
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOST IN REAL-WORLD SCENARIOS:
CONCRETIZATION DISRUPTS LLM LOGICAL REA-
SONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Although large language models (LLMs) have attracted significant attention, re-
cent studies reveal that even minor variations in input formulation can lead to
substantial inconsistencies in reasoning outcomes, underscoring their fragility in
real-world scenarios. To systematically investigate this issue, we propose a con-
cretization framework that automatically translates clean reasoning logic into con-
crete contexts with challenging formulations. In this framework, two translators
are trained via a dual-learning approach. The first converts formal language tem-
plates into natural language puzzles, guided by a difficulty-aware reward that pro-
motes the exploration of harder formulations. The second translates puzzles back
into templates, with isomorphism verification ensuring the consistency of underly-
ing reasoning logic. Applying this framework, we efficiently build paired datasets
of formal language templates and natural language puzzles, and observe a sharp
drop in LLM reasoning performance when moving from templates to puzzles. To
uncover the underlying causes, we conduct an in-depth analysis of how tokens
derived from formal templates and natural language puzzles influence the final
answers. This analysis reveals two primary sources of degradation: dispersed
reasoning attention across non-essential tokens and conflicts introduced by alter-
native formulations. To address these issues, we propose a prompt-based approach
that instructs LLMs to abstract reasoning logic from concrete contexts before at-
tempting direct solutions, and a training-based approach that further strengthens
LLMs’ abstraction ability. Experimental results show that our methods improve
LLM performance on natural language puzzles by up to 56.2%, nearly eliminating
the performance loss induced by concretization.

1 INTRODUCTION

Since the advent of large language models (LLMs), reasoning has consistently been recognized
as one of their most critical capabilities. The rise of large reasoning models has highlighted their
remarkable performance across a wide range of reasoning tasks. However, studies have shown
that variations in input formulation can substantially undermine the reasoning ability of LLMs. This
fragility exposes a lack of robustness and presents significant challenges for adapting their reasoning
performance to complex, real-world scenarios.

To systematically investigate this phenomenon, prior studies focus on identifying pairs of inputs that
differ in surface formulation but preserve underlying reasoning logic. Trivial perturbations have been
shown to negatively impact LLM reasoning performance on established benchmarks, for example,
through rephrasing (Zhou et al., 2024), introducing typos (Gan et al., 2024), switching languages (Hu
et al., 2025), extending context (Xu et al., 2025), or even inserting irrelevant statements such as
“Interesting fact: cats sleep for most of their lives” (Rajeev et al., 2025). However, these methods
are largely heuristic, focusing only on surface-to-surface variations, and lack deeper investigation
into how LLMs model the relationship between surface formulation and underlying reasoning logic.

To address this issue, we propose a concretization framework that automatically converts abstract
reasoning logic into specific contexts while exploring challenging formulations. Specifically, the
translator is trained through a dual-learning approach. The first translator learns to translate a formal

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

language template, primarily encoding pure reasoning constraints, into a natural language puzzle,
guided by a difficulty-aware reward that encourages exploration of more challenging formulations.
The second translator learns to translate the natural language puzzle back into a formal language
template, with an isomorphism verification applied to guarantee that the reasoning logic remains
consistent with the original formal language template.

Formal Natural Natural
(Prompt)

Natural
(Reinforce Learning)

0

20

40

60

80

100

A
cc

ur
ac

y

97.6

31.6

65.6

87.889.4

29.8

60.2

84.4

41.4

23.2

29.2

53.4

3 × 3 3 × 5 5 × 5

Figure 1: The performance comparison of the
Qwen3-30B-A3B across formal language tem-
plates, natural language puzzles, with prompt-
based method, and training-based method.

Using the paired formal language templates and
natural language puzzles constructed by our con-
cretization framework, we observe a sharp reduc-
tion in LLM reasoning performance when mov-
ing from formal templates to natural puzzles, by
66% for the Qwen3-30B-A3B model (Yang et al.,
2025a). Even GPT-o31 exhibits a noticeable de-
cline of up to 2.4%. To address this gap, we
propose a prompt-based strategy that first guides
LLMs to abstract formal language templates from
natural language puzzles before attempting solu-
tions. While this approach alone improves accu-
racy by 34%, we further design a training-based
method that strengthens LLMs’ abstraction abil-
ity, delivering an additional 22.2% gain.

To further investigate the underlying causes, we
conduct a detailed analysis of how input tokens from formal language templates and natural language
puzzles influence LLM predictions. Our findings reveal that LLMs often allocate disproportionate
attention to reasoning-irrelevant tokens while underemphasizing reasoning-critical ones. Moreover,
shifts in problem formulation lead to corresponding shifts in reasoning patterns, further exacerbating
performance degradation.

To summarize, the main contributions of this paper are:

• We propose an isomorphism-verified, difficulty-aware concretization framework that trains
a translator to automatically transform formal language templates into natural language
puzzles with challenging formulations, while ensuring reasoning logic consistency.

• We conduct experiments on constructed pairs of formal templates and natural puzzles, we
show that concretization formulation significantly reduces LLM reasoning performance,
and we propose prompt-based and training-based abstraction methods that effectively mit-
igate this performance drop.

• We perform an in-depth analysis of how input tokens originating from formal language
templates and natural language puzzles relate to the final answers, identifying the root
causes of this decline: dispersed attention on non-reasoning tokens and the cost of aligning
divergent reasoning patterns.

2 METHODOLOGY

An overview of the construction process for formal language template–natural language puzzle pairs
is shown in Figure 2. The detailed designs of formal language template generation and natural
language puzzle concretization are provided in Subsection 2.1 and Subsection 2.2. Furthermore,
Subsection 2.3 introduces our prompt-based and training-based mitigation strategies, which aim to
alleviate the performance degradation of LLMs caused by concretization.

2.1 FORMAL LANGUAGE TEMPLATES CONSTRUCTION

For our formal language template, we adopt the Boolean satisfiability problem (SAT) as the target
task, since it is a classic challenge in logical reasoning and serves as a foundational abstraction for
many real-world applications. SAT requires finding an assignment of truth values to variables such

1https://openai.com/index/introducing-o3-and-o4-mini/

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Formal Language Template:

solver = Solver()
A1, A2, B1, B2 = Bools('A1 A2 B1 B2')
solver.add(Not(And(Not(A2), Not(B2))))
solver.add(Not(And(A2, Not(B2))))
…Program

Ground Truth:

A1: False
A2: False
B1: True
B2: True

Natural Language Puzzle:

1. Do not suppose that both the A-seal
and the B-seal on Door 2 are
simultaneously dull.
2. Nor may you ever find the A-seal on
Door 2 glowing while its B-seal is dull.
…

Translator 1

Formal Language Template:

solver = Solver()
A1, A2, B1, B2 = Bools('A1 A2 B1 B2')
solver.add(Not(And(Not(A2), Not(B2))))
solver.add(Not(And(A2, Not(B2))))
… Translator 2

LLM

Answer:

A1: False
A2: Ture
B1: True
B2: True

Answer:

A1: False
A2: Ture
B1: True
B2: True

Answer:

A1: False
A2: Ture
B1: True
B2: True

Answer:

A1: False
A2: Ture
B1: True
B2: True

Pass Rate

Isomorphic or Not

Qualified

Collection

+

Figure 2: The construction process of a paired formal language template and natural language puzzle
proceeds. First, a rule-based program generates a formal language template and its ground-truth
assignment. This template is then passed to a translator, which converts it into a natural language
puzzle. The puzzle is subsequently back-translated into a formal template by another translator and
presented to an LLM, which produces multiple responses. A natural language puzzle is retained and
collected if it passes isomorphism verification and its pass rate falls below a difficulty threshold.

that a given Boolean formula is satisfied. Consider the following formula in conjunctive normal
form (CNF) with a variable setting of 2× 2 and four clauses:

F = (¬A1 ∨B1) ∧ (A1 ∨ ¬B2) ∧ (A1 ∨B2) ∧ (¬A2 ∨ ¬B2) (1)
One satisfying assignment is A1 = True, A2 = False, B1 = True, B2 = False, which makes F
evaluate to true.

