Under review as a conference paper at ICLR 2026

LOST IN REAL-WORLD SCENARIOS:
CONCRETIZATION DISRUPTS LLLM LOGICAL REA-
SONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Although large language models (LLMs) have attracted significant attention, re-
cent studies reveal that even minor variations in input formulation can lead to
substantial inconsistencies in reasoning outcomes, underscoring their fragility in
real-world scenarios. To systematically investigate this issue, we propose a con-
cretization framework that automatically translates clean reasoning logic into con-
crete contexts with challenging formulations. In this framework, two translators
are trained via a dual-learning approach. The first converts formal language tem-
plates into natural language puzzles, guided by a difficulty-aware reward that pro-
motes the exploration of harder formulations. The second translates puzzles back
into templates, with isomorphism verification ensuring the consistency of underly-
ing reasoning logic. Applying this framework, we efficiently build paired datasets
of formal language templates and natural language puzzles, and observe a sharp
drop in LLM reasoning performance when moving from templates to puzzles. To
uncover the underlying causes, we conduct an in-depth analysis of how tokens
derived from formal templates and natural language puzzles influence the final
answers. This analysis reveals two primary sources of degradation: dispersed
reasoning attention across non-essential tokens and conflicts introduced by alter-
native formulations. To address these issues, we propose a prompt-based approach
that instructs LLMs to abstract reasoning logic from concrete contexts before at-
tempting direct solutions, and a training-based approach that further strengthens
LLMs’ abstraction ability. Experimental results show that our methods improve
LLM performance on natural language puzzles by up to 56.2%, nearly eliminating
the performance loss induced by concretization.

1 INTRODUCTION

Since the advent of large language models (LLMs), reasoning has consistently been recognized
as one of their most critical capabilities. The rise of large reasoning models has highlighted their
remarkable performance across a wide range of reasoning tasks. However, studies have shown
that variations in input formulation can substantially undermine the reasoning ability of LLMs. This
fragility exposes a lack of robustness and presents significant challenges for adapting their reasoning
performance to complex, real-world scenarios.

To systematically investigate this phenomenon, prior studies focus on identifying pairs of inputs that
differ in surface formulation but preserve underlying reasoning logic. Trivial perturbations have been
shown to negatively impact LLM reasoning performance on established benchmarks, for example,
through rephrasing (Zhou et al.,|2024), introducing typos (Gan et al.|[2024), switching languages (Hu
et al., 2025), extending context (Xu et al.l [2025), or even inserting irrelevant statements such as
“Interesting fact: cats sleep for most of their lives” (Rajeev et al., 2025). However, these methods
are largely heuristic, focusing only on surface-to-surface variations, and lack deeper investigation
into how LLMs model the relationship between surface formulation and underlying reasoning logic.

To address this issue, we propose a concretization framework that automatically converts abstract
reasoning logic into specific contexts while exploring challenging formulations. Specifically, the
translator is trained through a dual-learning approach. The first translator learns to translate a formal

Under review as a conference paper at ICLR 2026

language template, primarily encoding pure reasoning constraints, into a natural language puzzle,
guided by a difficulty-aware reward that encourages exploration of more challenging formulations.
The second translator learns to translate the natural language puzzle back into a formal language
template, with an isomorphism verification applied to guarantee that the reasoning logic remains
consistent with the original formal language template.

Using our concretization framework, we con-

struct paired formal language templates and natu- N
ral language puzzles across three problem types:
SAT problems with only Boolean variables, CSP
problems with Boolean + integer variables, and 3«
CSP problems with Boolean + integer + Abelian- ~ §
group variables (problem definitions see Section
[2.I). Across all settings, we observe a sub- =
stantial decline in LLM reasoning performance

when moving from abstract templates to their o e o) (R Leomin)
concretized formulations. As shown in Figure[I] .

the Qwen3-30B-A3B model (Yang et al| 2025a) Figure 1: The performance comparison of the
suffers a 63.0% accuracy reduction on CSP with QWen3-30B-A3B across formal language tem-

Boolean + integer variables. plates, natural language puzzles, with prompt-
based method, and training-based method.

To mitigate this gap, we propose a prompt-based

strategy that guides LLMs to first infer the under-

lying formal language template from a natural language puzzle before solving it. This method alone
yields a 29.8% accuracy improvement on CSP problems with Boolean + integer variables. Building
on this, we further design a training-based approach that leverages our abstraction—concretization
paired data to strengthen the model’s ability to abstract natural descriptions into structured formal
representations, resulting in an additional 23.9% gain on CSP problems with Boolean + integer +
Abelian-group variables. Notably, the abstraction-enhanced model also generalizes better to out-of-
domain benchmarks, obtaining a 5.0% performance boost on PlanBench (Valmeekam et al., [2023).
These results underscore that LLM reasoning is fundamentally constrained by their limited robust-
ness in mapping concretized descriptions back to the underlying abstract structure.

To further investigate the underlying causes, we conduct a detailed analysis of how input tokens
from formal language templates and natural language puzzles influence LLM predictions. Our find-
ings reveal that LLMs often allocate disproportionate attention to reasoning-irrelevant tokens while
underemphasizing reasoning-critical ones. Moreover, shifts in problem formulation lead to corre-
sponding shifts in reasoning patterns, further exacerbating performance degradation.

To summarize, the main contributions of this paper are:

* We propose an isomorphism-verified, difficulty-aware concretization framework that auto-
matically transform formal language templates into challenging natural language puzzles
while preserving underlying reasoning logic, providing an efficient way to generate both
abstraction-concretization analysis data and abstraction-enhanced training data.

* We conduct experiments on constructed paired abstraction-concretization data, we show
that concretization formulation significantly reduces LLM reasoning performance, and we
propose prompt-based and training-based abstraction-enhanced methods that effectively
mitigate this performance drop.

* We conduct an in-depth analysis of why LLMs fail to model the relationship between sur-
face formulations and underlying reasoning logic, identifying two key causes: dispropor-
tionate attention to reasoning-irrelevant tokens and the difficulty of maintaining consistent
reasoning patterns across diverse formulations.

2 METHODOLOGY

An overview of the construction process for formal language template—natural language puzzle pairs
is shown in Figure 2] The detailed designs of formal language template generation and natural
language puzzle concretization are provided in Subsection and Subsection Furthermore,

Under review as a conference paper at ICLR 2026

Formal Language Template:

solver = Solver()
" A1, A2, B1, B2 = Bools('A1 A2 B1 B2') -
R solver.add(Not(And(Not(A2), Not(B2))))
i solver.add(Not(And(A2, Not(B2))))
Isomorphic or Not Translator 2
; L)
.
v
(Forrnal Language Template: Natural Language Puzzle:

Cor— solver = Solver() 1. Do not suppose that both the A-seal Qualified
‘ A1, A2, B1, B2 = Bools('A1 A2 B1 B2') - ‘ and the B-seal on Door 2 are — I
_Q solver.add(Not(And(Not(A2), Not(B2)))) simultaneously dull.
— solver.add(Not(And(A2, Not(B2)))) 2. Nor may you ever find the A-seal on
Program \ Translator 1 Door 2 glowing while its B-seal is dull. Collection

|
-8

Figure 2: The construction process of a paired formal language template and natural language puzzle
proceeds. First, a rule-based program generates a formal language template and its ground-truth
assignment. This template is then passed to a translator, which converts it into a natural language
puzzle. The puzzle is subsequently back-translated into a formal template by another translator and
presented to an LLM, which produces multiple responses. A natural language puzzle is retained and
collected if it passes isomorphism verification and its pass rate falls below a difficulty threshold.

+

Ground Truth:

Al: False
A2: False
B1: True
B2: True

Answer:

Al: False
A2: Ture
B1: True
B2: True

Subsection introduces our prompt-based and training-based mitigation strategies, which aim to
alleviate the performance degradation of LLMs caused by concretization.

2.1 FORMAL LANGUAGE TEMPLATES CONSTRUCTION

Start from the SAT Problem. To design our formal language template, we begin with the Boolean
satisfiability problem (SAT) as the target task, since it is a canonical benchmark for logical reasoning
and serves as a foundational abstraction for many real-world computational problems. SAT requires
finding an assignment of truth values to variables such that a given Boolean formula is satisfied.
Consider the following formula in conjunctive normal form (CNF) with a 2 x 2 variable arrangement
and four clauses:

F=(-A;1VB1)A(A1V-By) A(A1V By) A (mAy V —Bs).
One satisfying assignment is:

Ay =True, A; =False, B; =True, By = False.

