

000 LOST IN REAL-WORLD SCENARIOS: 001 002 CONCRETIZATION DISRUPTS LLM LOGICAL REA- 003 SONING 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Although large language models (LLMs) have attracted significant attention, re-
014 cent studies reveal that even minor variations in input formulation can lead to
015 substantial inconsistencies in reasoning outcomes, underscoring their fragility in
016 real-world scenarios. To systematically investigate this issue, we propose a con-
017 cretization framework that automatically translates clean reasoning logic into con-
018 crete contexts with challenging formulations. In this framework, two translators
019 are trained via a dual-learning approach. The first converts formal language tem-
020 plates into natural language puzzles, guided by a difficulty-aware reward that pro-
021 motes the exploration of harder formulations. The second translates puzzles back
022 into templates, with isomorphism verification ensuring the consistency of underly-
023 ing reasoning logic. Applying this framework, we efficiently build paired datasets
024 of formal language templates and natural language puzzles, and observe a sharp
025 drop in LLM reasoning performance when moving from templates to puzzles. To
026 uncover the underlying causes, we conduct an in-depth analysis of how tokens
027 derived from formal templates and natural language puzzles influence the final
028 answers. This analysis reveals two primary sources of degradation: dispersed
029 reasoning attention across non-essential tokens and conflicts introduced by alter-
030 native formulations. To address these issues, we propose a prompt-based approach
031 that instructs LLMs to abstract reasoning logic from concrete contexts before at-
032 tempting direct solutions, and a training-based approach that further strengthens
033 LLMs' abstraction ability. Experimental results show that our methods improve
034 LLM performance on natural language puzzles by up to 56.2%, nearly eliminating
035 the performance loss induced by concretization.

036 1 INTRODUCTION

038 Since the advent of large language models (LLMs), reasoning has consistently been recognized
039 as one of their most critical capabilities. The rise of large reasoning models has highlighted their
040 remarkable performance across a wide range of reasoning tasks. However, studies have shown
041 that variations in input formulation can substantially undermine the reasoning ability of LLMs. This
042 fragility exposes a lack of robustness and presents significant challenges for adapting their reasoning
043 performance to complex, real-world scenarios.

044 To systematically investigate this phenomenon, prior studies focus on identifying pairs of inputs that
045 differ in surface formulation but preserve underlying reasoning logic. Trivial perturbations have been
046 shown to negatively impact LLM reasoning performance on established benchmarks, for example,
047 through rephrasing (Zhou et al., 2024), introducing typos (Gan et al., 2024), switching languages (Hu
048 et al., 2025), extending context (Xu et al., 2025), or even inserting irrelevant statements such as
049 “Interesting fact: cats sleep for most of their lives” (Rajeev et al., 2025). However, these methods
050 are largely heuristic, focusing only on surface-to-surface variations, and lack deeper investigation
051 into how LLMs model the relationship between surface formulation and underlying reasoning logic.

052 To address this issue, we propose a concretization framework that automatically converts abstract
053 reasoning logic into specific contexts while exploring challenging formulations. Specifically, the
translator is trained through a dual-learning approach. The first translator learns to translate a formal

language template, primarily encoding pure reasoning constraints, into a natural language puzzle, guided by a difficulty-aware reward that encourages exploration of more challenging formulations. The second translator learns to translate the natural language puzzle back into a formal language template, with an isomorphism verification applied to guarantee that the reasoning logic remains consistent with the original formal language template.

Using our concretization framework, we construct paired formal language templates and natural language puzzles across three problem types: SAT problems with only Boolean variables, CSP problems with Boolean + integer variables, and CSP problems with Boolean + integer + Abelian-group variables (problem definitions see Section 2.1). Across all settings, we observe a substantial decline in LLM reasoning performance when moving from abstract templates to their concretized formulations. As shown in Figure 1, the Qwen3-30B-A3B model (Yang et al., 2025a) suffers a 63.0% accuracy reduction on CSP with Boolean + integer variables.

To mitigate this gap, we propose a prompt-based strategy that guides LLMs to first infer the underlying formal language template from a natural language puzzle before solving it. This method alone yields a 29.8% accuracy improvement on CSP problems with Boolean + integer variables. Building on this, we further design a training-based approach that leverages our abstraction-concretization paired data to strengthen the model’s ability to abstract natural descriptions into structured formal representations, resulting in an additional 23.9% gain on CSP problems with Boolean + integer + Abelian-group variables. Notably, the abstraction-enhanced model also generalizes better to out-of-domain benchmarks, obtaining a 5.0% performance boost on PlanBench (Valmeekam et al., 2023). These results underscore that LLM reasoning is fundamentally constrained by their limited robustness in mapping concretized descriptions back to the underlying abstract structure.

To further investigate the underlying causes, we conduct a detailed analysis of how input tokens from formal language templates and natural language puzzles influence LLM predictions. Our findings reveal that LLMs often allocate disproportionate attention to reasoning-irrelevant tokens while underemphasizing reasoning-critical ones. Moreover, shifts in problem formulation lead to corresponding shifts in reasoning patterns, further exacerbating performance degradation.

To summarize, the main contributions of this paper are:

- We propose an isomorphism-verified, difficulty-aware concretization framework that automatically transform formal language templates into challenging natural language puzzles while preserving underlying reasoning logic, providing an efficient way to generate both abstraction-concretization analysis data and abstraction-enhanced training data.
- We conduct experiments on constructed paired abstraction-concretization data, we show that concretization formulation significantly reduces LLM reasoning performance, and we propose prompt-based and training-based abstraction-enhanced methods that effectively mitigate this performance drop.
- We conduct an in-depth analysis of why LLMs fail to model the relationship between surface formulations and underlying reasoning logic, identifying two key causes: disproportionate attention to reasoning-irrelevant tokens and the difficulty of maintaining consistent reasoning patterns across diverse formulations.

2 METHODOLOGY

An overview of the construction process for formal language template–natural language puzzle pairs is shown in Figure 2. The detailed designs of formal language template generation and natural language puzzle concretization are provided in Subsection 2.1 and Subsection 2.2. Furthermore,

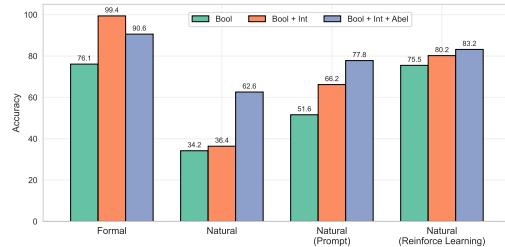


Figure 1: The performance comparison of the Qwen3-30B-A3B across formal language templates, natural language puzzles, with prompt-based method, and training-based method.

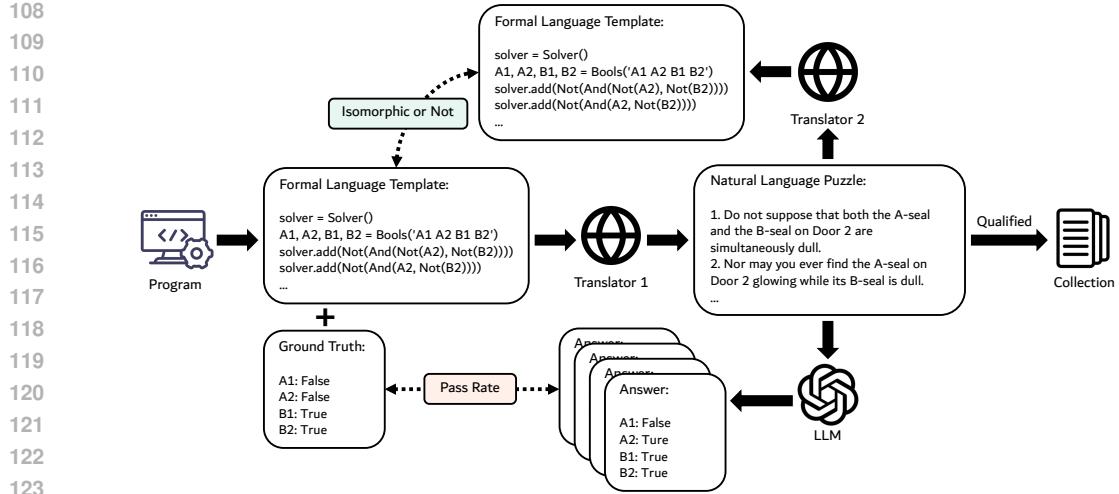


Figure 2: The construction process of a paired formal language template and natural language puzzle proceeds. First, a rule-based program generates a formal language template and its ground-truth assignment. This template is then passed to a translator, which converts it into a natural language puzzle. The puzzle is subsequently back-translated into a formal template by another translator and presented to an LLM, which produces multiple responses. A natural language puzzle is retained and collected if it passes isomorphism verification and its pass rate falls below a difficulty threshold.

Subsection 2.3 introduces our prompt-based and training-based mitigation strategies, which aim to alleviate the performance degradation of LLMs caused by concretization.

2.1 FORMAL LANGUAGE TEMPLATES CONSTRUCTION

Start from the SAT Problem. To design our formal language template, we begin with the Boolean satisfiability problem (SAT) as the target task, since it is a canonical benchmark for logical reasoning and serves as a foundational abstraction for many real-world computational problems. SAT requires finding an assignment of truth values to variables such that a given Boolean formula is satisfied. Consider the following formula in conjunctive normal form (CNF) with a 2×2 variable arrangement and four clauses:

$$F = (\neg A_1 \vee B_1) \wedge (A_1 \vee \neg B_2) \wedge (A_1 \vee B_2) \wedge (\neg A_2 \vee \neg B_2).$$

One satisfying assignment is:

$$A_1 = \text{True}, \quad A_2 = \text{False}, \quad B_1 = \text{True}, \quad B_2 = \text{False}.$$

Two SAT instances F and G over variable sets $\text{Var}(F)$ and $\text{Var}(G)$ are said to be *logically isomorphic* if there exists a bijection

$$\pi : \text{Var}(F) \rightarrow \text{Var}(G)$$

such that the following three conditions hold. First, π preserves literal polarity: $\pi(\neg X) = \neg \pi(X)$. Second, π preserves clause structure: applying π to every literal of every clause in F produces exactly the multiset of clauses in G . Third, all Boolean connectives remain unchanged under the mapping, so the renaming preserves the syntactic form of the CNF formula. Intuitively, the two formulas encode the same logical structure up to a renaming that treats literals consistently.

