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Abstract

Attention mechanisms have revolutionized se-
quence learning but suffer from quadratic compu-
tational complexity. This paper introduces Lattice,
a novel recurrent neural network (RNN) mecha-
nism that leverages the inherent low-rank struc-
ture of K-V matrices to efficiently compress the
cache into a fixed number of memory slots, achiev-
ing sub-quadratic complexity. We formulate this
compression as an online optimization problem
and derive a dynamic memory update rule based
on a single gradient descent step. The resulting
recurrence features a state- and input-dependent
gating mechanism, offering an interpretable mem-
ory update process. The core innovation is the
orthogonal update: each memory slot is updated
exclusively with information orthogonal to its cur-
rent state hence incorporation of only novel, non-
redundant data, which minimizes the interference
with previously stored information. The experi-
mental results show that Lattice achieves the best
perplexity compared to all baselines across di-
verse context lengths, with performance improve-
ment becoming more pronounced as the context
length increases.

1. Introduction
Sequence mixing approaches like state space models
(SSMs) (Gu et al., 2021; 2020; 2022; 2020; Mehta et al.,
2022) and linear attention variants (Katharopoulos et al.,
2020; Choromanski et al., 2020) have recently gained re-
newed interest as promising alternative to softmax attentions.
While traditional SSMs, with their inherent linear recurrent
structure, offer parallelization during training, they often
struggle to match the expressivity of standard attention. Lin-
ear attention methods reduce complexity by approximating
the attention matrix but can sacrifice accuracy. More re-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

cently, input-dependent SSMs (Gu & Dao, 2023; Dao & Gu,
2024) and modern gated RNNs (Orvieto et al., 2023; De
et al., 2024; Beck et al., 2024) have demonstrated enhanced
expressiveness and improved in-context learning while en-
abling parallelization through techniques like associative
scan (Blelloch, 1990; Smith et al., 2023; De et al., 2024).
However, a fundamental challenge remains: their ability
to efficiently compress and summarize information over
very long contexts is often limited by their fixed-size hidden
states (Arora et al., 2024). Moreover, their linear updates to
memory lack efficient mechanisms for selective interaction
between stored information and incoming keys, limiting
their ability to discard irrelevant or redundant content dy-
namically. On the other hand, global convolutions (Romero
et al., 2021; Li et al., 2022; Poli et al., 2023) and their input-
dependent variants (Karami et al., 2019; Karami & Ghodsi,
2024) offer another direction by dynamically adapting con-
volutional filters to the input, but they are not inherently
compatible with causal modeling, used in autoregressive
language generation.

The update rule in the (gated) linear attention, and its gated
variant, typically relies on an additive outer product of
input-dependent representations, which can be generally
expressed as: St = St−1 + fg(xt)⊗ fv(xt) where fv(xt)
is an embedding of the input token and fg can be interpreted
as an input gate that controls the writing intensity.1 While
this linear rank-one modification to the state matrix (also
referred to as Hebbian-like update rule) enables efficient
parallel computation, it suffers from a key limitation: the ad-
ditive update term in the recurrence is not directly aware of
the current memory state St−1 and operates independently
of it. This lack of state awareness can cause key interference
and eventually lead to overcapacity regime (Schlag et al.,
2021), where multiple tokens attempt to write to the same
memory slot when the size of memory is shorter than the
sequence length.

Based on this insight, ideally, the writing intensity of the
t-th token xt to the j-th memory slot, (S)j,: , should de-
pend on the interaction between the new token itself and the
content of that slot. From a gating perspective, the gating
mechanism should have access to the current state of the

1These two are also called role and filler vectors in tensor
product representation (Smolensky, 1990).
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Figure 1: A geometric visualizing of the proposed update rule. (a) A single current state vector, st−1 = St−1[: , i], an incoming token
representation, ht, and its component orthogonal to the current state, h⊥st−1

t . (b) Comparison of the updated state according to the
proposed update rule (st = st−1 + αi,t h

⊥st−1
t ) and the updated state resulting from the superposition recurrence update of the standard

linear attention (ŝt = st−1 + αi,t ht, shown with a dashed arrow). For simplicity, a unit writing intensity (αi,t = 1) is assumed in both
recurrent update rules. (c) Visualization of the relationships between d×m state matrices over time in state-dependent compression,
depicted as interconnections of nodes in a 3D lattice. Each memory slot (state vector) is represented by a unique color.

memory to make informed decisions about which informa-
tion to add or discard (Hochreiter et al., 1997; Gers et al.,
2002). This requires a state-dependent gating mechanism
that dynamically modulates updates based on the current
memory state. In the following section, we approach this
problem by framing it as an online optimization problem
and drive an optimal update rule to compress and retain
essential information from a sequence.

2. Compression Layer
State-Dependent Compression for Unbounded Caches
Our objective is to develop a compression model that dy-
namically updates and maintains a compact representation
of the contextual history—encoded in the key and value
caches of a transformer model—in a streaming manner. As
new tokens arrive, the model selectively distills and stores
essential contextual information into a compressed memory
matrix. This enables computationally efficient querying,
as the memory read-out is processed using the compressed
state, i.e., yt = Str̂t instead of querying from the full cache.
Here, r̂t represents a retrieval vector analogous to the atten-
tion weights in the standard attention layer.

This lossy compression approach involves a trade-off be-
tween computational efficiency, memory usage, and query
precision. A more compact memory representation (i.e.,
smaller m) reduces computational cost and memory foot-
print, but at the expense of information loss and lower fi-
delity in reconstructing the original context, thereby dimin-
ishing the overall expressivity of the model. We aim to
design an optimal lossy compression layer that minimizes
the precision loss. We can formulate this problem as recon-
structing the input as: xt ≈ x̃t = Stkt, where x̃t is the

reconstructed input, St represents the dynamically updated
memory matrix, and kt is a latent representation vector.