Two SAT instances F' and G over variable sets Var(F') and Var(G) are said to be logically isomor-
phic if there exists a bijection

7 : Var(F) — Var(G)

such that the following three conditions hold. First, 7 preserves literal polarity: 7(—=X) = -7 (X).
Second, 7 preserves clause structure: applying 7 to every literal of every clause in F' produces
exactly the multiset of clauses in G. Third, all Boolean connectives remain unchanged under the
mapping, so the renaming preserves the syntactic form of the CNF formula. Intuitively, the two
formulas encode the same logical structure up to a renaming that treats literals consistently.

Extension to CSP with Boolean and Integer Variables. SAT can be viewed as a special case of
the Constraint Satisfaction Problem (CSP), where all variables are Boolean and all constraints are
logical clauses. We extend our formal language template to a richer CSP setting in which variables
may be of type bool or int, and the task becomes finding an assignment of Boolean and integer
values satisfying all relational, arithmetic, and logical constraints. Consider the CSP instance with

x € {True, False}, ye€{0,1,2}, z¢€{0,1},

Under review as a conference paper at ICLR 2026

and constraints
(x =True =y < 1), (y+2z=2), (mzV(z=1)).

A satisfying assignment is
r="True, y=1, z=1.

Formally, a Boolean—integer CSP instance is a triple I = (V, dom, C), where V is a set of variables,
dom(v) assigns a domain and a type to each variable, and C is a set of constraints built from a fixed
language of logical predicates and arithmetic operations. Two such CSP instances I = (V, dom,C)
and I' = (V' dom’,C’) are isomorphic if there exists a bijection 7 : V — V' satisfying three
requirements. First, variable types are preserved: dom(v) and dom’ (7 (v)) belong to the same sort,
such as bool or int. Second, the mapping commutes with term formation: whenever a term uses
functions such as addition, comparison, or Boolean connectives, the mapped term is obtained sim-
ply by replacing variables according to 7 while leaving all operators unchanged. Third, constraint
structure is preserved: applying 7 to all variables appearing in a constraint of C yields exactly one
constraint in C’, and every constraint of C’ arises in this way. This definition reduces to the SAT
isomorphism when all variables are Boolean and all constraints are clauses.

Extension to CSP with Boolean, Integer, and Abelian Group Variables. We further generalize
our template to CSPs whose variables may belong to Boolean domains (e.g., {True, False}), integer
domains, or Abelian group domains such as Z, or ZF. In this enriched CSP, constraints may involve
group operations, congruence relations, and linear relations over Abelian group structures.

Consider the CSP:
x € {True, False}, y € {0,1,2}, g € Ly,

with constraints:
(x = True = y < 2), g+g=y (mod4), (r =False = g # 1).

A satisfying assignment is:
x =VFalse, y=2, g¢g=3.

The first implication is vacuously true because x = False. The second constraint holds since g+ g =
343 =6 =2 (mod 4). The third holds because « = False and g = 3 # 1.

Formally, such a CSP instance again takes the form I = (V,dom,C), but dom(v) may now be
a Boolean set, an integer domain, or the carrier set of a fixed Abelian group. Two CSP instances
with Boolean, integer, and Abelian group variables are isomorphic if a bijection 7 : V. — V'
satisfies three structural requirements. First, variable sorts and domain structures are preserved: a
Boolean variable maps to a Boolean variable, an integer variable maps to an integer variable, and a
group-valued variable ranging over an Abelian group G maps to another variable whose domain is
the same group GG. Second, the mapping preserves term structure, meaning that group operations,
arithmetic operations, and logical connectives remain unchanged while variables appearing in terms
are renamed via 7. Third, constraint preservation holds exactly as before: each constraint in C
becomes a constraint in C’ after applying 7, and the set C’ consists precisely of such images.

Introducing Abelian group variables significantly enriches the expressive power of the CSP template.
Constraints can now encode group equations, homomorphic structure, and congruence relations, and
the corresponding isomorphisms must preserve not only logical and arithmetic structure but also the
underlying algebraic structure induced by the group domains.

2.2 NATURAL LANGUAGE PUZZLE CONCRETIZATION

Our concretization framework adopts the standard dual learning approach (Xia et al., 2016), which
consists of two training cycles involving two translators. In the first cycle, Translator 1 translates a
formal language template into a natural language puzzle, while Translator 2 translates the resulting
puzzle back into a formal language template. Translator 1 serves as the optimization target in this
cycle. In the second cycle, Translator 2 translates a real-world puzzle into a formal language tem-
plate, and Translator 1 then translates the template back into a natural language puzzle. In this cycle,
Translator 2 is the optimization target. The overall training process is illustrated in Figure

Under review as a conference paper at ICLR 2026

For Translator 1, the input is a constructed formal — —
language template, and the output is a natural lan- - - @
guage puzzle together with variable definitions. Translator2

The reward is derived from two components: (i)
the pass rate of an answer model on the gener- -@-’
ated natural language puzzle, and (ii) the isomor- Translator1

phism decision between the original formal lan- —
guage template and the back-translated template k

produced by Translator 2. For Translator 2, the m-) Formal Language Templat

input is a real-world puzzle, and the output is a Translator2 3
formal language template along with variable def- - @
initions. Its reward combines (i) a format check

on the generated formal language template and Tensert
(ii) the similarity between the original real-world
puzzle and the natural language puzzle generated
by Translator 1.

Figure 3: The training process for the natural
language translator.

Through iterative training, our dual-learning

framework converges toward a state where formal language templates can be automatically trans-
lated into natural language puzzles that are both challenging in formulation and logically consistent
with the original formal representation.

2.3 MITIGATE STRATEGY

To mitigate the reasoning performance gap of LLMs when transitioning from formal language tem-
plates to natural language puzzles, we propose a prompt-based method that encourages the model
to extract the underlying reasoning logic before solving the task. Specifically, the solving model is
first prompted to translate the natural language puzzle into a formal language template, and then to
solve this formal representation in a second step to derive the final answer. To address the tendency
of reasoning models to deviate from instructions, the prompt requires the LLM to explicitly output
the reconstructed formal language template. The full prompt is provided in Appendix

To further strengthen the model’s ability to perform such abstraction, we introduce a complementary
training-based method. Similar to Translator 2, the solving model is trained via reinforcement learn-
ing to translate natural language puzzles back into their corresponding formal language templates.
The model takes a natural language puzzle generated by our concretization framework as input, and
receives a reward based solely on whether its output formal language template is isomorphic to the
original one. This objective encourages the solving model to reliably map surface formulations to
their underlying reasoning logic.

3 EMPIRICAL RESULTS

Using the concretization framework described in Section [2] we efficiently construct paired datasets
of formal language templates and natural language puzzles that preserve consistent reasoning logic
while introducing more challenging surface formulations. In this work, we focus on three problem
types: SAT problems with only Boolean variables, CSP problems with Boolean and integer vari-
ables, and CSP problems with Boolean, integer, and Abelian-group variables. For SAT problems,
we adopt variable-size settings of 3 x 3, 3 x 5, and 5 x 5. For SAT and CSP problems with Boolean
and integer variables, we collect 500 puzzles that satisfy a difficulty threshold defined as a pass rate
below 8/16 rollouts when solved by Qwen3-30B-A3B. For CSP problems involving Boolean, inte-
ger, and Abelian-group variables, we similarly collect 500 puzzles that meet a difficulty threshold
defined using GPT-o0ss-120B, again requiring a pass rate below 8/16 rollouts.