Extension to CSP with Boolean and Integer Variables. SAT can be viewed as a special case of the Constraint Satisfaction Problem (CSP), where all variables are Boolean and all constraints are logical clauses. We extend our formal language template to a richer CSP setting in which variables may be of type `bool` or `int`, and the task becomes finding an assignment of Boolean and integer values satisfying all relational, arithmetic, and logical constraints. Consider the CSP instance with

$$x \in \{\text{True}, \text{False}\}, \quad y \in \{0, 1, 2\}, \quad z \in \{0, 1\},$$

162 and constraints

163

164
$$(x = \text{True} \Rightarrow y \leq 1), \quad (y + z = 2), \quad (\neg x \vee (z = 1)).$$

165

166 A satisfying assignment is

167

168
$$x = \text{True}, \quad y = 1, \quad z = 1.$$

169

170 Formally, a Boolean–integer CSP instance is a triple $I = (V, \text{dom}, \mathcal{C})$, where V is a set of variables,
171 $\text{dom}(v)$ assigns a domain and a type to each variable, and \mathcal{C} is a set of constraints built from a fixed
172 language of logical predicates and arithmetic operations. Two such CSP instances $I = (V, \text{dom}, \mathcal{C})$
173 and $I' = (V', \text{dom}', \mathcal{C}')$ are *isomorphic* if there exists a bijection $\pi : V \rightarrow V'$ satisfying three
174 requirements. First, variable types are preserved: $\text{dom}(v)$ and $\text{dom}'(\pi(v))$ belong to the same sort,
175 such as `bool` or `int`. Second, the mapping commutes with term formation: whenever a term uses
176 functions such as addition, comparison, or Boolean connectives, the mapped term is obtained sim-
177 ply by replacing variables according to π while leaving all operators unchanged. Third, constraint
178 structure is preserved: applying π to all variables appearing in a constraint of \mathcal{C} yields exactly one
179 constraint in \mathcal{C}' , and every constraint of \mathcal{C}' arises in this way. This definition reduces to the SAT
180 isomorphism when all variables are Boolean and all constraints are clauses.

181

182 **Extension to CSP with Boolean, Integer, and Abelian Group Variables.** We further generalize
183 our template to CSPs whose variables may belong to Boolean domains (e.g., $\{\text{True}, \text{False}\}$), integer
184 domains, or Abelian group domains such as \mathbb{Z}_p or \mathbb{Z}^k . In this enriched CSP, constraints may involve
185 group operations, congruence relations, and linear relations over Abelian group structures.

186

187 Consider the CSP:

188

189
$$x \in \{\text{True}, \text{False}\}, \quad y \in \{0, 1, 2\}, \quad g \in \mathbb{Z}_4,$$

190

191 with constraints:

192

193
$$(x = \text{True} \Rightarrow y < 2), \quad g + g \equiv y \pmod{4}, \quad (x = \text{False} \Rightarrow g \neq 1).$$

194

195 A satisfying assignment is:

196

197
$$x = \text{False}, \quad y = 2, \quad g = 3.$$

198

199 The first implication is vacuously true because $x = \text{False}$. The second constraint holds since $g + g =$
200 $3 + 3 = 6 \equiv 2 \pmod{4}$. The third holds because $x = \text{False}$ and $g = 3 \neq 1$.

201

202 Formally, such a CSP instance again takes the form $I = (V, \text{dom}, \mathcal{C})$, but $\text{dom}(v)$ may now be
203 a Boolean set, an integer domain, or the carrier set of a fixed Abelian group. Two CSP instances
204 with Boolean, integer, and Abelian group variables are *isomorphic* if a bijection $\pi : V \rightarrow V'$
205 satisfies three structural requirements. First, variable sorts and domain structures are preserved: a
206 Boolean variable maps to a Boolean variable, an integer variable maps to an integer variable, and a
207 group-valued variable ranging over an Abelian group G maps to another variable whose domain is
208 the same group G . Second, the mapping preserves term structure, meaning that group operations,
209 arithmetic operations, and logical connectives remain unchanged while variables appearing in terms
210 are renamed via π . Third, constraint preservation holds exactly as before: each constraint in \mathcal{C}
211 becomes a constraint in \mathcal{C}' after applying π , and the set \mathcal{C}' consists precisely of such images.

212

213 Introducing Abelian group variables significantly enriches the expressive power of the CSP template.
214 Constraints can now encode group equations, homomorphic structure, and congruence relations, and
215 the corresponding isomorphisms must preserve not only logical and arithmetic structure but also the
216 underlying algebraic structure induced by the group domains.

217

218

2.2 NATURAL LANGUAGE PUZZLE CONCRETIZATION

219

220

221 Our concretization framework adopts the standard dual learning approach (Xia et al., 2016), which
222 consists of two training cycles involving two translators. In the first cycle, Translator 1 translates a
223 formal language template into a natural language puzzle, while Translator 2 translates the resulting
224 puzzle back into a formal language template. Translator 1 serves as the optimization target in this
225 cycle. In the second cycle, Translator 2 translates a real-world puzzle into a formal language tem-
226 plate, and Translator 1 then translates the template back into a natural language puzzle. In this cycle,
227 Translator 2 is the optimization target. The overall training process is illustrated in Figure 3.

216 For Translator 1, the input is a constructed formal
 217 language template, and the output is a natural lan-
 218 guage puzzle together with variable definitions.
 219 The reward is derived from two components: (i)
 220 the pass rate of an answer model on the gener-
 221 ated natural language puzzle, and (ii) the isomor-
 222 phism decision between the original formal lan-
 223 guage template and the back-translated template
 224 produced by Translator 2. For Translator 2, the
 225 input is a real-world puzzle, and the output is a
 226 formal language template along with variable def-
 227 initions. Its reward combines (i) a format check
 228 on the generated formal language template and
 229 (ii) the similarity between the original real-world
 230 puzzle and the natural language puzzle generated
 by Translator 1.

231 Through iterative training, our dual-learning
 232 framework converges toward a state where formal language templates can be automatically trans-
 233 lated into natural language puzzles that are both challenging in formulation and logically consistent
 234 with the original formal representation.

236 2.3 MITIGATE STRATEGY

238 To mitigate the reasoning performance gap of LLMs when transitioning from formal language tem-
 239 plates to natural language puzzles, we propose a prompt-based method that encourages the model
 240 to extract the underlying reasoning logic before solving the task. Specifically, the solving model is
 241 first prompted to translate the natural language puzzle into a formal language template, and then to
 242 solve this formal representation in a second step to derive the final answer. To address the tendency
 243 of reasoning models to deviate from instructions, the prompt requires the LLM to explicitly output
 244 the reconstructed formal language template. The full prompt is provided in Appendix B.

245 To further strengthen the model’s ability to perform such abstraction, we introduce a complementary
 246 training-based method. Similar to Translator 2, the solving model is trained via reinforcement learn-
 247 ing to translate natural language puzzles back into their corresponding formal language templates.
 248 The model takes a natural language puzzle generated by our concretization framework as input, and
 249 receives a reward based solely on whether its output formal language template is isomorphic to the
 250 original one. This objective encourages the solving model to reliably map surface formulations to
 251 their underlying reasoning logic.

253 3 EMPIRICAL RESULTS

255 Using the concretization framework described in Section 2, we efficiently construct paired datasets
 256 of formal language templates and natural language puzzles that preserve consistent reasoning logic
 257 while introducing more challenging surface formulations. In this work, we focus on three problem
 258 types: SAT problems with only Boolean variables, CSP problems with Boolean and integer vari-
 259 ables, and CSP problems with Boolean, integer, and Abelian-group variables. For SAT problems,
 260 we adopt variable-size settings of 3×3 , 3×5 , and 5×5 . For SAT and CSP problems with Boolean
 261 and integer variables, we collect 500 puzzles that satisfy a difficulty threshold defined as a pass rate
 262 below 8/16 rollouts when solved by Qwen3-30B-A3B. For CSP problems involving Boolean, inte-
 263 ger, and Abelian-group variables, we similarly collect 500 puzzles that meet a difficulty threshold
 264 defined using GPT-oss-120B, again requiring a pass rate below 8/16 rollouts.

265 3.1 PERFORMANCE DEGRADATION AFTER CONCRETIZATION

267 We report the accuracy of state-of-the-art reasoning LLMs on both the original formal language
 268 templates and their corresponding natural language puzzles in Table 1. As shown, nearly all models
 269 achieve high accuracy on the formal templates but experience substantial performance drops after
 translation into natural language. The largest gap appears in the SAT problem with 3×3 variables

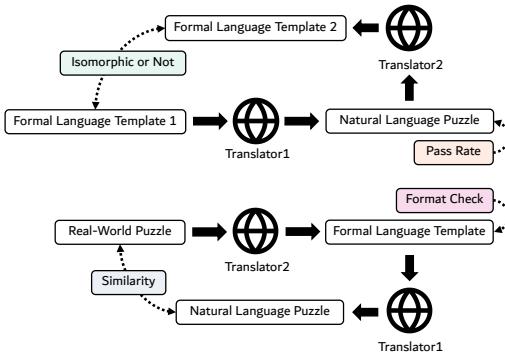


Figure 3: The training process for the natural language translator.

Model	Method	Bool								+ Int		+ Abel	
		3 × 3		3 × 5		5 × 5		FL		NL		FL	
		FL	NL	FL	NL	FL	NL	FL	NL	FL	NL	FL	NL
Qwen3-30B-A3B	Orig.	97.6	31.6	89.4	29.8	41.4	23.2	99.4	36.4	90.6	62.6		
	Prom.	-	65.6 (+34.0)	-	60.2 (+30.4)	-	29.2 (+6.0)	-	66.2 (+29.8)	-	77.8 (+15.2)		
	RL	-	87.8 (+56.2)	-	84.4 (+54.6)	-	53.4 (+30.2)	-	80.2 (+43.8)	-	83.2 (+21.0)		
GPT-oss-20B	Orig.	85.8	74.2	62.0	49.2	20.2	13.0	97.8	70.2	84.4	47.8		
	Prom.	-	81.0 (+6.8)	-	59.4 (+10.2)	-	17.8 (+4.8)	-	80.4 (+10.2)	-	54.2 (+6.4)		
	RL	-	86.4 (+12.2)	-	74.2 (+25.0)	-	24.2 (+11.2)	-	83.8 (+13.6)	-	72.8 (+25.0)		
Deepseek-R1	Orig.	99.8	73.0	99.0	61.6	92.6	71.2	100	83.8	97.8	63.6		
	Prom.	-	92.2 (+19.2)	-	81.0 (+19.4)	-	76.4 (+5.2)	-	88.4 (+4.6)	-	71.8 (+8.2)		
Gemini-2.5-Pro	Orig.	99.2	80.2	98.8	74.0	86.6	80.2	100	82.2	99.2	66.8		
	Prom.	-	89.4 (+9.2)	-	78.8 (+4.8)	-	68.6 (-11.6)	-	87.4 (+5.2)	-	76.0 (+9.2)		
GPT-o3	Orig.	99.4	97.0	99.8	97.8	99.4	98.8	100	87.0	99.8	72.4		
	Prom.	-	98.0 (+1.0)	-	99.6 (+1.8)	-	99.0 (+0.2)	-	90.4 (+3.4)	-	83.6 (+11.2)		

Table 1: The accuracy of LLMs on our generated abstraction–concretization paired dataset before (Orig.), after introducing the intermediate prompt-based step (Prom.), and after abstraction-enhanced reinforcement learning (RL).

using Qwen3-30B-A3B as the solving model, where accuracy decreases by 66%. Even leading closed-source models such as Gemini-2.5-Pro (Comanici et al., 2025) and GPT-o3 also show notable declines of 32.4% and 27.3%, respectively, on CSP problems involving Boolean, integer, and Abelian-group variables.