Inspired by classical representation learning techniques such
as dictionary learning, sparse coding, and structured matrix
factorization (Mairal et al., 2009; Lyu et al., 2020)2, we
interpret our approach as dynamically learning and updating
basis vectors (a.k.a. dictionary atoms) and their correspond-
ing latent coefficients (analogous to sparse codes).

2.1. Decoding Layer

For each input sequence, we model a decoding layer, de-
noted as g(kt;St), operating on the latent representation kt
and is parameterized by the state matrix St. Unlike stan-
dard neural network layers, here we aim to dynamically
update St, over the course of a sequence, thereby effectively
memorizing and encoding the historic context up to time
t. This makes it a decoding layer with an internal state, or
equivalently, a fast decoding layer. Specifically, each token
embedding vt is paired with its corresponding latent rep-
resentation (code) kt, and the decoding function g(kt;St)
aims to reconstruct vt. Since, the goal is to minimize the
reconstruction error, we formulate an optimization problem
that minimizes the following `2 loss as its objective at each
time step:

Lt = ‖g(kt;St)− vt‖2, St ∈ Rd×m, vt ∈ Rd, kt ∈ Rm

This is referred to as compression loss throughout this paper.
The latent representation kt is generated by a model-based

2This problem has been studied under various names over
the decades, including dictionary learning, factor analysis, topic
modeling, and component analysis, each with slightly different
constraints and emphases (Lyu et al., 2020).
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encoder network, implemented as a linear projection of the
input: kt = Wkxt where Wk ∈ Rm×dx is a projection
weight matrix. This weight remains fixed during the internal
state updates and is trained jointly with the rest of model
parameters in the outer training loop. This setup aligns with
meta-learning frameworks (Schmidhuber, 1992; Thrun &
Pratt, 1998; Andrychowicz et al., 2016) or bilevel optimiza-
tion approaches (Liu et al., 2022; Chen et al., 2022).

The proposed framework consists of two distinct types of
parameters: (I) the internal states of the compression layers,
St, which dynamically store in-context information for each
sequence, and (II) outer model parameters, including the
projection layer weights, collectively denoted as W , which
capture the broader patterns in the training set. This leads
to a bilevel learning process, composed of:
• Inner Loop (State Update): A fast update level that

adapts the internal states St for each token within
a sequence by minimizing the compression loss in
equation ??. Each sequence effectively serves as a
dataset for the inner loop, which encodes in-context
information into a sequence of evolving states {St}Tt=1.
Throughout this process, the outer model weights, W ,
remain frozen.

• Outer Training Loop: The regular training of the neural
network that learns W by minimizing the average loss
across all training sequences for the (self-)supervised
learning task. This slower level loop typically employs
standard optimizers such as ADAM (Kingma & Ba,
2014) and learns generalizable patterns in the training
dataset.

The focus of this work is on designing an optimal update
rule for the memory states. Due to its streaming nature, a
standard approach for a sequence model is to treat the inner
loop as an online regression problem and employ steep-
est descent. Specifically, the internal state is dynamically
updated using a single gradient descent step per token:

St = St−1 − γt∇SL(St−1,vt,kt) (1)

This recursive update yields a sequence of states {St}Tt=1,
where each new state St is a nonlinear function of the current
state and the current input tokens, ensuring a causal and
context-dependent evolution of the internal state.

The gradient of the reconstruction loss with respect to St−1
can be computed using the chain rule:

∇SLt = Gt(St−1,kt,vt)

= 2 (g(kt;St−1)− vt)>∇S
g(kt;St−1) (2)

where: Jg := ∇
S
g(kt;St−1) is the Jacobian of g(·). In

practice, the term (g(kt;St−1)− vt)>Jg can be efficiently
computed using the vector-Jacobian product (vjp) func-
tionality available in modern machine learning frameworks.
This avoids explicitly forming the full Jacobian matrix and
leverages efficient automatic backpropagation.

2.1.1. STATE NORMALIZATION

In dictionary learning and subspace learning, normalizing
basis vectors (dictionary atoms or principal components) is a
common practice. Motivated by this, we apply column-wise
normalization to each state vector within the state matrix.
Consequently, the decoding function is defined as:

v̂t = g(kt;St) = φ(St)kt

with the corresponding reconstruction loss:

Lt = ‖φ(St)kt − vt‖2, vt ∈ Rd, kt ∈ Rm (3)

This implies that at each time step, the internal states of
the compression layer are updated to ensure that the linear
combination of the normalized state vectors closely approx-
imates the target vector vt. To derive the closed-form for
gradient of this objective, we define: Φ = [φ1, ...,φm],
where φi = si

‖si‖ and si is i-th column of the state (i.e.,
the i-th basis vector), and define the reconstruction error as
et := φ(St−1)kt − vt, that is the difference between the
decoding based on the current state and the target, vt. Then,
by the chain rule, the gradient of the loss with respect to S
is given by:

∇SLt = e>t
[
kt1Jφ(s1), . . . , ktmJφ(sm)

]
= e>t ×1

[
Jφ(s1), . . . , Jφ(sm)

]
� k>t (4)

where Jφ(si) =
P(si)

‖si‖
=

1

‖si‖

(
I− sis

>
i

‖si‖2

)
. (5)

where G :=
[
J1, . . . ,Jm

]
is a d× d×m tensor

formed by stacking Jj along the last dimension. The
vector-tensor product is defined as Q = e> ×1 G =[
e>J1, . . . , e

>Jm
]

3. In this equation, the matrix P(si) =

P(φi) :=
(
I− sis

>
i

‖si‖2

)
is known as the projection ma-

trix onto the orthogonal complement of si in linear alge-
bra (Strang, 2000, §3.3).

