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Abstract

The next token prediction loss is the dominant001
self-supervised training objective for large lan-002
guage models and has achieved promising re-003
sults in a variety of downstream tasks. How-004
ever, upon closer investigation of this objec-005
tive, we find that it lacks an understanding of006
sequence-level signals, leading to a mismatch007
between the training and inference processes.008
To bridge this gap, we introduce a contrastive009
preference optimization procedure that can in-010
ject sequence-level signals into the language011
model at any training stage without expensive012
human labeling. Notably, our experiments re-013
vealed that the proposed objective surpasses the014
next token prediction in terms of the win rate015
in the instruction-following and text generation016
tasks. Specifically, using OpenLlama-3B, our017
method achieves a 13.8% improvement in an018
instruction-following task and a 3% increase in019
a text generation task.020

1 Introduction021

Next token prediction 1 is now the predominant022

way for pre-training and supervised fine-tuning023

(SFT) of large language models (LLM). This loss024

function can be easily scaled up to train models025

with trillions of parameters and tokens, and it has026

also demonstrated the ability to generate coherent027

and contextually relevant text. Let P be the un-028

known target language distribution, and let Q be029

the distribution of our model at hand. The goal of030

next token prediction is to minimize the forward-031

KL divergence between P and Q; during test time,032

we usually first generate a set of samples using033

the trained model and evaluate the quality of these034

generations using a certain metric 2, for example,035

the reverse-KL. This training process only super-036

vises the prediction of one token at a time given037

1This term is subsequently used interchangeably with max-
imum likelihood estimation (MLE).

2Metric in the sense of a quality measurement, rather than
the mathematical concept.

the full context from the ground truth. On the other 038

hand, during inference, the model needs to gener- 039

ate a whole sequence (for a given prompt) relying 040

on its own prior predictions. This mismatch be- 041

tween the training stage and the inference stage is 042

known as exposure-bias in the literature of RNN 043

and sequence-to-sequence model (Bengio et al., 044

2015; Ranzato et al., 2015). 045

In other words, the next token prediction-based 046

training injects only token-level information into 047

the model, but missing sequence-level signal. Of 048

course, such discrepancies can be mitigated by 049

the subsequent reinforcement learning with hu- 050

man feedback (RLHF) step (Ouyang et al., 2022) 051

in LLM training. In RLHF, a reward signal is 052

enforced on the generated sequence of the lan- 053

guage model and guides the model generation to 054

align with human preference. RLHF is compu- 055

tationally intensive and often faces instability is- 056

sues. Therefore, many open-source LLMs do not 057

incorporate this discipline. Direct preference op- 058

timization (DPO) (Rafailov et al., 2023) is a re- 059

cently proposed alternative to RLHF that enables 060

sequence-level LLM training without the need for 061

costly model generations. One drawback of both 062

DPO and RLHF methods is that they require ex- 063

pensive human labeling to score the LLM training 064

samples. RLHF requires human preference data to 065

train the reward model, and DPO training requires 066

a supervised pair of positive and negative comple- 067

tions for each given prompt. However, most of the 068

existing LLM training data do not consist of such 069

human preference information. Therefore, in this 070

work, we ask the following question: 071

Can we introduce sequence-level information in 072

LLM training even in the absence of 073

human-preference data? 074

We answer the question affirmatively with 075

our proposed CONTRASTIVE PREFERENCE 076

OPTIMIZATION (CPO) method. CPO shares a sim- 077
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ilar principle to RLHF/DPO in the sense that they078

