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Abstract001

Formulating information retrieval as a variant002
of generative modeling, specifically using au-003
toregressive models to generate relevant iden-004
tifiers for a given query, has recently attracted005
considerable attention. However, its applica-006
tion to personalized sticker retrieval remains007
largely unexplored and presents unique chal-008
lenges: existing relevance-based generative re-009
trieval methods typically lack personalization,010
leading to a mismatch between diverse user011
expectations and the retrieved results. To ad-012
dress this gap, we propose PEARL, a novel013
generative framework for personalized sticker014
retrieval, and make two key contributions: (i)015
To encode user-specific sticker preferences, we016
design a representation learning model to learn017
discriminative user representations. It is trained018
on three prediction tasks that leverage personal019
information and click history; and (ii) To gen-020
erate stickers aligned with a user’s query intent,021
we propose a novel intent-aware learning ob-022
jective that prioritizes stickers associated with023
higher-ranked intents. Empirical results from024
both offline evaluations and online tests demon-025
strate that PEARL significantly outperforms026
state-of-the-art methods.027

1 Introduction028

With the rise of instant messaging applications,029

online chatting has become an integral part of030

daily communication. Stickers, as expressive vi-031

sual elements commonly used on platforms such032

as WeChat and WhatsApp, play a crucial role in033

conveying emotions and sentiments. As users in-034

creasingly rely on stickers to express themselves,035

personalized sticker retrieval becomes crucial for036

retrieving stickers that match users’ unique commu-037

nication styles and emotional preferences (Konrad038

et al., 2020; Chee et al., 2025).039

Using generative modeling for sticker retrieval.040

Generative retrieval (GR) is an emerging paradigm041

in information retrieval (Tay et al., 2022), where042

the entire corpus is encoded into model param- 043

eters, enabling a single parametric model to di- 044

rectly generate a ranked list of results. Typically, a 045

sequence-to-sequence (Seq2Seq) encoder-decoder 046

architecture is employed to predict the identifiers 047

of documents relevant to a given query. Recent 048

studies have demonstrated impressive performance 049

across various retrieval tasks, e.g., passage retrieval 050

and image retrieval (Zhang et al., 2024, 2018; Tang 051

et al., 2023; Long et al., 2024). 052

However, directly applying existing relevant- 053

based GR methods to personalized sticker retrieval 054

poses unique challenges: (i) Different users pre- 055

fer different stickers. Personalized sticker retrieval 056

should incorporate user-specific information, e.g., 057

personal portraits and historical preferences, rather 058

than relying solely on query-sticker semantic asso- 059

ciations as in existing GR methods. For instance, 060

given the query “Hello”, younger users may pre- 061

fer lively, animated stickers, while older users may 062

favor more restrained or text-based ones. (ii) A sin- 063

gle user’s preference for sticker properties varies 064

with intent. This calls for intent-aware ranking that 065

aligns with the user’s preferences across different 066

sticker properties—be it character IP, visual style, 067

or textual content. For example, for the query “Do- 068

raemon sleeping”, sticker properties related to the 069

Doraemon character should be prioritized. In con- 070

trast, for “good morning”, textual content extracted 071

via OCR may be more important. 072

A personalized sticker retriever. Our goal is to 073

develop an effective PErsonalized-learner for gen- 074

erAtive sticker RetrievaL (PEARL), that can bridge 075

the gap between diverse user expectations and the 076

relevant stickers retrieved by generative modeling. 077

To this end, we need to resolve two key challenges 078

in terms of encoding and decoding. 079

First, How to encode user-specific preferences 080

effectively? In this work, we consider that user- 081

specific preferences are mainly determined by the 082

1



user’s age and gender, as well as historical click-083

through data. In GR, generating document iden-084

tifiers using dense document representations has085

been proven effective (Zhou et al., 2022; Li et al.,086

2024). However, user-specific information has not087

been adequately considered in existing studies. To088

address the issue, we first categorize users based089

on their age and gender into distinct user groups,090

and then for each user group, we design a discrimi-091

native representation learning model that captures092

the unique characteristics of the user group. Specif-093

ically, three tasks, including user click prediction,094

user intent prediction and user interest prediction,095

are involved in the representation learning of the096

user group using data in the history click log: Sub-097

sequently, the user group representation is input098

into the generative model along with the user query099

for personalized encoding.100

Second, How to decode stickers that align with101

individual expressive intent? A sticker typically102

involves multiple properties, such as character IP,103

OCR textual content, visual style, entity, and mean-104

ing. We first generate a product quantization (PQ)105

code for each property of a given sticker as its prop-106

erty identifier (Zhou et al., 2022). Accordingly,107

the objective of the GR model is to generate each108

property identifier of the corresponding stickers for109

a given input query. We propose an intent-aware110

loss that reweights the relevance between the input111

query and different property identifiers based on in-112

ferred user intent. To infer user intent, we leverage113

the chain-of-thought (CoT) reasoning capabilities114

of large language models (LLMs) (Yu et al., 2023)115

to determine the intent ranking of the query with116

respect to each property dimension. The intent-117

aware loss is designed to ensure that the property118

identifiers corresponding to higher-ranked intents119

receive greater attention.120

Experiments and contributions. The effective-121

ness of PEARL is verified by extensive offline anal-122

yses and large-scale online tests. PEARL signifi-123

cantly outperforms state-of-the-art methods, partic-124