This derivation reveals an interesting and interpretable
update rule. A key insight is that each slot in memory
(column of the state si) is nonlinearly updated, by the
the projection of the reconstruction error, et onto the
space orthogonal to the that slot si. The update rule
suggests an interpretable decomposition of the et into
two components: I) e⊥si

t , The component orthogonal
to si, which is used to update the memory slot. II) e‖si

t ,
The component of ei aligned with si, which is discarded
in the update rule, ensuring non-redundant updates.

3This operation is implemented using
torch.einsum(’i,ikj->kj’, e, G) in PyTorch.
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This implies that each memory slot updated only with
new information that is not already captured in that slot.
The scalar ki,t acts as a writing intensity, determining
the contribution of the t-th token to the i-th memory slot.
Figure 1 visualizes this orthogonal update rule.

In the following, we explore two related formulation of the
compression problem.

2.2. Encoding layer.

Principal Component Analysis (PCA) can be formulated as
a linear regression problem, where the data is projected onto
a lower-dimensional latent space (Goodfellow et al., 2016,
§5.8) Inspired by this regression perspective, we define a
encoding layer as: k̂t = f(vt;St) = φ(St)

> vt with the
corresponding `2 loss:

Lt =
∥∥φ(St)

> vt − kt
∥∥2 , vt ∈ Rd, kt ∈ Rm (6)

From this, we can derive a closed-form expression for the
gradient, resulting in the recurrence:

St = St−1 − γtv>t ×1

[
P(s1)
‖s1‖ , . . . ,

P(sm)
‖sm‖

]
� e>t (7)

An alternative approach to encoding is to maximize the dot-
product similarity between the encoded representation and
the target vector, leading to the following objective:

Lt = −〈φ(St)
>vt, kt〉, vt ∈ Rd, kt ∈ Rm (8)

St = St−1 + γtv
>
t ×1

[
P(s1)
‖s1‖ , . . . ,

P(sm)
‖sm‖

]
� k>t (9)

General form. The formulations presented in Eqs. (4, 7,
and 9) offer principled approaches for designing compres-
sion layers in our framework. In general, we refer to this
approach as Orthogonal State Recurrence (OSR), which uni-
fies these update rules into a common framework formulated
as follows

{yt}Tt=1 = OSR({kt,vt, qt}Tt=1) (10)

:=

{
St = St−1 − γth>t ×1

[
P(s1)
‖s1‖ , . . . ,

P(sm)
‖sm‖

]
� c>t

yt = Stqt

Here, the definitions of ht and ct vary depending on the
specific layer:

{ht = et, ct = kt}, Decoding Layer
{ht = vt, ct = et}, Encoding Layer
{ht = −vt, ct = kt}, Similarity Objective

Table 3 provides a summary comparing the online gradi-
ent descent-based recurrent corresponding to the proposed
compression layers and those of existing RNNs.

2.3. Stabilizing Memory Updates via Normalization

At each recurrence step, each memory slot is updated by
incorporating only the component of the new information
that is orthogonal to its current state. Formally, we up-
date the i-th memory slot as si,t = si,t−1 + ∆si,t, where
∆si,t := αi,t h

⊥si,t−1

t , with h⊥si,t−1

t denoting the com-
ponent of the incoming token that is orthogonal to si,t−1
and αi,t an input-dependent writing intensity. While this
update scheme avoids interfering with the existing mem-
ory, through adding only novel, non-redundant informa-
tion, it leads to a monotonic increase in the norm of si
with each update, as shown by the Pythagorean theorem:
‖si,t‖2 = ‖si,t−1‖2 + ‖∆si,t‖2. This can cause numerical
instability and state magnitude explosion or may dilute the
effective representation of information over time.

To address this issue, we constrain the feasible set for the
state vectors to a unit sphere C = {s ∈ Rd | ‖s‖ = 1}, and
enforce this constraint by projecting the Euclidean update
back onto C, denoted by PC(·), at each time step. Therefore,
the effective update becomes

si,t = PC(si,t−1 + ∆si,t) = βi,t (si,t−1 + ∆si,t) , (11)

where βi,t =
(
1 + ‖∆si,t‖2

)− 1
2 , assuming ‖si,t−1‖ = 1.

This normalization step, achieved by multiplying with the
scalar βi,t, ensures that the updated state si,t remains within
a bounded region while preserving the steepest-descent di-
rection, thus maintaining stability and allowing the model
to effectively store relevant information. In addition, this
normalization of the recurrence terms acts analogously to a
forgetting gate in RNNs, and also normalizes the step size
of the update term, a technique known to improve conver-
gence in optimization algorithms such as Adagrad (Duchi
et al., 2011) and Adam (Kingma & Ba, 2014). In the experi-
ments, we initialize the state matrix, S0, with orthonormal
columns. In the following proposition, we formalize the
relation between the proposed Normalized Orthogonal State
Recurrence (NOSR) and Riemannian optimization (Absil
et al., 2009; Boumal, 2023).
Proposition 2.1 (Equivalence to Gradient Descent on Rie-
mannian Manifold). Let C = {s ∈ Rd | ‖s‖ = 1} be
the unit sphere. Then, the projected gradient update of the
form si,t = PC(si,t−1 + ∆si,t) (as in equation 11), where
the update term ∆si,t lies in the subspace orthogonal to
si,t−1 (cf. equation 10), is equivalent to a retraction step in
Riemannian optimization (Bonnabel, 2013).

3. Experiments
We evaluate the proposed architecture across multiple lan-
guage modeling tasks, benchmarking its performance on
both short-context and long-context datasets. Experiment
details are provided in Appendix D.
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Figure 2: Model perplexity as a function of context length for models of size 110M parameters. (Left) : results for the Books dataset
vs context length {512, 1024, 2k, 4k, 8k, 16k} ; (Right) : results for The Pile dataset vs context length {2k, 8k}. Note that pre-training
Transformers from scratch often performs poorly on very long contexts (e.g., 16k); the common approach is finetuning from shorter-context
models (Touvron et al., 2023). Therefore, the baseline pre-trained Transformer results shown here are limited to context lengths T ≤ 8k.

