 38.05% (8.24) 49.37% (7.04) 43.53% (1) 50.98% (1) 8.2% (9.48) 19.2% (8.89) 19.4% (1) 24.4% (1)

Table 2: Ablation study of the model exploration. With different fixed models, the detailed performance comparison
of ReAct, CodeAct, ablated ToC (1-1) (ie. the CodeProgram node), and ToC (1-3) on the M3ToolEval and API-Bank
level-3 datasets is shown. The correctness is reported, with the average number of turns in parentheses.

Layer / Node Per Layer 1 2 3
1 73.2% (1) 75.6% (1) 82.9% (1)
2 73.2% (1.4) 76.8% (1.4) 84.1% (1.5)
3 74.4% (1.8) 79.3% (1.7) 84.1% (1.6)

Table 3: The performance of varying tree sizes.

Mechanism M3ToolEval

Avg Turns Correct

Random Model (∆ = 3.7%)
ToC 1.7 67.1%
ToC w/o prompt exploration 1.9 63.4% ↓

Fixed Model (the best) (∆ = 8.5%)
ToC w/o model exploration 1.6 84.1%
ToC w/o model+prompt exploration 1.8 75.6% ↓↓

Table 4: Ablation study of the prompt exploration.

ily address pure code generation, where correct503

task completion only relates to accurate reason-504

ing logic within the code. For example, Chain of505

Codes (Li et al., 2023a) broadens LLM capabili-506

ties by enabling "thinking in code." In contrast, our507

work addresses real-world, zero-shot online com-508

plex tasks that involve multiple tool calls. Only509

CodeAct (Wang et al., 2024) treats code as a scal-510

able language to call multiple tools, but their ap-511

proach is limited by an almost one-turn, one-tool,512

step-by-step mechanism. This results in stalled513

thinking and accumulated histories, relying heavily514

on ground-truth supervision for each step, which is515

incompatible with zero-shot, online settings. In our516

framework, every node represents a complete so-517

lution that can be directly evaluated via execution518

supervision without requiring additional labels.519

Tree-based Code Generation. A recent work,520

CodeTree (Li et al., 2024b), uses a tree structure 521

to explore the search space of code generation 522

tasks. Unlike our approach, CodeTree focuses on 523

multi-agent searching rather than an end-to-end, 524

self-growing tree. Additionally, it was released 525

three months after our initial submission. While 526

self-repair trees (Olausson et al., 2023) begin with 527

a specification root node and grow into initial pro- 528

grams through feedback and repairs, they face bot- 529

tlenecks due to the model’s limited ability. In 530

contrast, our approach extends the tree structure 531

with prompt and model exploration. Some con- 532

temporaneous works utilizing tree-based search, 533

such as MCTS (Xu et al., 2024a; Yu et al., 2024), 534

require multiple rollouts and significant computa- 535

tional resources, making them unsuitable for online, 536

real-time applications. Unlike these methods, our 537

self-growing tree generates multiple valid solutions 538

and directly selects the one closest to the ground 539

truth through a voting mechanism. Additionally, 540

these studies typically focus on tasks with easier- 541

to-obtain process supervision, whereas our work 542

addresses real-world, complex multi-tool datasets. 543

6 Conclusion 544

This paper introduced the Tree-of-Code (ToC) 545

method, which enables self-growing, end-to-end 546

thought-code generation based on successful exe- 547

cution, addressing complex multi-tool online tasks. 548

With efficient model integration and prompt explo- 549

ration, ToC outperformed baselines on two com- 550

plex task datasets, improving both efficiency and 551

task-solving performance. 552

8

Limitations553

Limited reasoning scope for Program554

We emphasize that our method operates at the555

granularity of code "program" rather than "action".556

However, it is limited in fully open-ended scenarios557

requiring step-by-step exploration, such as a robot558

navigating an unfamiliar environment, or in han-559

dling tasks with extremely long sequences beyond560

the capabilities of current reasoning methods, like561

generating an entire paper. In such cases, it cannot562

provide a complete final solution. Even though, in563

practical industrial applications where a predefined564

toolset is available, CodeProgram’s end-to-end exe-565

cution remains more efficient for online, zero-shot566

scenarios, for fewer turns, and for fewer LLM calls.567

For larger and more complex system programs568

in the future, our method may serve as a "subpro-569

gram" within the overall solution, similar to a single570

agent’s role in multi-agent systems.571

Opportunities for Reflection Refinement572

While our framework provides a solid foundation573

inspired by human problem-solving, it uses a basic574

reflection mechanism, relying on execution feed-575

back alone. Whether tracking full execution history576

or selectively summarizing with LLMs offers better577

performance remains an open question. Future re-578

search could explore enhanced search strategies or579

adaptive pruning methods to handle more complex580

real-world tasks.581

Vast Potential in Prompt Pool Design582

We enhanced the diversity of strategies and the583

robustness of results in our Tree-of-Code by de-584

signing a prompt pool composed of multiple585

prompts. The introduction of multiple reasoning586

paths guided by diverse prompts represents a sig-587

nificant innovation. However, our current approach588

relies primarily on simple prompt evolution and589

manual adjustments. Future work should focus on590

more in-depth and systematic research into con-591

structing prompt pools.592

References593

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama594
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,595
Diogo Almeida, Janko Altenschmidt, Sam Altman,596
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.597
arXiv preprint arXiv:2303.08774.598