ularly in MRR@10 and Recall@10, with substan-125

tial improvements of 15% and 18.3%, and addition-126

ally achieves CTR improvements and GSB gains of127

7.12% and 5.98% against the online system under128

the evaluation of human experts.129

2 Problem Statement130

Task description. Given a textual input query q,131

the objective of sticker retrieval is to yield a ranked132

list R of top-k relevant stickers from a large sticker 133

repository S = {s1, s2, . . . , sn}, where n denotes 134

the total number of stickers in the repository. 135

As one of the most popular instant messaging 136

platforms, WeChat is a representative application 137

scenario of sticker retrieval (Zhou et al., 2017). 138

During our investigation of sticker retrieval in 139

WeChat, five properties of stickers are considered 140

in this work, including: (i) OCR textual content o 141

refers to the text extracted from the sticker using 142

Optical Character Recognition (OCR) technology. 143

(ii) Character IP c refers to Intellectual Property 144

(IP) related to the characters depicted on the sticker, 145

which could be a well-known character from a 146

movie, TV show, comic book, video game, or any 147

other form of media. (iii) Entity e refers to the 148

specific object, symbol, or concept that is primarily 149

depicted in the sticker. (iv) Visual style v refers to 150

the specific artistic style that the sticker’s design 151

follows. (v) Meaning m refers to the intended mes- 152

sage, sentiment, or symbolism that the sticker is 153

designed to convey, which is typically provided by 154

the source of the sticker. A detailed example of 155

these properties is provided in Appendix D. 156

User-specific personalization in sticker retrieval. 157

User-specific personalization refers to the process 158

of retrieving stickers based on user-specific infor- 159

mation beyond general relevance. Generally, the 160

definition of user-specific personalization can vary 161

across different sticker retrieval systems. In this 162

work, based on our investigation in WeChat, we 163

focus primarily on the personalization induced by 164

age a, gender g, and historical interest in character 165

IPs Hc and entities He. We further categorize users 166

based on age and gender, denoted as user groups, 167

and a user with age a and gender g is allocated into 168

the user group Ga,g. 169

Benchmark construction. In this work, we in- 170

volve two sticker repositories at different scales. 171

(i) WeChat offline dataset. We construct the 172

WeChat offline dataset by sampling partial stickers 173

from the WeChat online system. We enlisted hu- 174

man annotators for the annotation of the training 175

and test datasets, as well as the collection of click 176

logs with permission. Refer to Appendix A for 177

detailed elaboration. (ii) WeChat online dataset. 178

We also assess retrieval performance on the on- 179

line large-scale sticker repository with millions of 180

stickers, using the internal platform of WeChat. 181
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Figure 1: The overview of PEARL.

3 Methodology182

In this section, we present the proposed PEARL183

for personalized sticker retrieval in detail.184

3.1 Overview185

The proposed PEARL framework employs an186

encoder-decoder generative architecture: the en-187

coder encodes the user-specific information and the188

query; the decoder decodes property identifiers to189

retrieve specific stickers. To capture user-specific190

information, personalized representation learning191

is proposed to assign a unique dense embedding192

for each user group. To align the decoding pro-193

cess with user intent, intent-aware loss is proposed,194

guiding the process of property identifier gener-195

ation with user intent predicted by LLMs. The196

overview of PEARL is shown in Figure 1.197

3.2 Model Architecture198

The architecture of PEARL comprises a user-199

specific encoder and a property identifier decoder.200

User-specific query encoder. The user-specific201

query encoder maps user-specific information in-202

volving the age a and gender g along with the input203

query q = {w1, w2, . . . , w|q|} into a compact hid-204

den state representation, formulated as follows:205

Hq = Encoder(wa,g, w1, w2, . . . , w|q|), (1)206

where Hq denotes the hidden state representation,207

and wa,g is a user-specific special token added to208

the vocabulary to represent the specific user group209

Ga,g categorized by age a and gender g. To align210

the semantic representation of each user-specific to-211

ken wa,g with user preferences, personalized repre-212

sentation learning is utilized to train the embedding 213

of user-specific tokens, as presented in Section 3.3. 214

Property identifier decoder. Given the encoded 215

representation Hq, the property identifier decoder 216

is intended for yielding the property identifier of 217

the target stickers. Specifically, the probability of 218

generating the n-th token wn in the target identifier 219

of the property p ∈ {o, c, e, v,m} is defined as: 220

P (wn|w<n, q, a, g, p) = Decoder(w<n, Hq, wp),
(2) 221

where wp is a special token indicating the identifier 222

start of the property p. The identifier construction 223

is introduced as follows. 224

Sticker identifier. Since each sticker has multiple 225

properties, we propose representing each sticker 226

with multiple identifiers corresponding to its dif- 227

ferent properties. For property identifier construc- 228

tion, we apply semantic-based property identifiers 229

through Product Quantization (PQ) (Zhou et al., 230

2022). For all D-dimensional vectors, PQ first par- 231

titions the D-dimensional space into m disjoint 232

subspaces. Subsequently, k-means clustering is 233

independently applied to each subspace to obtain 234

k cluster centroids per group. Each vector is ul- 235

timately represented by a sequence of m cluster 236

identifiers, corresponding to the nearest centroids 237

in each subspace. More details on PQ refer to Ap- 238

pendix C. We leverage BERT (Devlin et al., 2019) 239

to encode the property p and then the identifier of 240

each property for a specific sticker is defined as: 241

idp = PQ(BERT(p)), p ∈ {o, c, e, v,m}, (3) 242

where multiple property identifiers idp with respect 243
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Figure 2: The learning of user-specific representation.