Table 1: Performance comparison of language models of size 340M parameters trained
on the Pile dataset (context length 2k, 7.5B tokens). Results include language modeling
perplexity on the test set (first column) and accuracy of the trained models on zero-shot
common-sense reasoning tasks.

Model Pile LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ ↑

340M params / 7.5B tokens
Transformer++ 8.48 30.64 52.01 26.47 49.57 28.75 22.4 34.97
Linear-Attention 9.04 29.33 55.86 27.33 49.64 34.33 23.78 36.71
Mamba2 8.62 30.78 57.07 28.83 51.54 35.94 22.92 37.85
DeltaNet 8.67 30.71 58 28.93 49.33 35.52 24.03 37.75
Gated-DeltaNet 8.58 30.07 57.51 28.77 50.91 35.73 22.83 37.64
TTT 8.65 30.44 56.91 28.5 50.99 34.25 23.09 37.36

Lattice-DEC (4) 8.27 31.33 57.94 29.67 51.07 36.53 24.29 38.47
Lattice-ENC (7) 8.28 31.18 57.23 29.5 50.51 35.77 22.49 37.78
Lattice-SIM (9) 8.28 31.2 57.51 30.07 50.99 35.94 23.86 38.26

Table 2: Ablation study evaluating im-
provements upon the linear DeltaNet archi-
tecture (Yang et al., 2024b). All models
have 125M parameters and were trained on
The Pile dataset. The last row corresponds
to the final Lattice configuration.

Configuration ppl ↓

DeltaNet (Yang et al., 2024b) 11.62
TTT (Sun et al., 2024) 11.59

Lattice

+ orthogonal recurrence (4) 11.26
+ normalized projection (11) 10.94
+ forget-gate (15) 10.94

The results reported in Table 4 and Table 1 (also in Fig-
ure 2) demonstrate that Lattices consistently achieve the
best perplexity compared to all baselines across a range of
context lengths. Importantly, the performance gains of Lat-
tice relative to other linear RNNs become more pronounced
as the sequence length grows. This trend highlights the
promise of the proposed approach for tasks requiring long-
context, where the proposed effective memory management
is crucial for maintaining model expressivity and efficiency.
Furthermore, the performance of the trained models on vari-
ous zero-shot common sense reasoning tasks are reported
in table Table 1. As the results show, Lattice outperforms
all the baseline models on these benchmarks, achieving the
highest average accuracy.

Ablation. In this study, we ablate key components of the
Lattice to evaluate the contribution of each to the overall
performance. The results in Table 2 underscore the signifi-
cance of state normalization (Equation 9) and normalized
projection (Equation 11) to the model’s overall performance.
Furthermore, our analysis indicates that the forget gate’s

impact on the overall performance is negligible, suggesting
that the normalized projection introduced in Equation 11
inherently acts as a forgetting mechanism.

4. Conclusion
This work introduced a novel recurrent neural network mech-
anism designed for efficient information compression into
a matrix-valued state with a limited number of memory
slots. We approached this problem by framing it as an on-
line optimization problem, deriving the memory’s dynamic
update rule from a single gradient descent step. The result-
ing recurrence features a state- and input-dependent gating
mechanism, leading to an interpretable memory update pro-
cess. A core feature of this mechanism is that each memory
slot is updated exclusively with information that is orthogo-
nal to its current state. This orthogonal update ensures that
only new, non-redundant data is written into memory and
minimize (reduce) the interference with previously stored
information.
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A. Related Works
Fast Weight Programmers and Test-Time Training. The two-stage learning process adopted in our work draws inspi-
ration from the concepts of Fast Weight Programmers (FWPs) (Schmidhuber, 1992; Schlag et al., 2021) where a “slow"
network dynamically updates the parameters of a “fast" network. In our framework, the compression layer in the inner
loop can be seen as the fast network, with its memory states, St, acting as “fast weights" that are rapidly adapted to the
evolving contextual information. The outer loop, conversely, learns the generalizable parameters of the slow neural network,
optimized across the entire training dataset. The continual reprogramming of fast network weights by slow models (Irie et al.,
2021; Clark et al., 2022) is broadly recognized as Fast Weight Programming, also referred to as synaptic modulation (Von
Der Malsburg, 1994) or input-dependent parameterization (Karami et al., 2019; Gu & Dao, 2023; Karami & Ghodsi, 2024),
a technique known to enhance model expressiveness. In our architecture, the parameterization of the linear projections by
the slow network facilitates this fast adaptation within the inner loop. Similarly, Test-Time Training (Sun et al., 2020; 2024;
Behrouz et al., 2024) is a paradigm where a model adapts to each test instance by optimizing a self-supervised objective
before making predictions. Our compression layer effectively implements a form of test-time training by dynamically
updating its state based on the contextual information of the input sequence during inference. In contrast to aforementioned
works, our approach introduces an explicit learning mechanism for the “fast" compression layer, leading to an interpretable
update rule for its internal states that optimally compresses the latest token into memory at test time.

Adaptive Filters. Classical adaptive filtering algorithms (Haykin, 2002) iteratively update their weights to minimize
prediction error while efficiently adapting to streaming, non-stationary data. These methods share core principles with the
online learning and dynamic memory updates employed in our work. In particular, the gradient descent-based update rules
we adopted for memory adaptation are closely related to the Least Mean Squares (LMS) algorithm—also known as the
Widrow-Hoff algorithm (Widrow & Hoff, 1988)—which updates weights using the instantaneous gradient of the squared
error. Furthermore, variations such as Normalized Least Mean Squares (NLMS), which involves a normalized step size for
improved convergence, and Leaky LMS, which incorporates a leakage factor used to prevent unbounded growth of filter
weights, find parallels in our use of normalization mechanisms to stabilize memory update (Equation 11) and state decay
(Equation 15). While these adaptive filtering methods rely on linear weight updates, our approach introduces a non-linear
memory update rule that incorporates only the non-redundant components of the new token.