Meanwhile, although all LLMs are affected by the natural language formulation introduced through concretization, their robustness varies across settings. For the SAT problems and the CSP problems with Boolean and integer variables, where Qwen3-30B-A3B is used to define the difficulty threshold, GPT-oss-20B exhibits noticeably better robustness, with at most a 27.6% performance drop compared to Qwen3-30B-A3B’s maximum drop of 66%. In contrast, for the CSP problems involving Boolean, integer, and Abelian-group variables, where the difficulty threshold is defined by GPT-oss-120B, Qwen3-30B-A3B demonstrates better robustness, showing a 30% performance drop compared to GPT-oss-20B’s 36.6%.

3.2 PERFORMANCE MITIGATED AFTER ABSTRACTION

As shown in Table 1, introducing the prompt-based reasoning-logic abstraction step leads to clear performance improvements for most LLMs across all three types of puzzles. Notably, Qwen3-30B-A3B achieves a 34% accuracy increase on the SAT problem with 3×3 variables, and even GPT-o3 improves by 11.2% on the CSP problems involving Boolean, integer, and Abelian-group variables. Furthermore, when the reasoning-logic abstraction ability is strengthened through our training-based approach, the performance of Qwen3-30B-A3B and GPT-oss-20B improves even further, approaching their respective performance levels on the original formal language templates. Remarkably, Qwen3-30B-A3B on the SAT problem with 3×3 variables, as well as GPT-oss-20B across all SAT variable settings, even surpass their accuracy on the formal templates. This indicates that abstraction-enhanced training can reduce the dispersion of LLM reasoning across symbolic and natural-language formulations, enabling models to reason more consistently and effectively.

Another outlier is Gemini-2.5-Pro, which exhibits an 11.6% decrease in accuracy on the SAT problem with 5×5 variables when using the prompt-based method. A closer inspection of its outputs shows that Gemini-2.5-Pro often produces the final answer immediately after the translation step, neglecting the deeper symbolic reasoning required. This suggests that effective reasoning-logic abstraction must be paired with the ability to sustain coherent reasoning over the longer output sequences introduced by this process.

3.3 PERFORMANCE ENHANCEMENT ON OUT-OF-DOMAIN BENCHMARKS

We further evaluate the abstraction-enhanced model on several publicly available benchmarks from prior work (Gan et al., 2024; Rajeev et al., 2025; Valmeekam et al., 2023; Zheng et al., 2024). For PlanBench, we focus specifically on the plan-generation task. As shown in Table 2, abstraction-

Model	Method	Typographical		CatAttack		Natural-Plan			Planbench
		Original	Edited	Original	Edited	Calendar	Meeting	Trip	
Qwen3-30B-A3B	Orig.	90.47	86.87	96.50	94.50	84.80	12.30	3.75	68.20
	Prom.	90.75 (+0.28)	87.00 (+0.13)	96.16 (-0.34)	95.83 (+1.33)	85.20 (+0.40)	12.80 (+0.05)	4.44 (+0.69)	70.2 (+2.00)
	RL	91.18 (+0.71)	87.50 (+0.63)	96.50 (+0.00)	96.00 (+1.50)	86.20 (+1.40)	14.10 (+1.80)	4.94 (+1.19)	73.20 (+5.00)
GPT-oss-20B	Orig.	79.18	70.81	63.00	61.00	83.90	4.00	0.00	47.40
	Prom.	79.81 (+0.63)	73.32 (+2.51)	66.67 (+3.67)	65.16 (+4.16)	84.80 (+0.90)	5.8 (+1.80)	0.00 (+0.00)	43.20 (-4.20)
	RL	82.41 (+3.23)	76.11 (+5.3)	70.60 (+7.60)	70.00 (+9.00)	85.70 (+1.80)	9.60 (+5.60)	0.06 (+0.06)	55.60 (+8.20)

Table 2: The reasoning performance of Qwen3-30B-A3B and GPT-oss-20B on public benchmarks, before (Orig.), and after prompt-based (Prom.), and training-based (RL) abstraction-enhancement.

enhanced training substantially improves LLM robustness to perturbations such as injected typos and irrelevant statements. Moreover, both models also achieve higher performance on real-world planning tasks, with the abstraction-enhanced GPT-oss-20B showing an 8.2% improvement on Plan-Bench. These results highlight concretization-based training as an effective strategy for enhancing the robustness and real-world applicability of LLM reasoning.

4 ANALYSIS

4.1 INPUT FORMULATION LEADS TO MISUNDERSTANDING

Curious about the types of errors introduced by natural language, we analyze the responses of the Qwen3-30B-A3B model on the first 100 formal language templates and natural language puzzles for each size. The errors made by the model are categorized into three types:

- **Constraint Misunderstandings:** The model misinterprets the natural language description, leading to incorrect constraints. For example, in one puzzle about Adam, the definition states that both $B1$ and $B4$ represent “the battery is fully charged.” However, during reasoning the model assigned them different truth values, thereby generating a result directly contradictory to the definition.
- **Solving Failure:** The model generates assignments that conflict with the given constraints. For instance, in a narrative puzzle set at night, the constraints required that $C3$ and $C1$ could not both be false. Yet, in its final solution, the model set $C3 = \text{False}$ and $C1 = \text{False}$, resulting in a direct conflict with the constraint.
- **Formatting Errors:** The model fails to follow the required output format.

Figure 4 illustrates the increase in errors made by the Qwen3-30B-A3B model on natural language puzzles compared to formal language puzzles. As the number of variables in the puzzles grows, we observe that the frequency of Constraint Misunderstandings rises only slightly, whereas the frequency of Solving Failures increases more substantially. This pattern suggests that as the difficulty of symbolic reasoning intensifies, the model’s reasoning becomes less robust. Consequently, even minor perturbations in natural language, though not genuine misunderstandings for LLMs, are more likely to disrupt their reasoning process.

4.2 REASONING ATTENTION DISPERSED ACROSS NON-REASONING TOKENS

To investigate why different prompt formulations yield divergent predictions, we measure the causal sensitivity of each input token using $\text{Grad} \times \text{Input}$ influence scores on the Qwen3-30B-A3B model. The objective function J is defined as the total log-likelihood of the gold answer sequence, computed by summing the negative cross-entropy loss across the answer span. Gradients are enabled only for

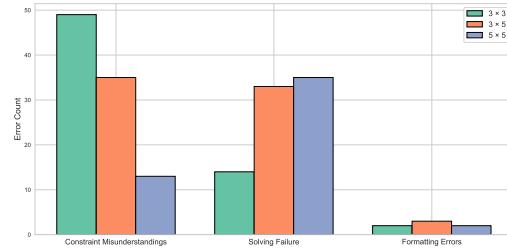
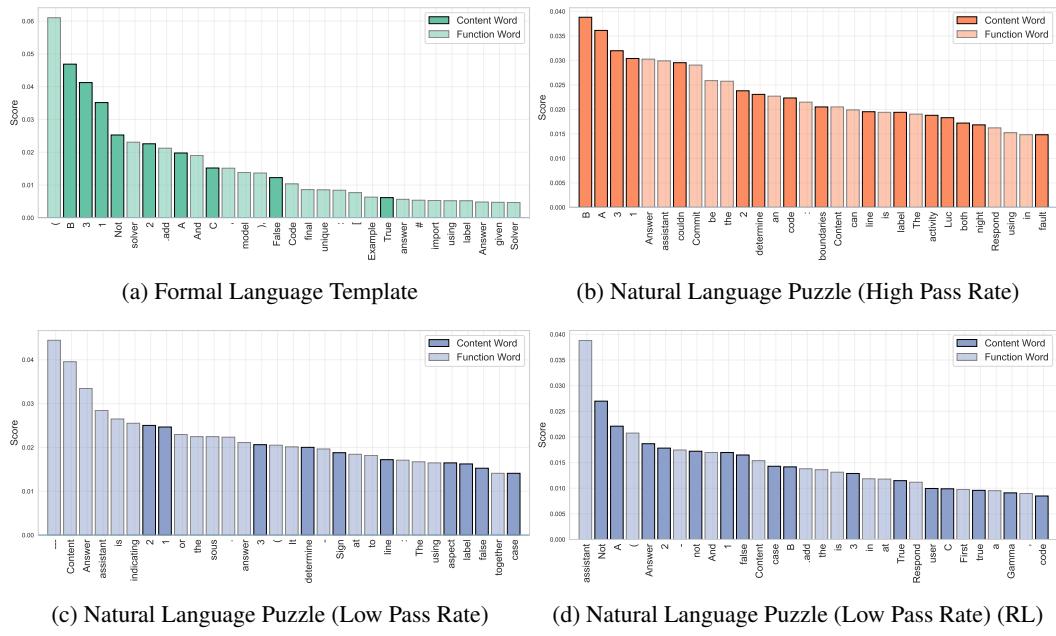


Figure 4: The increased error counts of the Qwen3-30B-A3B (puzzles minus templates).

Figure 5: Top 30 tokens with the highest $\text{Grad} \times \text{Input}$ influence scores.

the prompt embeddings, and we backpropagate through J to estimate token-level contributions. For each prompt token i , the $\text{Grad} \times \text{Input}$ influence score is defined as

$$\text{saliency}_i = \sum_{d=1}^D \frac{\partial J}{\partial e_{i,d}} e_{i,d}, \quad (1)$$

where $\mathbf{e}_i = (e_{i,1}, \dots, e_{i,D}) \in \mathbb{R}^D$ denotes the embedding vector of token i , $\frac{\partial J}{\partial e_{i,d}}$ is the gradient of J with respect to the d -th component of \mathbf{e}_i , and D is the embedding dimension. Finally, we apply L1 normalization across tokens to ensure comparability.

Figure 5 presents the top 30 tokens with the highest $\text{Grad} \times \text{Input}$ influence scores. As shown, in both the formal language template and the high-pass-rate natural language puzzle, the most influential tokens are typically content words, such as negation terms (e.g., not, couldn't), variable names (e.g., B3), or semantically meaningful nouns (e.g., boundaries). By contrast, in the low-pass-rate natural language puzzle, the tokens with the highest influence scores are often function words, such as template words (e.g., Content, is) or even symbols (e.g., "—"). Meanwhile, after training for abstraction ability, we observe that in the low-pass-rate natural language puzzle, the most influential tokens for the Qwen3-30B-A3B model shift from function words to content words.