Anthropic. 2023. Introducing claude. https://www.599

anthropic.com/index/introducing-claude. 600
Accessed: 2023-10-20. 601

AI Anthropic. 2024. The claude 3 model family: Opus, 602
sonnet, haiku. Claude-3 Model Card, 1. 603

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 604
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 605
Huang, et al. 2023. Qwen technical report. arXiv 606
preprint arXiv:2309.16609. 607

GN Blount and S Clarke. 1994. Artificial intelligence 608
and design automation systems. Journal of Engeer- 609
ing Design, 5(4):299–314. 610

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 611
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, 612
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund- 613
berg, et al. 2023. Sparks of artificial general intelli- 614
gence: Early experiments with gpt-4. arXiv preprint 615
arXiv:2303.12712. 616

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and 617
Shengxin Zhu. 2023a. Unleashing the potential of 618
prompt engineering in large language models: a com- 619
prehensive review. arXiv preprint arXiv:2310.14735. 620

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, 621
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin 622
Shi. 2023b. Autoagents: A framework for automatic 623
agent generation. arXiv preprint arXiv:2309.17288. 624

Mouxiang Chen, Hao Tian, Zhongxi Liu, Xiaoxue Ren, 625
and Jianling Sun. 2024. Jumpcoder: Go beyond au- 626
toregressive coder via online modification. In Annual 627
Meeting of the Association for Computational Lin- 628
guistics. 629

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 630
William W Cohen. 2022. Program of thoughts 631
prompting: Disentangling computation from reason- 632
ing for numerical reasoning tasks. arXiv preprint 633
arXiv:2211.12588. 634

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 635
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 636
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 637
2024. Scaling instruction-finetuned language models. 638
Journal of Machine Learning Research, 25(70):1–53. 639

Keith Frankish. 2010. Dual-process and dual- 640
system theories of reasoning. Philosophy Compass, 641
5(10):914–926. 642

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 643
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 644
ham Neubig. 2023. Pal: Program-aided language 645
models. In International Conference on Machine 646
Learning, pages 10764–10799. PMLR. 647

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 648
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 649
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 650
When the large language model meets programming– 651
the rise of code intelligence. arXiv preprint 652
arXiv:2401.14196. 653

9

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://api.semanticscholar.org/CorpusID:266999066
https://api.semanticscholar.org/CorpusID:266999066
https://api.semanticscholar.org/CorpusID:266999066

Samuel Holt, Max Ruiz Luyten, and Mihaela van der654
Schaar. 2024. L2mac: Large language model auto-655
matic computer for extensive code generation. In656
The Twelfth International Conference on Learning657
Representations.658

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu,659
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang,660
Lingyao Zhang, Mingchen Zhuge, et al. 2024. Data661
interpreter: An llm agent for data science. arXiv662
preprint arXiv:2402.18679.663

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng664
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven665
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.666
Metagpt: Meta programming for multi-agent collabo-667
rative framework. arXiv preprint arXiv:2308.00352.668

Md Ashraful Islam, Mohammed Eunus Ali, and669
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent670
code generation for competitive problem solving.671
arXiv preprint arXiv:2405.11403.672

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan673
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea674
Madotto, and Pascale Fung. 2023. Survey of halluci-675
nation in natural language generation. ACM Comput-676
ing Surveys, 55(12):1–38.677

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-678
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-679
guage models are zero-shot reasoners. Advances in680
neural information processing systems, 35:22199–681
22213.682

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen,683
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-684
Fei, Fei Xia, and Brian Ichter. 2023a. Chain of code:685
Reasoning with a language model-augmented code686
emulator. arXiv preprint arXiv:2312.04474.687

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Sil-688
vio Savarese, and Doyen Sahoo. 2024a. Codetree:689
Agent-guided tree search for code generation with690
large language models.691

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Sil-692
vio Savarese, and Doyen Sahoo. 2024b. Codetree:693
Agent-guided tree search for code generation with694
large language models.695

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,696
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, and697
Yongbin Li. 2023b. Api-bank: A comprehensive698
benchmark for tool-augmented llms. arXiv preprint699
arXiv:2304.08244.700