Matrix Factorization Matrix factorization and dictionary learning are classical representation learning techniques that
aim to extract essential features from complex data by approximating it as a linear combination of a reduced set of basis
vectors, also known as dictionary atoms. This concept is also conceptually related to topic modeling, where the objective is
to extract important features (topics) from a complex dataset to obtain a reduced representation (Blei, 2009; 2012). Mairal
et al. (2010) proposed an online optimization algorithm for structured matrix factorization and sparse coding for i.i.d.
stream of data, which efficiently scales to large datasets. Subsequently, Lyu et al. (2020) extended this work by proving
the convergence of such an online algorithm in non-i.i.d. settings, where the sequential data forms a Markov chain. In a
related area, Karami et al. (2017) formulated the identification of SSMs (a.k.a. linear dynamical systems) as a multi-view
matrix factorization problem and proposed a convex optimizer for its solution. In contrast to the online matrix factorization
in (Mairal et al., 2009), which employs a model-free method to learn the latent coefficients (codes) and leverages block
coordinate descent for optimization, our method formulates the memory update as a fast internal optimization procedure.
We incorporate a simple encoding layer to generate the latent representation, kt, and integrate it into a larger deep neural
network training procedure.

Remark A.1 (Parallel and Hardware Efficient Implementation). Various methods have been explored to enable parallel
evaluation of non-linear RNNs. One strategy, as proposed by Lim et al. (2023); Gonzalez et al. (2024), involves casting
inference as finding the solution to a fixed-point equation, thereby achieving parallelism. In another approach, Sun et al.
(2024) introduced a parallel chunkwise solution using mini-batch gradient descent. This method divides a sequence into
chunks and utilizes the state at the beginning of each chunk to compute the gradients for all time steps within that chunk
in parallel. Exploring parallel solutions for our proposed non-linear orthogonal state recurrence remains a promising
direction for future work.

Remark A.2 (Delta Rule). Removing the non-linearity φ(·) from the compression layer simplifies the online gradient
descent update rule in (1, 2) to

St = St−1 − γt(St−1kt − vt)k>t = St−1(I− γtktk>t ) + γtvtk
>
t (12)
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This linear update rule recovers the delta rule (Widrow & Hoff, 1988), known for its higher memory capacity (Prados & Kak,
1989) and has been demonstrated as an effective form of linear recurrence, particularly in associative recall tasks (Schlag
et al., 2021; Yang et al., 2024b). Similar to linear transformers, the second term writes into memory via the outer product
vtk
>
t , while the first term implements a forgetting mechanism, controlled by the new key kt, to remove old information from

memory. Here, we propose a more efficient update rule based on the nonlinear interactions between the memory and the
non-redundant information of the new keys.

Summary of contributions In this paper, we propose Lattice, a novel approach designed to addresses quadratic complexity
of the attention layers Our method compresses the cache into a fixed number of slots by leveraging the inherent low-rank
structure of K-V matrices in an online optimization framework. This approach allows us to derive efficient recursive
update rules for the memory (representing K-V associations) based on its existing state and the current token, resulting in
sub-quadratic complexity. In contrast to existing SSMs/RNNs, which often rely on heuristics for memory management
and lack explicit optimization for compression, we formulate the compression task as an optimization problem and use
online gradient descent to drive the recurrent update rule for the memory, which results in an interpretable and expressive
non-linear recurrent model. Lattice updates each memory slot exclusively with non-redundant information, specifically by
incorporating only the component of the input token that is orthogonal to the current state of that memory slot.

B. Background
For an input sequence X = [x1, . . . ,xT ], where xt ∈ Rd, the causal Softmax attention mechanism generates output tokens
yt ∈ Rd, by attending to past tokens as:

yt = Vt Softmax(K>t qt) . (13)

Here, the queries, keys, and values are computed by linear projections of the input: qt = Wq xt, kt = Wk xt,
vt = Wv xt, where Wq,Wk, Wv ∈ Rd×d are learnable weight matrices. The key-value memory, represented by the
caches Kt ∈ Rd×t and Vt ∈ Rd×t, stacks the key and value vectors of each new token, leading to linearly growing caches.
The retrieval of relevant information from this key-value cache can be rewritten as a weighted sum: yt = Vt at, where at =
Softmax(K>t qt) ∈ Rt Here, the vector at ∈ Rt is the collection of the attention scores capturing correlations between
t-th token and its historic context (past tokens). Hence, the attention in equation 13 can be seen as a non-linear query from
an unbounded memory. The key-value cache size growth poses a significant memory bottleneck during inference, especially
for long sequences. Additionally, each retrieval operation scales as linearly with sequence length, resulting in an overall
quadratic computational complexity O(T 2) for generating a full sequence of length T .

To address the computational and memory bottleneck of the Softmax attention, various alternatives have been proposed (Tay
et al., 2022). A well-established approach involves employing the kernel trick to replace the softmax with a dot product of
feature maps, φ(qt), φ(kt), (Katharopoulos et al., 2020), commonly known as linear attention (LA). The linear attention
can be expressed as: yt =

(∑t
i=1 viφ(ki)

>) φ(qt)., which can be expressed as following linear recurrent model, also
known as input dependent state-space model (SSM) 4:

{yt}Tt=1 = LA({qt,kt,vt}Tt=1) :=

{
St = St−1 + vt k

>
t , recurrence

yt = Stqt memory read-out
(14)

This representation employs a simple linear recurrence to update the matrix-valued state St, which compactly stores
key-value associations memory at each time step. Importantly, the linearity is key to achieving sub-quadratic parallel
computation during training, using methods such as chunkwise computation (Hua et al., 2022; Kacham et al., 2024) or
parallel scan (Blelloch, 1990; Smith et al., 2023), while retaining a constant-time complexity per token at the inference.