This phenomenon suggests that some input formulations may draw the model's attention toward reasoning-irrelevant tokens, reducing its focus on logical structure. We hypothesize that this effect arises from the distribution of the training data: certain formulations appear more often in non-reasoning contexts, which leads LLMs to rely less on reasoning logic when processing them.

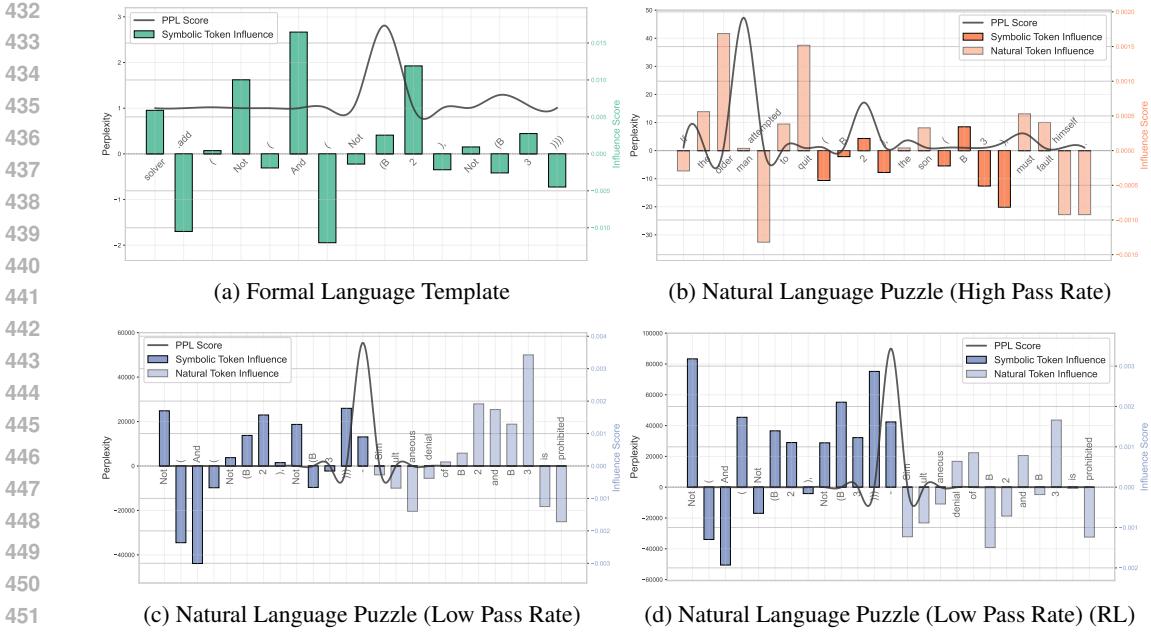
4.3 FORMULATION CONFLICT WEAKENS REASONING

Besides $\text{Grad} \times \text{Input}$ influence scores, we also calculate the token-level perplexity of each input token using the Qwen3-30B-A3B model. For a token x_i in the sequence, its perplexity score is defined as:

$$\text{PPL}_i = \exp(-\log p(x_i | x_{<i})), \quad (2)$$

where $p(x_i | x_{<i})$ is the conditional probability of token x_i given its preceding context. A lower PPL_i indicates that the model is more confident in predicting the token x_i .

We observe that, in some cases, natural language puzzles with low pass rates exhibit two distinct types of formulations, often combining natural language expressions with symbolic expressions.

Figure 6: Token-level perplexity and $\text{Grad} \times \text{Input}$ influence scores comparisons.

The separator token between these formulations tends to show an exceptionally high perplexity score. Moreover, the tokens immediately before and after the separator display consecutively positive influence scores. In contrast, formal language templates and high-pass-rate natural language puzzles generally employ a unified formulation, where tokens with high perplexity are typically scattered throughout the sentence rather than concentrated at a boundary. After training for abstraction ability, we further observe that in low-pass-rate natural language puzzles, although the separator token continues to exhibit an exceptionally high perplexity score, the Qwen3-30B-A3B model shows increased influence from symbolic tokens and decreased influence from natural tokens. Representative examples of these observations are illustrated in Figure 6.

This phenomenon suggests that the reasoning patterns of LLMs may shift between natural language reasoning and symbolic reasoning, leading to instability when confronted with a mixed formulation. By enhancing the abstraction ability of reasoning logic, we improve the alignment between natural language and symbolic reasoning, effectively unifying the reasoning pattern of the Qwen3-30B-A3B model, where, in our case, symbolic reasoning prevails. To some extent, this also helps explain why, after strengthening abstraction ability, LLMs can achieve better performance on natural language puzzles than on formal language templates.

4.4 MAY NOT FIT WELL WITH HUMAN INTUITION

To evaluate whether the challenging formulations align with human intuition, we design a set of pairwise-selection questions. Each question includes three low-pass-rate examples and one puzzle pair, where the pair consists of a high-pass-rate natural language puzzle and a low-pass-rate natural language puzzle. From each puzzle size, we randomly select 10 such pairwise questions, resulting in a 30-question survey. We construct 9 surveys in total and administer them to three human volunteers, three non-reasoning models, GPT-4o¹, Deepseek-V3 (Liu

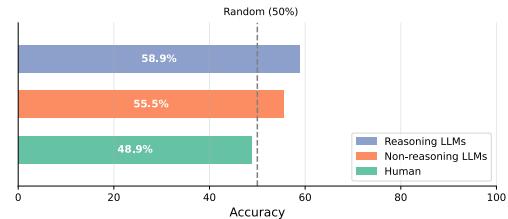


Figure 7: The accuracy of human volunteers, non-reasoning LLMs, and reasoning LLMs in distinguishing the more challenging puzzle.

¹<https://openai.com/index/gpt-4o-system-card/>

486 et al., 2024), and Gemini-2.5-Flash (Comanici et al., 2025), and three reasoning models, including
 487 GPT-o3, Deepseek-R1, and Gemini-2.5-Pro. Participants are asked to identify which puzzle in
 488 each pair is more likely to be unsolvable by the Qwen3-30B-A3B model, given the examples pro-
 489 vided. To mitigate position bias in the LLMs, each model answers every question twice, with the
 490 puzzle positions swapped.

491 Figure 7 reports the average accuracy of human volunteers, non-reasoning models, and reasoning
 492 models. Human volunteers struggle to distinguish natural language puzzles that are challenging for
 493 the Qwen3-30B-A3B model. Both non-reasoning and reasoning models achieve higher accuracy,
 494 though still below 60%. These results indicate that while some formulations perceived as intuitively
 495 difficult by humans are also challenging for LLMs, many of the puzzles that hinder LLMs do not
 496 align with human intuition, making them difficult to identify through heuristic approaches.

497

498

5 RELATED WORK

499

5.1 FORMULATION SENSITIVITY OF LLMs

500

503 Since the advent of LLMs, prior studies have shown extreme sensitivity of LLM to input formu-
 504 lation. For instance, Errica et al. (2025) and He et al. (2024) demonstrate that input formatting
 505 alters results, while Ackerman et al. (2024) and Qiang et al. (2024) highlight the impact of synony-
 506 mous paraphrases. Similarly, Gan et al. (2024) show that replacing critical tokens with predefined
 507 typos from a common misspelling dictionary can alter outcomes. Zhou et al. (2024) further demon-
 508 strate that paraphrasing questions through prompt-based methods also affects performance. In ad-
 509 dition, both Zhu et al. (2024) and Hu et al. (2025) show that simply changing the input language
 510 can influence results, while Rajeev et al. (2025) and Yang et al. (2025b) demonstrate that intro-
 511 ducing irrelevant information can similarly degrade performance. These work shows that heuristic
 512 modifications to prompts often hurt LLM reasoning on benchmarks. However, these studies typ-
 513 ically assume that the underlying reasoning process stays the same, since the changes are defined
 514 as “meaning-preserving.” Critically, this assumption is rarely supported by rigorous verification of
 whether input–output reasoning consistency is actually maintained after such perturbations.

515

516 To address this gap, Fu et al. (2024) propose training a smaller model to align input formulations
 517 with LLM preferences, while Zhao et al. (2024) enhance robustness by augmenting supervised fine-
 518 tuning data with perturbed variants to enforce output consistency. However, both approaches operate
 519 primarily at the surface-text level, without explicitly teaching LLMs to model the reasoning logic
 that should remain invariant across semantically equivalent formulations.

520

521

5.2 TRANSLATION FROM FORMAL LANGUAGE TO NATURAL LANGUAGE

522

523 As high-level abstractions of real-world tasks, much prior work has focused on instantiating formal
 524 language skeletons into natural language puzzles that fit practical scenarios. For example, Kazemi
 525 et al. (2023) propose BoardgameQA, which maps board game rules into natural language QA, em-
 526 phasizing contradictory information and preference reasoning. Lin et al. (2025) formalize logic grid
 527 and zebra puzzles as CSPs. Wei et al. (2025) generate narrative logic puzzles automatically from
 528 SAT formulas. Sinha et al. (2019) transform kinship rules into short stories with associated QA.
 529 While these enrich benchmarks, they rely heavily on human quality control and focus on reasoning
 530 consistency, overlooking semantic difficulty. As a result, benchmarks emphasize reasoning steps,
 whereas real-world challenges often lie in mapping complex contexts into abstract logic.

531

532

6 CONCLUSION

533

534

535 In this work, we propose a translation framework that automatically converts inputs into challenging
 536 formulations while preserving consistency in the underlying reasoning logic. We find that shifting
 537 from formal language templates to natural language puzzles leads to a sharp decline in LLM reason-
 538 ing performance. To address this, we introduce a prompt-based method and a training-based method
 539 that guide LLMs to abstract the reasoning logic from concrete question contexts before solving them,
 thereby nearly compensating for the performance loss caused by variations in input formulation.