To construct our SAT template with a unique satisfying assignment, we incrementally add clauses
that forbid particular joint assignments to pairs of variables. We continue until only one assignment
remains. The full construction algorithm is given in Appendix A.

Two SAT instances are considered to encode the same constraints if they are isomorphic, mean-
ing there exists a renaming of variables (and corresponding literals) that maps one instance to the
other. The isomorphism decision problem for SAT reduces to the Graph Isomorphism problem,
for which no polynomial-time algorithm is known. In practice, however, our translator must also
produce a variable correspondence between the formal language template and the natural language
puzzle. Given this variable mapping, the SAT isomorphism decision reduces to a problem solvable
in linear time, O(n +m), where n is the number of variables and m is the number of clauses. The
isomorphism decision algorithm is also provided in Appendix A.

Based on our SAT template construction algorithm, under a simple independence heuristic, each
added clause reduces the remaining solution space by a factor of approximately 3

4 . A sufficient
condition for uniqueness is therefore

2n ·
(
3

4

)m

≤ 1, . (2)

From this inequality we infer that the number of clauses must lie between n (a lower bound) and
approximately 2.41n (an upper bound). Consequently, in our constructions m = Θ(n), and the ef-
fective complexity of the isomorphism decision between the original and the back-translated formal
language templates is linear, O(n). A detailed proof is presented in Appendix B.

2.2 NATURAL LANGUAGE PUZZLE CONCRETIZATION

Our concretization framework adopts the standard dual learning approach (Xia et al., 2016), which
consists of two training cycles involving two translators. In the first cycle, Translator 1 translates a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Qwen3-30B-A3B Deepseek-R1 Gemini-2.5-Pro GPT-o3

0

20

40

60

80

100

A
cc

ur
ac

y

97.6

31.6

89.4

29.8

41.4

23.2

99.8

73.0

99.0

61.6

92.6

71.2

99.2

80.2

98.8

74.0

86.6

80.2

99.4
97.0

99.8
97.8 99.4 98.8

FL NL FL NL FL NL FL NL FL NL FL NL FL NL FL NL FL NL FL NL FL NL FL NL

3 × 3
3 × 5
5 × 5

Figure 3: The accuracy of current state-of-the-art reasoning LLMs on natural language puzzles
(NL) is lower than on formal language templates (FL), even when the natural language puzzles are
translated from the formal templates and share equivalent symbolic reasoning difficulty.

formal language template into a natural language puzzle, while Translator 2 translates the resulting
puzzle back into a formal language template. Translator 1 serves as the optimization target in this
cycle. In the second cycle, Translator 2 translates a real-world puzzle into a formal language tem-
plate, and Translator 1 then translates the template back into a natural language puzzle. In this cycle,
Translator 2 is the optimization target. The overall training process is illustrated in Figure 4.

Translator1

Formal Language Template 1 Natural Language Puzzle

Formal Language Template 2

Translator2

Pass Rate

Isomorphic or Not

Real-World Puzzle

Translator2

Formal Language Template

Translator1

Natural Language Puzzle

Similarity

Format Check

Figure 4: The training process for the natural
language translator.

For Translator 1, the input is a constructed formal
language template, and the output is a natural lan-
guage puzzle together with variable definitions.
The reward is derived from two components: (i)
the pass rate of an answer model on the gener-
ated natural language puzzle, and (ii) the isomor-
phism decision between the original formal lan-
guage template and the back-translated template
produced by Translator 2. For Translator 2, the
input is a real-world puzzle, and the output is a
formal language template along with variable def-
initions. Its reward combines (i) a format check
on the generated formal language template and
(ii) the similarity between the original real-world
puzzle and the natural language puzzle generated
by Translator 1.

Through iterative training, our dual-learning framework converges toward a state where formal lan-
guage templates can be automatically translated into natural language puzzles that are both chal-
lenging in formulation and logically consistent with the original formal representation.

2.3 MITIGATE STRATEGY

To mitigate the reasoning performance gap of LLMs when transitioning from formal language tem-
plates to natural language puzzles, we propose a prompt-based method that guides LLMs to first
abstract the underlying reasoning logic from the natural language context rather than attempting to
solve the puzzle directly. Specifically, we prompt the LLM to translate the natural language puzzle
into a formal language template, and then solve the formal representation to derive the final answer.
To address the tendency of reasoning models to deviate from instructions, the formal language tem-
plate is required to be explicitly included in the output. Detailed prompt is provided in Appendix C.

To further enhance the ability of LLMs to abstract reasoning logic, we additionally propose a
training-based method. In this approach, the answer model is trained to translate natural language
puzzles back into formal language templates. Isomorphism verification is again employed as the
reward signal for reinforcement learning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Model Method 3 × 3 3 × 5 5 × 5
FL NL Succ. FL NL Succ. FL NL Succ.

Qwen3-30B-A3B
Orig. 97.6 31.6 - 89.4 29.8 - 41.4 23.2 -
Prom. - 65.6 (+34.0) 54.3 - 60.2 (+30.4) 66.3 - 29.2 (+6.0) 71.0

RL - 87.8 (+56.2) 90.1 - 84.4 (+54.6) 93.5 - 53.4 (+30.2) 88.9

Deepseek-R1 Orig. 99.8 73.0 - 99.0 61.6 - 92.6 71.2 -
Prom. - 92.2 (+19.2) 95.4 - 81.0 (+19.4) 92.0 - 76.4 (+5.2) 94.2

Gemini-2.5-Pro Orig. 99.2 80.2 - 98.8 74.0 - 86.6 80.2 -
Prom. - 89.4 (+9.2) 86.3 - 78.8 (+4.8) 79.0 - 68.6 (-11.6) 86.9

GPT-o3 Orig. 99.4 97.0 - 99.8 97.8 - 99.4 98.8 -
Prom. - 98.0 (+1.0) 96.6 - 99.6 (+1.8) 97.6 - 99.0 (+0.2) 83.6

Table 1: The accuracy of LLMs before (Orig.) and after (Prom.) introducing the intermediate step,
where they are prompted to first translate the natural language puzzle into a formal language template
and then solve it. The success rate (Succ.) of LLMs in generating formal language templates that
are isomorphic to the original template is also provided.

3 EMPIRICAL RESULTS

With the concretization framework described in Section 2, we efficiently construct paired datasets
of formal language templates and natural language puzzles that maintain consistent reasoning logic
while presenting more challenging formulations. In this work, we focus on three variable-size set-
tings: 3×3, 3×5, and 5×5. We adopt Qwen3-30B-A3B as the answer model, and for each setting,
we collect 500 puzzles that meet the difficulty threshold, defined as a pass rate below 8/16 rollouts.

3.1 PERFORMANCE DEGRADATION AFTER CONCRETIZATION

We report the accuracy of current state-of-the-art reasoning LLMs on both the original formal lan-
guage templates and the corresponding natural language puzzles in Figure 3. As shown, the accuracy
of the Qwen3-30B-A3B model drops significantly after translation, with the largest performance gap
occurring in the 3× 3 puzzles, where accuracy decreases by 66%. For the 3× 5 puzzles, the perfor-
mance gap remains substantial at 59.6%. For the 5 × 5 puzzles, the reasoning performance on the
formal language template is already relatively low, resulting in a smaller drop of 18.2%.