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat701
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun702
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi.703
2024. Improve mathematical reasoning in language704
models by automated process supervision. ArXiv,705
abs/2406.06592.706

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, 707
Peng Sun, Xiaoran Jin, and Hang Li. 2024. Reft: 708
Reasoning with reinforced fine-tuning. ArXiv, 709
abs/2401.08967. 710

Grégoire Mialon, Clémentine Fourrier, Craig Swift, 711
Thomas Wolf, Yann LeCun, and Thomas Scialom. 712
2023. Gaia: a benchmark for general ai assistants. 713
ArXiv, abs/2311.12983. 714

Theo X Olausson, Jeevana Priya Inala, Chenglong 715
Wang, Jianfeng Gao, and Armando Solar-Lezama. 716
2023. Is self-repair a silver bullet for code genera- 717
tion? In The Twelfth International Conference on 718
Learning Representations. 719

OpenAI. 2024a. Hello gpt-4o. https://openai.com/ 720
index/hello-gpt-4o/. Accessed: 2024-05-18. 721

OpenAI. 2024b. Openai o1 system card. https://cdn. 722
openai.com/o1-system-card-20240917.pdf. 723
Accessed: 2024-09-12. 724

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, 725
Meredith Ringel Morris, Percy Liang, and Michael S. 726
Bernstein. 2023. Generative agents: Interactive sim- 727
ulacra of human behavior. Proceedings of the 36th 728
Annual ACM Symposium on User Interface Software 729
and Technology. 730

Swarna Kamal Paul. 2024. Continually learning plan- 731
ning agent for large environments guided by llms. 732
In 2024 IEEE Conference on Artificial Intelligence 733
(CAI), pages 377–382. IEEE. 734

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan 735
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng 736
Su, Xin Cong, et al. 2024. Chatdev: Communicative 737
agents for software development. In Proceedings 738
of the 62nd Annual Meeting of the Association for 739
Computational Linguistics (Volume 1: Long Papers), 740
pages 15174–15186. 741

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, 742
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang, 743
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, 744
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu, 745
and Maosong Sun. 2023. Toolllm: Facilitating large 746
language models to master 16000+ real-world apis. 747
ArXiv, abs/2307.16789. 748

Matthew Renze and Erhan Guven. 2024. Self-reflection 749
in llm agents: Effects on problem-solving perfor- 750
mance. arXiv preprint arXiv:2405.06682. 751

Steven J Rigatti. 2017. Random forest. Journal of 752
Insurance Medicine, 47(1):31–39. 753

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, 754
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable 755
code actions elicit better llm agents. arXiv preprint 756
arXiv:2402.01030. 757

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and 758
Heng Ji. 2023. Leti: Learning to generate from tex- 759
tual interactions. arXiv preprint arXiv:2305.10314. 760

10

https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:273877667
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:270379625
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:267027728
https://api.semanticscholar.org/CorpusID:265351664
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://cdn.openai.com/o1-system-card-20240917.pdf
https://cdn.openai.com/o1-system-card-20240917.pdf
https://cdn.openai.com/o1-system-card-20240917.pdf
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten761
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,762
et al. 2022. Chain-of-thought prompting elicits rea-763
soning in large language models. Advances in neural764
information processing systems, 35:24824–24837.765

Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongn-766
ing Wang, and Minlie Huang. 2024a. Learning task767
decomposition to assist humans in competitive pro-768
gramming. In Proceedings of the 62nd Annual Meet-769
ing of the Association for Computational Linguistics.770

Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongn-771
ing Wang, and Minlie Huang. 2024b. Learning task772
decomposition to assist humans in competitive pro-773
gramming. arXiv preprint arXiv:2406.04604.774

Bin Xu, Yiguan Lin, Yinghao Li, and Yang Gao. 2024a.775
Sra-mcts: Self-driven reasoning augmentation with776
monte carlo tree search for code generation. arXiv777
e-prints, pages arXiv–2411.778

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,779
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei780
Lin, and Daxin Jiang. 2024b. Wizardlm: Empow-781
ering large pre-trained language models to follow782
complex instructions. In The Twelfth International783
Conference on Learning Representations.784

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,785
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.786
2024. Tree of thoughts: Deliberate problem solving787
with large language models. Advances in Neural788
Information Processing Systems, 36.789

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak790
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.791
React: Synergizing reasoning and acting in language792
models. arXiv preprint arXiv:2210.03629.793

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran794
Zeng, Jindong Wang, Wei Ye, and Shikun Zhang.795
2024. Outcome-refining process supervision for code796
generation. arXiv preprint arXiv:2412.15118.797