3.1 PERFORMANCE DEGRADATION AFTER CONCRETIZATION

We report the accuracy of state-of-the-art reasoning LLMs on both the original formal language
templates and their corresponding natural language puzzles in Table[I] As shown, nearly all models
achieve high accuracy on the formal templates but experience substantial performance drops after
translation into natural language. The largest gap appears in the SAT problem with 3 x 3 variables

Under review as a conference paper at ICLR 2026

Bool
+ Int + Abel
Model Method 3x3 3x5 5%5

FL NL FL NL FL NL FL NL FL NL

Orig. 97.6 31.6 89.4 29.8 414 232 99.4 36.4 90.6 62.6
Qwen3-30B-A3B Prom. - 65.6 (+34.0) - 60.2 (+30.4) - 29.2 (+6.0) - 66.2 (+29.8) - 77.8 (+15.2)
RL - 87.8 (+56.2 - 84.4 (+54.6) - 53.4 (+30.2) - 80.2 (+43.8) - 83.2(+21.0)

Orig. 85.8 742 62.0 49.2 20.2 13.0 97.8 70.2 84.4 47.8
GPT-o0ss-20B Prom. - 81.0 +6.8) - 59.4 (+102) - 17.8 (+48) - 80.4 (+102) - 54.2 (+6.4)
RL - 86.4 (+122 - 74.2 (+25.0) - 24.2 (+11.2) - 83.8 (+13.0) - 72.8 (+25.0)

Deenseek-R1 Orig. 99.8 73.0 99.0 61.6 92.6 71.2 100 83.8 97.8 63.6
P Prom. - 92.2 (+19.2) - 81.0(+19.4) - 76.4 (+5.2 - 88.4 (+4.6) - 71.8 (+8.2)

Gemini-2.5-Pro Orig. 99.2 80.2 98.8 74.0 86.6 80.2 100 82.2 99.2 66.8
" Prom. - 89.4 (+9.2) - 78.8 (+4.8) - 68.6(-11.6) - 87.4 (452 - 76.0 (+9.2)

GPT-03 Orig. 99.4 97.0 99.8 97.8 99.4 98.8 100 87.0 99.8 72.4
Prom. - 98.0 (+1.0) - 99.6 (+1.%) - 99.0 (+0.2) - 90.4 (+3.4) - 83.6(+112)

Table 1: The accuracy of LLMs on our generated abstraction—concretization paired dataset be-
fore (Orig.), after introducing the intermediate prompt-based step (Prom.), and after abstraction-
enhanced reinforcement learning (RL).

using Qwen3-30B-A3B as the solving model, where accuracy decreases by 66%. Even leading
closed-source models such as Gemini-2.5-Pro (Comanici et al., [2025) and GPT-03 also show no-
table declines of 32.4% and 27.3%, respectively, on CSP problems involving Boolean, integer, and
Abelian-group variables.

Meanwhile, although all LLMs are affected by the natural language formulation introduced through
concretization, their robustness varies across settings. For the SAT problems and the CSP prob-
lems with Boolean and integer variables, where Qwen3-30B-A3B is used to define the difficulty
threshold, GPT-o0ss-20B exhibits noticeably better robustness, with at most a 27.6% performance
drop compared to Qwen3-30B-A3B’s maximum drop of 66%. In contrast, for the CSP problems
involving Boolean, integer, and Abelian-group variables, where the difficulty threshold is defined
by GPT-0ss-120B, Qwen3-30B-A3B demonstrates better robustness, showing a 30% performance
drop compared to GPT-0ss-20B’s 36.6%.

3.2 PERFORMANCE MITIGATED AFTER ABSTRACTION

As shown in Table|l} introducing the prompt-based reasoning-logic abstraction step leads to clear
performance improvements for most LLMs across all three types of puzzles. Notably, Qwen3-
30B-A3B achieves a 34% accuracy increase on the SAT problem with 3 x 3 variables, and even
GPT-03 improves by 11.2% on the CSP problems involving Boolean, integer, and Abelian-group
variables. Furthermore, when the reasoning-logic abstraction ability is strengthened through our
training-based approach, the performance of Qwen3-30B-A3B and GPT-o0ss-20B improves even
further, approaching their respective performance levels on the original formal language templates.
Remarkably, Qwen3-30B-A3B on the SAT problem with 3 x 3 variables, as well as GPT-0ss-20B
across all SAT variable settings, even surpass their accuracy on the formal templates. This indicates
that abstraction-enhanced training can reduce the dispersion of LLM reasoning across symbolic and
natural-language formulations, enabling models to reason more consistently and effectively.

Another outlier is Gemini-2.5-Pro, which exhibits an 11.6% decrease in accuracy on the SAT prob-
lem with 5 x 5 variables when using the prompt-based method. A closer inspection of its outputs
shows that Gemini-2.5-Pro often produces the final answer immediately after the translation step,
neglecting the deeper symbolic reasoning required. This suggests that effective reasoning-logic
abstraction must be paired with the ability to sustain coherent reasoning over the longer output se-
quences introduced by this process.

3.3 PERFORMANCE ENHANCEMENT ON OQUT-OF-DOMAIN BENCHMARKS

We further evaluate the abstraction-enhanced model on several publicly available benchmarks from
prior work (Gan et al.,|2024; Rajeev et al.l |2025; |Valmeekam et al., 2023 [Zheng et al.| 2024). For
PlanBench, we focus specifically on the plan-generation task. As shown in Table [2] abstraction-

Under review as a conference paper at ICLR 2026

Model Method Typographical CatAttack Natural-Plan Planbench
Original Edited Original Edited Calendar Meeting Trip
Orig. 90.47 86.87 96.50 94.50 84.80 12.30 3.75 68.20
Qwen3-30B-A3B Prom. 90.75¢028) 87.00+0.13) 96.16-034) 9583 +133) 85.20 +040) 12.80+0.05) 4.44 069 70.2 (+2.00
RL 91.18 071y 87.50(+0.63) 96.50 +0.00) 96.00 +1.50) 86.20 (+1.40) 14.10+1.80) 4.94 1190 73.20 +5.00)
Orig. 79.18 70.81 63.00 61.00 83.90 4.00 0.00 47.40
GPT-o0ss-20B Prom. 79.81 063 73.32(:251) 66.67 +367) 65.16 +4.16) 84.80(+090) 5.8 +180) 0.00+000) 43.20-4.20)
RL 8241323 76.11¢53) 70.60+760) 70.00 +0.00) 85.70+1.80) 9.60 (+5.60) 0.06 (+0.06) 55.60 (+8.20)

Table 2: The reasoning performance of Qwen3-30B-A3B and GPT-o0ss-20B on public benchmarks,
before (Orig.), and after prompt-based (Prom.), and training-based (RL) abstraction-enhancement.

enhanced training substantially improves LLM robustness to perturbations such as injected typos
and irrelevant statements. Moreover, both models also achieve higher performance on real-world
planning tasks, with the abstraction-enhanced GPT-0ss-20B showing an 8.2% improvement on Plan-
Bench. These results highlight concretization-based training as an effective strategy for enhancing
the robustness and real-world applicability of LLM reasoning.

4 ANALYSIS

4.1 INPUT FORMULATION LEADS TO MISUNDERSTANDING

Curious about the types of errors introduced by natural language, we analyze the responses of the
Qwen3-30B-A3B model on the first 100 formal language templates and natural language puzzles
for each size. The errors made by the model are categorized into three types:

* Constraint Misunderstandings: The model misinterprets the natural language description,
leading to incorrect constraints. For example, in one puzzle about Adam, the definition
states that both B1 and B4 represent “the battery is fully charged.” However, during rea-
soning the model assigned them different truth values, thereby generating a result directly
contradictory to the definition.

* Solving Failure: The model generates assignments that conflict with the given constraints.
For instance, in a narrative puzzle set at night, the constraints required that C'3 and C1
could not both be false. Yet, in its final solution, the model set C'3 = False and C'1 = False,
resulting in a direct conflict with the constraint.

* Formatting Errors: The model fails to follow the required output format.

Figure 4| illustrates the increase in errors made

by the Qwen3-30B-A3B model on natural lan- .
guage puzzles compared to formal language puz-
zles. As the number of variables in the puz-
zles grows, we observe that the frequency of ..
Constraint Misunderstandings rises only slightly,
whereas the frequency of Solving Failures in-
creases more substantially. This pattern suggests
that as the difficulty of symbolic reasoning inten-

sifies, the model’s reasoning becomes less robust. QT —
Consequently, even minor perturbations in natu-
ral language, though not genuine misunderstand-
ings for LLMs, are more likely to disrupt their
reasoning process.

m

Figure 4: The increased error counts of the
Qwen3-30B-A3B (puzzles minus templates).

4.2 REASONING ATTENTION DISPERSED ACROSS NON-REASONING TOKENS

To investigate why different prompt formulations yield divergent predictions, we measure the causal
sensitivity of each input token using Grad x Input influence scores on the Qwen3-30B-A3B model.
The objective function J is defined as the total log-likelihood of the gold answer sequence, computed
by summing the negative cross-entropy loss across the answer span. Gradients are enabled only for

Under review as a conference paper at ICLR 2026

o8| == Content Word = Content Word

| — HHW L1

Score
Score

L —

determine

]

be
the

.,.mmmo._mmk 523858

ort
in
bel
we
ve
Answer
assistant
couldn
Commit

a3
5 2

(a) Formal Language Template (b) Natural Language Puzzle (High Pass Rate)

0
m [Content Word

[T

(c) Natural Language Puzzle (Low Pass Rate) (d) Natural Language Puzzle (Low Pass Rate) (RL)

/™ B Content Word
o0 =1 Function Word

(|

Answer

|

false
Content

|

2

It

Score
3
Score
Not
[—
L
And

L1

_m3=w
=

| €5 %

not

o
£

First
true
code I

answer

Contel
Answ
assistas
determine
assistant
Gamma

5
g3
8

4

Figure 5: Top 30 tokens with the highest Grad x Input influence scores.

the prompt embeddings, and we backpropagate through J to estimate token-level contributions. For
each prompt token i, the Grad x Input influence score is defined as

D

oJ
saliency, = — €i.d, (D
* 0eiq
where e; = (€;1,...,€;p) € € RP denotes the embeddmg vector of token 7, a— is the gradient of

J with respect to the d-th component of e;, and D is the embedding dimension. Finally, we apply
L1 normalization across tokens to ensure comparability.