Meanwhile, this collection also highlights the decline in reasoning performance observed in several
state-of-the-art models. The most significant accuracy drops for Deepseek-R1 (Guo et al., 2025)
and Gemini-2.5-Pro (Comanici et al., 2025) occur on the 3 × 5 puzzles, with decreases of 37.4%
and 24.79%, respectively. Although GPT-o3 maintains relatively stable performance across all three
puzzle sizes, it still experiences a 2.4% accuracy drop on the 3× 3 puzzles.

3.2 PERFORMANCE MITIGATED AFTER ABSTRACTION

As shown in Table 1, the reasoning performance of all four LLMs improves noticeably after in-
troducing the prompt-based reasoning logic abstraction step, across puzzles with all three variable
sizes. Notably, the accuracy of Qwen3-30B-A3B increases by 34% on the 3×3 puzzles, DeepSeek-
R1 improves by 19.2%, and even GPT-o3, despite its high baseline, shows a 1.8% increase on the
3 × 5 puzzles. In contrast, Gemini-2.5-Pro exhibits an 11.6% decrease in accuracy. A closer ex-
amination of its responses reveals that Gemini-2.5-Pro tends to output the final answer immediately
after translation and thereby neglecting deeper symbolic reasoning. This suggests that the reasoning
logic abstraction ability must be coupled with the capacity to sustain reasoning over the additional
output length introduced.

Furthermore, when the reasoning logic abstraction ability of LLMs is enhanced through the training-
based method, the performance of Qwen3-30B-A3B improves even further, reaching near parity
with its performance on formal language templates. Remarkably, on the 5× 5 puzzles, its accuracy
even surpasses that of the formal language template by 12%.

We further evaluate the effectiveness of our proposed prompt-based method on benchmarks released
by prior work (Gan et al., 2024; Rajeev et al., 2025). As shown in Table 2, injecting typos and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

irrelevant statements degrades the reasoning performance of LLMs. Our method, which first guides
the model to convert the concrete natural language context into abstract calculation logic, and then
solve the calculation problem to obtain the final answer, can partially recover this performance loss.

Method Typographical CatAttack
Original Edited Original Edited

Orig. 96.36 94.76 97.50 96.83
Prom. 96.20 (-0.16) 95.98 (+1.22) 97.50 (+0.0) 97.33 (-0.5)

Table 2: The reasoning performance of the
Qwen3-30B-A3B model on two public bench-
marks, without (Orig.) and with (Prom.) ab-
straction prompt.

We also observe a small performance drop when
applying our method to the original version of the
Typographical benchmark. Closer inspection re-
veals that this is due to inaccurate abstraction trig-
gered by the ambiguous expression of the ques-
tion context. For example, consider the question:
“In one hour, Ezra read twice as many books as
Ahmed. Ezra has read 300 books this hour and
decided to read 150 more. How many books have
they read altogether?” A model without abstrac-
tion guidance interprets “150 more books” as oc-
curring within the same hour, while a model prompted for abstraction treats it as occurring outside
that hour. We believe such errors can be further mitigated through our training-based approach,
which better aligns abstraction with context.

4 ANALYSIS

4.1 INPUT FORMULATION LEADS TO MISUNDERSTANDING

Curious about the types of errors introduced by natural language, we analyze the responses of the
Qwen3-30B-A3B model on the first 100 formal language templates and natural language puzzles
for each size. The errors made by the model are categorized into three types:

• Constraint Misunderstandings: The model misinterprets the natural language description,
leading to incorrect constraints. For example, in one puzzle about Adam, the definition
states that both B1 and B4 represent “the battery is fully charged.” However, during rea-
soning the model assigned them different truth values, thereby generating a result directly
contradictory to the definition.

• Solving Failure: The model generates assignments that conflict with the given constraints.
For instance, in a narrative puzzle set at night, the constraints required that C3 and C1
could not both be false. Yet, in its final solution, the model set C3 = False and C1 = False,
resulting in a direct conflict with the constraint.

• Formatting Errors: The model fails to follow the required output format.

Solving Failure

Constraint Misunderstanding

Formatting Errors

Formatting Errors

Formatting Errors

Solving Failure

Constraint Misunderstanding

Solving Failure

Constraint Misunderstanding

Figure 5: The increased error counts of the
Qwen3-30B-A3B (puzzles minus templates).

Figure 5 illustrates the increase in errors made
by the Qwen3-30B-A3B model on natural lan-
guage puzzles compared to formal language puz-
zles. As the number of variables in the puz-
zles grows, we observe that the frequency of
Constraint Misunderstandings rises only slightly,
whereas the frequency of Solving Failures in-
creases more substantially. This pattern suggests
that as the difficulty of symbolic reasoning inten-
sifies, the model’s reasoning becomes less robust.
Consequently, even minor perturbations in natu-
ral language, though not genuine misunderstand-
ings for LLMs, are more likely to disrupt their
reasoning process.

4.2 REASONING ATTENTION DISPERSED ACROSS NON-REASONING TOKENS

To investigate why different prompt formulations yield divergent predictions, we measure the causal
sensitivity of each input token using Grad × Input influence scores on the Qwen3-30B-A3B model.
The objective function J is defined as the total log-likelihood of the gold answer sequence, computed

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(B 3 1
N

ot
so

lv
er 2

.a
dd A

A
nd C ,

m
od

el),
Fa

ls
e

C
od

e
fin

al
un

iq
ue

: [
E

xa
m

pl
e

Tr
ue

an
sw

er #
im

po
rt

us
in

g
la

be
l

A
ns

w
er

gi
ve

n
S

ol
ve

r0.00

0.01

0.02

0.03

0.04

0.05

0.06

S
co

re

Content Word
Function Word

(a) Formal Language Template

B A 3 1
A

ns
w

er
as

si
st

an
t

co
ul

dn
C

om
m

it be th
e 2

de
te

rm
in

e an
co

de
:

bo
un

da
rie

s
C

on
te

nt
ca

n
lin

e is
la

be
l

Th
e

ac
tiv

ity Lu
c

bo
th

ni
gh

t
R

es
po

nd
us

in
g in

fa
ul

t0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

S
co

re

Content Word
Function Word

(b) Natural Language Puzzle (High Pass Rate)

--
-

C
on

te
nt

A
ns

w
er

as
si

st
an

t is
in

di
ca

tin
g 2 1 or th
e

so
us

.
an

sw
er 3 (It

de
te

rm
in

e -
S

ig
n at to

lin
e :

Th
e

us
in

g
as

pe
ct

la
be

l
fa

ls
e

to
ge

th
er

ca
se

0.00

0.01

0.02

0.03

0.04

S
co

re

Content Word
Function Word

(c) Natural Language Puzzle (Low Pass Rate)
as

si
st

an
t

N
ot A (

A
ns

w
er 2 -

no
t

A
nd 1

fa
ls

e
C

on
te

nt
ca

se B
.a

dd th
e is 3 in at

Tr
ue

R
es

po
nd

us
er C

Fi
rs

t
tru

e a
G

am
m

a ,
co

de

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

S
co

re

Content Word
Function Word

(d) Natural Language Puzzle (Low Pass Rate) (RL)

Figure 6: Top 40 tokens with the highest Grad × Input influence scores.

by summing the negative cross-entropy loss across the answer span. Gradients are enabled only for
the prompt embeddings, and we backpropagate through J to estimate token-level contributions. For
each prompt token i, the Grad × Input influence score is defined as

saliencyi =
D∑

d=1

∂J

∂ei,d
ei,d, (3)

where ei = (ei,1, . . . , ei,D) ∈ RD denotes the embedding vector of token i, ∂J
∂ei,d

is the gradient of
J with respect to the d-th component of ei, and D is the embedding dimension. Finally, we apply
L1 normalization across tokens to ensure comparability.