Eric Zelikman, Georges Harik, Yijia Shao, Varuna798
Jayasiri, Nick Haber, and Noah D Goodman. 2024.799
Quiet-star: Language models can teach them-800
selves to think before speaking. arXiv preprint801
arXiv:2403.09629.802

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying803
Peng, Jun Wang, Yueting Zhuang, and Weiming804
Lu. 2024. Self-contrast: Better reflection through805
inconsistent solving perspectives. arXiv preprint806
arXiv:2401.02009.807

11

A Prompt808

A.1 Root Prompt809

You a r e a h e l p f u l a s s i s t a n t a s s i g n e d wi th t h e t a s k o f problem − s o l v i n g .810
To a c h i e v e t h i s , you w i l l be u s i n g an i n t e r a c t i v e c od ing e n v i r o n m e n t e q u i p p e d wi th a v a r i e t y o f t o o l811

f u n c t i o n s t o a s s i s t you t h r o u g h o u t t h e p r o c e s s . \ n \ n812
At each t u r n , you s h o u l d f i r s t p r o v i d e your s t e p −by− s t e p t h i n k i n g f o r s o l v i n g t h e t a s k , f o r example : <813

t h o u g h t > I need t o p r i n t " h e l l o wor ld ! " < / t h o u g h t > .814
A f t e r t h a t , you can I n t e r a c t w i th a Python programming e n v i r o n m e n t and r e c e i v e t h e c o r r e s p o n d i n g o u t p u t .815
Your code s h o u l d be e n c l o s e d u s i n g "< e x e c u t e >" tag , f o r example : < e x e c u t e > p r i n t (" H e l l o World ! ") </816

e x e c u t e > . \ n \ n817
You can use t h e f o l l o w i n g f u n c t i o n s : \ n{ t o o l s e t _ d e s c s } \ n .818
Ensure t h e code matches t h e f n _ s i g n a t u r e and i n p u t − o u t p u t f o r m a t s f o r p r o p e r e x e c u t i o n . \ n819
Here ' s t h e c h a t h i s t o r y f o r your r e f e r e n c e : \ n{ c h a t _ h i s t o r y } \ n \ n820
H i s t o r y End : \ n821
User ' s Query : \ n{ que ry } \ nYour Thought And Code : \ n822

A.2 Additional Prompt823

A.2.1 Reflection Prompt824

Based on t h e p r o v i d e d c h a t h i s t o r y , r e f l e c t on t h e code and i t s e x e c u t i o n . I d e n t i f y p o t e n t i a l i s s u e s o r825
a r e a s f o r o p t i m i z a t i o n and p r o v i d e s p e c i f i c s u g g e s t i o n s t o r e f i n e and improve t h e code . C o n s i d e r826
edge c a s e s , e f f i c i e n c y , and c l a r i t y i n your r e f l e c t i o n s .827

A.2.2 The Prompt for Prompt Evolution828

In o r d e r t o g u i d e t h e d i v e r s i t y o f r e s u l t s and enhance t h e p e r f o r m a n c e t h r o u g h ensemble methods , we need829
t o i n c r e a s e t h e d i v e r s i t y o f prompts . We d i v e r s i f y t h e c u r r e n t prompt w h i l e m a i n t a i n i n g c o n s i s t e n c y830
i n c o r e c o n t e n t , a iming f o r o r t h o g o n a l e x p r e s s i o n s o r prompts t h a t l e a d t o d i f f e r e n t d i r e c t i o n s and831
d i v e r g e n t t h i n k i n g .832

A.2.3 The Prompt Sample from Prompt Pool for API-Bank833

Note :834
The o u t p u t s p roduced by t h e t o o l w i l l be f o r m a t t e d l i k e a JSON d i c t i o n a r y .835
For example , ' r e s u l t = { { ' api_name ' : ' QueryMeeting ' , ' i n p u t ' : { { ' user_name ' : ' John ' } } , ' o u t p u t ' : { { '836

meet ings ' : [{ { ' mee t i ng_ id ' : 1 , ' meeting_name ' : ' Meet ing wi th t h e c l i e n t ' , ' mee t ing_ t ime ' :837
'2021 −01 −01 1 0 : 0 0 : 0 0 ' , ' m e e t i n g _ l o c a t i o n ' : ' Room 1 ' , ' m e e t i n g _ a t t e n d e e s ' : [' John ' , ' Mary ' , ' P e t e r838
'] } } , { { ' mee t i ng_ id ' : 2 , ' meeting_name ' : ' Meet ing a b o u t t h e new p r o j e c t ' , ' mee t ing_ t ime ' :839
'2021 −01 −02 1 0 : 0 0 : 0 0 ' , ' m e e t i n g _ l o c a t i o n ' : ' Room 2 ' , ' m e e t i n g _ a t t e n d e e s ' : [' John ' , ' Mary ' , ' P e t e r840
'] } }] } } , ' e x c e p t i o n ' : None } } '841