540 THE USE OF LLMs
541542 In this paper, LLMs were utilized for polishing the manuscript’s prose and for supporting the for-
543 matting of tables and figures.
544545 REFERENCES
546547 Samuel Ackerman, Ella Rabinovich, Eitan Farchi, and Ateret Anaby Tavor. A novel metric for
548 measuring the robustness of large language models in non-adversarial scenarios. In Yaser Al-
549 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Compu-
550 tational Linguistics: EMNLP 2024*, pp. 2794–2802, Miami, Florida, USA, November 2024.
551 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.158. URL
552 <https://aclanthology.org/2024.findings-emnlp.158/>.
553553 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
554 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
555 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
556 bilities. *arXiv preprint arXiv:2507.06261*, 2025.
557557 Federico Errica, Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. What did I do wrong?
558 quantifying llms’ sensitivity and consistency to prompt engineering. In Luis Chiruzzo, Alan
559 Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Ameri-
560 cas Chapter of the Association for Computational Linguistics: Human Language Technologies,
561 NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4,
562 2025*, pp. 1543–1558. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.
563 NAACL-LONG.73. URL <https://doi.org/10.18653/v1/2025.naacl-long.73>.
564564 Junbo Fu, Guoshuai Zhao, Yimin Deng, Yunqi Mi, and Xueming Qian. Learning to paraphrase
565 for alignment with LLM preference. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
566 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida,
567 USA, November 12-16, 2024*, pp. 2394–2407. Association for Computational Linguistics, 2024.
568 doi: 10.18653/V1/2024.FINDINGS-EMNLP.134. URL <https://doi.org/10.18653/v1/2024.findings-emnlp.134>.
569570 Esther Gan, Yiran Zhao, Liying Cheng, Yancan Mao, Anirudh Goyal, Kenji Kawaguchi, Min-Yen
571 Kan, and Michael Shieh. Reasoning robustness of llms to adversarial typographical errors. In
572 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Confer-
573 ence on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,
574 November 12-16, 2024*, pp. 10449–10459. Association for Computational Linguistics, 2024. doi:
575 10.18653/V1/2024.EMNLP-MAIN.584. URL <https://doi.org/10.18653/v1/2024.emnlp-main.584>.
576577 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
578 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
579 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
580581 Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
582 Does prompt formatting have any impact on llm performance?, 2024. URL <https://arxiv.org/abs/2411.10541>.
583584 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
585 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Inter-
586 national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*.
587 OpenReview.net, 2022. URL <https://openreview.net/forum?id=nZeVKeefYf9>.
588589 Peng Hu, Sizhe Liu, Changjiang Gao, Xin Huang, Xue Han, Junlan Feng, Chao Deng, and Shujian
590 Huang. Large language models are cross-lingual knowledge-free reasoners. In Luis Chiruzzo,
591 Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Ameri-
592 cas Chapter of the Association for Computational Linguistics: Human Language Technologies,
593 NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4,
2025*, pp. 1525–1542. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.
NAACL-LONG.72. URL <https://doi.org/10.18653/v1/2025.naacl-long.72>.
594

- 594 Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
 595 Ramachandran. Boardgameqa: A dataset for natural language reasoning with contradictory in-
 596 formation. *Advances in Neural Information Processing Systems*, 36:39052–39074, 2023.
- 597
- 598 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 599 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning, 2025.
 600 URL <https://arxiv.org/abs/2502.01100>.
- 601 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 602 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 603 *arXiv:2412.19437*, 2024.
- 604
- 605 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International*
 606 *Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.*
 607 OpenReview.net, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.
- 608 Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky,
 609 and Aram Galstyan. Prompt perturbation consistency learning for robust language models.
 610 In Yvette Graham and Matthew Purver (eds.), *Findings of the Association for Computational*
 611 *Linguistics: EACL 2024, St. Julian's, Malta, March 17-22, 2024*, pp. 1357–1370. Associa-
 612 *tion for Computational Linguistics*, 2024. URL <https://aclanthology.org/2024.findings-eacl.91>.
- 613
- 614 Meghana Rajeev, Rajkumar Ramamurthy, Prapti Trivedi, Vikas Yadav, Oluwanifemi Bambose,
 615 Sathwik Tejaswi Madhusudan, James Zou, and Nazneen Rajani. Cats confuse reasoning llm:
 616 Query agnostic adversarial triggers for reasoning models, 2025. URL <https://arxiv.org/abs/2503.01781>.
- 617
- 618 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 619 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In *Pro-
 ceedings of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotter-
 620 dam, The Netherlands, 30 March 2025 - 3 April 2025*, pp. 1279–1297. ACM, 2025. doi:
 621 10.1145/3689031.3696075. URL <https://doi.org/10.1145/3689031.3696075>.
- 622
- 623 Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR:
 624 A diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vin-
 625 cent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods*
 626 *in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
 627 guage Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019*, pp. 4505–
 628 4514. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1458. URL
 629 <https://doi.org/10.18653/v1/D19-1458>.
- 630
- 631 Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
 632 hampati. Planbench: An extensible benchmark for evaluating large language models on planning
 633 and reasoning about change. *Advances in Neural Information Processing Systems*, 36:38975–
 634 38987, 2023.
- 635
- 636 Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo,
 637 Ke Wang, and Alex Aiken. Satbench: Benchmarking llms' logical reasoning via automated puzzle
 638 generation from sat formulas, 2025. URL <https://arxiv.org/abs/2505.14615>.
- 639
- 640 Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual
 641 learning for machine translation, 2016. URL <https://arxiv.org/abs/1611.00179>.
- 642
- 643 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
 644 Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. 2024.
 645 URL <https://arxiv.org/abs/2410.23123>.
- 646
- 647 Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can llms solve
 648 longer math word problems better? In *The Thirteenth International Conference on Learn-
 649 ing Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
 650 <https://openreview.net/forum?id=C9ju8QQSCv>.

- 648 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 649 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 650 *arXiv:2505.09388*, 2025a.
- 651 Minglai Yang, Ethan Huang, Liang Zhang, Mihai Surdeanu, William Wang, and Liangming Pan.
 652 How is llm reasoning distracted by irrelevant context? an analysis using a controlled benchmark,
 653 2025b. URL <https://arxiv.org/abs/2505.18761>.
- 654 Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Shuaiqiang Wang, Chong Meng, Zhicong
 655 Cheng, Zhaochun Ren, and Dawei Yin. Improving the robustness of large language models via
 656 consistency alignment, 2024. URL <https://arxiv.org/abs/2403.14221>.
- 657 Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
 658 Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on
 659 natural language planning. *arXiv preprint arXiv:2406.04520*, 2024.
- 660 Yue Zhou, Yada Zhu, Diego Antognini, Yoon Kim, and Yang Zhang. Paraphrase and solve: Ex-
 661 ploring and exploiting the impact of surface form on mathematical reasoning in large language
 662 models. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings of the*
 663 *2024 Conference of the North American Chapter of the Association for Computational Linguis-
 664 tics: Human Language Technologies (Volume 1: Long Papers)*, NAACL 2024, Mexico City, Mex-
 665 ico, June 16-21, 2024, pp. 2793–2804. Association for Computational Linguistics, 2024. doi:
 666 10.18653/V1/2024.NAACL-LONG.153. URL <https://doi.org/10.18653/v1/2024.naacl-long.153>.
- 667 Wenhao Zhu, Shujian Huang, Fei Yuan, Shuaijie She, Jiajun Chen, and Alexandra Birch. Question
 668 translation training for better multilingual reasoning. In Lun-Wei Ku, Andre Martins, and Vivek
 669 Srikumar (eds.), *Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,*
 670 *Thailand and virtual meeting, August 11-16, 2024*, pp. 8411–8423. Association for Computational
 671 Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.498. URL <https://doi.org/10.18653/v1/2024.findings-acl.498>.
- 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A ALGORITHMS
703
704
705706 **Algorithm 1** Generate SAT Template

707 **Input:** rows M , cols N 708 **Output:** Set $Constraints$ such that the SAT instance has a *unique* model

```

709 1: Initialize variables:  $Vars \leftarrow \{A_1, A_2, \dots, A_{M \times N}\}$ 
710 2:  $Constraints \leftarrow \emptyset$ 
711 3: Initialize incremental SAT solver  $S$                                 // empty constraint stack
712 4:  $S.PUSH()$                                                        // level-0 frame
713 5: loop
714 6:   if  $S.CHECK() = \text{UNSAT}$  then
715 7:      $S.POP()$                                                        // remove last constraint
716 8:     Remove last constraint  $last\_c$  from  $Constraints$ 
717 9:      $model \leftarrow S.MODEL()$                                          // solver is SAT again
718 10:     $found \leftarrow \text{false}$ 
719 11:    for all distinct pairs  $(v_i, v_j)$  in  $Vars$  do
720 12:       $c\_cand \leftarrow \neg(v_i = model[v_i] \wedge v_j = model[v_j])$ 
721 13:       $S.PUSH(); S.ADD(c\_cand)$ 
722 14:      if  $S.CHECK() = \text{SAT}$  then
723 15:         $found \leftarrow \text{true}$ 
724 16:         $model \leftarrow S.MODEL()$                                          // new model
725 17:        Add  $c\_cand$  to  $Constraints$ 
726 18:        break the for-loop
727 19:      else
728 20:         $S.POP()$                                                        // discard  $c\_cand$ 
729 21:      end if
730 22:    end for
731 23:    if not  $found$  then
732 24:      return  $Constraints$                                          // unique model achieved
733 25:    end if
734 26:  else
735 27:     $model \leftarrow S.MODEL()$ 
736 28:    Randomly pick distinct  $v_1, v_2 \in Vars$ 
737 29:     $c \leftarrow \neg(v_1 = model[v_1] \wedge v_2 = model[v_2])$ 
738 30:     $S.ADD(c); Constraints += c$                                          // stay in same frame
739 31:  end if
740 32: end loop

```

741
742
743
744
745**Algorithm 2** SAT Isomorphic

Input: src_code, tgt_code **Output:** **True** if two SAT templates are isomorphic, **False** otherwise

```

746 1:  $ns_{src} \leftarrow$  new namespace with Z3 pre-imported
747 2: Execute  $src\_code$  in  $ns_{src}$ 
748 3:  $solver_{src} \leftarrow$  last  $v$  in  $ns_{src}.\text{VALUES}()$  where  $v$  is a Z3 solver
749 4:  $A_{src} \leftarrow$  list of  $solver_{src}.\text{ASSERTIONS}()$ 
750 5:  $ns_{tgt} \leftarrow$  new namespace with Z3 pre-imported
751 6: Execute  $tgt\_code$  in  $ns_{tgt}$ 
752 7:  $solver_{tgt} \leftarrow$  last  $v$  in  $ns_{tgt}.\text{VALUES}()$  where  $v$  is a Z3 solver
753 8:  $A_{tgt} \leftarrow$  list of  $solver_{tgt}.\text{ASSERTIONS}()$ 
754 9:  $C_{src} \leftarrow \{ \text{canonical}(c) \mid c \in A_{src} \}$                                 // NNF + simplify + sort
755 10:  $C_{tgt} \leftarrow \{ \text{canonical}(c) \mid c \in A_{tgt} \}$ 
756 11: return  $C_{src} = C_{tgt}$ 

```

756 **Algorithm 3** Generate CSP Template with Integer and Boolean Variables

757 **Input:** #integer vars M , #boolean vars N , integer domain $D = [d_{\min}, d_{\max}]$

758 **Output:** *Constraints* s.t. the CSP has a *unique* model

759 1: $IntVars = \{x_1, \dots, x_M\}$, with $x_i \in D$; $BoolVars = \{b_1, \dots, b_N\}$

760 2: $Vars \leftarrow IntVars \cup BoolVars$, $Constraints \leftarrow \emptyset$