Figure 6 presents the top 40 tokens with the highest Grad× Input influence scores. As shown, in both
the formal language template and the high-pass-rate natural language puzzle, the most influential
tokens are typically content words, such as negation terms (e.g., not, couldn’t), variable names
(e.g., B3), or semantically meaningful nouns (e.g., boundaries). By contrast, in the low-pass-rate
natural language puzzle, the tokens with the highest influence scores are often function words, such
as template words (e.g., Content, is) or even symbols (e.g., “—”). Meanwhile, after training for
abstraction ability, we observe that in the low-pass-rate natural language puzzle, the most influential
tokens for the Qwen3-30B-A3B model shift from function words to content words.

This phenomenon suggests that certain input formulations may direct the model’s attention toward
words unrelated to reasoning, thereby diminishing the focus on logical reasoning. We hypothesize
that this effect arises from the distribution of the training data: some input formulations may occur
more frequently in non-reasoning contexts, which leads LLMs to rely less on reasoning logic when
processing them.

4.3 FORMULATION CONFLICT WEAKENS REASONING

Besides Grad × Input influence scores, we also calculate the token-level perplexity of each input
token using the Qwen3-30B-A3B model. For a token xi in the sequence, its perplexity score is
defined as:

PPLi = exp
(
− log p(xi | x<i)

)
, (4)

where p(xi | x<i) is the conditional probability of token xi given its preceding context. A lower
PPLi indicates that the model is more confident in predicting the token xi.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.010

0.005

0.000

0.005

0.010

0.015

In
flu

en
ce

 S
co

re

so
lve

r
.ad

d

(
Not

(

And

(Not

(B 2

),

 N
ot

(B

3

)))
)

2

1

0

1

2

3

P
er

pl
ex

ity

PPL Score
Symbolic Token Influence

(a) Formal Language Template

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

In
flu

en
ce

 S
co

re

 If

 th
e

 ol
de

r
 m

an

 at
tem

pte
d

 to qu
it

 (B

2

),

 th
e

 so
n

 (

B

3),

 m
us

t
 fa

ult
 hi

mse
lf

.

30

20

10

0

10

20

30

40

50

P
er

pl
ex

ity

PPL Score
Symbolic Token Influence
Natural Token Influence

(b) Natural Language Puzzle (High Pass Rate)

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

In
flu

en
ce

 S
co

re

N
ot

(A
nd

(

N
ot (B 2),

 N
ot

(B 3

))
) -

 S
im

ul
t

an
eo

us

 d
en

ia
l

 o
f

 B 2

 a
nd B 3

 is p
ro

hi
bi

te
d

40000

20000

0

20000

40000

60000

P
er

pl
ex

ity

PPL Score
Symbolic Token Influence
Natural Token Influence

(c) Natural Language Puzzle (Low Pass Rate)

0.002

0.001

0.000

0.001

0.002

0.003

In
flu

en
ce

 S
co

re

N
ot

(A
nd

(

N
ot

(B 2

),

 N
ot (B 3))
) -

 S
im

ul
t

an
eo

us

 d
en

ia
l

 o
f

 B 2

 a
nd

 B

3

 is p
ro

hi
bi

te
d

60000

40000

20000

0

20000

40000

60000

80000

100000

P
er

pl
ex

ity

PPL Score
Symbolic Token Influence
Natural Token Influence

(d) Natural Language Puzzle (Low Pass Rate) (RL)

Figure 7: Token-level perplexity and Grad × Input influence scores comparisons.

We observe that, in some cases, natural language puzzles with low pass rates exhibit two distinct
types of formulations, often combining natural language expressions with symbolic expressions.
The separator token between these formulations tends to show an exceptionally high perplexity
score. Moreover, the tokens immediately before and after the separator display consecutively pos-
itive influence scores. In contrast, formal language templates and high-pass-rate natural language
puzzles generally employ a unified formulation, where tokens with high perplexity are typically scat-
tered throughout the sentence rather than concentrated at a boundary. After training for abstraction
ability, we further observe that in low-pass-rate natural language puzzles, although the separator to-
ken continues to exhibit an exceptionally high perplexity score, the Qwen3-30B-A3B model shows
increased influence from symbolic tokens and decreased influence from natural tokens. Representa-
tive examples of these observations are illustrated in Figure 7.

This phenomenon suggests that the reasoning patterns of LLMs may shift between natural language
reasoning and symbolic reasoning, leading to instability when confronted with a mixed formulation.
By enhancing the abstraction ability of reasoning logic, we improve the alignment between natural
language and symbolic reasoning, effectively unifying the reasoning pattern of the Qwen3-30B-A3B
model, where, in our case, symbolic reasoning prevails. To some extent, this also helps explain why,
after strengthening abstraction ability, LLMs can achieve better performance on natural language
puzzles than on formal language templates.

4.4 MAY NOT FIT WELL WITH HUMAN INTUITION

Figure 8: The accuracy of human volunteers,
non-reasoning LLMs, and reasoning LLMs in
distinguishing the more challenging puzzle.

To evaluate whether the challenging formulations
align with human intuition, we design a set of
pairwise-selection questions. Each question in-
cludes three low-pass-rate examples and one puz-
zle pair, where the pair consists of a high-pass-
rate natural language puzzle and a low-pass-rate
natural language puzzle. From each puzzle size,
we randomly select 10 such pairwise questions,
resulting in a 30-question survey. We construct
9 surveys in total and administer them to three
human volunteers, three non-reasoning models,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GPT-4o2, Deepseek-V3 (Liu et al., 2024), and Gemini-2.5-Flash (Comanici et al., 2025), and three
reasoning models, including GPT-o3, Deepseek-R1, and Gemini-2.5-Pro. Participants are asked to
identify which puzzle in each pair is more likely to be unsolvable by the Qwen3-30B-A3B model,
given the examples provided. To mitigate position bias in the LLMs, each model answers every
question twice, with the puzzle positions swapped.

Figure 8 reports the average accuracy of human volunteers, non-reasoning models, and reasoning
models. Human volunteers struggle to distinguish natural language puzzles that are challenging for
the Qwen3-30B-A3B model. Both non-reasoning and reasoning models achieve higher accuracy,
though still below 60%. These results indicate that while some formulations perceived as intuitively
difficult by humans are also challenging for LLMs, many of the puzzles that hinder LLMs do not
align with human intuition, making them difficult to identify through heuristic approaches.

5 RELATED WORK

5.1 FORMULATION SENSITIVITY OF LLMS

Since the advent of LLMs, prior studies have shown extreme sensitivity of LLM to input formu-
lation. For instance, Errica et al. (2025) and He et al. (2024) demonstrate that input formatting
alters results, while Ackerman et al. (2024) and Qiang et al. (2024) highlight the impact of synony-
mous paraphrases. Similarly, Gan et al. (2024) show that replacing critical tokens with predefined
typos from a common misspelling dictionary can alter outcomes. Zhou et al. (2024) further demon-
strate that paraphrasing questions through prompt-based methods also affects performance. In ad-
dition, both Zhu et al. (2024) and Hu et al. (2025) show that simply changing the input language
can influence results, while Rajeev et al. (2025) and Yang et al. (2025b) demonstrate that intro-
ducing irrelevant information can similarly degrade performance. These work shows that heuristic
modifications to prompts often hurt LLM reasoning on benchmarks. However, these studies typ-
ically assume that the underlying reasoning process stays the same, since the changes are defined
as “meaning-preserving.” Critically, this assumption is rarely supported by rigorous verification of
whether input–output reasoning consistency is actually maintained after such perturbations.