to a specific sticker are treated as new tokens and244

added to the vocabulary.245

At the inference time, the constrained beam246

search strategy is utilized to limit each generated247

identifier within a pre-defined candidate set. The248

order in which different property identifiers are de-249

coded is guided by the intent contained in the query,250

as in Section 3.4.251

3.3 Personalized representation learning252

As shown in Figure 2, we leverage additional data253

from user click logs for personalized represen-254

tation learning, trained with three discriminative255

tasks. The training data for personalized repre-256

sentation learning is sampled from the user click257

logs dumped from the online sticker search sys-258

tem. Apart from the metadata of stickers, i.e.,259

{o, c, e, v,m} and the user-specific information260

{a, g,Hc, He}, user logs additionally involve the261

input query q and the click behavior ic (is clicked)262

which indicates whether the user clicks the sticker.263

For the description of three tasks, we first ouline264

the used attention mechanism. Given the input265

hidden state hq, hk, hv ∈ Rd , the attention mecha-266

nism A(hq,hk,hv) can be formulated as:267

A(·) = softmax

(
W qhq ·W khk

√
d

)
W vhv, (4)268

where W (·) ∈ Rd are trainable projection matrices.269

User click prediction. The core idea is to predict270

whether the user will click a specific sticker after271

sending the query. This task directly captures the272

understanding of users in terms of the relevance of273

the query and the meaning of stickers, formulated274

as a binary classification task:275

hq = A(BERT(q),BERT(m),BERT(m)), (5)276

277
hu = A(UE(wa,g),BERT(m),BERT(m)), (6) 278

279
ic = MLP(concat(hq, hu)), (7) 280

where UE denotes the user embedding layer. 281

User intent prediction. The core idea is to predict 282

the intent preference of users hidden in the input 283

query. LLMs are employed to obtain the golden 284

intent gi for a query q, and the prompting strategy 285

is explained in Appendix B in detail. This task is 286

formulated as a multi-label classification task: 287

hi = A(UE(wa,g),BERT(q),BERT(q)), (8) 288

289
gi = MLP(hi), (9) 290

where UE denotes the user embedding layer. 291

User interest prediction. The core idea is to pre- 292

dict whether a user will be interested in a specific 293

sticker based on the user’s historical click behavior. 294

Distinct from the query-meaning relevance, user in- 295

terest is typically influenced by the character IP and 296

the entity in the sticker. This task is motivated by 297

the phenomenon that younger individuals tend to 298

favor lively and trendy stickers, while older individ- 299

uals lean towards more conservative and accessible 300

options (Konrad et al., 2020). For the character IP 301

interest c, the task can be formulated as follows: 302

hq = A(BERT(q),BERT(c),BERT(c)), (10) 303

304
hu = A(UE(wa,g),BERT(c),BERT(c)), (11) 305

306
ic = MLP(concat(hq, hu)), (12) 307

where UE denotes the user embedding layer. A 308

similar user interest prediction task is constructed 309

for the entity e. 310

Learning. The user embedding of wa,g is learned 311

by jointly optimizing the aforementioned three 312

modules with maximum likelihood estimation 313

(MLE). The learned embedding of the special token 314

wa,g is retained frozen for subsequent application 315

in the generative retrieval framework. 316

3.4 Intent-aware model training 317

CoT-based intent detection. Given the input query 318

q, we utilize the CoT capability of LLMs to deter- 319

mine the intent ranking with respect to each prop- 320

erty dimension. Specifically, (i) we first prompt 321

the LLM to perform the intent detection task by 322

providing the introduction of different properties 323

in {o, c, e, v,m} with some examples. (ii) we then 324

construct a question-answer pair that formats the 325
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LLM output: In the question part, we provide a spe-326

cific query example. In the answer part, we provide327

the reasoning process that iteratively prioritizes and328

explains the intent with the highest probability from329

the intent remaining set, discarding each selected330

intent until none remain. A specific prompt applied331

in our implementation is provided in Appendix B.332

By prompting LLMs in the CoT manner, a333

ranked list of intended properties R can be yielded334

for each query. The intent detection strategy is335

applied to queries in both the test set and the train-336

ing set, aiming to enhance the consistency between337

training and inference of GR models.338

Model training: indexing. The target is to memo-339

rize the information about each specific sticker. In340

this phase, the metadata within each sticker is in-341

dexed into the model parameters by mapping each342

property content to the property identifier, i.e.,343

LI = −
n∑

i=1

∑
p∈{o,c,e,v,m}

log(Pθ(idpi |wp, pi)),

(13)344

where n denotes the number of stickers in the cor-345

pus and wp is a special prefix token indicating346

which property identifier to generate.347

Model training: retrieval. Labeled training data348

involving user-query-sticker triplets is further uti-349

lized for the integration of personalized user in-350

formation. After acquiring the ranked list of in-351

tended properties R for queries in the training set,352

we propose an intent-aware loss to reweight the353

relevance between the input query and different354

property dimensions. The core idea is to prioritize355

stickers with higher-ranked intents. Suppose each356

user-query-sticker triplet contained in the training357

dataset T is τ = (Ga,g, q, si), the optimization358

objective can be formulated as:359

LR = −
∑
τ∈T

∑
p∈R

dplog(Pθ(idpi |wp, wa,g, q)),

(14)360

where wp is a special prefix token indicating which361

property identifier to generate. The decay weight362

dp is defined as:363

dp =
1

log2(rank(p) + 1)
, (15)364

where rank(.) returns the intent rank within R.365

The GR model is learned by jointly optimizing366

the indexing loss and the retrieval loss, and the total367

loss LT can be formulated as follows:368

LT = LI + LR. (16)369

Model inference. Given a test query q, the 370

model inference phase is guided by the ranked 371

list of intended properties R. (i) First, we con- 372

struct an initial prefix tree for each intent, i.e., 373

To, Tc, Te, Tv, Tm, using property identifiers that 374

span across all stickers. (ii) When processing the 375

i-th intent p in the intent list R, we perform con- 376

strained beam search during decoding on the prefix 377

tree Tp to obtain a series of property identifiers, 378

which correspond to a collection of stickers Si. 379

(iii) We filter Si by removing the stickers which do 380

not appear in Si−1. (iv) This process is iteratively 381

repeated until all intents in R have been processed, 382

resulting in the final collection of target stickers 383

S|R|. With intent aware, the model inference pro- 384

cess is performed in a funnel-like manner, tran- 385

sitioning from a coarse-grained to a fine-grained 386

focus. 387

4 Experimental Settings 388

Implementation details. BERT corresponds to 389

the pre-trained bert-base-chinese1. We adopt 390

bart-large2 as the encoder-decoder backbone of 391

PEARL. We employ deepseek-chat3 for CoT- 392

based intent detection. For PQ, the number of 393

subspaces m is 8, and the number of clusters k 394

is 256. During inference, we set the beam size to 395

10 and maximum decoding steps to 15. Refer to 396

Appendix G for more implementation details. 397

Evaluaion metrics. We adopt two evaluation met- 398

rics: (i) Mean reciprocal rank (MRR@k) mea- 399

sures the relative ranking position of positive stick- 400

ers. We use MRR@{1,5,10,20} in our settings. 401

(ii) Recall@k measures whether positive stickers 402

are ranked in the top-k candidate list. We use Re- 403

call@{1,5,10,20} in our settings. 404

Baseline methods. We compare PEARL’s re- 405

trieval effectiveness with four categories of rep- 406

resentative methods: (i) Popularity-based meth- 407

ods: Global Popularity (GPop) that returns the 408

most popular stickers globally and User Group 409

Popularity (UPop) that independently returns the 410

most popular stickers for each user group. The 411

popularity is obtained from the online click log 412

statistics of the WeChat system. (ii) Traditional re- 413

trievers: BM25 (Steck, 2011), DPR (Karpukhin 414

et al., 2020) and ANCE (Xiong et al., 2020). 415

1https://huggingface.co/google-bert/bert-base-chinese
2https://huggingface.co/facebook/bart-large
3https://www.deepseek.com/
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Model MRR Recall

@1 @5 @10 @20 @1 @5 @10 @20

Popularity-based
GPop 0.0029 0.0069 0.0069 0.0069 0.0002 0.0012 0.0012 0.0012
UPop 0.0231 0.0308 0.0315 0.0319 0.0024 0.0055 0.0061 0.0067