Figure[S|presents the top 30 tokens with the highest Grad x Input influence scores. As shown, in both
the formal language template and the high-pass-rate natural language puzzle, the most influential
tokens are typically content words, such as negation terms (e.g., not, couldn’t), variable names
(e.g., B3), or semantically meaningful nouns (e.g., boundaries). By contrast, in the low-pass-rate
natural language puzzle, the tokens with the highest influence scores are often function words, such
as template words (e.g., Content, is) or even symbols (e.g., “—"). Meanwhile, after training for
abstraction ability, we observe that in the low-pass-rate natural language puzzle, the most influential
tokens for the Qwen3-30B-A3B model shift from function words to content words.

This phenomenon suggests that some input formulations may draw the model’s attention toward
reasoning-irrelevant tokens, reducing its focus on logical structure. We hypothesize that this effect
arises from the distribution of the training data: certain formulations appear more often in non-
reasoning contexts, which leads LLMs to rely less on reasoning logic when processing them.

4.3 FORMULATION CONFLICT WEAKENS REASONING

Besides Grad x Input influence scores, we also calculate the token-level perplexity of each input
token using the Qwen3-30B-A3B model. For a token z; in the sequence, its perplexity score is
defined as:

PPL; = exp(— log p(z; | x<i)), 2)
where p(z; | x<;) is the conditional probability of token x; given its preceding context. A lower
PPL; indicates that the model is more confident in predicting the token z;.

We observe that, in some cases, natural language puzzles with low pass rates exhibit two distinct
types of formulations, often combining natural language expressions with symbolic expressions.

Under review as a conference paper at ICLR 2026

37 —— PPLScore
= Symbolic Token Infiuence

—— PPL Score

[Symbolic Token Influence:
[0 Natural Token Influence

Y
Perplexity

Perplexity

(a) Formal Language Template (b) Natural Language Puzzle (High Pass Rate)

—— PPL Score
BB Symbolic Token Influence
[0 Natural Token Influence

— PPLScore
= Symbolic Token Influence
w0~ [Natural Token Influence

Perplexity
prohibited

(c) Natural Language Puzzle (Low Pass Rate) (d) Natural Language Puzzle (Low Pass Rate) (RL)

Figure 6: Token-level perplexity and Grad x Input influence scores comparisons.

The separator token between these formulations tends to show an exceptionally high perplexity
score. Moreover, the tokens immediately before and after the separator display consecutively pos-
itive influence scores. In contrast, formal language templates and high-pass-rate natural language
puzzles generally employ a unified formulation, where tokens with high perplexity are typically scat-
tered throughout the sentence rather than concentrated at a boundary. After training for abstraction
ability, we further observe that in low-pass-rate natural language puzzles, although the separator to-
ken continues to exhibit an exceptionally high perplexity score, the Qwen3-30B-A3B model shows
increased influence from symbolic tokens and decreased influence from natural tokens. Representa-
tive examples of these observations are illustrated in Figure 6]

This phenomenon suggests that the reasoning patterns of LLMs may shift between natural language
reasoning and symbolic reasoning, leading to instability when confronted with a mixed formulation.
By enhancing the abstraction ability of reasoning logic, we improve the alignment between natural
language and symbolic reasoning, effectively unifying the reasoning pattern of the Qwen3-30B-A3B
model, where, in our case, symbolic reasoning prevails. To some extent, this also helps explain why,
after strengthening abstraction ability, LLMs can achieve better performance on natural language
puzzles than on formal language templates.

4.4 MAY NOT FIT WELL WITH HUMAN INTUITION

To evaluate whether the challenging formula- Random (50%)
tions align with human intuition, we design a ‘
set of pairwise-selection questions. Each ques-
tion includes three low-pass-rate examples and
one puzzle pair, where the pair consists of a
high-pass-rate natural language puzzle and a low-
pass-rate natural language puzzle. From each | - - - ~ -
puzzle size, we randomly select 10 such pair- Accuracy

wise questions, resulting in a 30-question sur-

vey. We construct 9 surveys in total and admin- Figure 7: The accuracy of human volunteers,
ister them to three human volunteers, three non- non-reasoning LLMs, and reasoning LLMs in
reasoning models, GPT—4cﬂ Deepseek-V3 (Liu distinguishing the more challenging puzzle.

Reasoning LLMs
Non-reasoning LLMs
Human

"https://openai.com/index/gpt-4o-system-card/

Under review as a conference paper at ICLR 2026

et al.| 2024)), and Gemini-2.5-Flash (Comanici et al 2025)), and three reasoning models, includ-
ing GPT-03, Deepseek-R1, and Gemini-2.5-Pro. Participants are asked to identify which puzzle in
each pair is more likely to be unsolvable by the Qwen3-30B-A3B model, given the examples pro-
vided. To mitigate position bias in the LLMs, each model answers every question twice, with the
puzzle positions swapped.

Figure [/ reports the average accuracy of human volunteers, non-reasoning models, and reasoning
models. Human volunteers struggle to distinguish natural language puzzles that are challenging for
the Qwen3-30B-A3B model. Both non-reasoning and reasoning models achieve higher accuracy,
though still below 60%. These results indicate that while some formulations perceived as intuitively
difficult by humans are also challenging for LLMs, many of the puzzles that hinder LLMs do not
align with human intuition, making them difficult to identify through heuristic approaches.

5 RELATED WORK

5.1 FORMULATION SENSITIVITY OF LLMS

Since the advent of LLMs, prior studies have shown extreme sensitivity of LLM to input formu-
lation. For instance, |[Errica et al.| (2025) and He et al.| (2024) demonstrate that input formatting
alters results, while |/Ackerman et al.|(2024) and |Qiang et al.| (2024) highlight the impact of synony-
mous paraphrases. Similarly, |Gan et al. (2024) show that replacing critical tokens with predefined
typos from a common misspelling dictionary can alter outcomes. [Zhou et al.| (2024) further demon-
strate that paraphrasing questions through prompt-based methods also affects performance. In ad-
dition, both Zhu et al.| (2024) and Hu et al.| (2025) show that simply changing the input language
can influence results, while Rajeev et al.| (2025) and |Yang et al.| (2025b) demonstrate that intro-
ducing irrelevant information can similarly degrade performance. These work shows that heuristic
modifications to prompts often hurt LLM reasoning on benchmarks. However, these studies typ-
ically assume that the underlying reasoning process stays the same, since the changes are defined
as “meaning-preserving.” Critically, this assumption is rarely supported by rigorous verification of
whether input—output reasoning consistency is actually maintained after such perturbations.

To address this gap, [Fu et al.| (2024) propose training a smaller model to align input formulations
with LLM preferences, whileZhao et al.|(2024) enhance robustness by augmenting supervised fine-
tuning data with perturbed variants to enforce output consistency. However, both approaches operate
primarily at the surface-text level, without explicitly teaching LLMs to model the reasoning logic
that should remain invariant across semantically equivalent formulations.

5.2 TRANSLATION FROM FORMAL LANGUAGE TO NATURAL LANGUAGE

As high-level abstractions of real-world tasks, much prior work has focused on instantiating formal
language skeletons into natural language puzzles that fit practical scenarios. For example, Kazemi
et al.[(2023) propose BoardgameQA, which maps board game rules into natural language QA, em-
phasizing contradictory information and preference reasoning. [Lin et al.|(2025]) formalize logic grid
and zebra puzzles as CSPs. |Wei et al.| (2025) generate narrative logic puzzles automatically from
SAT formulas. [Sinha et al.| (2019) transform kinship rules into short stories with associated QA.
While these enrich benchmarks, they rely heavily on human quality control and focus on reasoning
consistency, overlooking semantic difficulty. As a result, benchmarks emphasize reasoning steps,
whereas real-world challenges often lie in mapping complex contexts into abstract logic.