Another approach to maintain bounded computational and memory requirements is to maintain a fixed-size key-value cache,
where the memory matrices K,V ∈ Rm×d are constrained to a fixed length m� T . A simple implementation of this idea
is the sliding window attention which retains the most recent m tokens by maintaining a first-in-first-out (FIFO) queue.
While computationally efficient, sliding window attention suffers from a limited receptive field. This restricts the model’s

4As with many linear attention models, the normalization term, which can cause numerical instabilities (Qin et al., 2022), is dropped
here. Furthermore, identity mapping is used as the feature map, effectively absorbing any transformation into the corresponding projection
layers.
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Table 3: Comparison of the objective functions and their corresponding online gradient descent updates for the proposed and existing
RNNs. We include several linear RNNs for comparison: Linear-Attention(LA) (Katharopoulos et al., 2020), Mamba2 (Dao & Gu,
2024) and DeltaNet (Schlag et al., 2021; Yang et al., 2024b), Gated-DeltaNet (Yang et al., 2024a), and TTT (Sun et al., 2024) It is worth
noting that, after re-scaling, the effective recurrent update of the proposed RNNs becomes St = 1β>t �

(
St−1 + ∆St

)
(equation 11).

LA can be interpreted as online gradient descent with a fixed step size (γt = 1); however, more flexible, input-dependent step sizes are
frequently used in recent RNNs (Orvieto et al., 2023; Qin et al., 2024; Gu & Dao, 2023). Mamba2 and Gated-DeltaNet employ a
forgetting gate, which is equivalent to performing online gradient descent with L2 regularization and regularization factor λt. In Mamba2,
the forget gate is controlled by µt = 1− λt, and the reparameterization for the forget gate and step size of Gated-DeltaNet is discussed
in (Wang et al., 2025). Here, ×1 denotes vector-tensor product defined as e> ×1

[
J1, . . . ,Jm

]
=

[
e>J1, . . . , e

>Jm

]
.

Method Objective Lt Online Gradient Descent Update

Linear-Attention −〈Stkt,vt〉 St = St−1 + vtk
>
t

Mamba2 −〈Stkt,vt〉+
λt

2
‖St‖22 St = µtSt−1 + vtk

>
t

DeltaNet
∥∥∥Stkt − vt

∥∥∥2 St = St−1(I− γtktk
T
t ) + γtvtk

T
t

Gated-DeltaNet
∥∥∥Stkt − vt

∥∥∥2 +
λt

2
‖St‖22 St = µtSt−1(I− γtktk

T
t ) + γtvtk

T
t

TTT
∥∥∥φ(Stkt)− vt

∥∥∥2 St = St−1 − γte>t
P(zt)

‖zt‖
k
>
t

Lattice (Dec) (3)
∥∥∥φ(St)kt − vt

∥∥∥2 St = St−1 − γte>t ×1

[
P(s1)

‖s1‖
, . . . ,

P(sm)
‖sm‖

]
� k
>
t

Lattice (Enc) (6)
∥∥∥φ(St)

>
vt − kt

∥∥∥2 St = St−1 − γtv>t ×1

[
P(s1)

‖s1‖
, . . . ,

P(sm)
‖sm‖

]
� e
>
t

Lattice (Sim) (8) −〈φ(St)
>
vt, kt〉 St = St−1 + γtv

>
t ×1

[
P(s1)

‖s1‖
, . . . ,

P(sm)
‖sm‖

]
� k
>
t

ability to capture long-range dependencies and maintain global context, resulting in a poor recall-memory trade-off (Arora
et al., 2024). On the other hand, a growing body of research has observed that the key-value matrices in the attention often
exhibit structured low-rank (Wang et al., 2020; Chen et al., 2021; Singhania et al., 2024). This insight suggests that instead
of naively truncating memory, we can develop efficient compression techniques that selectively distill and store the essential
context while discarding less relevant or redundant information.

B.1. Forgetting by State Regularization

Similar to how regularization is used in standard neural network training to control the memorization of the model, we can
apply regularization to the states in the inner loop to manage memory retention. Specifically, applying `2 regularization to the
state matrix St yields the regularized objective function: L̂t = ‖φ(St)kt − vt‖2F + λt

2 ‖St‖
2, where λt is the regularization

parameter and ‖ · ‖F denotes the Frobenius norm. Optimizing this differentiable objective using gradient descent results in a
recurrence with state decay for the decoding compression layer (equation 3):

St = µtSt−1 − γt∇SL(St−1,vt,kt), (15)

where the scalar µt = 1− γtλt ∈ [0, 1] acts as a forget gate, controlling the proportion of the past memory that is retained
in the update.

Alternative to `2 regularization, we can induce sparsity in the memory states by applying element-wise `1norm 5, resulting
in the following objective function:

L̂t = ‖φ(St)kt − vt‖2 + λt‖St‖1. (16)

This non-differentiable composite objective can be efficiently optimized using the Proximal Gradient Descent Algorithm,
which iteratively performs a gradient descent with the smooth component and then applies the proximal operator associated
with the non-differentiable regularizer (Parikh et al., 2014). This iterative procedure, commonly known as the Iterative
Shrinkage-Thresholding Algorithm (ISTA) (Parikh et al., 2014; Beck & Teboulle, 2009), yields the update rule :

St = proxγtλt‖·‖1
(
St−1 − γt∇S‖φ(St)kt − vt‖2

)
, (17)

where the proximal operator for the `1 norm corresponds to the shrinkage (soft thresholding) operation, defined as:
proxµt‖·‖1(x) = sign(x) max(|x| − µt, 0). By suppressing small values, this recurrence promotes sparsity in the learned
memory representations.