all parameterize (perhaps implicitly) the optimal079

model (with respect to a certain sequence-level sig-080

nal) by an energy-based model (EBM). However,081

the goal of CPO is not alignment, but genera-082

tion quality. Therefore, unlike RLHF and DPO,083

the proposed CPO method does not require human084

preference information as the training signal. An-085

other related method that optimizes the quality of086

generated text is BRIO (Liu et al., 2022). Although087

unlike BRIO, the proposed CPO method does not088

necessarily rely on autoregressively sampled neg-089

ative sequences from the model and therefore is090

much more computational efficient and easier to091

scale up. In addition, CPO is also derived from a092

more principled statistical perspective. Our experi-093

ments demonstrate that CPO is able to improve the094

quality of text generation in terms of reward model095

scores and reverse-KL divergence.096

2 Related work097

LLMs trained with next token prediction loss (Rad-098

ford et al., 2019; Chung et al., 2022; Sanh et al.,099

2021; Zhou et al., 2023) have demonstrated many100

fascinating capabilities, including the ability to per-101

form zero-shot or few-shot tasks (Radford et al.,102

2019; Brown et al., 2020) and the ability to reason103

(Wei et al., 2022).104

Several works have investigated the shortcom-105

ings of MLE and exposure bias. Arora et al. (2022)106

measured the accumulation of errors in language107

generation due to exposure bias. Schmidt (2019)108

connected exposure bias to generalization. Wang109

and Sennrich (2020) studied how exposure bias110

leads to hallucination in neural machine translation.111

To mitigate exposure bias, there exists a long line112

of work that has explored sequence-level training113

methods. Bengio et al. (2015); Ranzato et al. (2015)114

proposed to train RNN with RL or RL-related al-115

gorithms rather than teacher-forcing. BRIO Liu116

et al. (2022) targeted the summarization task with117

the ROUGE signal. Pang and He (2020) trained118

the language models with an offline RL learning119

algorithm.120

Recently, RLHF (Stiennon et al., 2020; Ouyang121

et al., 2022) was developed. Although the primary122

goal of RLHF is model alignment, it is effectively123

a sequence-level training technique. For the RLHF124

training, we usually need to gather a pair of con-125

tinuations for each prefix, where one continuation126

aligns with human preference and the other does127

not. This pair of sequences is used to train a reward 128

model, which is later used to supervise the samples 129

generated by the RL-trained model. The model 130

is typically optimized by REINFORCE (Williams, 131

1992) or PPO (Schulman et al., 2017). 132

Sequence-level training is also closely related to 133

energy-based models (EBM) (Korbak et al., 2022), 134

for example, the RLHF objective can be reframed 135

as a supervised learning algorithm coined as di- 136

rect preference optimization (DPO) (Rafailov et al., 137

2023) under the assumption of the Bradley-Terry 138

model (Bradley and Terry, 1952) or the Plackett- 139

Luce model (Plackett, 1975; Luce, 2012). The 140

particular formulation of the EBM in DPO mim- 141

ics the formulation in Deng et al. (2020), with the 142

reward function being the energy function. How- 143

ever, Deng et al. (2020) directly treat the EBM as a 144

language model, which is computationally heavy 145

for sampling and inference (due to the estimation 146

of the partition function). This EBM form has 147

also been studied in controlled text generation. Ku- 148

mar et al. (2022) adopted the Langevin dynamics 149

technique to directly sample from the EBM, with 150

different energy functions that characterize toxicity, 151

fluency, and diversity. All of these methods can be 152

viewed as sequence-level algorithms for different 153

purposes. 154

3 Preliminary 155

Notation Consider a sentence of T tokens x = 156

{x1, . . . ,xT } ∈ X , and let P be the unknown tar- 157

get language distribution, P̃ (x) be the empirical 158

distribution of the training data (which is an ap- 159

proximation of P ), and Q be the distribution of 160

our model at hand. Since our paper is also closely 161

related to RLHF, we will also use π to represent the 162

distributions. In particular, we sometimes write πθ 163

for a distribution that is parameterized by θ, where 164

θ is usually the set of trainable parameters of the 165

LLM; we write πref for a reference distribution 166

that should be clear given the context. The next 167

token prediction loss is minimizing the forward-KL 168

between P and Q. 169

Forward-KL vs. reverse-KL The forward-KL 170

is formally defined as the following: 171
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argmin
Q

DKL(P ||Q)

≈ argmin
Q

DKL(P̃ ||Q)

= argmin
Q

− 1

|X |
∑
x∈X

logQ(x).