6 CONCLUSION

In this work, we propose a translation framework that automatically converts inputs into challenging
formulations while preserving consistency in the underlying reasoning logic. We find that shifting
from formal language templates to natural language puzzles leads to a sharp decline in LLM reason-
ing performance. To address this, we introduce a prompt-based method and a training-based method
that guide LLMs to abstract the reasoning logic from concrete question contexts before solving them,
thereby nearly compensating for the performance loss caused by variations in input formulation.

10

Under review as a conference paper at ICLR 2026

THE USE OF LLMS

In this paper, LLMs were utilized for polishing the manuscript’s prose and for supporting the for-
matting of tables and figures.

REFERENCES

Samuel Ackerman, Ella Rabinovich, Eitan Farchi, and Ateret Anaby Tavor. A novel metric for
measuring the robustness of large language models in non-adversarial scenarios. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pp. 2794-2802, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.158. URL
https://aclanthology.org/2024.findings—emnlp.158/l

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Federico Errica, Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. What did I do wrong?
quantifying llms’ sensitivity and consistency to prompt engineering. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Ameri-
cas Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4,
2025, pp. 1543—-1558. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.
NAACL-LONG.73. URL https://doi.org/10.18653/v1/2025.naacl-1long.73.

Junbo Fu, Guoshuai Zhao, Yimin Deng, Yunqi Mi, and Xueming Qian. Learning to paraphrase
for alignment with LLM preference. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida,
USA, November 12-16, 2024, pp. 2394-2407. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024.FINDINGS-EMNLP.134. URL https://doi.org/10.18653/
v1/2024.findings—emnlp.134l

Esther Gan, Yiran Zhao, Liying Cheng, Yancan Mao, Anirudh Goyal, Kenji Kawaguchi, Min-Yen
Kan, and Michael Shieh. Reasoning robustness of llms to adversarial typographical errors. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pp. 10449-10459. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024. EMNLP-MAIN.584. URL https://doi.org/10.18653/v1/2024.
emnlp-main.584.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
Does prompt formatting have any impact on llm performance?, 2024. URL https://arxiv.
org/abs/2411.10541.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYfO.

Peng Hu, Sizhe Liu, Changjiang Gao, Xin Huang, Xue Han, Junlan Feng, Chao Deng, and Shujian
Huang. Large language models are cross-lingual knowledge-free reasoners. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Amer-
icas Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4,
2025, pp. 1525-1542. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.
NAACL-LONG.72. URL https://doi.org/10.18653/v1/2025.naacl—-long.72.

11

https://aclanthology.org/2024.findings-emnlp.158/
https://doi.org/10.18653/v1/2025.naacl-long.73
https://doi.org/10.18653/v1/2024.findings-emnlp.134
https://doi.org/10.18653/v1/2024.findings-emnlp.134
https://doi.org/10.18653/v1/2024.emnlp-main.584
https://doi.org/10.18653/v1/2024.emnlp-main.584
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2025.naacl-long.72

Under review as a conference paper at ICLR 2026

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. Boardgameqa: A dataset for natural language reasoning with contradictory in-
formation. Advances in Neural Information Processing Systems, 36:39052-39074, 2023.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of Ilms for logical reasoning, 2025.
URL https://arxiv.org/abs/2502.01100.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY 7.

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky,
and Aram Galstyan. Prompt perturbation consistency learning for robust language models.
In Yvette Graham and Matthew Purver (eds.), Findings of the Association for Computational
Linguistics: EACL 2024, St. Julian’s, Malta, March 17-22, 2024, pp. 1357-1370. Associa-
tion for Computational Linguistics, 2024. URL https://aclanthology.org/2024.
findings—-eacl.91.

Meghana Rajeev, Rajkumar Ramamurthy, Prapti Trivedi, Vikas Yadav, Oluwanifemi Bamgbose,
Sathwik Tejaswi Madhusudan, James Zou, and Nazneen Rajani. Cats confuse reasoning llm:
Query agnostic adversarial triggers for reasoning models, 2025. URL https://arxiv.org/
abs/2503.01781.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In Pro-
ceedings of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotter-
dam, The Netherlands, 30 March 2025 - 3 April 2025, pp. 1279-1297. ACM, 2025. doi:
10.1145/3689031.3696075. URL https://doi.org/10.1145/3689031.3696075.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR:
A diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vin-
cent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 4505—
4514. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1458. URL
https://doi.org/10.18653/v1/D19-1458.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning

and reasoning about change. Advances in Neural Information Processing Systems, 36:38975—
38987, 2023.

Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo,
Ke Wang, and Alex Aiken. Satbench: Benchmarking llms’ logical reasoning via automated puzzle
generation from sat formulas, 2025. URL https://arxiv.org/abs/2505.14615.

Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual
learning for machine translation, 2016. URL https://arxiv.org/abs/1611.00179.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. 2024.
URLhttps://arxiv.org/abs/2410.23123.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can llms solve
longer math word problems better? In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=C9ju8QQSCvl.

12

https://arxiv.org/abs/2502.01100
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2024.findings-eacl.91
https://aclanthology.org/2024.findings-eacl.91
https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2503.01781
https://doi.org/10.1145/3689031.3696075
https://doi.org/10.18653/v1/D19-1458
https://arxiv.org/abs/2505.14615
https://arxiv.org/abs/1611.00179
https://arxiv.org/abs/2410.23123
https://openreview.net/forum?id=C9ju8QQSCv

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Minglai Yang, Ethan Huang, Liang Zhang, Mihai Surdeanu, William Wang, and Liangming Pan.
How is llm reasoning distracted by irrelevant context? an analysis using a controlled benchmark,
2025b. URL https://arxiv.org/abs/2505.18761.

Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Shuaiqiang Wang, Chong Meng, Zhicong
Cheng, Zhaochun Ren, and Dawei Yin. Improving the robustness of large language models via
consistency alignment, 2024. URL https://arxiv.org/abs/2403.14221.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking 1lms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

Yue Zhou, Yada Zhu, Diego Antognini, Yoon Kim, and Yang Zhang. Paraphrase and solve: Ex-
ploring and exploiting the impact of surface form on mathematical reasoning in large language
models. In Kevin Duh, Helena Gémez-Adorno, and Steven Bethard (eds.), Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mex-
ico, June 16-21, 2024, pp. 2793-2804. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.NAACL-LONG.153. URL https://doi.org/10.18653/v1/2024.
naacl-long.153.

Wenhao Zhu, Shujian Huang, Fei Yuan, Shuaijie She, Jiajun Chen, and Alexandra Birch. Question
translation training for better multilingual reasoning. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024, pp. 8411-8423. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024 FINDINGS-ACL.498. URL https://doi.org/
10.18653/v1/2024.findings—acl.498.

13

https://arxiv.org/abs/2505.18761
https://arxiv.org/abs/2403.14221
https://doi.org/10.18653/v1/2024.naacl-long.153
https://doi.org/10.18653/v1/2024.naacl-long.153
https://doi.org/10.18653/v1/2024.findings-acl.498
https://doi.org/10.18653/v1/2024.findings-acl.498

Under review as a conference paper at ICLR 2026

A ALGORITHMS

Algorithm 1 Generate SAT Template

Input: rows M, cols N

Output: Set Constraints such that the SAT instance has a unique model

1: Initialize variables: Vars < {A1, Aa, ..., Apxn}
2: Constraints + ()
3: Initialize incremental SAT solver S

4: S.PUSH()
5. loop
6: if S.CHECK() = UNSAT then
7: S.Pop()
8: Remove last constraint last_c from Constraints
9: model + S.MODEL()
10: found «+ false
11: for all distinct pairs (v;, v;) in Vars do
12: c_cand <+ —(v; = model[v;] A v; = model[v;])
13: S.PusH(); S.ADD(c-cand)
14: if S.CHECK() = SAT then
15: found < true
16: model <— S.MODEL()
17: Add c_cand to Constraints
18: break the for-loop
19: else
20: S.Pop()
21: end if
22: end for
23: if not found then
24: return Constraints
25: end if
26: else
27: model <— S.MODEL()
28: Randomly pick distinct vy, v2 € Vars
29: ¢ + —(v1 = modellv1] A va = model[vs])
30: S.ADD(c); Constraints += ¢
31: endif
32: end loop