761 3: Initialize incremental solver S ; add $S.\text{ADD}(x_i \in D)$ for all x_i ; $S.\text{PUSH}()$

762 4: **loop**

763 5: **if** $S.\text{CHECK}()$ = UNSAT **then**

764 6: $S.\text{POP}()$; remove last constraint $last_c$ from *Constraints*

765 7: $model \leftarrow S.\text{MODEL}()$; $found \leftarrow \text{false}$

766 8: **for** all distinct $(v_i, v_j) \in Vars$ **do**

767 9: $c_{\text{cand}} \leftarrow \neg(v_i = model[v_i] \wedge v_j = model[v_j])$

768 10: $S.\text{PUSH}()$; $S.\text{ADD}(c_{\text{cand}})$

769 11: **if** $S.\text{CHECK}()$ = SAT **then**

770 12: $found \leftarrow \text{true}$; add c_{cand} to *Constraints*; **break**

771 13: **else**

772 14: $S.\text{POP}()$

773 15: **end if**

774 16: **end for**

775 17: **if** not $found$ **then** $\text{// current model is unique}$

776 18: **return** *Constraints*

777 19: **end if**

778 20: **else**

779 21: $model \leftarrow S.\text{MODEL}()$

780 22: Randomly pick distinct $v_1, v_2 \in Vars$

781 23: $c \leftarrow \neg(v_1 = model[v_1] \wedge v_2 = model[v_2])$

782 24: $S.\text{ADD}(c)$; $Constraints += c$

783 25: **end if**

784 26: **end loop**

795 **Algorithm 4** CSP Isomorphic (Integer + Boolean)

796 **Input:** *src_code*, *tgt_code*

797 **Output:** **True** if two CSP templates (with Int & Bool vars) are isomorphic, **False** otherwise

798

799 1: $ns_{\text{src}} \leftarrow$ new namespace with Z3 pre-imported

800 2: Execute *src_code* in ns_{src}

801 3: $solver_{\text{src}} \leftarrow$ last v in $ns_{\text{src}}.\text{VALUES}()$ where v is a Z3 solver

802 4: $A_{\text{src}} \leftarrow$ list of $solver_{\text{src}}.\text{ASSERTIONS}()$

803 5: $ns_{\text{tgt}} \leftarrow$ new namespace with Z3 pre-imported

804 6: Execute *tgt_code* in ns_{tgt}

805 7: $solver_{\text{tgt}} \leftarrow$ last v in $ns_{\text{tgt}}.\text{VALUES}()$ where v is a Z3 solver

806 8: $A_{\text{tgt}} \leftarrow$ list of $solver_{\text{tgt}}.\text{ASSERTIONS}()$

807 9: $C_{\text{src}} \leftarrow \{ \text{canonical_csp}(c) \mid c \in A_{\text{src}} \}$ $\text{// normalize Bool + Int formula: NNF, arithmetic simplification, sorted arguments, etc.}$

808 10: $C_{\text{tgt}} \leftarrow \{ \text{canonical_csp}(c) \mid c \in A_{\text{tgt}} \}$

809 11: **return** $C_{\text{src}} = C_{\text{tgt}}$

810 **Algorithm 5** Generate CSP Template with Boolean, Integer, and Abelian-Group Variables

811 **Input:** #integer vars M_{int} , #boolean vars M_{bool} , #group vars M_{grp} ,
 812 modulus range $[m_{\min}, m_{\max}]$, constraint range $[\text{minC}, \text{maxC}]$

813 **Output:** $\text{Template} = (\text{IntVars}, \text{BoolVars}, \text{GrpVars}, m_{\min}, m_{\max}, \text{Constraints}, \text{Model})$
 814 s.t. the CSP has a *unique* model

815 1: $\text{IntVars} \leftarrow \{x_1, \dots, x_{M_{\text{int}}}\}$, $\text{BoolVars} \leftarrow \{b_1, \dots, b_{M_{\text{bool}}}\}$, $\text{GrpVars} \leftarrow \{g_1, \dots, g_{M_{\text{grp}}}\}$

816 2: $T \leftarrow \text{RANDOMINT}(\text{minC}, \text{maxC})$

817 3: **repeat**

818 4: $S \leftarrow$ new SMT solver; introduce MOD with $m_{\min} \leq \text{MOD} \leq m_{\max}$

819 5: Add $0 \leq g < \text{MOD}$ for all $g \in \text{GrpVars}$ (and optional bounds for IntVars)

820 6: Sample hidden model h : $h(\text{MOD}) \in [m_{\min}, m_{\max}]$, $h(g) \in \{0, \dots, h(\text{MOD}) - 1\}$, $h(x) \in \mathbb{Z}$, $h(b) \in \{\text{true}, \text{false}\}$

821 7: $\text{Constraints} \leftarrow \emptyset$

822 8: **while** $|\text{Constraints}| < T$ **do**

823 9: Randomly pick a generator type from {Int, Bool, Mixed, Group}

824 10: Using h construct a candidate constraint c_{cand} of the chosen type (e.g. linear Int, CNF-style
 825 Bool, If(\cdot), or $(g_i + g_j + \dots) \equiv c \pmod{\text{MOD}}$)

826 11: Encode c_{cand} into S (group constraints via $=$ with an auxiliary multiple of MOD)

827 12: Temporarily add c_{cand} to S and check satisfiability

828 13: **if** $S.\text{CHECK}() = \text{SAT}$ **then**

829 14: Keep c_{cand} in S and append to Constraints

830 15: **else**

831 16: Remove c_{cand} from S

832 17: **end if**

833 18: **end while**

834 19: **if** $S.\text{CHECK}() \neq \text{SAT}$ **then**

835 20: **continue** // discard and restart

836 21: **end if**

837 22: $m \leftarrow S.\text{MODEL}()$; extract Model on all Int / Bool / group vars and MOD

838 23: Build blocking clause

839
$$\beta \leftarrow \bigvee_{v \in \text{IntVars} \cup \text{BoolVars} \cup \text{GrpVars}} v \neq \text{Model}(v) \vee \text{MOD} \neq \text{Model}(\text{MOD})$$

840

841 24: $S.\text{PUSH}(); S.\text{ADD}(\beta); r \leftarrow S.\text{CHECK}(); S.\text{POP}()$

842 25: **until** $r = \text{UNSAT}$ // no second model: solution is unique

843 26: **return** $(\text{IntVars}, \text{BoolVars}, \text{GrpVars}, m_{\min}, m_{\max}, \text{Constraints}, \text{Model})$

845

846

847

848

849 **Algorithm 6** CSP Isomorphic (Boolean, Integer, and Abelian-Group Variables)

850 **Input:** src_code , tgt_code

851 **Output:** **True** if two CSP templates are isomorphic, **False** otherwise

852 1: $ns_{\text{src}} \leftarrow$ new namespace with Z3 pre-imported

853 2: Execute src_code in ns_{src}

854 3: $\text{solver}_{\text{src}} \leftarrow$ last v in $ns_{\text{src}}.\text{VALUES}()$ where v is a Z3 solver

855 4: $A_{\text{src}} \leftarrow$ list of $\text{solver}_{\text{src}}.\text{ASSERTIONS}()$

856 5: $ns_{\text{tgt}} \leftarrow$ new namespace with Z3 pre-imported

857 6: Execute tgt_code in ns_{tgt}

858 7: $\text{solver}_{\text{tgt}} \leftarrow$ last v in $ns_{\text{tgt}}.\text{VALUES}()$ where v is a Z3 solver

859 8: $A_{\text{tgt}} \leftarrow$ list of $\text{solver}_{\text{tgt}}.\text{ASSERTIONS}()$

860 9: // Canonicalize Boolean, Integer and Abelian-group (mod-MOD) constraints

861 10: $C_{\text{src}} \leftarrow \{ \text{canonical_abelian_csp}(c) \mid c \in A_{\text{src}} \}$

862 11: $C_{\text{tgt}} \leftarrow \{ \text{canonical_abelian_csp}(c) \mid c \in A_{\text{tgt}} \}$

863 12: **return** $C_{\text{src}} = C_{\text{tgt}}$

864 B PROMPT

865

866

867

Formal Language Template Prompt

868

869

870

871

872

873

874

875

876

877

878

879

Code:

```
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3, C1, C2, C3 = Bools('A1 A2 A3 B1 B2 B3 C1 C2 C3')
solver.add(Not(And(Not(A1), Not(A2))))
...
solver.add(Not(And(A1, B2)))
solver.add(Not(And(A1, Not(A3))))
```

Determine the truth value (True or False) for each variable defined in the given Code.

Respond with your final answer using the label "Final Answer". Format each line as: "[Variable name]: [True/False]".

Example:

Final Answer:

A1: True

B2: False

880

881

882

883

884

885

886

Natural Language Puzzle Prompt

887

Content:

In the once-thriving Kingdom of the Mages, the great dragons were both guardians andiphers of ancient mystery. Among these dragons was one known as Ember, who guarded the last remnants of the royal lineage and the treasures that lay beneath the crumbling towers of the ancient castle. For centuries, Ember had ...

Ember, with her uncanny ability to discern the true intentions of those who dared to challenge her, began to probe Arin's resolve. Their encounter ...

Here are the constraints that governed his plan:

The First Challenge: Ember's gaze locked onto Arin's, her emerald eyes ...

...

The Ninth Challenge: Ember's voice took on a tone of finality as she delivered ...

Ember's words hung in the air, a testament to the intricate web of conditions that bound Arin's quest. The warrior knew that his success depended not only on his own courage but also on the willingness of others to support his cause. As he prepared to face the dragon, he understood that his journey was not just one of sword and fire but of logic, resolve, and the ability to navigate a labyrinth of interdependent choices.

Definitions:

A1: Arin must slay the dragon to achieve his goal.

A2: Arin must attain the throne to fulfill his purpose.

...

C2: The nobles must not oppose Arin for his rule to be secure.

C3: The people must know peace for Arin's quest to be truly successful.

909

910

Based on the Content and Definitions, determine the truth value (True or False) for each variable mentioned.

Respond with your final answer using the label "Final Answer". Format each line as: "[Variable name]: [True/False]". Each variable name appears at the start of its corresponding definition in the Definitions.

911

912

913

Example:

Final Answer:

A1: True

B2: False

918
919**Natural Language Puzzle Prompt with Back Translation**

920

Content:

921

Adam sat on the cold mountainside, lying on the soft peat, a thin reed sticking into his back.
The rain pelted him ...

923

Here are the constraints that governed his plan:

924

Either Adam remembered to pack his fireproof container or he remembered to bring his
925 emergency flares, both could not be forgotten at the same time.

926

...
927 If Adam didn't remember to pack his fireproof container, then the encryption key wasn't
928 secure.

929

Definitions:

930

A1: Adam remembered to pack his fireproof container.

931

...

932

C5: The final encryption key was in place.