5The `1 norm is a relaxed version of the hard sparsity constrain, which drives small states toward zero.
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B.2. Computational Complexity

The update rules presented in this work (equation 10) involve computing the projection h⊥si
t = Pht. Given its identity

matrix plus rank-one form, the projection operation reduces to a dot product and a scalar-vector multiplication:

h⊥si
t = ht −

si(s
>
i ht)

‖si‖2
,

avoiding a full matrix-vector multiplication. Therefore, the computational cost of each projection is linear in the state
dimensions leading to an overall complexity of O(dm) for the recurrence in equation 10. Furthermore, by eliminating the
need for vector-Jacobian-product (vjp) computations in the general gradient descent update rule (equation 2), this explicit
form leads to a more efficient and scalable implementation.

Layer Normalization: In the proposed compression layers, normalization was applied to each state column. Alternatively,
Sun et al. (2024) proposed applying normalization on the output of the decoding layer.6 In this case, the decoding function
becomes: v̂t = g(kt;St) = φ(Stkt). This formulation is analogous to applying layer normalization as commonly used in
deep neural networks. As before, we can simplify the gradient ∇SLt to derive an interpretable update rule. Specifically,
let φ(zt) = zt

‖zt‖ , where zt := St−1kt, and define the reconstruction error as et := v̂t − vt. Applying the chain rule, we
obtain:

∂Lt
∂S

= e>t Jφ(zt)k
>
t , where Jφ(zt) =

P(zt)

‖zt‖
=

1

‖zt‖

(
I− ztz

>
t

‖zt‖2

)
Subsequently, the gradient descent update follows a nonlinear recurrence:

St = St−1 − γte>t
P(zt)

‖zt‖
k>t (18)

This nonlinear state recurrence incorporates an outer-product correction based on the projection of the reconstruction error
et onto the orthogonal complement space of v̂t.

Remark B.1. The concept of normalizing the state vectors in our compression model, as described in §2.1, shares
similarities with weight normalization techniques used in deep learning literature (Salimans & Kingma, 2016). Furthermore,
the two interpretations presented above—applying normalization to the output of the decoding layer versus normalizing the
state vectors—offer insights into the rationale behind different normalization schemes commonly used in deep learning, such
as weight normalization and layer normalization (Ba, 2016). Each normalization method plays a distinct role in stabilizing
training and improving generalization.

C. Proofs
C.1. Encoder Layer with State Normalization

The reconstruction loss in this case is

Lt =
∥∥φ(St)

> vt − kt
∥∥2 ,

where St ∈ Rd×m with columns si (for i = 1, . . . ,m), vt ∈ Rd, kt ∈ Rm and φ(St) = [φ1, . . . ,φm] is obtained by
normalizing each column of St; that is, φi = si

‖si‖ . Decomposing the reconstruction error in a per-basis (per-column) form
and defining the reconstruction error,

ei := φ>i vt − (kt)i ∀ i = 1, . . . ,m

Then the loss is Lt =
∑m
i=1 e

2
i . By this decomposition, we can derive the gradient with respect to each column si separately:

∂Lt
∂si

= 2 ei
∂ei
∂si

.

6While the general formulation of TTT (Sun et al., 2024) applies a non-linearity to zt, their implementation specifically utilizes
normalization.
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The Jacobian of the normalized vector φi = si

‖si‖ , is

∇si
φi =

1

‖si‖
(
Id − φiφ>i

)
.

Thus, by the chain rule,
∂(φ>i vt)

∂si
=
∂φi
∂si

vt =
1

‖si‖
(
Id − φiφ>i

)
vt.

Therefore, for each i the gradient with respect to si is

∂Lt
∂si

=
2 ei
‖si‖

P(si)vt = 2 ei
1

‖si‖

(
vt −

si (s>i vt)

‖si‖2

)
, for i = 1, . . . ,m.

Here, the matrix P(si) = P(φi) :=
(
I− sts

>
i

‖si‖2

)
is known as the projection matrix onto the orthogonal complement of si

in linear algebra (Strang, 2000, §3.3). Stacking these column gradients into the gradient with respect to the matrix S we
obtain

∇SLt =

[
∂Lt
∂s1

,
∂Lt
∂s2

, . . . ,
∂Lt
∂sm

]
,

Thus, the closed-form gradient can be expressed as:

∇SLt =

2
(
φ>1 vt − (kt)1

)
‖s1‖

(
Id − φ1φ

>
1

)
vt, · · · ,

2
(
φ>m vt − (kt)m

)
‖sm‖

(
Id − φmφ>m

)
vt

 (19)

=

[
2 e1
‖s1‖

P(s1)vt, · · · ,
2 em
‖sm‖

P(sm)vt

]
�

Proof of Proposition 2.1. Consider the unit sphere C = {s ∈ Rd | ‖s‖ = 1} which is a which is a smooth Riemannian
manifold. Let ∇s`(s), the gradient of the loss `, and let ∇C`(s) be its orthogonal projection from the ambient space Rd
onto the tangent space of the manifold at s, denoted by TC(s).

In our update rule, the gradient term ∆s = αh⊥ s is constructed such that it is orthogonal to s; that is, ∆s ∈ TC(s). Hence,
we have

∇C`(s) = ∇s`(s)

The gradient descent update of ` on the Riemannian manifold C is given by

snew = exps

(
−ηt∇C`(s)

)
,

where exps is the exponential map on the sphere C (Absil et al., 2009; Boumal, 2023).