// empty constraint stack
/I level-0 frame

// remove last constraint

/I solver is SAT again

// new model

// discard c_cand

// unique model achieved

// stay in same frame

Algorithm 2 SAT Isomorphic

Input: src_code, tgt_code

Output: True if two SAT templates are isomorphic, False otherwise

NSge ¢— New namespace with Z3 pre-imported
Execute src_code in nsg,

Agre < list of solverg..ASSERTIONS()
NS — new namespace with Z3 pre-imported
Execute tgt_code in nsy,

Ay < list of solvery. ASSERTIONS()
Cyge + { _canonical(c) | ¢ € Age }
Cigt < { —canonical(c) | ¢ € A }
return C. = Cig

TR IUNRERN

—_—

solverg, last v in nsg..VALUES() where v is a Z3 solver

solverg < last v in nsy. VALUES() where v is a Z3 solver

/I NNF + simplify + sort

14

Under review as a conference paper at ICLR 2026

Algorithm 3 Generate CSP Template with Integer and Boolean Variables

Input: #integer vars M, #boolean vars N, integer domain D = [din, dmax]
Output: Constraints s.t. the CSP has a unique model
1: IntVars = {x1,...,xp}, withz; € D; BoolVars = {by,...,by}
2: Vars + IntVars U BoolVars, Constraints < ()
3: Initialize incremental solver S; add S.ADD(x; € D) for all z;; S.PUSH()
4: loop

5: if S.CHECK() = UNSAT then
6: S.POP(); remove last constraint [ast_c from Constraints
7: model < S.MODEL(); found <+ false
8: for all distinct (v;,v;) € Vars do
9: Ceand — —(v; = model[v;] A v; = model[v;])
10: S.PUSH(); S.ADD(Ccand)
11: if S.CHECK() = SAT then
12: found < true; add ccanq to Constraints; break
13: else
14: S.Pop()
15: end if
16: end for
17: if not found then
18: return Constraints /I current model is unique
19: end if
20: else
21: model <— S.MODEL()
22: Randomly pick distinct vy, vy € Vars
23: ¢ < =(v1 = modellv1] A va = model[vs])
24: S.ApD(c); Constraints += c
25: endif
26: end loop

Algorithm 4 CSP Isomorphic (Integer + Boolean)

Input: src_code, tgt_code

Output: True if two CSP templates (with Int & Bool vars) are isomorphic, False other-
wise

NSge < New namespace with Z3 pre-imported

Execute src_code in nsg.

solverg, < last v in nsg.. VALUES() where v is a Z3 solver

Age + list of solverg,..ASSERTIONS()

NSt <— new namespace with Z3 pre-imported

Execute tgt_code in nsiy

solverg < last v in NSy VALUES() where v is a Z3 solver

Agge + list of solvery. ASSERTIONS()

Cye <+ { —canonical_csp(c) | ¢ € Agc } // normalize Bool + Int formula: NNF, arithmetic
simplification, sorted arguments, etc.

10: Cig { -canonical_csp(c) | ¢ € A }

11: return Cy = Cig

—_

WR AN HELD

15

Under review as a conference paper at ICLR 2026

Algorithm 5 Generate CSP Template with Boolean, Integer, and Abelian-Group Variables

Input: #integer vars M;., #boolean vars My, #group vars Mg,
modulus range [Mmin, Mmax|, constraint range [minC, max(C]

Output: Template = (IntVars, BoolVars, GrpVars, Mmin, Mmax, Constraints, Model)
s.t. the CSP has a unique model

1. IntVars < {x1,...,2n,,), BoolVars < {b1,...,baey}> GrpVars < {g1,...,9m,,}

2: T < RANDOMINT(minC, maxC)

3: repeat

4: S < new SMT solver; introduce MOD with my,in < MOD < mpax

Add 0 < g < MOD for all g € GrpVars (and optional bounds for IntVars)

Sample hidden model h: A(MOD) € [Mmin, Mmax), R(g) € {0,...,h(MOD) — 1}, h(z) €

Z, h(b) € {true, false}

7. Constraints < ()

8: while | Constraints| < T do

9: Randomly pick a generator type from {Int, Bool, Mixed, Group}

0: Using h construct a candidate constraint cg,ng of the chosen type (e.g. linear Int, CNF-style
Bool, If(-), or (¢; + g; +...) = ¢ (mod MOD))

AN

11: Encode ccung into S (group constraints via = with an auxiliary multiple of MOD)
12: Temporarily add c¢ang to S and check satisfiability

13: if S.CHECK() = SAT then

14: Keep ccang in S and append to Constraints

15: else

16: Remove cganq from S

17: end if

18: end while

19: if S.CHECK() # SAT then

20: continue /I discard and restart
21: endif

22: m « S.MODEL(); extract Model on all Int/ Bool / group vars and MOD

23: Build blocking clause

B \/ v # Model(v) V MOD # Model(MOD)

v€ IntVarsUBoolVarsUGrp Vars

24: S.PUSH(); S.ADD(f); r + S.CHECK(); S.Pop()
25: until r = UNSAT /I no second model: solution is unique
26: return (IntVars, BoolVars, GrpVars, Mumin, Mmax, Constraints, Model)

Algorithm 6 CSP Isomorphic (Boolean, Integer, and Abelian-Group Variables)

Input: src_code, tgt_code
Output: True if two CSP templates are isomorphic, False otherwise

NSge < New namespace with Z3 pre-imported

Execute src_code in nsg.

solverg, < last v in nsg.. VALUES() where v is a Z3 solver

Age + list of solverg,..ASSERTIONS()

NSt <— new namespace with Z3 pre-imported

Execute tgt_code in nsiy

solverg < last v in NSy VALUES() where v is a Z3 solver

Agge < list of solvery;. ASSERTIONS()

// Canonicalize Boolean, Integer and Abelian-group (mod-MOD) constraints

PRI R

0

10: Cye < { _canonical _abelian_csp(c) | ¢ € Age }
11: Cig + { —canonical_abelian_csp(c) | ¢ € A }
12: return Cy = Cig

16

Under review as a conference paper at ICLR 2026

B PROMPT

Formal Language Template Prompt

Code:

from z3 import *

solver = Solver()

Al, A2, A3, B1, B2, B3, C1, C2, C3 = Bools("Al A2 A3 B1 B2 B3 C1 C2 C3’)
solver.add(Not(And(Not(A1), Not(A2))))

solver.add(Not(And(A1, B2)))
solver.add(Not(And(A1, Not(A3))))

Determine the truth value (True or False) for each variable defined in the given Code.
Respond with your final answer using the label Final Answer”. Format each line as: [Vari-
able name]: [True/False]”.

Example:
Final Answer:
Al: True
B2: False

\ J

Natural Language Puzzle Prompt

Content:

In the once-thriving Kingdom of the Mages, the great dragons were both guardians andiphers
of ancient mystery. Among these dragons was one known as Ember, who guarded the last
remnants of the royal lineage and the treasures that lay beneath the crumbling towers of the
ancient castle. For centuries, Ember had ...

Ember, with her uncanny ability to discern the true intentions of those who dared to challenge
her, began to probe Arin’s resolve. Their encounter ...

Here are the constraints that governed his plan:

The First Challenge: Ember’s gaze locked onto Arin’s, her emerald eyes ...

The Ninth Challenge: Ember’s voice took on a tone of finality as she delivered ...
Ember’s words hung in the air, a testament to the intricate web of conditions that bound
Arin’s quest. The warrior knew that his success depended not only on his own courage but
also on the willingness of others to support his cause. As he prepared to face the dragon, he
understood that his journey was not just one of sword and fire but of logic, resolve, and the
ability to navigate a labyrinth of interdependent choices.

Definitions:
Al: Arin must slay the dragon to achieve his goal.
A2: Arin must attain the throne to fulfill his purpose.

C2: The nobles must not oppose Arin for his rule to be secure.
C3: The people must know peace for Arin’s quest to be truly successful.

Based on the Content and Definitions, determine the truth value (True or False) for each
variable mentioned.

Respond with your final answer using the label “Final Answer”. Format each line as: [Vari-
able name]: [True/False]”. Each variable name appears at the start of its corresponding
definition in the Definitions.

Example:
Final Answer:
Al: True
B2: False

17

Under review as a conference paper at ICLR 2026

Natural Language Puzzle Prompt with Back Translation

Content:

Adam sat on the cold mountainside, lying on the soft peat, a thin reed sticking into his back.
The rain pelted him ...

Here are the constraints that governed his plan:

Either Adam remembered to pack his fireproof container or he remembered to bring his
emergency flares, both could not be forgotten at the same time.

If Adam didn’t remember to pack his fireproof container, then the encryption key wasn’t
secure.