Ensure t h a t t h e code s t r i c t l y a d h e r e s t o t h e f u n c t i o n d e s c r i p t i o n s and t h e i n p u t − o u t p u t f o r m a t p r o v i d e d .842
N a v i g a t e t h r o u g h t h e ' o u t p u t ' key c o r r e c t l y t o r e t r i e v e r e s u l t s .843
I f you e n c o u n t e r any u n f a m i l i a r f o r m a t s , f i r s t p r i n t t h e s t r u c t u r e t o e n s u r e p r o p e r h a n d l i n g i n t h e844

f u t u r e .845
C o n s i s t e n t l y f o c u s on t h e use r ' s r e q u e s t and a t t e m p t t o p roduce t h e c o m p l e t e s o l u t i o n w i t h o u t n e e d i n g846

m u l t i p l e s t e p s .847

B Helper tools848

B.1 ResHandler849

B.1.1 ResHandler Tool Description850

r e s _ h a n d l e r () :851
name=" r e s _ h a n d l e r " ,852
d e s c r i p t i o n = ' D e f in e a prompt t o g e n e r a t e r e s u l t s t h a t meet t h e prompt r e q u i r e m e n t s . Note t h a t you853

need t o d e f i n e t h e r e q u i r e m e n t s f o r t h e g e n e r a t e d r e s u l t s i n t h e prompt . i n p u t : prompt (s t r) :854
The i n p u t prompt f o r t h e l a r g e l a n g u a g e model , d e f i n i n g t h e t a s k r e q u i r e m e n t s f o r t h e g e n e r a t e d855
r e s u l t s . Common t a s k s i n c l u d e summar i za t i on , s t y l i s t i c w r i t i n g , t r a n s l a t i o n , q u e s t i o n answer ing ,856

e t c . o u t p u t : c o m p l e t i o n (s t r) : The i n f e r e n c e r e s u l t g e n e r a t e d by t h e l a r g e model , t y p i c a l l y a857
summary , w r i t i n g o u t p u t , t r a n s l a t i o n r e s u l t , o r answer t h a t meets t h e r e q u i r e m e n t s . ' ,858

f u n c t i o n = r e s _ h a n d l e r ,859
f n _ s i g n a t u r e = ' r e s _ h a n d l e r (prompt : s t r) −> s t r ')860

12

B.1.2 ResHandler Tool Function 861

from some_model_API i m p o r t l l m _ p l a y g r o u n d 862
863

d e f r e s _ h a n d l e r (prompt) : 864
r e s u l t _ s t r = " " 865
r e s u l t = l l m _ p l a y g r o u n d (prompt [: 2 0 0 0 0] , s t r e a m = F a l s e) 866
f o r i t em i n r e s u l t : 867

r e s u l t _ s t r += i t em 868
r e t u r n r e s u l t _ s t r 869

B.2 NextAction for Web Task 870

B.2.1 NextAction Tool Description 871

from t y p i n g i m p o r t Tuple 872
n e x t _ a c t i o n () : 873

name=" n e x t _ a c t i o n " , 874
d e s c r i p t i o n = ' Examine t h e r e s u l t s o f t h e view f u n c t i o n t o d e t e r m i n e i f i t can answer t h e use r ' s 875

o r i g i n a l q u e s t i o n , and d e c i d e what t o do n e x t . R e t u rn t h e n e x t a c t i o n and t h e viewed whole page 876
c o n t e n t . The n e x t p o s s i b l e a c t i o n s i n c l u d e c l i c k _ u r l (URL) , g o _ t o _ p r e v i o u s _ p a g e () and end () , which 877

r e p r e s e n t c l i c k i n g a l i n k , and g o _ t o _ p r e v i o u s _ p a g e () means you s h o u l d go t o p r e v i o u s page t o 878
f i n d answer , and end () means you have found t h e answer page , r e s p e c t i v e l y . I f n e x t a c t i o n i s end 879
() , i t means t h a t r e l e v a n t i n f o r m a t i o n t o u s e r que ry i s found , you s h o u l d summarize s t r i n g 880
r e s u l t based on r e s _ h a n d l e r . c l i c k _ u r l (URL) , g o _ t o _ p r e v i o u s _ p a g e () can be d i r e c t l y c a l l e d , and 881
URL s h o u l d be C l i c k a b l e u r l . Note t h a t que ry s h o u l d be use r ' s o r i g i n a l q u e s t i o n and can n o t be 882
r e w r i t t e n . ' , 883

f u n c t i o n = n e x t _ a c t i o n , 884
f n _ s i g n a t u r e =" n e x t _ a c t i o n (que ry : s t r , c u r r e n t _ p a g e _ c o n t e n t : s t r , v i s i t e d _ u r l s : L i s t [s t r]) −> Tuple [885