Tradtional
BM25 0.0519 0.0719 0.0783 0.0826 0.0049 0.0195 0.0282 0.0486
DPR 0.0778 0.1175 0.1314 0.1385 0.0087 0.0256 0.0486 0.0705
ANCE 0.0823 0.1293 0.1454 0.1478 0.0172 0.0328 0.0592 0.0793

Cross-modal
CN-CLIP 0.0375 0.078 0.0798 0.08 0.0046 0.0198 0.0223 0.0228
StickerCLIP 0.0528 0.0821 0.0842 0.0892 0.0052 0.0203 0.0235 0.0248
PerSRV 0.1061 0.1328 0.1401 0.1496 0.0129 0.0318 0.0476 0.0617

Generative

DSI 0.0029 0.0079 0.0079 0.0079 0.0002 0.001 0.0011 0.001
DSI-QG 0.0000 0.0033 0.0048 0.0062 0.0 0.0018 0.0028 0.0084
GENRE 0.0317 0.0512 0.0539 0.0543 0.0039 0.0104 0.0143 0.0152
MINDER 0.1327 0.1699 0.1804 0.1987 0.0167 0.0492 0.0594 0.0703
PEARL 0.1547∗ 0.1839∗ 0.2074∗ 0.2143∗ 0.0288∗ 0.0582∗ 0.0732∗ 0.0835∗

Table 1: Retrieval performance of PEARL and the baselines on the WeChat offline dataset. ∗ indicates statistically
significant improvements over the best performing baseline MINDER (p ≤ 0.05).

(iii) Cross-modal retrievers: CN-CLIP (Yang et al.,416

2022), StickerCLIP (Zhao et al., 2023), and Per-417

SRV (Chee et al., 2025). (iv) Generative retrievers:418

DSI (Tay et al., 2022), DSI-QG (Zhuang et al.,419

2022), GENRE (De Cao et al., 2020), Ultron (Zhou420

et al., 2022) and MINDER (Li et al., 2023).421

Model variants. To validate the effectiveness of422

each components in PEARL, we implement the423

following variants to facilitate ablation studies:424

(i) PEARL−UE removes the user embedding from425

the framework and ignores variability in queries426

from different user groups. (ii) PEARLclick only427

employs the task of user click prediction in Section428

3.3 to train the user embedding. (iii) PEARLintent429

only employs the task of user intent predic-430

tion in Section 3.3 to train the user embedding.431

(iv) PEARLinterest only employs the task of user432

interest prediction in Section 3.3 to train the user433

embedding. (v) PEARL−IAL removes the inten-434

t-aware loss in Section 3.4 during the model train-435

ing phase. (vi) PEARL−IG removes the inten-436

t-guided docid decoding process in Section 3.4437

during the model inference phase and considers438

the intent of the user query to be equivalent.439

5 Experimental Results440

5.1 Main results441

Table 1 shows the comparison of PEARL and base-442

lines on the WeChat dataset.443

Popularity-based methods. We find that:444

(i) UPop, which independently returns the most445

popular stickers for each user group, exhibits su-446

perior retrieval capability than GPop, which ne-447

glects the differences between user groups. The448

phenomenon highlights the importance of pref-449

erence differences among different user groups.450

(ii) PEARL significantly outperforms populari- 451

ty-based methods. The underlying reason is that 452

popularity-based methods focus exclusively on the 453

popularity of stickers while neglecting the rele- 454

vance between queries and stickers. 455

Traditional retrievers. When it comes to tradi- 456

tional retrievers including BM25, DPR and ANCE, 457

PEARL outperforms all traditional retrievers in 458

terms of retrieval performance. The underlying rea- 459

son might be that PEARL models user preferences 460

into generative models instead of simply relying on 461

relevance between queries and stickers. 462

Cross-modal retrievers. We can conclude as fol- 463

lows: (i) Although a new image modality is intro- 464

duced, cross-modal retrievers do not demonstrate 465

the anticipated improvement in retrieval perfor- 466

mance. In fact, the performance of cross-modal 467

retrievers lags behind that of text-based dense re- 468

trievers. The underlying reason might be that the 469

image modality of stickers tends to be diverse and 470

expressive, hence posing significant challenges and 471

difficulties for modal alignment. (ii) PEARL and 472

PerSRV both model user preference for stickers, 473

and PEARL exhibits superior retrieval performance. 474

We attribute the phenomenon to the fact that apart 475

from modeling user preference for stickers, PEARL 476

further mines user intent behind queries, leading to 477

more specific personalization. 478

Generative retrievers. When we look at gener- 479

ative retrievers, we can find that: (i) Approaches 480

applying multi-view docids, including MINDER 481

and PEARL, significantly outperforms other meth- 482

ods utilizing either naive string docids (DSI and 483

DSI-QG) or meaning-based single-view docids 484

(GENRE). (ii) PEARL outperforms all other gen- 485

erative baselines. The underlying reason might be 486
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Model MRR@10 Recall@10

PEARL 0.2074 0.0732

w/o personalized user embedding
PEARL−UE 0.1497 0.0463
PEARLclick 0.1639 0.0585
PEARLintent 0.1563 0.0518
PEARLinterest 0.1838 0.0614

w/o intent-aware loss
PEARL−IAL 0.1863 0.0638

w/o intent guidance
PEARL−IG 0.1782 0.0575

Table 2: Ablation study on the WeChat offline dataset.

that the personalized representation learning and487

the intent-aware model training are devised tailor488

for personalized sticker retrieval.489

5.2 Ablation studies490

To further validate the effectiveness of each mod-491

ule in PEARL, we conduct ablation studies and492

report the retrieval performance of model variants493

in Table 2. The following conclusions can be494

drawn: (i) The proposed personalized user embed-495

ding demonstrates the most significant contribution496

to retrieval effectiveness, followed by intent guid-497

ance during the inference phase, and subsequently498

by the incorporation of intent-aware loss during the499

training phase. This highlights that sticker retrieval500

is an expressive and fuzzy retrieval task which re-501

lies on not only the relevance relationship between502

queries and stickers but also the user preference.503

(ii) The user interest prediction task contributes504

most to personalized representation learning. This505

phenomenon illustrates that user preference for506

stickers primarily focuses on the preference for507

Character IPs and entities.508

5.3 Efficiency analysis509

We compare the efficiency of DPR, MINDER, and510

PEARL. Note that the intent list of queries is pre-511

computed in PEARL. Refer to Appendix G for512

more details. As depicted in Table 3, (i) Generative513

retrievers, i.e., MINDER and DPR, have a signifi-514

cant reduction of memory footprint and inference515

time compared to the dense retrieval model DPR.516

The reduction of memory footprint primarily lies517

in the elimination of the explicit document index,518

and the inference time decreases since the heavy519

retrieval process over the large-scale dense index520

is replaced with a light generative process over the521

Model Memory Parameter Time

DPR 3.6G 110M 179ms
MINDER 1.6G 406M 112ms
PEARL 1.6G 406M 124ms

Table 3: Comparisons on the memory, the number of
model parameters and inference time per query.