Definitions:
Al: Adam remembered to pack his fireproof container.

65: The final encryption key was in place.

Based on the Content and Definitions, determine the truth value (True or False) for each vari-
able mentioned. First, Convert the Content into Z3 code. Each constraint should represent a
forbidden combination of assignments for two variables. Then, Solve the Z3 code to obtain
the final truth values.

Respond with the translated Z3 code, labeled as “Final Z3 Code:” and provide the final
answers using the label “Final Answer:”. Format each line in final answer as: ”[Variable
name]: [True/False]”. Each variable name appears at the start of its corresponding definition
in the Definitions.

Example:

Final Z3 Code:

from z3 import *

solver = Solver()

Al, A2, A3, B1, B2, B3 = BoolsCAl A2 A3 Bl B2 B3")
solver.add(Not(And(Not(A2), Not(B1))))

solver.add(Not(And(Not(A1), B2)))

Final Answer:
Al: False

B3: True

Catattck Prompt with Abstraction-enhanced Instruction

Question:
What is the length of the segment of the number line whose endpoints satisfy |z — v/27| = 5?

First, convert the Question into an explicit mathematical calculation. Then, solve this calcu-
lation step by step to obtain the final answer.

Respond with the mathematical calculation labeled as ”Calculation: ”, and provide the final
answers using the label “Final Answer:”.

Example:
Calculation:
V2516
V25 — V16
Final Answer:
3

18

Under review as a conference paper at ICLR 2026

PlanBench Prompt with Abstraction-enhanced Instruction

Question:

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
actions I can do 1) Pick up a block 2) Unstack a block from on top of another block 3) Put
down a block 4) Stack a block on top of another block

I have the following restrictions on my actions:

1. I can only pick up or unstack one block at a time.

2. I can only pick up or unstack a block if my hand is empty.

10. Once I put down or stack a block, my hand becomes empty.

11. Once you stack a block on top of a second block, the second block is no longer clear.
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand
is empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.

My goal is to have that the orange block is on top of the red block.

First, convert the question into a constraint solving problem. Then, solve the csp problem to
obtain the final answer.

Respond with the csp problem with label: * Abstract CSP Problem:” and conclude your plan
with label: "My Plan:’, and then list each action on a separate line.

Example:

Abstract CSP Problem:

Objects: R, B,Y, O are blocks; T is the table.

Fluents: On(x,y, s), Holding(x,s), Clear(x,s), HandEmpty(s).
Actions:

Pickup(z), Putdown(z), Unstack(x,y), Stack(zx,y).

do(a, s) is the successor situation.

Definitions:

HandEmpty(s) <> —3b Holding(b, s).

Clear(z, s) +» ~Holding(x, s) A =3b On(b, x, s).

Preconditions:

Poss(Pickup(z), s) <> Clear(x,s) A On(z,T,s) N HandEmpty(s).
Poss(Putdown(x), s) <> Holding(x, s).

Poss(Unstack(x,y), s) < Clear(x, s) A On(z,y,s) A HandEmpty(s).
Poss(Stack(x,y), s) <» Holding(z, s) A Clear(y,).

Successor state axioms:

On(x,y,do(a, s)) +» (a = Putdown(x) Ay =T)
V (a = Stack(x,y))
V (On(z,y, s) A a # Pickup(z) A a # Putdown(z)
A a # Unstack(z,-) A a # Stack(z,-)).

Holding(z,do(a, s)) + (a = Pickup(z) V a = Unstack(z,-))
V (Holding(z, s) A a # Putdown(z) A a # Stack(z, -)).

Initial state Sg:

On(Ba Ta 50)7 On(oa Tv SO)? O’I’L(R7 B7 SO)v On(yv 07 SO)v Hcdempty(So)
Goal:

ds. On(O, R, s).

My Plan:

unstack the blue block from on top of the orange block
put down the blue block

pick up the orange block

stack the orange block on top of the blue block

19

Under review as a conference paper at ICLR 2026

Translation Formal Language Template to Natural Language Puzzle

Code:

from z3 import *

solver = Solver()

Al, A2, A3, B1, B2, B3, C1, C2, C3 = Bools(CAl A2 A3 Bl B2 B3 C1 C2C3’)
solver.add(Not(And(Not(A1), Not(A2))))

solver.add(Not(And(A1, Not(A3))))

Background:
So many times have I walked on ruins, the remainings of places that I loved and got used to..
At first I was scared, each time I could feel my city, my current generation collapse ...

Integrate all information from the Z3 code into the Background to generate a challenging
natural language content. Do not refer to or quote the code directly, and do not use symbolic
identifiers (e.g., "A1”, ”’C5”) in the narrative.

Ensure that each constraint encoded in the Z3 code is explicitly represented in the final
version of the natural language content, each constraint should be clearly reflected one by
one, while the final solution must remain undisclosed.

After that, provide natural language definitions for each variable used in the code. Each line
formatted as: ’[Variable name]: [Definition in the natural language content]”.

Conclude your response with following format:
Natual Language Content:
[content]

Difinitions:
[definitions]

& J

Translation Natural Language Puzzle to Formal Language Template

Content:

The story of ”The Really Bad Decision” is a cautionary tale of hubris, miscommunication,
and the consequences of half-hearted efforts. At its core, it is a narrative of ...
Not(And(Not(A2), Not(B1))): This constraint prohibits the simultaneous absence of A2
and B1. In the context of the story, A2 could represent the implementation ...

Not(And(A3, Not(C2))): This constraint ensures that A3 and C2 cannot both be present
and absent, respectively. A3 might represent the implementation of a backup system ...

Definitions:
Al: Represents the implementation of a critical initial design review or feasibility study.

C3: Represents the implementation of a fail-safe mechanism.

Based on the Definitions, translate the Natural Language Content into Z3 code. Each con-
straint consists of a forbidden combination of assignments for two variables.

Conclude your response with “Final Z3 Code:”. Then present the generated code directly,
do not enclose it in quotation marks or code blocks.

For example:

Final Z3 Code:

from z3 import *

solver = Solver()

Al, A2, A3, B1, B2, B3 = Bools("A1 A2 A3 B1 B2 B3’)
solver.add(Not(And(Not(A2), Not(B1))))

solver.add(Not(And(Not(A1), B2)))

20

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION AND EXPERIMENT SETUP

C.1 TRANSLATOR IMPLEMENTATION

In our translator implementation, we leverage the training set from the well-known logic puzzle
benchmark Knights-and-Knaves |Xie et al.[(2024) as the source of real-world puzzles and employ
the Qwen3-30B-A3B model |Yang et al.|(2025a) as the LLM solver. To verify the isomorphism be-
tween Formal Language Template 1 and the back-translated Formal Language Template 2, we apply
Algorithm [2| For measuring the similarity between the Real-World Puzzle and the back-translated
Natural Language Puzzle, we compute the BLEU score using the Qwen3-30B-A3B tokenizer. We
extend the verl framework (Sheng et al. 2025) to enable the training of two translators based
on the rl-distill-Qwen-32B model (Guo et al., 2025), each equipped with an independent LoRA
adapter Hu et al.| (2022). Training is performed using the GRPO algorithm (Guo et al., 2025) and
the AdamW optimizer (Loshchilov & Hutter, [2019). The two translators are trained alternately on
two 8-card H800 GPU nodes with a learning rate of 1 x 10~%. For decoding, we configure the
parameters as follows: temperature = 1.0, top-p = 1.0, and LoRA rank = 8.

C.2 EXPERIMENT SETUP

For evaluation on both the formal language templates and the natural language puzzles, we employ
five state-of-the-art reasoning models: Qwen3-30B-A3B, GPT-o0ss-20B, DeepSeek-R1, Gemini-2.5-
Pro, and GPT-03. The Qwen3-30B-A3B, GPT-0ss-20B and DeepSeek-R1 models are deployed on
our in-house 8-card H800 GPU cluster, while Gemini-2.5-Pro and GPT-03 are accessed through
their official APIs. The version of DeepSeek-R1 used in our experiments corresponds to the original
release on January 20, 2025. The decoding parameters are configured as follows: temperature = 0.0,
top-p = 1.0. For GPT-0ss-20B, the reasoning-effort setting is fixed to medium.

For the reinforcement learning of the Qwen3-30B-A3B and GPT-o0ss-20B on the task of translating
natural language puzzles back into formal language templates, we adopt the same configuration and
reward function as used for the translator.