s t r , s t r] ") 886

B.2.2 NextAction Tool Description 887

from some_model_API i m p o r t l l m _ p l a y g r o u n d 888
889

d e f n e x t _ a c t i o n (que ry = " " , c u r r e n t _ p a g e _ c o n t e n t = " " , v i s i t e d _ u r l s = []) : 890
v i s i t e d _ u r l s = [x . r e p l a c e (' \ ' ' , ' ') . r e p l a c e (' \ " ' , ' ') f o r x i n v i s i t e d _ u r l s] 891
v i s i t e d _ u r l s = l i s t (s e t (v i s i t e d _ u r l s)) 892
w h o l e _ p a g e _ c o n t e n t = c u r r e n t _ p a g e _ c o n t e n t 893
w h i l e True : 894

s c r o l l _ d o w n _ p a g e = s c r o l l _ d o w n () 895
i f s c r o l l _ d o w n _ p a g e == " [Reached t h e bot tom of t h e page .] \ n " : 896

b r e a k 897
e l s e : 898

w h o l e _ p a g e _ c o n t e n t += s c r o l l _ d o w n _ p a g e 899
d e f e x t r a c t _ c l i c k a b l e _ p a t h s (t e x t : s t r) −> l i s t [s t r] : 900

i m p o r t r e 901
p a t t e r n = r " C l i c k a b l e ' ([^ '] *) ' " 902
matches = r e . f i n d a l l (p a t t e r n , t e x t) 903
r e t u r n matches 904

a l l _ u r l s = e x t r a c t _ c l i c k a b l e _ p a t h s (w h o l e _ p a g e _ c o n t e n t) 905
906

n o t _ v i s i t e d = [] 907
h i g h l i g h t _ u r l s = [] 908

909
f o r v i n a l l _ u r l s : 910

i f v i n v i s i t e d _ u r l s : 911
h i g h l i g h t _ u r l s . append (v) 912

e l s e : 913
n o t _ v i s i t e d . append (v) 914

915
i f l e n (h i g h l i g h t _ u r l s) == 0 : 916

j s o n _ s t r _ f o r m a t = "< t h o u g h t > your t h o u g h t o f your d e c i s i o n < / t h o u g h t > \ n< a c t i o n > c l i c k _ u r l (917
s p e c i f i c _ u r l) o r end () o r n o t _ f o u n d () </ a c t i o n >" 918

prompt = f "You a r e v iewing page c o n t e n t s , t h e c o n t e n t i s : \ n{ w h o l e _ p a g e _ c o n t e n t } \ n You s h o u l d 919
make d e c i s i o n on t h e n e x t s t e p . g i v e n u s e r que ry { que ry } , you have t h e f o l l o w i n g o p t i o n s , 920
p l e a s e f o l l o w t h e o u t p u t f o r m a t . \ n1 . end () : i t means c u r r e n t u s e r que ry can be answered by 921
c u r r e n t page c o n t e n t . \ n2 . c l i c k _ u r l (URL) : i t means c u r r e n t u s e r que ry s h o u l d be checked by 922
c l i c k i n g one o f t h e u r l s shown on t h e c u r r e n t page c o n t e n t f o r more d e t a i l s . s p e c i f y t h e 923

13

d e t a i l e d u r l i n t o URL f i e l d . \ n P l e a s e v i s i t any C l i c k a b l e u r l s a s many as p o s s i b l e t h a t has924
n o t been v i s i t e d . \ n3 . n o t _ f o u n d () : i t means t h a t c u r r e n t page does n o t c o n t a i n answer f o r925
c u r r e n t que ry and a l l C l i c k a b l e URLS have been c l i c k e d . \ nYour o u t p u t f o r m a t : {926
j s o n _ s t r _ f o r m a t } \ n \ nYour Outpu t : \ n "927

e l s e :928
v i s i t e d _ u r l _ s t r = ' , ' . j o i n ([' \ ' ' + x + ' \ ' ' f o r x i n h i g h l i g h t _ u r l s])929
j s o n _ s t r _ f o r m a t = "< t h o u g h t > your t h o u g h t o f your d e c i s i o n < / t h o u g h t > \ n< a c t i o n > c l i c k _ u r l (930

s p e c i f i c _ u r l) o r end () o r n o t _ f o u n d () </ a c t i o n >"931
prompt = f "You a r e v iewing page c o n t e n t s , t h e c o n t e n t i s : \ n{ w h o l e _ p a g e _ c o n t e n t } \ n You s h o u l d932