prefix tree. (ii) Compared to MINDER, PEARL 522

requires longer inference time due to the addition 523

of the intent-aware funnel-like decoding process. 524

However, we believe that such an efficiency sacri- 525

fice is worthwhile, as PEARL achieves significant 526

effectiveness gains compared to MINDER accord- 527

ing to Table 1. 528

5.4 Online tests 529

User preferences for stickers are highly subjective, 530

hence the annotation of the golden truth data is usu- 531

ally incomplete in the sticker retrieval task. To this 532

end, we conduct an online test to further verify the 533

effectiveness of our method. It is worth noting that, 534

due to privacy issues, the online WeChat system we 535

compare is a variant that turns off personalization 536

at the individual user’s granularity. 537

Evaluation. We compare PEARL to online 538

WeChat systems at both the sticker and the session 539

level for a more holistic and fair assessment. 540

For the sticker-level assessment, we assess 541

PEARL and online systems with the Team-Draft 542

Interleaving (TDI) process (Schuth et al., 2015). 543

The specific procedures are as follows: (i) At 544

the start of each query session, a fair Bernoulli 545

trial decides which system—PEARL or the online 546

system—drafted the first sticker. (ii) The active 547

drafter appended its next unseen sticker to the in- 548

terleaved list, after which drafting control imme- 549

diately passed to the other system. (iii) Drafting 550

continued in strict alternation until both original 551

top-10 lists were exhausted, resulting in a 20-item 552

interleaved ranking. (iv) Every position in the final 553

list was annotated with a binary ownership label, 554

thereby enabling later attribution of each user click 555

to its originating system. The procedure preserved 556

each model’s internal order, and the ownership of 557

returned stickers is completely blind to users to 558

ensure the fairness of comparison. Twenty human 559

experts of different ages and genders are chosen to 560

enter queries and perform clicking behavior, lead- 561

ing to 1,000 valid queries. The evaluation met- 562

rics in the sticker-level assessment are two-fold: 563

∆CTR and ∆ACP, refer to Appendix E for a de- 564
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∆CTR ↑ ∆ACP ↓ ∆GSB ↑

+7.12% -0.19 +5.98%

Table 4: Comparison with the online WeChat system.

tailed introduction of the metrics.565

For the session-level assessment, we show the566

exposure session returned by PEARL and the on-567

line system containing the top-10 stickers, without568

allowing the user to know which model the ex-569

posure page was derived from. We subsequently570

ask the users to make an overall assessment of the571

preference for the exposure sessions, which is lim-572

ited to three responses: preferring the left exposure573

session, preferring the right exposure session, and574

preferring both equally. Here, we measure the rel-575

ative gain with ∆GSB, refer to Appendix E for a576

detailed introduction of the metric. Twenty human577

experts of different ages and genders are chosen578

to enter queries and assess preference for exposure579

sessions, resulting in 1,000 valid queries.580

Experimental results. As depicted in Table 4,581

compared to the results returned by the online582

system, PEARL increases the click-through-rate583

by 7.12% and decrease the average-click-position584

by 0.19 in the sticker-level human expert evalua-585

tion. Furthermore, we can also find that PEARL586

has achieved significant positive gains in terms of587

session-level assessment.588

Case study. Figure 3 shows the list of the top-5589

stickers returned by the online system and PEARL,590

and the statistics of these users’ clicking behavior.591

Our method returns stickers that are more clicked592

for the user query “Bye-bye” by female users aged593

20–30. More cases refer to Appendix F.594

6 Related work595

Sticker retrieval. Stickers have gained significant596

popularity due to their ability to convey emotions,597

reactions, and nuanced intentions that are difficult598

to express through plain text (Zhao et al., 2023). To599

retrieve satisfactory stickers for users, Liang et al.600

(2024) proposed a framework dubbed Int-RA based601

on the learning of intention and the cross-modal re-602

lationships between conversation context and stick-603

ers. Zhao et al. (2023) first adapted the CLIP (Rad-604

ford et al., 2021) model tailored for the domain605

of emotive stickers. Most recently, PerSRV (Chee606

et al., 2025) first focused on personalized sticker re-607

trieval and introduced user preference modeling by608

style-based personalized ranking. Despite previous609

Online

System

PEARL

拜拜
Bye

好的这边就不再打
扰您了祝您生活愉
快再见
Okay, I won't bother 

you anymore. Have 

a nice life. Bye.

告辞
I’m out

记得想我~

Remember to miss 

me~

古德拜去火星咯
Goodbye. I'm 

going to Mars.

古德拜
Goodbye. 

拜拜
Bye

Age: 20-29  Gender: Female Query: 拜拜 (Bye-bye)

Figure 3: Case study on retrieved results of online sys-
tem and PEARL.

efforts, personalized sticker retrieval has not bene- 610

fited from generative models, which have triggered 611

transformative shifts in various areas. 612

Generative retrieval. Generative retrieval (GR) is 613

a new retrieval paradigm in which a single consoli- 614

dated model is employed to enable the direct gen- 615

eration of relevant docids from queries. To achieve 616

this, two primary procedures are involved (Tay 617

et al., 2022; Chen et al., 2022; Bevilacqua et al., 618

2022), i.e., the indexing process and the retrieval 619

process. The indexing process learns the relation- 620

ship between documents and the corresponding 621

docids. The retrieval process maps queries to rele- 622

vant docids. To model personalized user preference 623

in generative retrieval, Wu et al. (2024) proposed 624

an efficient hierarchical encoding-decoding gen- 625

erative retrieval method for large-scale personal- 626

ized E-commerce search systems. Distinct from 627

personalized E-commerce search, which typically 628

involves specific items, the task of personalized 629

sticker retrieval primarily focuses on the abstract 630

expressive intent of stickers and user preference for 631

Character IP and sticker style. The fundamental 632

characteristics of stickers highlight that Personal- 633

ized generative retrieval tailored for stickers is a 634

non-trivial challenge worth exploring. 635

7 Conclusion 636

In this paper, we focus on personalized sticker 637

retrieval with the promising generative retrieval 638

paradigm. Since the sticker retrieval task highly 639

calls for user personalization beyond relance rela- 640

tionships, we propose PEARL, a novel generative 641

framework with user-specific information encod- 642

ing and intent-aware sticker decoding. Empirical 643

results from both offline evaluations and online 644

experiments indicate the superiority of PEARL. 645
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Limitations646