C.3 HUMAN ANNOTATION

For the participants tasked with determining which puzzle in the pair is more likely to be unsolvable
by the Qwen3-30B-A3B model based on the provided examples, we invited three volunteers with
strong logic puzzle skills who were able to correctly solve at least 3 out of 5 3 x 3 natural language
puzzles, thereby demonstrating a certain level of logical problem-solving ability.

21

Under review as a conference paper at ICLR 2026

/™ B Content Word I Content Word
. ‘| == Function Word == Function Word
MM,ﬂ(v.meggggvméggéuigi,V_E %<W§U§<§§mgmmw Erinkgzgg
ig = g s
(a) Formal Language Template (b) Natural Language Puzzle (High Pass Rate)
7 I Content Word e — B Content Word
o il [Function Word 008 [Function Word
VgEFSUEST LT TeT§gTRIoCEEEC 383§ nEEsTEE TiEecTRECTE RS
‘ g o 4 & s 7 2 g @
(c) Natural Language Puzzle (Low Pass Rate) (d) Natural Language Puzzle (Low Pass Rate) (RL)

Figure 8: Top 30 tokens with the highest Grad x Input influence scores.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 INPUT TOKEN INFLUENCE OF GPT-0ss-20B

We also present the top 30 tokens with the highest Grad x Input influence scores for GPT-oss-
20B. As shown in Figure[8] GPT-0ss-20B exhibits a trend similar to Qwen3-30B-A3B: in both the
formal-language template and the high-pass-rate natural-language puzzle settings, the most influ-
ential tokens are typically content words. In contrast, in the low-pass-rate natural-language puzzle,
the tokens with the highest influence scores are often function words. After training for abstraction
ability, the low-pass-rate natural language puzzle, the most influential tokens for the GPT-0ss-20B
shift from function words to content words as well.

D.2 TOKEN-LEVEL PERPLEXITY AND INFLUENCE SCORES OF GPT-0ss-20B

We also find that GPT-0ss-20B exhibits a reasoning-pattern shift similar to that of Qwen3-30B-A3B.
For formal-language templates and high-pass-rate natural-language puzzles, both models generally
adopt a unified formulation in which high-perplexity tokens are distributed throughout the sentence
rather than concentrated near a single boundary. However, for natural-language puzzles that contain
two distinct formulation types, GPT-0ss-20B displays noisy and unstable reasoning behavior, though
it shows a relative preference for relying on natural-language cues rather than formal-language struc-
ture, while almost ignoring the separator token. After training for abstraction ability, the model’s
behavior changes substantially: in low-pass-rate natural-language puzzles, GPT-0ss-20B exhibits
markedly increased sensitivity to symbolic tokens and reduced sensitivity to natural-language to-
kens, indicating that its reasoning has begun to align with the underlying logical structure instead of
focusing on surface-level linguistic patterns.

D.3 HUMAN VERIFICATION ON CONCRETIZATION

To address concerns that the observed performance differences might arise from dataset artifacts
rather than genuine “concretization” effects, we conducted a controlled human validation study on a
randomly selected subset of the benchmark. We uniformly sampled 50 instances from our generated
paired formal-language templates and natural-language puzzles. Specifically, the sample included
60 SAT instances spanning three variable configurations (3x 3, 3x 5, and 5 x 5 variables; 20 instances

22

Under review as a conference paper at ICLR 2026

2- 0
—— PPL Score —— PPL Score
[Symbolic Token Influence . I Symbolic Token Influence
154 [0 Natural Token Influence

Perplexity
Perplexity

(a) Formal Language Template

nnnnnn
—— PPL Score —— PPL Score

== Symbolic Token Influence 75000 == Symbolic Token Influence
=1 Natural Token Influence =1 Natural Token Influence

nnnnn

vvvvvv

zzzzz

Perplexity

rrrrrr

(c) Natural Language Puzzle (Low Pass Rate) (d) Natural Language Puzzle (Low Pass Rate) (RL)

Figure 9: Token-level perplexity and Grad x Input influence scores comparisons.

per configuration), 20 CSP instances with Boolean and integer variables, and 20 CSP instances
involving Boolean, integer, and Abelian-group variables. Each instance was independently reviewed
by two annotators with backgrounds in mathematics, logic, or computer science; disagreements were
adjudicated by a third annotator.

Annotators evaluated each instance along three dimensions corresponding directly to reviewer con-
cerns:
* Grammaticality: Whether the text is free from severe grammatical errors.

* Clarity: Whether the logical structure and intended task are clearly and unambiguously
expressed.

* Absence of Spurious Cues: Whether the instance avoids superficial patterns or lexical
artifacts that could reveal the correct answer without genuine reasoning.

Each dimension was rated on a three-level scale: Pass, Borderline, or Fail. Annotators also assigned
an overall judgment (Valid or Invalid) indicating whether the instance was suitable for evaluating
concretization effects.

As shown in Table[3] the vast majority of sampled
instances were judged to be of sufficiently high

quality across all three evaluation criteria. Gram- Criterion Pass Borderline Fail
mar received the strongest assessments, with 87% Grammar 87% 13% 0%
of instances marked as Pass and none marked Clarity 60% 39% 1%
Fail, confirming that our generation pipeline does Spurious cues 77% 23% 0%
not introduce syntactic noise that might confound

model behavior. Table 3: Distribution of human annotation.

Clarity exhibited a more mixed distribution, 60%

Pass, 39% Borderline, and only 1% Fail. This

pattern is expected given the inherent difficulty of expressing multi-variable logical constraints in
natural language, particularly since our aim is to construct puzzle formulations that are intention-
ally more challenging and potentially ambiguous for solving models. The small proportion of Fail
cases (about 1%) typically arises when a natural-language puzzle implicitly contains multiple sub-
puzzles, leading to duplicated or mildly confusing references to variable definitions. Nevertheless,

23

Under review as a conference paper at ICLR 2026

these instances remain sufficiently interpretable to be translated into an isomorphic formal-language
template and solved correctly by Gemini-2.5-Pro and GPT-03.

Absence of Spurious Cues criterion also showed strong performance, with 77% Pass and 23%
Borderline, and again no Fail cases. This indicates that the templates do not systematically leak
answer-revealing artifacts, such as lexical regularities or superficial structural patterns—that could
be exploited by models.

Taken together, these findings show that the benchmark reliably reflects genuine reasoning demands
rather than unintended annotation or generation artifacts. The small proportion of Borderline cases,
primarily involving clarity, highlights opportunities to further refine phrasing. However, the over-
whelming majority of Pass judgments and the absence of critical failures support the benchmark’s
validity for evaluating concretization effects.

D.4 NATURAL LANGUAGE PUZZLE FORMULATION DIVERSITY

Beyond the challenge of formulation, our trans-

lation framework from formal language tem- 04
plates to natural language puzzles also demon-
strates greater diversity compared to template- 02
based methods. Specifically, we embed the for-
mal language templates, the widely used nat- 00

ural language puzzle benchmark Knights-and-
Knaves (Xie et al., [2024), and our constructed
natural language puzzles using the Qwen3-30B-
A3B tokenizer. The resulting embeddings are
then projected into two dimensions using Princi-
pal Component Analysis (PCA).

Dim 2 (whitened)
S
N

!
o
~

-0.6

As shown in Figure[I0] both the formal language s

templates and Knights-and-Knaves puzzles ex- T p—

hibit concentrated distributions within relatively -10 SAT Template

small regions. In contrast, our generated nat- andx

ural language puzzles display a far more dis- o4 P2 o1 atened) 04
persed distribution, suggesting that our transla-

tion framework effectively captures a broader and Figure 10: The embedding distribution compar-
more diverse range of input formulations. ison, reduced to two dimensions using PCA.

24

	Introduction
	Methodology
	Formal Language Templates Construction
	Natural Language Puzzle Concretization
	Mitigate Strategy

	Empirical Results
	Performance Degradation after Concretization
	Performance Mitigated after Abstraction
	Performance Enhancement on Out-of-Domain Benchmarks

	Analysis
	Input Formulation Leads to Misunderstanding
	Reasoning Attention Dispersed Across Non-Reasoning Tokens
	Formulation Conflict Weakens Reasoning
	May not fit well with human intuition

	Related Work
	Formulation Sensitivity of LLMs
	Translation from Formal Language to Natural Language

	Conclusion
	Algorithms
	Prompt
	Implementation and Experiment Setup
	Translator Implementation
	Experiment Setup
	Human Annotation

	Additional Experimental Results
	Input Token Influence of GPT-oss-20B
	Token-level Perplexity and Influence Scores of GPT-oss-20B
	Human Verification on Concretization
	Natural Language Puzzle Formulation Diversity