To address this gap, Fu et al. (2024) propose training a smaller model to align input formulations
with LLM preferences, while Zhao et al. (2024) enhance robustness by augmenting supervised fine-
tuning data with perturbed variants to enforce output consistency. However, both approaches operate
primarily at the surface-text level, without explicitly teaching LLMs to model the reasoning logic
that should remain invariant across semantically equivalent formulations.

5.2 TRANSLATION FROM FORMAL LANGUAGE TO NATURAL LANGUAGE

As high-level abstractions of real-world tasks, much prior work has focused on instantiating formal
language skeletons into natural language puzzles that fit practical scenarios. For example, Kazemi
et al. (2023) propose BoardgameQA, which maps board game rules into natural language QA, em-
phasizing contradictory information and preference reasoning. Lin et al. (2025) formalize logic grid
and zebra puzzles as CSPs. Wei et al. (2025) generate narrative logic puzzles automatically from
SAT formulas. Sinha et al. (2019) transform kinship rules into short stories with associated QA.
While these enrich benchmarks, they rely heavily on human quality control and focus on reasoning
consistency, overlooking semantic difficulty. As a result, benchmarks emphasize reasoning steps,
whereas real-world challenges often lie in mapping complex contexts into abstract logic.

6 CONCLUSION

In this work, we propose a translation framework that automatically converts inputs into challenging
formulations while preserving consistency in the underlying reasoning logic. We find that shifting
from formal language templates to natural language puzzles leads to a sharp decline in LLM reason-
ing performance. To address this, we introduce a prompt-based method and a training-based method
that guide LLMs to abstract the reasoning logic from concrete question contexts before solving them,
thereby nearly compensating for the performance loss caused by variations in input formulation.

2https://openai.com/index/gpt-4o-system-card/

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

THE USE OF LLMS

In this paper, LLMs were utilized for polishing the manuscript’s prose and for supporting the for-
matting of tables and figures.

REFERENCES

Samuel Ackerman, Ella Rabinovich, Eitan Farchi, and Ateret Anaby Tavor. A novel metric for
measuring the robustness of large language models in non-adversarial scenarios. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pp. 2794–2802, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.158. URL
https://aclanthology.org/2024.findings-emnlp.158/.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Federico Errica, Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. What did I do wrong?
quantifying llms’ sensitivity and consistency to prompt engineering. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Ameri-
cas Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4,
2025, pp. 1543–1558. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.
NAACL-LONG.73. URL https://doi.org/10.18653/v1/2025.naacl-long.73.

Junbo Fu, Guoshuai Zhao, Yimin Deng, Yunqi Mi, and Xueming Qian. Learning to paraphrase
for alignment with LLM preference. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida,
USA, November 12-16, 2024, pp. 2394–2407. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024.FINDINGS-EMNLP.134. URL https://doi.org/10.18653/
v1/2024.findings-emnlp.134.

Esther Gan, Yiran Zhao, Liying Cheng, Yancan Mao, Anirudh Goyal, Kenji Kawaguchi, Min-Yen
Kan, and Michael Shieh. Reasoning robustness of llms to adversarial typographical errors. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pp. 10449–10459. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.EMNLP-MAIN.584. URL https://doi.org/10.18653/v1/2024.
emnlp-main.584.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
Does prompt formatting have any impact on llm performance?, 2024. URL https://arxiv.
org/abs/2411.10541.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Peng Hu, Sizhe Liu, Changjiang Gao, Xin Huang, Xue Han, Junlan Feng, Chao Deng, and Shujian
Huang. Large language models are cross-lingual knowledge-free reasoners. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Amer-
icas Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4,
2025, pp. 1525–1542. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.
NAACL-LONG.72. URL https://doi.org/10.18653/v1/2025.naacl-long.72.

10

https://aclanthology.org/2024.findings-emnlp.158/
https://doi.org/10.18653/v1/2025.naacl-long.73
https://doi.org/10.18653/v1/2024.findings-emnlp.134
https://doi.org/10.18653/v1/2024.findings-emnlp.134
https://doi.org/10.18653/v1/2024.emnlp-main.584
https://doi.org/10.18653/v1/2024.emnlp-main.584
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2025.naacl-long.72

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. Boardgameqa: A dataset for natural language reasoning with contradictory in-
formation. Advances in Neural Information Processing Systems, 36:39052–39074, 2023.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning, 2025.
URL https://arxiv.org/abs/2502.01100.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky,
and Aram Galstyan. Prompt perturbation consistency learning for robust language models.
In Yvette Graham and Matthew Purver (eds.), Findings of the Association for Computational
Linguistics: EACL 2024, St. Julian’s, Malta, March 17-22, 2024, pp. 1357–1370. Associa-
tion for Computational Linguistics, 2024. URL https://aclanthology.org/2024.
findings-eacl.91.

Meghana Rajeev, Rajkumar Ramamurthy, Prapti Trivedi, Vikas Yadav, Oluwanifemi Bamgbose,
Sathwik Tejaswi Madhusudan, James Zou, and Nazneen Rajani. Cats confuse reasoning llm:
Query agnostic adversarial triggers for reasoning models, 2025. URL https://arxiv.org/
abs/2503.01781.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In Pro-
ceedings of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotter-
dam, The Netherlands, 30 March 2025 - 3 April 2025, pp. 1279–1297. ACM, 2025. doi:
10.1145/3689031.3696075. URL https://doi.org/10.1145/3689031.3696075.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR:
A diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vin-
cent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 4505–
4514. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1458. URL
https://doi.org/10.18653/v1/D19-1458.

Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo,
Ke Wang, and Alex Aiken. Satbench: Benchmarking llms’ logical reasoning via automated puzzle
generation from sat formulas, 2025. URL https://arxiv.org/abs/2505.14615.

Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual
learning for machine translation, 2016. URL https://arxiv.org/abs/1611.00179.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. 2024.
URL https://arxiv.org/abs/2410.23123.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can llms solve
longer math word problems better? In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=C9ju8QQSCv.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

11

https://arxiv.org/abs/2502.01100
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2024.findings-eacl.91
https://aclanthology.org/2024.findings-eacl.91
https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2503.01781
https://doi.org/10.1145/3689031.3696075
https://doi.org/10.18653/v1/D19-1458
https://arxiv.org/abs/2505.14615
https://arxiv.org/abs/1611.00179
https://arxiv.org/abs/2410.23123
https://openreview.net/forum?id=C9ju8QQSCv

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Minglai Yang, Ethan Huang, Liang Zhang, Mihai Surdeanu, William Wang, and Liangming Pan.
How is llm reasoning distracted by irrelevant context? an analysis using a controlled benchmark,
2025b. URL https://arxiv.org/abs/2505.18761.

Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Shuaiqiang Wang, Chong Meng, Zhicong
Cheng, Zhaochun Ren, and Dawei Yin. Improving the robustness of large language models via
consistency alignment, 2024. URL https://arxiv.org/abs/2403.14221.