933

Based on the Content and Definitions, determine the truth value (True or False) for each variable mentioned. First, Convert the Content into Z3 code. Each constraint should represent a forbidden combination of assignments for two variables. Then, Solve the Z3 code to obtain the final truth values.

934

Respond with the translated Z3 code, labeled as "Final Z3 Code:" and provide the final answers using the label "Final Answer:". Format each line in final answer as: "[Variable name]: [True/False]". Each variable name appears at the start of its corresponding definition in the Definitions.

935

Example:

936

Final Z3 Code:

937

```
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3 = Bools('A1 A2 A3 B1 B2 B3')
solver.add(Not(And(Not(A2), Not(B1))))
...
solver.add(Not(And(Not(A1), B2)))
```

938

Final Answer:

939

A1: False

940

...

941

B3: True

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

Catattck Prompt with Abstraction-enhanced Instruction

958

Question:

959

What is the length of the segment of the number line whose endpoints satisfy $|x - \sqrt[3]{27}| = 5$?

960

961

First, convert the Question into an explicit mathematical calculation. Then, solve this calculation step by step to obtain the final answer.

962

963

Respond with the mathematical calculation labeled as "Calculation: ", and provide the final answers using the label "Final Answer:".

964

965

Example:

966

Calculation:

967

968

969

$$E = \frac{\sqrt{25 - 16}}{\sqrt{25} - \sqrt{16}}$$

970

Final Answer:

971

3

972
973**PlanBench Prompt with Abstraction-enhanced Instruction**

974

Question:

975

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can do 1) Pick up a block 2) Unstack a block from on top of another block 3) Put down a block 4) Stack a block on top of another block

977

I have the following restrictions on my actions:

978

1. I can only pick up or unstack one block at a time.
2. I can only pick up or unstack a block if my hand is empty.

980

...

981

10. Once I put down or stack a block, my hand becomes empty.

982

11. Once you stack a block on top of a second block, the second block is no longer clear. As initial conditions I have that, the red block is clear, the yellow block is clear, the hand is empty, the red block is on top of the blue block, the yellow block is on top of the orange block, the blue block is on the table and the orange block is on the table.

983

My goal is to have that the orange block is on top of the red block.

984

First, convert the question into a constraint solving problem. Then, solve the csp problem to obtain the final answer.

985

Respond with the csp problem with label: 'Abstract CSP Problem:' and conclude your plan with label: 'My Plan:', and then list each action on a separate line.

986

Example:

987

Abstract CSP Problem:

988

Objects: R, B, Y, O are blocks; T is the table.

989

Fluents: $On(x, y, s)$, $Holding(x, s)$, $Clear(x, s)$, $HandEmpty(s)$.

990

Actions:

991

 $Pickup(x)$, $Putdown(x)$, $Unstack(x, y)$, $Stack(x, y)$.

992

 $do(a, s)$ is the successor situation.

993

Definitions:

994

 $HandEmpty(s) \leftrightarrow \neg \exists b Holding(b, s)$.

995

 $Clear(x, s) \leftrightarrow \neg Holding(x, s) \wedge \neg \exists b On(b, x, s)$.

996

Preconditions:

997

 $Poss(Pickup(x), s) \leftrightarrow Clear(x, s) \wedge On(x, T, s) \wedge HandEmpty(s)$.

998

 $Poss(Putdown(x), s) \leftrightarrow Holding(x, s)$.

999

 $Poss(Unstack(x, y), s) \leftrightarrow Clear(x, s) \wedge On(x, y, s) \wedge HandEmpty(s)$.

1000

 $Poss(Stack(x, y), s) \leftrightarrow Holding(x, s) \wedge Clear(y, s)$.

1001

Successor state axioms:

1002

$$\begin{aligned} On(x, y, do(a, s)) \leftrightarrow & (a = Putdown(x) \wedge y = T) \\ & \vee (a = Stack(x, y)) \\ & \vee (On(x, y, s) \wedge a \neq Pickup(x) \wedge a \neq Putdown(x) \\ & \wedge a \neq Unstack(x, \cdot) \wedge a \neq Stack(x, \cdot)). \end{aligned}$$

1003

$$\begin{aligned} Holding(x, do(a, s)) \leftrightarrow & (a = Pickup(x) \vee a = Unstack(x, \cdot)) \\ & \vee (Holding(x, s) \wedge a \neq Putdown(x) \wedge a \neq Stack(x, \cdot)). \end{aligned}$$

1004

Initial state S_0 :

1005

 $On(B, T, S_0)$, $On(O, T, S_0)$, $On(R, B, S_0)$, $On(Y, O, S_0)$, $HandEmpty(S_0)$.

1006

Goal:

1007

 $\exists s. On(O, R, s)$.

1008

My Plan:

1009

unstack the blue block from on top of the orange block

1010

put down the blue block

1011

pick up the orange block

1012

stack the orange block on top of the blue block

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026
1027**Translation Formal Language Template to Natural Language Puzzle**

1028

Code:

1029

```
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3, C1, C2, C3 = Bools('A1 A2 A3 B1 B2 B3 C1 C2 C3')
solver.add(Not(And(Not(A1), Not(A2))))
...
solver.add(Not(And(A1, Not(A3))))
```

1030

Background:

1031

So many times have I walked on ruins, the remainings of places that I loved and got used to..
At first I was scared, each time I could feel my city, my current generation collapse ...

1032

Integrate all information from the Z3 code into the Background to generate a challenging natural language content. Do not refer to or quote the code directly, and do not use symbolic identifiers (e.g., "A1", "C5") in the narrative.

1033

Ensure that each constraint encoded in the Z3 code is explicitly represented in the final version of the natural language content, each constraint should be clearly reflected one by one, while the final solution must remain undisclosed.

1034

After that, provide natural language definitions for each variable used in the code. Each line formatted as: "[Variable name]: [Definition in the natural language content]".

1035

Conclude your response with following format:

1036

Natual Language Content:

[content]

1037

Difinitions:

1038

[definitions]

1039

Translation Natural Language Puzzle to Formal Language Template

1040

Content:

1041

The story of "The Really Bad Decision" is a cautionary tale of hubris, miscommunication, and the consequences of half-hearted efforts. At its core, it is a narrative of ...

1042

Not(And(Not(A2), Not(B1))): This constraint prohibits the simultaneous absence of A2 and B1. In the context of the story, A2 could represent the implementation ...

1043

...
Not(And(A3, Not(C2))): This constraint ensures that A3 and C2 cannot both be present and absent, respectively. A3 might represent the implementation of a backup system ...

1044

Definitions:

1045

A1: Represents the implementation of a critical initial design review or feasibility study.

1046

...

1047

C3: Represents the implementation of a fail-safe mechanism.

1048

Based on the Definitions, translate the Natural Language Content into Z3 code. Each constraint consists of a forbidden combination of assignments for two variables.

1049

Conclude your response with "Final Z3 Code:". Then present the generated code directly, do not enclose it in quotation marks or code blocks.

1050

For example:

1051

Final Z3 Code:

1052

```
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3 = Bools('A1 A2 A3 B1 B2 B3')
solver.add(Not(And(Not(A2), Not(B1))))
...
solver.add(Not(And(Not(A1), B2)))
```

1053

1054

1080
1081

C IMPLEMENTATION AND EXPERIMENT SETUP

1082
1083

C.1 TRANSLATOR IMPLEMENTATION

1084
1085

In our translator implementation, we leverage the training set from the well-known logic puzzle benchmark *Knights-and-Knaves* Xie et al. (2024) as the source of real-world puzzles and employ the Qwen3-30B-A3B model Yang et al. (2025a) as the LLM solver. To verify the isomorphism between Formal Language Template 1 and the back-translated Formal Language Template 2, we apply Algorithm 2. For measuring the similarity between the Real-World Puzzle and the back-translated Natural Language Puzzle, we compute the BLEU score using the Qwen3-30B-A3B tokenizer. We extend the `ver1` framework (Sheng et al., 2025) to enable the training of two translators based on the `r1-distill-Qwen-32B` model (Guo et al., 2025), each equipped with an independent LoRA adapter Hu et al. (2022). Training is performed using the GRPO algorithm (Guo et al., 2025) and the AdamW optimizer (Loshchilov & Hutter, 2019). The two translators are trained alternately on two 8-card H800 GPU nodes with a learning rate of 1×10^{-6} . For decoding, we configure the parameters as follows: temperature = 1.0, top-p = 1.0, and LoRA rank = 8.

1086
1087

C.2 EXPERIMENT SETUP

1088
1089

For evaluation on both the formal language templates and the natural language puzzles, we employ five state-of-the-art reasoning models: Qwen3-30B-A3B, GPT-oss-20B, DeepSeek-R1, Gemini-2.5-Pro, and GPT-o3. The Qwen3-30B-A3B, GPT-oss-20B and DeepSeek-R1 models are deployed on our in-house 8-card H800 GPU cluster, while Gemini-2.5-Pro and GPT-o3 are accessed through their official APIs. The version of DeepSeek-R1 used in our experiments corresponds to the original release on January 20, 2025. The decoding parameters are configured as follows: temperature = 0.0, top-p = 1.0. For GPT-oss-20B, the reasoning-effort setting is fixed to medium.

1090
1091

For the reinforcement learning of the Qwen3-30B-A3B and GPT-oss-20B on the task of translating natural language puzzles back into formal language templates, we adopt the same configuration and reward function as used for the translator.

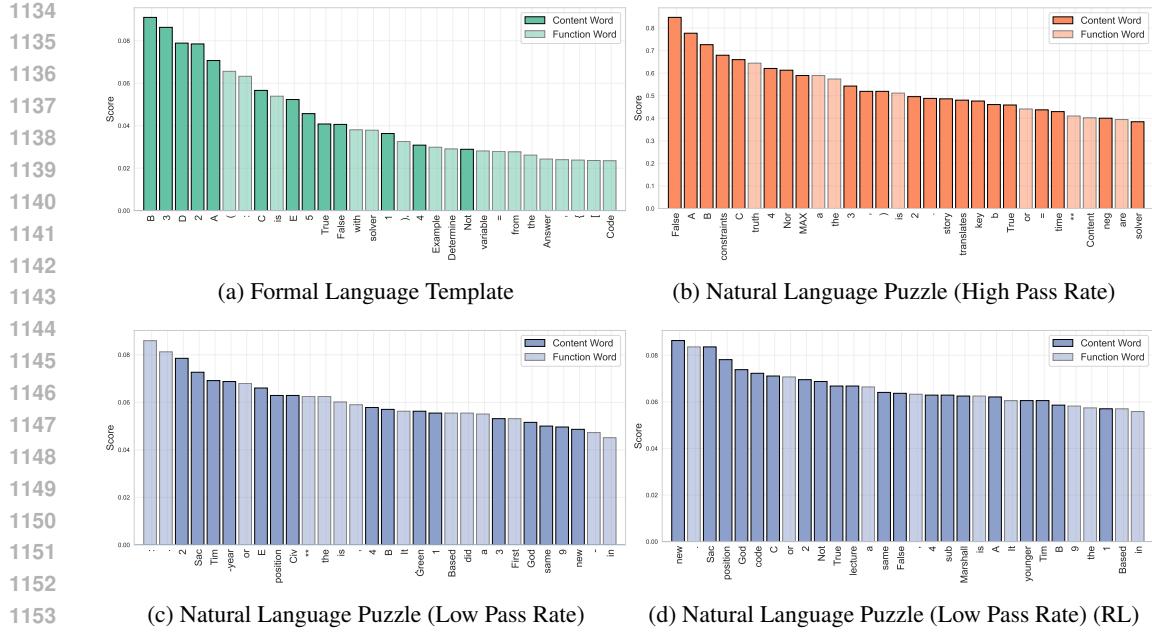
1092
1093

C.3 HUMAN ANNOTATION

1094
1095

For the participants tasked with determining which puzzle in the pair is more likely to be unsolvable by the Qwen3-30B-A3B model based on the provided examples, we invited three volunteers with strong logic puzzle skills who were able to correctly solve at least 3 out of 5 3×3 natural language puzzles, thereby demonstrating a certain level of logical problem-solving ability.