The limitations of this work can be concluded as647

follows: (i) Given the importance of individual648

privacy, our focus is primarily on personalization649

at the level of user groups. This approach, how-650

ever, offers a relatively coarse granularity that does651

not allow for the customization of sticker search652

and recommendations based on each individual’s653

specific sticker preferences. (ii) For search effi-654

ciency considerations, we model only the textual655

information in PEARL without modeling the in-656

formation of image modality. The introduction657

of image modality has the potential to further en-658

hance the retrieval. (iii) The generative framework659

PEARL is coupled to the scenario of sticker re-660

trieval, hence leading to restricted method general-661

izability. (iv) The application of LLMs for intent662

detection increases economic costs, restricting the663

large-scale industry applications.664

Ethical Considerations665

In this paper, all the models used in our experiment666

are publicly released. For datasets, we construct667

offline datasets based on the open-source dataset668

and extra manual annotation. We invite human669

annotators for manual annotation and pay the an-670

notators a salary that is in line with the local pay671

scale. In this process, user privacy is protected,672

and no personal information is contained in the673

dataset. Additionally, the methods we propose aim674

to enhance the effectiveness and personalization675

of sticker retrieval and do not encourage or induce676

the model to produce any harmful information or677

leakage of user privacy. Therefore, we believe that678

our research work meets the ethics of ACL.679

References680

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,681
Scott Yih, Sebastian Riedel, and Fabio Petroni. 2022.682
Autoregressive search engines: Generating substrings683
as document identifiers. Advances in Neural Infor-684
mation Processing Systems, 35:31668–31683.685

Heng Er Metilda Chee, Jiayin Wang, Zhiqiang Guo,686
Weizhi Ma, and Min Zhang. 2025. Persrv: Person-687
alized sticker retrieval with vision-language model.688
In Proceedings of the ACM on Web Conference 2025,689
pages 293–303.690

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu,691
Yixing Fan, and Xueqi Cheng. 2022. Corpusbrain:692
Pre-train a generative retrieval model for knowledge-693
intensive language tasks. In Proceedings of the 31st694

ACM International Conference on Information & 695
Knowledge Management, pages 191–200. 696

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and 697
Fabio Petroni. 2020. Autoregressive entity retrieval. 698
arXiv preprint arXiv:2010.00904. 699

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 700
Kristina Toutanova. 2019. Bert: Pre-training of deep 701
bidirectional transformers for language understand- 702
ing. In Proceedings of the 2019 conference of the 703
North American chapter of the association for com- 704
putational linguistics: human language technologies, 705
volume 1 (long and short papers), pages 4171–4186. 706

Vladimir Karpukhin, Barlas Oguz, Sewon Min, 707
Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi 708
Chen, and Wen-tau Yih. 2020. Dense passage re- 709
trieval for open-domain question answering. In 710
EMNLP (1), pages 6769–6781. 711

Artie Konrad, Susan C Herring, and David Choi. 2020. 712
Sticker and emoji use in facebook messenger: Impli- 713
cations for graphicon change. Journal of Computer- 714
Mediated Communication, 25(3):217–235. 715

Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yuyao Zhang, Peitian 716
Zhang, Yutao Zhu, and Zhicheng Dou. 2024. From 717
matching to generation: A survey on generative infor- 718
mation retrieval. ACM Transactions on Information 719
Systems. 720

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wen- 721
jie Li. 2023. Multiview identifiers enhanced gener- 722
ative retrieval. In Proceedings of the 61st Annual 723
Meeting of the Association for Computational Lin- 724
guistics (Volume 1: Long Papers), pages 6636–6648. 725

Bin Liang, Bingbing Wang, Zhixin Bai, Qiwei Lang, 726
Mingwei Sun, Kaiheng Hou, Lanjun Zhou, Ruifeng 727
Xu, and Kam-Fai Wong. 2024. Reply with sticker: 728
New dataset and model for sticker retrieval. arXiv 729
preprint arXiv:2403.05427. 730

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng- 731
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira. 732
2021. Pyserini: A python toolkit for reproducible 733
information retrieval research with sparse and dense 734
representations. In Proceedings of the 44th Inter- 735
national ACM SIGIR Conference on Research and 736
Development in Information Retrieval, pages 2356– 737
2362. 738

Xinwei Long, Jiali Zeng, Fandong Meng, Zhiyuan Ma, 739
Kaiyan Zhang, Bowen Zhou, and Jie Zhou. 2024. 740
Generative multi-modal knowledge retrieval with 741
large language models. In Proceedings of the AAAI 742
Conference on Artificial Intelligence, volume 38, 743
pages 18733–18741. 744

Ilya Loshchilov and Frank Hutter. 2017. Decou- 745
pled weight decay regularization. arXiv preprint 746
arXiv:1711.05101. 747

9



Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,748
Sam Gross, Nathan Ng, David Grangier, and Michael749
Auli. 2019. fairseq: A fast, extensible toolkit for se-750
quence modeling. arXiv preprint arXiv:1904.01038.751

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya752
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-753
try, Amanda Askell, Pamela Mishkin, Jack Clark,754
et al. 2021. Learning transferable visual models from755
natural language supervision. In International confer-756
ence on machine learning, pages 8748–8763. PmLR.757

Anne Schuth, Katja Hofmann, and Filip Radlinski.758
2015. Predicting search satisfaction metrics with759
interleaved comparisons. In Proceedings of the 38th760
International ACM SIGIR Conference on Research761
and Development in Information Retrieval, pages762
463–472.763

Harald Steck. 2011. Item popularity and recommenda-764
tion accuracy. In Proceedings of the fifth ACM con-765
ference on Recommender systems, pages 125–132.766