Replacing the exponential map with its first-order approximation, called retraction step, which projects from the tangent space
onto the sphere manifold (Bonnabel, 2013). Therefore, our projected gradient update of the form si,t = PC(si,t−1 + ∆si,t)
(equation 11) is equivalent to performing a Riemannian gradient descent step with retraction on the manifold C. �

This proposition formalizes that by updating the memory slot with only the orthogonal component and then projecting
back onto the unit sphere, we are effectively performing gradient descent on the Riemannian manifold of unit-norm state
vectors.

D. Experiment Details
Datasets: The Pile is a large-scale, diverse corpus widely used for training and evaluating language models (Gao et al.,
2020). It consists of a mixture of high-quality text sources, including books, academic papers, web content, and technical
documentation. While it contains relatively few sequences exceeding 8k tokens, in this study, we restrict The Pile to a
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x

y
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⊥st−1
t = P(st−1)ht

Orth. complement space of st−1(a)

x
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h
⊥st−1
t = P(st−1)ht

st

ŝt

(b)

Figure 3: An illustration of the proposed update rule. (a) Example of a single memory slot state, st, an incoming token representation,
ht, and its component orthogonal to the current state, h⊥st−1

t . (b) The updated state according to the proposed update rule, st =

st−1 + αi,t h
⊥st−1
t contrasted with the updated state resulting from the superposition recurrence update used in standard linear attention:

ŝt = st−1 + αi,t ht, (dashed arrow). A unit writing intensity (αi,t = 1) is assumed for simplicity in both recurrent update rules.

short-context setting with sequence lengths of 2k or 8k tokens. Books3, on the other hand, is a subset of The Pile that
consists of high-quality, full-length books, commonly used for training language models for long-context evaluations. In the
experiments we used this dataset to test model performance on sequences ranging from 512 to 16k tokens (in increments
of 2× per experiment). The same training setup as The Pile is applied to ensure consistency. Since Books3 contains
structured narratives and long-form content, it provides a rigorous test of a model’s ability to track dependencies over
extended contexts.

For all experiments, the training batch size is fixed at 0.5 million tokens, irrespective of sequence length. This means that for
a given context length T , each batch contains 0.5M/T sequences.

Baseline Models and Model Architecture We compare our method against Transformer++ model (Touvron et al., 2023)
as well as the following sub-quadratic sequence models: Linear-Attention (LA) (Katharopoulos et al., 2020), TTT (Sun
et al., 2024), DeltaNet (Yang et al., 2024b), Gated DeltaNet (Yang et al., 2024a), Mamba2 (Dao & Gu, 2024). As
discussed in the paper, the Lattice layers incorporate `2-normalization on the state, whereas TTT applies `2-normalization
on the output of the decoding layer.

Model Architecture For sub-quadratic sequence models, we adopt the architectural setup used in Mamba (Gu & Dao,
2023), where each sequence-mixing block consists of a pair of short Conv1D layers for the {q,k} pair, which share a linear
projection. A GeLU post-gate is applied to the output of the sequence model. The Transformer++ model, on the other
hand, follows the architecture proposed in LLaMA (Touvron et al., 2023). All the models follow the multi-head structure
introduced in Transformers (Vaswani et al., 2017). The model architecture used for Lattice is illustrated in Figure 4.

Furthermore, the performance of the trained models on various zero-shot common sense reasoning tasks —including
LAMBADA (LMB.) (Paperno et al., 2016), PiQA (Bisk et al., 2020), HellaSwag (Hella.) (Zellers et al., 2019), WinoGrande
(Wino.) (Sakaguchi et al., 2021), ARC-easy (ARC-e) and ARC-challenge (Arc-c) (Clark et al., 2018) commonly used for
benchmarking (Zhang et al., 2024; Yang et al., 2024b)- are reported in table Table 1. As the results show, Lattice outperforms
all the baseline models on these benchmarks, achieving the highest average accuracy.

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

LATTICE: Learning to Efficiently Compress the Memory

Lattice Block
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Input
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Figure 4: (Left) Block diagram of the language model. (Right) The Lattice block. Following the architecture used in Mamba (Gu & Dao,
2023), each sequence mixing block is composed of a pair of short Conv1D for the pair {q, k} and the Lattice is followed by a GeLU
post-gate.

Table 4: Performance comparison of language models of size 110M parameters trained on datasets: the Pile (with context
length of 2k and 8k tokens) and Books (with various context length), Baselines include: Transformer++ (Touvron et al., 2023),
Linear-Attention(LA) (Katharopoulos et al., 2020), DeltaNet (Yang et al., 2024b), Gated-DeltaNet (Yang et al., 2024a),
Mamba2 (Dao & Gu, 2024), and TTT (Sun et al., 2024). The best results are highlighted .

Model Pile (2k) Pile (8k) Books (512) Books (1k) Books (2k) Books (4k) Books (8k) Books (16k)
ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓ ppl ↓

110M params / 2.4B tokens
Transformer++ 11.58 11.75 20.60 19.39 18.89 18.38 18.85 29.41
Linear-Attention 12.56 13.63 21.04 20.18 19.82 19.69 20.34 21.86
Mamba2 11.51 11.42 19.94 18.90 18.34 18.07 18.23 18.48
DeltaNet 11.62 11.40 20.28 19.11 18.33 17.90 18.05 18.12
Gated-DeltaNet 11.31 11.04 19.76 18.60 18.00 17.48 17.40 17.49
TTT 11.59 11.45 20.11 19.03 18.36 18.03 18.05 18.46

Lattice-DEC (4) 10.88 10.51 19.06 17.90 17.14 16.72 16.62 16.97
Lattice-ENC (7) 10.90 10.57 19.11 18.01 17.22 16.80 16.66
Lattice-SIM (9) 10.89 10.66 19.08 17.94 17.23 16.72 16.73 16.82
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