Yue Zhou, Yada Zhu, Diego Antognini, Yoon Kim, and Yang Zhang. Paraphrase and solve: Ex-
ploring and exploiting the impact of surface form on mathematical reasoning in large language
models. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mex-
ico, June 16-21, 2024, pp. 2793–2804. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.NAACL-LONG.153. URL https://doi.org/10.18653/v1/2024.
naacl-long.153.

Wenhao Zhu, Shujian Huang, Fei Yuan, Shuaijie She, Jiajun Chen, and Alexandra Birch. Question
translation training for better multilingual reasoning. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024, pp. 8411–8423. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.498. URL https://doi.org/
10.18653/v1/2024.findings-acl.498.

12

https://arxiv.org/abs/2505.18761
https://arxiv.org/abs/2403.14221
https://doi.org/10.18653/v1/2024.naacl-long.153
https://doi.org/10.18653/v1/2024.naacl-long.153
https://doi.org/10.18653/v1/2024.findings-acl.498
https://doi.org/10.18653/v1/2024.findings-acl.498

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ALGORITHMS

Algorithm 1 Generate SAT Template
Input: rows M , cols N
Output: Set Constraints such that the SAT instance has a unique model

1: Initialize variables: Vars ← {A1, A2, . . . , AM×N}
2: Constraints ← ∅
3: Initialize incremental SAT solver S // empty constraint stack
4: S.PUSH() // level-0 frame
5: loop
6: if S.CHECK() = UNSAT then
7: S.POP() // remove last constraint
8: Remove last constraint last c from Constraints
9: model← S.MODEL() // solver is SAT again

10: found← false
11: for all distinct pairs (vi, vj) in Vars do
12: c cand← ¬(vi = model[vi] ∧ vj = model[vj])
13: S.PUSH(); S.ADD(c cand)
14: if S.CHECK() = SAT then
15: found← true
16: model← S.MODEL() // new model
17: Add c cand to Constraints
18: break the for-loop
19: else
20: S.POP() // discard c cand
21: end if
22: end for
23: if not found then
24: return Constraints // unique model achieved
25: end if
26: else
27: model← S.MODEL()
28: Randomly pick distinct v1, v2 ∈ Vars
29: c← ¬(v1 = model[v1] ∧ v2 = model[v2])
30: S.ADD(c); Constraints += c // stay in same frame
31: end if
32: end loop

Algorithm 2 SAT Isomorphic
Input: src code, tgt code
Output: True if two SAT templates are isomorphic, False otherwise

1: nssrc ← new namespace with Z3 pre-imported
2: Execute src code in nssrc
3: solversrc ← last v in nssrc.VALUES() where v is a Z3 solver
4: Asrc ← list of solversrc.ASSERTIONS()
5: nstgt ← new namespace with Z3 pre-imported
6: Execute tgt code in nstgt
7: solvertgt ← last v in nstgt.VALUES() where v is a Z3 solver
8: Atgt ← list of solvertgt.ASSERTIONS()
9: Csrc ← { canonical(c) | c ∈ Asrc } // NNF + simplify + sort

10: Ctgt ← { canonical(c) | c ∈ Atgt }
11: return Csrc = Ctgt

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B PROOF OF CONSTRAINT BOUNDS

Let x = x1, . . . , xn denote n Boolean variables. Define
S0 = {0, 1}n, |S0| = 2n,

the set of all possible assignments. Our goal is to insert SAT clauses (each of the form li ∨ lj , where
lk ∈ {xk,¬xk}) one by one, while preserving satisfiability, until the resulting set Sm contains
exactly one assignment. A full quantitative analysis follows.

Contraction Rate of a Single SAT Clause

Consider any two distinct variables xp, xq . There are 4 possible local assignments:
(0, 0), (0, 1), (1, 0), (1, 1).

A single SAT clause can forbid exactly one of these four patterns (e.g., ¬xp ∨ xq excludes (1, 0)),
while leaving the other three unrestricted.

If, prior to the insertion of the k-th clause, all four patterns are still present in Sk−1 for ⟨xp, xq⟩, then
extending them with the 2n−2 assignments of the remaining n− 2 variables shows that at most

1× 2n−2 = 2n−2

global assignments are eliminated, i.e. at most one quarter of the current solution set. Thus,
|Sk| ≥ |Sk−1| · 34 . (1)

Inequality (1) gives the maximal shrinkage rate in the worst case. If some patterns had already been
excluded by earlier clauses, the contraction is smaller. Hence (1) serves as a universal upper bound
for any insertion sequence.

Upper Bound After Inserting m Clauses

Let Sm denote the solution set after m clauses are added. Applying (1) recursively,
|Sm| ≥ 2n

(
3
4

)m
. (2)

To ensure that at most one satisfying assignment remains, it is necessary that

2n
(

3
4

)m

≤ 1. (3)

Taking base-2 logarithms yields

n+m log2
3
4 ≤ 0 ⇐⇒ m ≥ n

− log2
3
4

. (4)

Computing the constant,
− log2

3
4 = log2

4
3 ≈ 0.4150375,

so
m ≥ 2.40939 . . . · n ≈ 2.41n. (5)

Thus, (5) gives the upper bound on the number of clauses needed in the worst case.

Lower Bound of at Least n Clauses

If the total number of clauses satisfies m < n, then there are in total 2m < 2n literal occurrences.
By the pigeonhole principle, at least one variable xr appears at most once in the entire formula.

If xr does not appear at all, then both xr = 0 and xr = 1 yield satisfiable assignments, so at least
two solutions remain, contradicting uniqueness.

If xr appears exactly once, and only as either positive or negative, then by standard SAT satisfiability
analysis, one can construct two mutually exclusive yet satisfying global assignments.

Therefore, achieving a unique solution requires
m ≥ n. (6)

Conclusion

Combining (5) and (6), we obtain
n ≤ m ≤ ⌈2.41n⌉. (7)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PROMPT

Formal Language Template Prompt

Code:
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3, C1, C2, C3 = Bools(’A1 A2 A3 B1 B2 B3 C1 C2 C3’)
solver.add(Not(And(Not(A1), Not(A2))))
solver.add(Not(And(Not(B1), Not(A3))))
solver.add(Not(And(B1, Not(C1))))
solver.add(Not(And(Not(B2), Not(C3))))
solver.add(Not(And(Not(B1), A1)))
solver.add(Not(And(Not(A1), Not(C2))))
solver.add(Not(And(C1, Not(A2))))
solver.add(Not(And(A2, Not(B3))))
solver.add(Not(And(Not(A1), C2)))
solver.add(Not(And(C2, B3)))
solver.add(Not(And(A1, B2)))
solver.add(Not(And(A1, Not(A3))))

Determine the truth value (True or False) for each variable defined in the given Code.
Respond with your final answer using the label ”Final Answer”. Format each line as: ”[Vari-
able name]: [True/False]”.