Yubao Tang, Ruqing Zhang, Jiafeng Guo, Jiangui Chen,767
Zuowei Zhu, Shuaiqiang Wang, Dawei Yin, and768
Xueqi Cheng. 2023. Semantic-enhanced differen-769
tiable search index inspired by learning strategies. In770
Proceedings of the 29th ACM SIGKDD Conference771
on Knowledge Discovery and Data Mining, pages772
4904–4913.773

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara774
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,775
Jai Gupta, et al. 2022. Transformer memory as a776
differentiable search index. Advances in Neural In-777
formation Processing Systems, 35:21831–21843.778

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien779
Chaumond, Clement Delangue, Anthony Moi, Pier-780
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,781
et al. 2020. Transformers: State-of-the-art natural782
language processing. In Proceedings of the 2020 con-783
ference on empirical methods in natural language784
processing: system demonstrations, pages 38–45.785

Yanjing Wu, Yinfu Feng, Jian Wang, Wenji Zhou, Yu-786
nan Ye, Rong Xiao, and Jun Xiao. 2024. Hi-gen:787
Generative retrieval for large-scale personalized e-788
commerce search. arXiv preprint arXiv:2404.15675.789

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,790
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold791
Overwijk. 2020. Approximate nearest neighbor neg-792
ative contrastive learning for dense text retrieval.793
arXiv preprint arXiv:2007.00808.794

An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang795
Zhang, Jingren Zhou, and Chang Zhou. 2022. Chi-796
nese clip: Contrastive vision-language pretraining in797
chinese. arXiv preprint arXiv:2211.01335.798

Zihan Yu, Liang He, Zhen Wu, Xinyu Dai, and Jia-799
jun Chen. 2023. Towards better chain-of-thought800
prompting strategies: A survey. arXiv preprint801
arXiv:2310.04959.802

Kun Zhang, Guangyi Lv, Le Wu, Enhong Chen, Qi Liu, 803
Han Wu, and Fangzhao Wu. 2018. Image-enhanced 804
multi-level sentence representation net for natural 805
language inference. In 2018 IEEE International Con- 806
ference on Data Mining (ICDM), pages 747–756. 807
IEEE. 808

Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, 809
Qi Chen, Xing Xie, Hao Sun, Weiwei Deng, 810
Qi Zhang, Fan Yang, et al. 2024. Irgen: Generative 811
modeling for image retrieval. In European Confer- 812
ence on Computer Vision, pages 21–41. Springer. 813

Sijie Zhao, Yixiao Ge, Zhongang Qi, Lin Song, Xiaohan 814
Ding, Zehua Xie, and Ying Shan. 2023. Sticker820k: 815
Empowering interactive retrieval with stickers. arXiv 816
preprint arXiv:2306.06870. 817

Rui Zhou, Jasmine Hentschel, and Neha Kumar. 2017. 818
Goodbye text, hello emoji: Mobile communication 819
on wechat in china. In Proceedings of the 2017 CHI 820
conference on human factors in computing systems, 821
pages 748–759. 822

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian 823
Zhang, and Ji-Rong Wen. 2022. Ultron: An ulti- 824
mate retriever on corpus with a model-based indexer. 825
arXiv preprint arXiv:2208.09257. 826

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, 827
Ming Gong, Guido Zuccon, and Daxin Jiang. 2022. 828
Bridging the gap between indexing and retrieval for 829
differentiable search index with query generation. 830
arXiv preprint arXiv:2206.10128. 831