make d e c i s i o n on t h e n e x t s t e p . g i v e n u s e r que ry { que ry } , you have t h e f o l l o w i n g o p t i o n s ,933
p l e a s e f o l l o w t h e o u t p u t f o r m a t . \ n1 . end () : i t means c u r r e n t u s e r que ry can be answered by934
c u r r e n t page c o n t e n t . \ n2 . c l i c k _ u r l (URL) : i t means c u r r e n t u s e r que ry s h o u l d be checked by935
c l i c k i n g one of t h e u r l s shown on t h e c u r r e n t page c o n t e n t f o r more d e t a i l s . s p e c i f y t h e936
d e t a i l e d u r l i n t o URL f i e l d . \ n3 . n o t _ f o u n d () : i t means t h a t c u r r e n t page does n o t c o n t a i n937
answer f o r c u r r e n t que ry and a l l C l i c k a b l e URLS have been c l i c k e d . \ nRemember t h a t you have938
v i s i t e d t h e u r l l i s t [{ v i s i t e d _ u r l _ s t r }] . You a r e n o t a l l o w e d t o v i s i t t h e u r l s you have939
v i s i t e d . P l e a s e v i s i t any C l i c k a b l e u r l s a s many as p o s s i b l e t h a t has n o t been v i s i t e d . \940
nYour o u t p u t f o r m a t : { j s o n _ s t r _ f o r m a t } \ n \ nYour Outpu t : \ n "941

r e s u l t _ s t r = " "942
r e s u l t = l l m _ p l a y g r o u n d (prompt [: 2 0 0 0 0])943
f o r i t em i n r e s u l t :944

r e s u l t _ s t r += i t em945
946

i f n o t " C l i c k a b l e " i n w h o l e _ p a g e _ c o n t e n t and n o t " end () " i n r e s u l t _ s t r :947
r e t u r n (" g o _ t o _ p r e v i o u s _ p a g e () " , w h o l e _ p a g e _ c o n t e n t)948

949
i f n o t " end () " i n r e s u l t _ s t r and l e n (n o t _ v i s i t e d) == 0 :950

r e t u r n (" g o _ t o _ p r e v i o u s _ p a g e () " , w h o l e _ p a g e _ c o n t e n t)951
952

i f " c l i c k _ u r l " i n r e s u l t _ s t r :953
i m p o r t r e954
p a t t e r n = r " c l i c k _ u r l \ (' . * ' \) "955
match = r e . s e a r c h (p a t t e r n , r e s u l t _ s t r)956
i f match :957

r e t u r n (match . group () , w h o l e _ p a g e _ c o n t e n t)958
e l s e :959

p a t t e r n = r " c l i c k _ u r l \ (. * \) "960
match = r e . s e a r c h (p a t t e r n , r e s u l t _ s t r)961
i f match :962

r e t u r n (match . group () , w h o l e _ p a g e _ c o n t e n t)963
e l i f " end () " i n r e s u l t _ s t r :964

r e t u r n (" end () " , w h o l e _ p a g e _ c o n t e n t)965
e l i f " n o t _ f o u n d () " i n r e s u l t _ s t r :966

r e t u r n (" g o _ t o _ p r e v i o u s _ p a g e () " , w h o l e _ p a g e _ c o n t e n t)967
r e t u r n (" end () " , w h o l e _ p a g e _ c o n t e n t)968

B.3 An example to show the performance of two helpers tools969

For web-based queries, ResHandler and NextAction, these two helper tools are essential to ensure that our970

method can directly generate the final result without requiring intermediate feedback.971

To further clarify their effectiveness, we provide a qualitative and specific example demonstrating how972

they function in practice.973

Below is the full code output for the query: "Find the email of Henry Santiago. Answer in the format974

of ’xxx@xxx.xxx’." from typing import List, Tuple975

d e f f i n d _ e m a i l (que ry : s t r , c u r r e n t _ p a g e _ c o n t e n t : s t r , v i s i t e d _ u r l s : L i s t [s t r] , max_depth : i n t = 30) −>976
s t r :977

i f max_depth <= 0 :978
r a i s e E x c e p t i o n (" Max s e a r c h d e p t h reached , e m a i l n o t found . ")979

980
Check i f t h e e m a i l i s d i r e c t l y a v a i l a b l e i n t h e c u r r e n t page c o n t e n t981
i f " Henry S a n t i a g o " i n c u r r e n t _ p a g e _ c o n t e n t and "@" i n c u r r e n t _ p a g e _ c o n t e n t :982

e m a i l = r e s _ h a n d l e r (f " E x t r a c t t h e e m a i l o f Henry S a n t i a g o from t h e f o l l o w i n g t e x t : {983
c u r r e n t _ p a g e _ c o n t e n t } ")984