Example:
Final Answer:
A1: True
B2: False

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Natural Language Puzzle Prompt

Content:
In the once-thriving Kingdom of the Mages, the great dragons were both guardians andiphers
of ancient mystery. Among these dragons was one known as Ember, who guarded the last
remnants of the royal lineage and the treasures that lay beneath the crumbling towers of the
ancient castle. For centuries, Ember had observed the rise and fall of heroes who sought to
challenge her for power, wealth, and glory. Yet, one hero, a determined warrior named Arin,
approached Ember with a purpose that transcended the usual greed and ambition. Arin’s
journey was deeply entwined with a series of conditions and constraints that shaped his
mission, making his quest one of the most enigmatic and difficult in the realm.
Ember, with her uncanny ability to discern the true intentions of those who dared to challenge
her, began to probe Arin’s resolve. Their encounter unfolded under the watchful gaze of the
ancient stones, the air thick with the scent of burning incense and the faint hum of lingering
magic. As their dialogue unfolded, Ember posed a series of questions to Arin, each of which
revealed a layer of complexity that would define the success or failure of his quest.
Here are the constraints that governed his plan:
The First Challenge: Ember’s gaze locked onto Arin’s, her emerald eyes gleaming with
an ancient wisdom. ”You have come to slay me, have you not?” she asked, her voice a
blend of curiosity and peril. Arin nodded, his resolve steadfast, but Ember’s smile widened,
revealing a truth that could not be hidden. ”Your resolve to kill me is but one facet of your
purpose. Yet, your purpose cannot be fulfilled unless you also bring an end to the reign of
those who seek to oppress.”
The Second Challenge: Ember’s tail coiled around Arin, her strength threatening to
crush him, yet she held back, her voice a gentle but unyielding force. ”Should you succeed
in destroying me, you shall become the ruler of this land. Yet, your ascent to power is
contingent upon the willingness of the nobles to acknowledge you as their king. Should they
refuse to bow to you, your quest will be meaningless.”
...
The Ninth Challenge: Ember’s voice took on a tone of finality as she delivered her last
challenge. ”Your journey is not merely about slaying me or claiming the throne. It is about
restoring balance to a land that has long been divided. If you fail to unite the nobles, soldiers,
and your people, your quest will be in vain.”
Ember’s words hung in the air, a testament to the intricate web of conditions that bound
Arin’s quest. The warrior knew that his success depended not only on his own courage but
also on the willingness of others to support his cause. As he prepared to face the dragon, he
understood that his journey was not just one of sword and fire but of logic, resolve, and the
ability to navigate a labyrinth of interdependent choices.

Definitions:
A1: Arin must slay the dragon to achieve his goal.
A2: Arin must attain the throne to fulfill his purpose.
A3: The soldiers must lay down their arms for peace to prevail.
...
C2: The nobles must not oppose Arin for his rule to be secure.
C3: The people must know peace for Arin’s quest to be truly successful.

Based on the Content and Definitions, determine the truth value (True or False) for each
variable mentioned.
Respond with your final answer using the label ”Final Answer”. Format each line as: ”[Vari-
able name]: [True/False]”. Each variable name appears at the start of its corresponding
definition in the Definitions.

Example:
Final Answer:
A1: True
B2: False

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Natural Language Puzzle Prompt with Back Translation

Content:
Adam sat on the cold mountainside, lying on the soft peat, a thin reed sticking into his back.
The rain pelted him like a barrage of rocks, but he calmly ignored it, it didn’t even matter
now, nothing did, his long, messy hair dripped marble-sized droplets, but the sound was lost
in the thunder.
The wind roared through the valley, and a strange silence followed. Adam knew that for
his plan to succeed, a series of conditions had to be met, a web of dependencies that he had
carefully woven over the years. These dependencies were now his only hope. Each condition
represented a rule, a constraint, a puzzle piece that had to fit perfectly for his plan to unfold
as intended. But as the rain poured, he couldn’t help but wonder if the rules he had set in
motion would hold up under the pressure.
Here are the constraints that governed his plan:
Either Adam remembered to pack his fireproof container or he remembered to bring his
emergency flares—both could not be forgotten at the same time.
...
If Adam didn’t remember to pack his fireproof container, then the encryption key wasn’t
secure.
As the rain continued to pour, Adam couldn’t shake the feeling that the weight of these rules
was crushing him, but he knew he had to trust in the fragile balance he had created. His
survival depended on it.

Definitions:
A1: Adam remembered to pack his fireproof container.
...
C5: The final encryption key was in place.

Based on the Content and Definitions, determine the truth value (True or False) for each vari-
able mentioned. First, Convert the Content into Z3 code. Each constraint should represent a
forbidden combination of assignments for two variables. Then, Solve the Z3 code to obtain
the final truth values.
Respond with the translated Z3 code, labeled as ”Final Z3 Code:” and provide the final
answers using the label ”Final Answer:”. Format each line in final answer as: ”[Variable
name]: [True/False]”. Each variable name appears at the start of its corresponding definition
in the Definitions.

Example:
Final Z3 Code:
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3 = Bools(’A1 A2 A3 B1 B2 B3’)
solver.add(Not(And(Not(A2), Not(B1))))
solver.add(Not(And(A2, Not(B3))))
solver.add(Not(And(Not(B3), Not(B2))))
solver.add(Not(And(Not(A3), Not(A1))))
solver.add(Not(And(Not(B1), B3)))
solver.add(Not(And(B3, Not(A2))))
solver.add(Not(And(B1, A1)))
solver.add(Not(And(Not(A1), B2)))

Final Answer:
A1: False
A2: True
A3: True
B1: True
B2: False
B3: True

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Translation Formal Language Template to Natural Language Puzzle

Code:
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3, C1, C2, C3 = Bools(’A1 A2 A3 B1 B2 B3 C1 C2 C3’)
solver.add(Not(And(Not(A1), Not(A2))))
solver.add(Not(And(Not(B1), Not(A3))))
solver.add(Not(And(B1, Not(C1))))
solver.add(Not(And(Not(B2), Not(C3))))
solver.add(Not(And(Not(B1), A1)))
solver.add(Not(And(Not(A1), Not(C2))))
solver.add(Not(And(C1, Not(A2))))
solver.add(Not(And(A2, Not(B3))))
solver.add(Not(And(Not(A1), C2)))
solver.add(Not(And(C2, B3)))
solver.add(Not(And(A1, B2)))
solver.add(Not(And(A1, Not(A3))))

Background:
So many times have I walked on ruins, the remainings of places that I loved and got used to..
At first I was scared, each time I could feel my city, my current generation collapse, break
into the black hole that thrives within it, I could feel humanity, the way I’m able to feel my
body.. After a few hundred years, the pattern became obvious, no longer the war and damage
that would devastate me over and over again in the far past was effecting me so dominantly.
It’s funny, but I felt as if after gaining what I desired so long, what I have lived for my entire
life, only then, when I achieved immortality I started truly aging.

Integrate all information from the Z3 code into the Background to generate a challenging
natural language content. Do not refer to or quote the code directly, and do not use symbolic
identifiers (e.g., ”A1”, ”C5”) in the narrative.
Begin with a straightforward version in natural language, then progressively refine it to be
more complex, either by using more sophisticated vocabulary, crafting a more intricate or
abstract setting, or adding layers of conceptual difficulty.
Ensure that each constraint encoded in the Z3 code is explicitly represented in the final
version of the natural language content, each constraint should be clearly reflected one by
one, while the final solution must remain undisclosed.
After that, provide natural language definitions for each variable used in the code. Each line
formatted as: ”[Variable name]: [Definition in the natural language content]”.