10



Appendix832

A WeChat offline dataset833

We constructed a sticker corpus by sampling about834

1.1 million stickers from the WeChat online sys-835

tem. Offensive, potentially harmful, and copyright-836

controversial stickers were filtered out. Specifically,837

the sticker corpus contains 1,092,122 stickers span-838

ning 17,906 Character IPs, 38,895 entities, and 107839

visual styles. Based on the actual usage of the840

sticker search function, we categorized users into841

four age groups (0-19,20-29,30-44, and 45-59) and842

two gender groups (male and female). We enlisted843

human annotators across all these user groups. We844

collect the user click logs with their permission and845

invite them to perform data annotation for both the846

training and test datasets. Specifically, the training847

dataset contains 1,891 unique queries, 2,308 user-848

query pairs, and 12,568 user-query-sticker triplets.849

The test dataset contains 258 unique queries, 347850

user-query pairs, and 14,446 user-query-sticker851

triplets. The full text of the instructions for annotat-852

ing the training and the test datasets given to partici-853

pants is as follows: Determine whether a given854

query and sticker match based on your855

personal preferences by selecting either856

“Match” or “No Match”. The data collected857

will only be used to carry out research858

to improve the effectiveness of sticker859

retrieval. In this process, user privacy860

is protected, and no personal information861

is contained in the dataset.862

We invited human annotators from the crowd-863

sourcing platform and paid the annotators a salary864

that is in line with the local pay scale. Due to the865

limited community of WeChat software users, we866

enlisted all data annotators from China. The data867

collection protocol was approved by an ethics re-868

view board. We manually filtered all collected data869

to remove any user privacy information. All data870

used contains neither information that uniquely871

identifies individual people nor offensive content.872

B Prompt for intent permutation873

generation874

The prompt applied in our implementation is as875

follows:876

I am a user who is using the sticker877

search feature, and I have entered a878

query. Please help me analyze the intent879

behind my query.880

There are five possible intents: OCR, IP, 881

entity, style, and meaning. Here are 882

the descriptions and examples for each 883

intent. 884

OCR textual content refers to the text 885

extracted from the sticker using Optical 886

Character Recognition (OCR) technology. 887

Examples: {examples for the OCR intent} 888

Character IP refers to Intellectual 889

Property (IP) related to the characters 890

depicted on the sticker, which could be 891

a well-known character from a movie, TV 892

show, comic book, video game, or any other 893

form of media. 894

Examples: {examples for the IP intent} 895

Entity refers to the specific object, 896

symbol, or concept that is primarily 897

depicted in the sticker. 898

Examples: {examples for the entity 899

intent} 900

Visual style refers to the specific 901

artistic style that the sticker’s design 902

follows. 903

Examples: {examples for the style intent} 904

Meaning refers to the intended message, 905

sentiment, or symbolism that the sticker 906

is designed to convey, which is typically 907

provided by the source of the sticker. 908

Examples: {examples for the meaning 909

intent} 910

Q: Based on the given explanation, 911

arrange the order of intent for the query: 912

Doraemon cute. 913

A: Let’s think step by step. "Doraemon 914

cute" is most likely to be an IP intent 915

in OCR, IP, entity, style, meaning, 916

because Doraemon is a well-known anime 917

character. Excluding the IP intent, among 918

the remaining OCR, entity, style, meaning, 919

"Doraemon cute" is most likely to be a 920

style intent, because the query includes 921

the style description "cute". Excluding 922

IP and style intents, among the remaining 923

OCR, entity, meaning, "Doraemon cute" 924

is most likely to be an entity intent, 925

because Doraemon is a specific character. 926

Excluding IP, style, and entity intents, 927

among the remaining OCR and meaning, 928

"Doraemon cute" is most likely to be a 929

meaning intent, because "Doraemon cute" 930

can be understood as a certain meaning. 931

"Doraemon cute" is least likely to be an 932
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Sticker          OCR textual content       Character IP          Entity          Visual style          Meaning

Thank you boss Doraemon Cartoon characters Cute                     Thanks

The only thing left in            Hungry crazy              Rabbit                  Daily                Loneliness                              

my world is loneliness          bunny

May you happy and               Liu Dehua                    Male                  Funny                  Blessing

prosperous

Figure 4: Examples for distinct properties of stickers in the corpus.

OCR intent, because it is not an image or933

video with text content. Therefore, the934

answer is: IP > style > entity > meaning935

> OCR.936

Q: Based on the given explanation,937

arrange the order of intent for the query:938

{query}939

A: Let’s think step by step.940

C Product quantization941

Product Quantization (PQ) is an efficient technique942

for approximate nearest neighbor (ANN) search in943

high-dimensional spaces, commonly used in large-944

scale retrieval tasks. It works by decomposing a D-945

dimensional vector space into m low-dimensional946

subspaces, i.e., each input vector x ∈ RD is split947

into m sub-vectors x = [x1,x2, . . . ,xm], where948

each xi ∈ RD/m. In each subspace, a separate949

codebook is learned via k-means clustering, and950

sub-vectors are quantized by mapping them to their951

nearest centroids. The full vector is then repre-952

sented as a concatenation of centroid indices, sig-953

nificantly reducing storage requirements. During954

search, the distance between a query vector and955

database vectors is approximated efficiently us-956

ing precomputed lookup tables, enabling fast and957

memory-efficient similarity computation without958

reconstructing full vectors.959

D Data examples 960

Detailed examples of the properties in the sticker 961

corpus are provided in Figure 4. 962

E Online evaluation metircs 963

For the sticker-level assessment, we report the rel- 964

ative advantage of PEARL over the baseline with 965

two per-query paired-difference metrics: ∆CTR 966

and ∆ACP. 967

Click-through-rate difference. For each query q, 968

let CTRP (q) and CTRB(q) denote the fractions of 969

exposed stickers that were clicked for PEARL and 970

the baseline, respectively. The evaluation metric 971

∆CTR is defined as 972

∆CTR =
1

|Q|
∑
q∈Q

(CTRP (q)− CTRB(q)),

(17) 973

where Q denotes the collections of all queries. 974

Average-click-position difference. Let ACPP (q) 975

and ACPB(q) be the mean rank positions of the 976

clicks attributed to each system. The evaluation 977

metric ∆ACP is defined as 978

∆ACP =
1

|Q|
∑
q∈Q

(ACPP (q)−ACPB(q)),

(18) 979

where Q denotes the collections of all queries. 980

A negative value indicates that PEARL receives 981

clicks closer to the top of the interleaved list. 982
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Online 

System

PEARL

Age: 0-19 Gender: Male Query: 生气(Angry)

哼 我生气了
Hmph, I‘m angry.

一肚子火
I'm fuming

生气
Angry

气鼓鼓
Puffed up with 

anger

生气
Angry

气晕
So angry I could 

faint

生气
Angry

Figure 5: Case study for the user query “Angry” by male
users aged 0-19.

Online 

System

PEARL

Age: 20-29 Gender: Male
Query: 海绵宝宝道歉
(SpongeBob apologizes)

好嘛 我错了嘛
Alright, I was wrong.

真抱歉
I'm really sorry

抱歉
Sorry

对不起 我错了
Sorry, I was wrong

对不起
Sorry

抱歉
Sorry

Figure 6: Case study for the user query “SpongeBob
apologizes” by male users aged 20-29.

For the session-level assessment, we report the983

relative gain of PEARL over the baseline with the984

metric ∆GSB, which can be defined as follows:985

∆GSB =
#Good−#Bad

#Good+#Same+#Bad
, (19)986

where #Good (or #Bad) indicates the number of987

queries that the PEARL provides better (or worse)988

final results against the baseline.989

F Case study990

Figure 5 and Figure 6 provide two additional cases991

to further illustrate the advantage of PEARL.992

G Experimental details993

The offline experiments are conducted on 4 ×994

NVIDIA Tesla A100 80G GPUs. The training995

process of PEARL takes approximately 8 hours.996

We leverage the pyserini library (Lin et al., 2021)997

for the implementation of BM25, DPR, and ANCE.998

We leverage the fairseq library (Ott et al., 2019) for999

the training of MINDER and PEARL. We use the1000

transformers library (Wolf et al., 2020) for the train-1001

ing of the remaining baselines, following the setup1002

of the original literature. All models are trained 1003

with the AdamW (Loshchilov and Hutter, 2017) 1004

optimizer. We train PEARL with a batch size of 1005

8192 tokens and a learning rate of 1e-5. We repeat 1006

our experiment 3 times to get the average results. 1007

To improve efficiency, we collected the top 10,000 1008

most frequent queries from the online system for 1009

intent analysis and precomputed their correspond- 1010

ing intent lists offline. During the inference time 1011

of PEARL, if a user’s query matches an entry in 1012

the offline table, the system retrieves the intent list 1013

directly without utilizing LLMs. 1014

As for the evaluation of online tests, the full text 1015

of the instructions for the sticker-level assessment 1016

is as follows: Enter a query and click your 1017

favorite sticker based on your preference. 1018

The full text of the instructions for the session- 1019

level assessment is as follows: Enter a query 1020

and determine which exposure session you 1021

prefer, with the response limited to 1022

“preferring the left exposure session”, 1023

“preferring the right exposure session”, 1024

and “preferring both equally”. 1025
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