172

Since we are only optimizing Q, minimizing the173

forward-KL is equivalent to the maximum likeli-174

hood estimation (MLE) max logQ. Further de-175

composing Q(x) =
∏
iQ(xi|xi−11 ), we get the176

next token prediction loss function177

argmax
Q

∑
x∈X

∑
xt∈x

logQ(xt|xt−11 ). (1)178

To actually measure the quality of the gener-179

ated text, typically, we will first generate several180

sequences and then evaluate the quality of these181

generated sequences. Here we look closely at the182

reverse-KL:183

DKL(Q||P ) =
∑
x∈X

Q(x) log

(
Q(x)

P (x)

)
, (2)184

however, since x ∼ Q, and we do not have access185

to P , the reverse-KL cannot be computed exactly.186

The equivalence of RLHF and EBM For the187

completeness of this paper, we include the result of188

the equivalence between RLHF and EBM. For the189

full proofs, we refer the reader to (Rafailov et al.,190

2023; Korbak et al., 2022).191

The RLHF objective is the following:192

max
πθ

Ex∼D,y∼πθ(y|x)[r(x,y)]

− βDKL

(
πθ(y|x)||πref(y|x)

)
,

(3)193

where x ∼ D is a given prefix, y ∼ πθ(y|x) is194

a sampled continuation from the trainable model195

πθ, and r(x,y) ∈ R is the reward. Meanwhile,196

we want to control the divergence between πθ and197

πref , where πref is usually an already pretrained or198

finetuned LLM. The RLHF optimum is achieved at199

the following EBM:200

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x,y)

)
,

(4)

201

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x,y)

)
is202

the partition function.203

4 Our approach 204

While the RL penalty with KL control eq. (3) 205

is widely adopted in RLHF, it can also be used 206

directly to train LLMs: instead of a preference 207

reward, we can use any metric that measures 208

text qualities as the reward r, including ROUGE, 209

BLEU, MAUVE, etc. The benefit of eq. (3) over 210

eq. (1) is that r guides the model over a whole 211

sequence y, rather than just a single token. This 212

motivates our work to investigate the possibility of 213

using a sequence-level objective in the pretraining 214

stage and the SFT stage of LLM. 215

Following Rafailov et al. (2023), we assume that 216

the preference over two sequences yw and yl given 217

x is parameterized by the Bradley-Terry model: 218

P (yw � yl|x) =
er(x,yw)

er(x,yl) + er(x,yw)
. 219

Under the Bradley-Terry model, DPO establishes 220

the equivalence between the original RLHF objec- 221

tive eq. (3) and the following supervised objective: 222

LDPO(πθ;πref) =

E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log πθ(yl | x)
πref(yl | x)

)]
,

(5) 223

where σ(·) is the Sigmoid function. 224

We can also generalize the formulation to the 225

Plackett-Luce model, where we have a linear order- 226

ing τ(·) among K sequences: 227

LDPO (πθ, πref) =

E
τ,x∼D
y1,...,yK

log
K∏
k=1

exp

(
β log

πθ(yτ(k)|x)
πref(yτ(k)|x)

)
∑K

j=k exp

(
β log

πθ(yτ(j)|x)
πref(yτ(j)|x)

)
 .
(6) 228

Here, τ(1), . . . , τ(K) induce a ranking among K 229

sequences. To simplify the notation, from now 230

on we always assume that y1 ∼ D is the most 231

preferred text appearing in the training data. 232

Investigating the DPO objective, we notice two 233

caveats for its use in the pretraining and SFT 234

stages: 1. We need human labelers to gather yw,yl. 235

2. There may not be a natural ranking among neg- 236

ative sequences y2, . . .yK in terms of text quality. 237

To tackle the first point, we sample yl ∼ A where 238

A is some noise distribution from which it is cheap 239
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to sample; to tackle the second point, we provide a240

variant objective that models a “best-of-K” event:241

y1 is the best among K sequences, rather than a242

linear ordering event yτ(1) � yτ(2) � . . . � yτ(K).243

These modifications lead to our proposed CPO ob-244

jective:245

LCPO (πθ, πref) =

E
(x,y1)∼D

y2,...,yK∼A

log
exp

(
β log

πθ(y1|x)
πref(y1|x)

)
∑K

j=1 exp

(
β log

πθ(yj |x)
πref(yj |x)

)
 .
(7)

246

If ranking information is desired, we have the247

following CPO objective with ranking:248

LCPO (πθ, πref) =

E
τ,(x,y1)∼D
y2,...,yK∼A

log
K∏
k=1

exp

(
β log

πθ(yτ(k)|x)
πref(yτ(k)|x)