Conclude your response with following format:
Natual Language Content:
[content]
Difinitions:
[definitions]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Translation Natural Language Puzzle to Formal Language Template

Content:
The story of ”The Really Bad Decision” is a cautionary tale of hubris, miscommunication,
and the consequences of half-hearted efforts. At its core, it is a narrative of interdependent
decisions and systems gone awry, where the failure of one element leads to cascading con-
sequences. Bryan, the reluctant namemaker, found himself at the center of this chaos, tasked
with naming a project that would eventually become synonymous with disaster. The Z3
code, with its intricate web of constraints, serves as a mathematical model of the interdepen-
dencies and failures that defined this ill-fated endeavor. Below, each constraint from the Z3
code is integrated into the narrative, reflecting the complex interplay of decisions, missteps,
and systemic failures that led to the eventual collapse.
Not(And(Not(A2), Not(B1))): This constraint prohibits the simultaneous absence of
A2 and B1. In the context of the story, A2 could represent the implementation of a critical
safety protocol, while B1 might symbolize the timely dissemination of information to key
stakeholders. The constraint signifies that the project cannot proceed if both these critical
elements are missing. The failure of A2 (the safety protocol) and B1 (communication) would
have been a recipe for disaster, as the lack of both would have left the project vulnerable to
unforeseen risks.
...
Not(And(A3, Not(C2))): This constraint ensures that A3 and C2 cannot both be present
and absent, respectively. A3 might represent the implementation of a backup system or
contingency plan, while C2 could symbolize the allocation of resources to address potential
crises. The presence of A3 (Backup system) and the absence of C2 (resource allocation)
might indicate a situation where backup systems (A3) are in place but there are no resources
allocated (C2) to address potential crises, leading to a potentially fragile system that lacks the
resources to respond to unforeseen challenges. This constraint underscores the importance
of having both backup systems and resource allocation in place to ensure the resilience of
the project.

Definitions:
A1: Represents the implementation of a critical initial design review or feasibility study.
...
C3: Represents the implementation of a fail-safe mechanism.

Based on the Definitions, translate the Natural Language Content into Z3 code. Each con-
straint consists of a forbidden combination of assignments for two variables.
Conclude your response with ”Final Z3 Code:”. Then present the generated code directly,
do not enclose it in quotation marks or code blocks.

For example:
Final Z3 Code:
from z3 import *
solver = Solver()
A1, A2, A3, B1, B2, B3 = Bools(’A1 A2 A3 B1 B2 B3’)
solver.add(Not(And(Not(A2), Not(B1))))
solver.add(Not(And(A2, Not(B3))))
solver.add(Not(And(Not(B3), Not(B2))))
solver.add(Not(And(Not(A3), Not(A1))))
solver.add(Not(And(Not(B1), B3)))
solver.add(Not(And(B3, Not(A2))))
solver.add(Not(And(B1, A1)))
solver.add(Not(And(Not(A1), B2)))

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D IMPLEMENTATION AND EXPERIMENT SETUP

D.1 TRANSLATOR IMPLEMENTATION

In our translator implementation, we leverage the training set from the well-known logic puzzle
benchmark Knights-and-Knaves Xie et al. (2024) as the source of real-world puzzles and employ
the Qwen3-30B-A3B model Yang et al. (2025a) as the LLM solver. To verify the isomorphism be-
tween Formal Language Template 1 and the back-translated Formal Language Template 2, we apply
Algorithm 2. For measuring the similarity between the Real-World Puzzle and the back-translated
Natural Language Puzzle, we compute the BLEU score using the Qwen3-30B-A3B tokenizer. We
extend the verl framework (Sheng et al., 2025) to enable the training of two translators based
on the r1-distill-Qwen-32B model (Guo et al., 2025), each equipped with an independent LoRA
adapter Hu et al. (2022). Training is performed using the GRPO algorithm (Guo et al., 2025) and
the AdamW optimizer (Loshchilov & Hutter, 2019). The two translators are trained alternately on
two 8-card H800 GPU nodes with a learning rate of 1 × 10−6. For decoding, we configure the
parameters as follows: temperature = 1.0, top-p = 1.0, and LoRA rank = 8.

D.2 EXPERIMENT SETUP

For evaluation on both the formal language templates and the natural language puzzles, we em-
ploy four state-of-the-art reasoning models: Qwen3-30B-A3B, DeepSeek-R1, Gemini-2.5-Pro, and
GPT-o3. The Qwen3-30B-A3B and DeepSeek-R1 models are deployed on our in-house 8-card
H800 GPU cluster, while Gemini-2.5-Pro and GPT-o3 are accessed through their official APIs.
The version of DeepSeek-R1 used in our experiments corresponds to the original release on Jan-
uary 20, 2025. The decoding parameters are configured as follows: temperature = 0.0, top-p =
1.0.

For the reinforcement learning of the Qwen3-30B-A3B model on the task of translating natural
language puzzles back into formal language templates, we adopt the same configuration and reward
function as used for the translator.

D.3 HUMAN ANNOTATION

For the participants tasked with determining which puzzle in the pair is more likely to be unsolvable
by the Qwen3-30B-A3B model based on the provided examples, we invited three volunteers with
strong logic puzzle skills who were able to correctly solve at least 3 out of 5 3× 3 natural language
puzzles, thereby demonstrating a certain level of logical problem-solving ability.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 OVERLAP CHALLENGING INPUT FORMULATION

Qwen3-30B Deepseek-R1

Qwen3-30B FL 97.6 99.8
NL 31.6 73.0

Deepseek-R1 FL 95.7 97.8
NL 42.5 36.1

Table 3: Reasoning performance of LLMs when
evaluated against different answer models.

We switched the answer model in our translation
framework from Qwen3-30B-A3B to DeepSeek-
R1, and re-collected 100 qualified pairs of formal
language templates and natural language puzzles
under the variable number setting of 3 × 3. As
shown in Figure 3, DeepSeek-R1 not only outper-
forms Qwen3-30B-A3B on formal language tem-
plates but also demonstrates stronger resilience
to weak input formulations that adversely affect
Qwen3-30B-A3B. Nevertheless, we observe that
weak input formulations designed for DeepSeek-
R1 also similarly impact Qwen3-30B-A3B. This suggests that while a stronger model may achieve
greater robustness against perturbations in input formulation, certain categories of weaknesses are
consistently shared across models.

E.2 NATURAL LANGUAGE PUZZLE FORMULATION DIVERSITY

0.4 0.2 0.0 0.2 0.4
Dim 1 (whitened)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

D
im

 2
 (w

hi
te

ne
d)

Natural Language
SAT Template
K and K

Figure 9: The embedding distribution compari-
son, reduced to two dimensions using PCA.

Beyond the challenge of formulation, our trans-
lation framework from formal language tem-
plates to natural language puzzles also demon-
strates greater diversity compared to template-
based methods. Specifically, we embed the for-
mal language templates, the widely used nat-
ural language puzzle benchmark Knights-and-
Knaves (Xie et al., 2024), and our constructed
natural language puzzles using the Qwen3-30B-
A3B tokenizer. The resulting embeddings are
then projected into two dimensions using Princi-
pal Component Analysis (PCA).

As shown in Figure 9, both the formal language
templates and Knights-and-Knaves puzzles ex-
hibit concentrated distributions within relatively
small regions. In contrast, our generated nat-
ural language puzzles display a far more dis-
persed distribution, suggesting that our transla-
tion framework effectively captures a broader and
more diverse range of input formulations.

21

	Introduction
	Methodology
	Formal Language Templates Construction
	Natural Language Puzzle Concretization
	Mitigate Strategy

	Empirical Results
	Performance Degradation after Concretization
	Performance Mitigated after Abstraction

	Analysis
	Input Formulation Leads to Misunderstanding
	Reasoning Attention Dispersed Across Non-Reasoning Tokens
	Formulation Conflict Weakens Reasoning
	May not fit well with human intuition

	Related Work
	Formulation Sensitivity of LLMs
	Translation from Formal Language to Natural Language

	Conclusion
	Algorithms
	Proof of Constraint Bounds
	Prompt
	Implementation and Experiment Setup
	Translator Implementation
	Experiment Setup
	Human Annotation

	Additional Experimental Results
	Overlap Challenging Input Formulation
	Natural Language Puzzle Formulation Diversity