1096
10971098
10991100
11011102
11031104
11051106
11071108
11091110
11111112
11131114
11151116
11171118
11191120
11211122
11231124
11251126
11271128
11291130
11311132
1133

Figure 8: Top 30 tokens with the highest $\text{Grad} \times \text{Input}$ influence scores.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 INPUT TOKEN INFLUENCE OF GPT OSS-20B

We also present the top 30 tokens with the highest $\text{Grad} \times \text{Input}$ influence scores for GPT-oss-20B. As shown in Figure 8, GPT-oss-20B exhibits a trend similar to Qwen3-30B-A3B: in both the formal-language template and the high-pass-rate natural-language puzzle settings, the most influential tokens are typically content words. In contrast, in the low-pass-rate natural-language puzzle, the tokens with the highest influence scores are often function words. After training for abstraction ability, the low-pass-rate natural language puzzle, the most influential tokens for the GPT-oss-20B shift from function words to content words as well.

D.2 TOKEN-LEVEL PERPLEXITY AND INFLUENCE SCORES OF GPT OSS-20B

We also find that GPT-oss-20B exhibits a reasoning-pattern shift similar to that of Qwen3-30B-A3B. For formal-language templates and high-pass-rate natural-language puzzles, both models generally adopt a unified formulation in which high-perplexity tokens are distributed throughout the sentence rather than concentrated near a single boundary. However, for natural-language puzzles that contain two distinct formulation types, GPT-oss-20B displays noisy and unstable reasoning behavior, though it shows a relative preference for relying on natural-language cues rather than formal-language structure, while almost ignoring the separator token. After training for abstraction ability, the model’s behavior changes substantially: in low-pass-rate natural-language puzzles, GPT-oss-20B exhibits markedly increased sensitivity to symbolic tokens and reduced sensitivity to natural-language tokens, indicating that its reasoning has begun to align with the underlying logical structure instead of focusing on surface-level linguistic patterns.

D.3 HUMAN VERIFICATION ON CONCRETIZATION

To address concerns that the observed performance differences might arise from dataset artifacts rather than genuine “concretization” effects, we conducted a controlled human validation study on a randomly selected subset of the benchmark. We uniformly sampled 50 instances from our generated paired formal-language templates and natural-language puzzles. Specifically, the sample included 60 SAT instances spanning three variable configurations (3×3 , 3×5 , and 5×5 variables; 20 instances

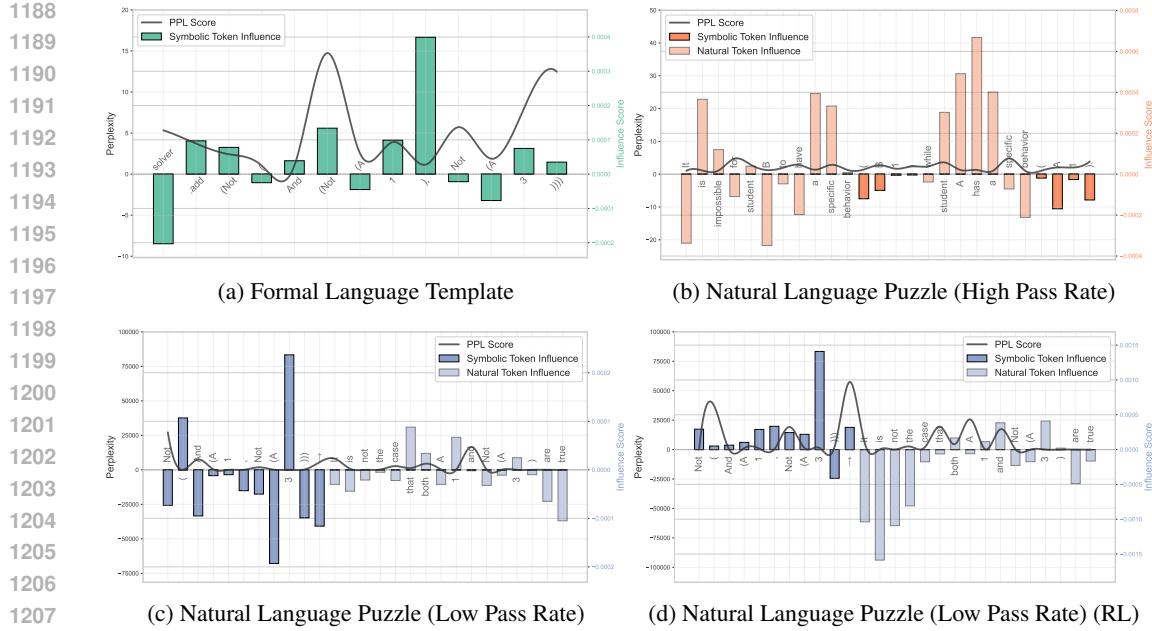


Figure 9: Token-level perplexity and $\text{Grad} \times \text{Input}$ influence scores comparisons.

per configuration), 20 CSP instances with Boolean and integer variables, and 20 CSP instances involving Boolean, integer, and Abelian-group variables. Each instance was independently reviewed by two annotators with backgrounds in mathematics, logic, or computer science; disagreements were adjudicated by a third annotator.

Annotators evaluated each instance along three dimensions corresponding directly to reviewer concerns:

- **Grammaticality:** Whether the text is free from severe grammatical errors.
 - **Clarity:** Whether the logical structure and intended task are clearly and unambiguously expressed.
 - **Absence of Spurious Cues:** Whether the instance avoids superficial patterns or lexical artifacts that could reveal the correct answer without genuine reasoning.

Each dimension was rated on a three-level scale: *Pass*, *Borderline*, or *Fail*. Annotators also assigned an overall judgment (*Valid* or *Invalid*) indicating whether the instance was suitable for evaluating concretization effects.

As shown in Table 3, the vast majority of sampled instances were judged to be of sufficiently high quality across all three evaluation criteria. Grammar received the strongest assessments, with 87% of instances marked as Pass and none marked Fail, confirming that our generation pipeline does not introduce syntactic noise that might confound model behavior.

Clarity exhibited a more mixed distribution, 60% Pass, 39% Borderline, and only 1% Fail. This pattern is expected given the inherent difficulty of expressing multi-variable logical constraints in natural language, particularly since our aim is to construct puzzle formulations that are intentionally more challenging and potentially ambiguous for solving models. The small proportion of Fail cases (about 1%) typically arises when a natural-language puzzle implicitly contains multiple sub-puzzles, leading to duplicated or mildly confusing references to variable definitions. Nevertheless,

Criterion	Pass	Borderline	Fail
Grammar	87%	13%	0%
Clarity	60%	39%	1%
Spurious cues	77%	23%	0%

Table 3: Distribution of human annotation.

1242 these instances remain sufficiently interpretable to be translated into an isomorphic formal-language
 1243 template and solved correctly by Gemini-2.5-Pro and GPT-o3.
 1244

1245 Absence of Spurious Cues criterion also showed strong performance, with 77% Pass and 23%
 1246 Borderline, and again no Fail cases. This indicates that the templates do not systematically leak
 1247 answer-revealing artifacts, such as lexical regularities or superficial structural patterns—that could
 1248 be exploited by models.
 1249

1250 Taken together, these findings show that the benchmark reliably reflects genuine reasoning demands
 1251 rather than unintended annotation or generation artifacts. The small proportion of Borderline cases,
 1252 primarily involving clarity, highlights opportunities to further refine phrasing. However, the over-
 1253 whelming majority of Pass judgments and the absence of critical failures support the benchmark’s
 1254 validity for evaluating concretization effects.
 1255

D.4 NATURAL LANGUAGE PUZZLE FORMULATION DIVERSITY

1256 Beyond the challenge of formulation, our trans-
 1257 lation framework from formal language tem-
 1258 plates to natural language puzzles also demon-
 1259 strates greater diversity compared to template-
 1260 based methods. Specifically, we embed the for-
 1261 mal language templates, the widely used nat-
 1262 ural language puzzle benchmark Knights-and-
 1263 Knaves (Xie et al., 2024), and our constructed
 1264 natural language puzzles using the Qwen3-30B-
 1265 A3B tokenizer. The resulting embeddings are
 1266 then projected into two dimensions using Prin-
 1267 cipal Component Analysis (PCA).
 1268

1269 As shown in Figure 10, both the formal language
 1270 templates and Knights-and-Knaves puzzles ex-
 1271 hibit concentrated distributions within relatively
 1272 small regions. In contrast, our generated nat-
 1273 ural language puzzles display a far more dis-
 1274 persed distribution, suggesting that our trans-
 1275 lation framework effectively captures a broader and
 1276 more diverse range of input formulations.
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

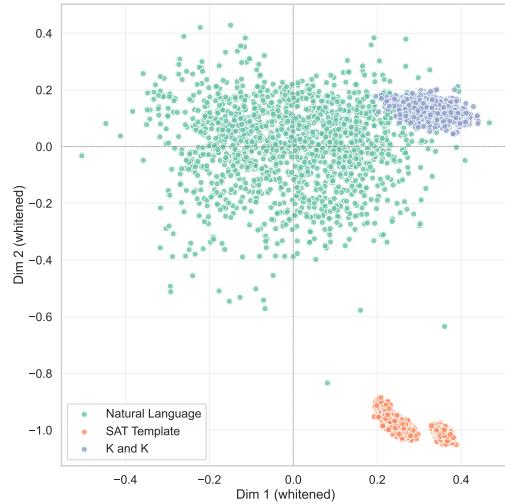


Figure 10: The embedding distribution comparison, reduced to two dimensions using PCA.