)
K∑
j=k

exp

(
β log

πθ(yτ(j)|x)
πref(yτ(j)|x)

)
 .
(8)249

We will later discuss some possible choices of250

ranking signals and show that the ranking can in-251

deed further improve the text generation quality.252

The crucial aspect of CPO is how to generate253

negative sequences y2, ...,yk ∼ A. For RLHF,254

negative sequences are simply the ones that humans255

dislike. For the qualities of text generation, we256

implicitly model the sequence-level signal r(x,y)257

such that r(x,yk) < r(x,y1), ∀k ∈ {2, . . . ,K}.258

In other words, the reward r(·) prefers the ground259

truth to any other sequence. Importantly, the actual260

signal r is not parameterized explicitly, instead it261

is represented by the log density ratio log πθ
πref

.262

4.1 Connection to noise contrastive estimation263

Noise contrastrive estimation (NCE) (Gutmann and264

Hyvärinen, 2010) is a novel estimation technique265

introduced to tackle the computational infeasibility266

of traditional likelihood-based methods in large-267

scale machine learning models, particularly those268

involving high-dimensional data. NCE diverges269

from typical maximum likelihood estimation by270

transforming the problem into a classification task,271

which is deeply connected to both DPO and CPO.272

In NCE, the model is trained to distinguish between273

real data and noise/synthetic data. Beyond binary274

classification, RankingNCE 3 also trains the model 275

to rank the real data higher than all noise samples 276

(Ma and Collins, 2018). 277

There are two important distinctions between 278

CPO and NCE. First, instead of training the model 279

to distinguish between real data and noise (at which 280

any reasonable language model should already be 281

good), we train the model to distinguish better than 282

a reference model does, hence making the model 283

better at recognizing natural text. Second, we also 284

introduce a denser ranking signal by incorporat- 285

ing the similarity among embeddings of different 286

samples. The experiments in this paper demon- 287

strate that such a dense training signal consistently 288

improves text generation quality. 289

4.2 Synthetic negative samples 290

In this work, we propose four ways to generate 291

synthetic negative samples. The first is to au- 292

toregressively generate continuations from a ref- 293

erence model (trained with the next token predic- 294

tion loss). We fixed the synthetic data generation 295

strategy to be top−k sampling with k = 50. The 296

advantage of this strategy over the forthcoming 297

strategies is that the generated continuations are 298

of higher quality and lead to better downstream 299

performance, while the disadvantage is that sam- 300

pling is slow. We denote these negative samples 301

as autoregressive negatives (AN). One can speed 302

up the sampling process via speculative sampling 303

(Chen et al., 2023) or using a smaller or distilled 304

model, this direction is orthogonal to our approach 305

and can be directly incorporated into our frame- 306

work. 307

The second way is to directly use the continua- 308

tions to other (possibly unrelated) prefixes within 309

the same mini-batch as the negative samples. More 310

specifically, given a batch of prefixes and continua- 311

tions {xi,yi}bi=1, the negative samples to the prefix 312

xi are composed of {yj}j 6=i. Although these neg- 313

ative samples are not difficult to distinguish, they 314

are very simple to create and can be easily scaled 315

up. We denote these as batch negatives (BN). 316

The third way is to perform a token-level per- 317

turbation. Given a sequence y = {y1, . . . ,yT }, 318

we randomly select c percent of the positions 319

{t1, . . . , tj} ⊆ [T ], and substitute each yti inde- 320

pendently based on πθ(yti |y1, . . . ,yti). We call 321

these meanfield negatives (MN). The name is 322

3Despite the name, it means the model is ranking the real
data highest among all data, rather than learning a total order-
ing.
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based on the fact that we use a fully separable323