i f e m a i l :985
r e t u r n e m a i l . s t r i p ()986

987
I d e n t i f y c l i c k a b l e URLs and n a v i g a t e t o them988

14

n e x t _ s t e p _ a c t i o n , r e f e r e n c e _ p a g e _ c o n t e n t = n e x t _ a c t i o n (query , c u r r e n t _ p a g e _ c o n t e n t , v i s i t e d _ u r l s) 989
990

i f n e x t _ s t e p _ a c t i o n == " end () " : 991
e m a i l = r e s _ h a n d l e r (f " E x t r a c t t h e e m a i l o f Henry S a n t i a g o from t h e f o l l o w i n g t e x t : { 992

r e f e r e n c e _ p a g e _ c o n t e n t } ") 993
i f e m a i l : 994

r e t u r n e m a i l . s t r i p () 995
e l s e : 996

r a i s e E x c e p t i o n (" Email n o t found i n t h e r e f e r e n c e page c o n t e n t . ") 997
998

e l i f n e x t _ s t e p _ a c t i o n . s t a r t s w i t h (" c l i c k _ u r l ") : 999
u r l = n e x t _ s t e p _ a c t i o n . s p l i t (' (') [1] . s p l i t (') ') [0] . s t r i p () . s t r i p (' " ') 1000
i f u r l n o t i n v i s i t e d _ u r l s : 1001

v i s i t e d _ u r l s . append (u r l) 1002
new_page_con ten t = c l i c k _ u r l (u r l) 1003
r e t u r n f i n d _ e m a i l (query , new_page_con ten t , v i s i t e d _ u r l s , max_depth − 1) 1004

1005
e l i f n e x t _ s t e p _ a c t i o n == " g o _ t o _ p r e v i o u s _ p a g e () " : 1006

new_page_con ten t = g o _ t o _ p r e v i o u s _ p a g e () 1007
r e t u r n f i n d _ e m a i l (query , new_page_con ten t , v i s i t e d _ u r l s , max_depth − 1) 1008

1009
e l s e : 1010

r a i s e E x c e p t i o n (" Unknown n e x t s t e p a c t i o n e n c o u n t e r e d . ") 1011
1012

Main f u n c t i o n t o s t a r t t h e s e a r c h 1013
d e f main () : 1014

query = " Find t h e e m a i l o f Henry S a n t i a g o " 1015
i n i t i a l _ p a g e _ c o n t e n t = view () 1016
v i s i t e d _ u r l s = [] 1017
t r y : 1018

e m a i l = f i n d _ e m a i l (query , i n i t i a l _ p a g e _ c o n t e n t , v i s i t e d _ u r l s) 1019
p r i n t (e m a i l) 1020

e x c e p t E x c e p t i o n as e : 1021
p r i n t (f " E r r o r : { e } ") 1022

1023
i f __name__ == " __main__ " : 1024

main () 1025

Functionality of the Helper Tools 1026

For res_handler: 1027

Example usage: 1028

e m a i l = r e s _ h a n d l e r (" E x t r a c t t h e e m a i l o f Henry S a n t i a g o from t h e f o l l o w i n g t e x t : { 1029
c u r r e n t _ p a g e _ c o n t e n t } ") 1030

We provide the content that the final result depends on (i.e., the return value of other functions in the 1031

code) as input to this function. It then passes the information to an LLM to generate the final answer. 1032

For next_action: 1033

Example usage: 1034

I d e n t i f y c l i c k a b l e URLs and n a v i g a t e t o them 1035
n e x t _ s t e p _ a c t i o n , r e f e r e n c e _ p a g e _ c o n t e n t = n e x t _ a c t i o n (query , c u r r e n t _ p a g e _ c o n t e n t , v i s i t e d _ u r l s) 1036

This function determines the next action based on: the current page content, the original query, and the 1037

list of visited URLs. 1038

15

C Visualization of the Table 21039

Figure 8: Performance of 10 LLMs on ReAct, CodeAct, CodeProgram, and 1-3 ToC for the M3 dataset is visualized,
with average and standard deviation reported.

16

	Introduction
	Design Motivation
	Tree-of-Code Method
	Overview of Tree-of-Code
	Tree Node Generation
	Code as Reasoning
	Two Helper Tools
	Execution Outcome as Process Label

	Tree Expansion
	Final Result Generator

	Experiment and Analysis
	Setup
	ToC vs. CodeAct and ReAct
	Our one-turn vs. The multi-turn

	Analysis and Ablation Studies

	Related Work
	Conclusion
	Prompt
	Root Prompt
	Additional Prompt
	Reflection Prompt
	The Prompt for Prompt Evolution
	The Prompt Sample from Prompt Pool for API-Bank

	Helper tools
	ResHandler
	ResHandler Tool Description
	ResHandler Tool Function

	NextAction for Web Task
	NextAction Tool Description
	NextAction Tool Description

	An example to show the performance of two helpers tools

	Visualization of the Table 2