distribution to approximate the autoregressive dis-324

tribution, but note that this is not the optimal mean-325

field approximation. Nevertheless, computing this326

particular meanfield approximation does not take327

an additional cost, compared to estimating the best328

meanfield approximation. This method does not329

generate semantically meaningful sentences, but it330

does generate hard negative samples, as the model331

tends to give them high probabilities.332

Lastly, for each ground truth continuation, we333

can truncate the continuation at a random position334

and append an extra EOS token to the end. We335

denote this by truncation negatives (TN).336

4.3 Possible ranking signals337

As mentioned above, our reward implicitly prefers338

the ground truth over other sequences, and we do339

not explicitly model the reward parametrically. The340

upside of implicit representation of the reward is341

that it bypasses the shortcuts (e.g. Krishna et al.,342

2021) that are known to other explicit metrics 4.343

However, since we do not have access to a concrete344

score for the text quality, when presented with more345

than one negative sample, we do not have a direct346

ranking among them.347

Previous work on sequence-level training (Liu348

et al., 2022; Bengio et al., 2015) has suggested a349

variety of signals, including BLEU, ROGUE, and350

BertScore. These signals are usually specific to351

certain downstream tasks such as translation or352

summarization. In the modern era of LLMs, they353

have been shown to no longer align with human354

evaluations (Goyal et al., 2022). Since our goal is355

to improve text generation or instruction-following,356

the cosine similarity between embeddings is a more357

intuitive signal to measure the distance between358

sequences. The use of embedding for text genera-359

tion quality measurement is also suggested in the360

MAUVE metric (Pillutla et al., 2021).361

When presented K sequences and a ranking is362

desired, the sequences are ranked based on their co-363

sine similarity to the ground truth. Let e1, . . . , eK364

be the embeddings of given sequences y1, . . . ,yK365

and without loss of generality assume that e1 is366

the ground truth, we define τ(yi) < τ(yj) if367

〈ei,e1〉
‖ei‖‖e1‖ >

〈ej ,e1〉
‖ej‖‖e1‖ , with the lower ranking index368

indicating the better sample. Using the objective369

4Note that here we are not claiming CPO does not exist
any shortcuts. The statement here simply means that other
existing metrics have known shortcuts.

eq. (8), this process gives us denser signals during 370

training and can lead to better downstream perfor- 371

mance. 372

Another good candidate for the ranking signal 373

is the reward model score. In fact, since the down- 374

stream performance is judged by a reward model, 375

this will probably yield the best test performance 376

as well. However, one has to train and host an extra 377

reward model, creating extra memory and computa- 378

tion overhead. Therefore, we did not include such 379

a signal during training in this work. 380

4.4 Approximate reverse-KL 381

In the experiment, we also show how CPO im- 382

proves reverse-KL. As we discuss previously, an 383

unavoidable issue of calculating the reverse-KL is 384

that we do not have access to the probability of 385

the generated sequences under the true language 386

distribution. However, if we agree that the ability 387

to model natural language scales with the model 388

size, then we can approximate the true language 389

distribution P with a more capable model P̂ , hence 390

approximating the reverse-KL divergence. Since 391

many of our tasks are conditional by nature, for 392

example, the instruction-following task is to gener- 393

ate a response conditioned on the input instruction, 394

we further consider the expected reverse-KL diver- 395

gence: 396

Ex

[
DKL

(
Q(·|x)||P̂ (·|x)

)]
≈ 1

|X |
∑
x∈X

∑
y∈Y

Q(y|x) log

(
Q(y|x)
P̂ (y|x)

)
,

(9) 397

where X is the set of inputs (e.g. instructions) in 398

the test set, and Y is the set of generated continua- 399

tions (e.g. responses). During our evaluation, we 400

also notice that a more capable Q tends to gener- 401

ate sequences y with a lower probability Q(y|x), 402

compared to a less capable Q. This phenomenon 403

is indeed expected, since a more capable model 404

should be able to generate more diverse continua- 405

tions. To overcome the numerical instability with a 406

vanishing Q, we also use the following surrogate: 407

1

|X |
∑
x∈X

∑
y∈Y

− log P̂ (y|x)
|y|

,

where |y| is the length of y.

(10) 408

This is the log conditional probability normalized 409

by length, and its usage has been justified in Cho 410

et al. (2014); Liu et al. (2022); Fu et al. (2023). In 411
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particular, Fu et al. (2023) has discussed the use of412

normalized conditional probability with the GPT413

evaluator.414

5 Experiment415

Throughout this section, we use BN for mod-416

els trained with batch negatives, MN for mod-417

els trained with meanfield negatives, TN for mod-418

els trained with truncation negatives, MixN for a419

mixed negative sampling strategies which the de-420

tails should be found in its context, and AN for421

autoregressive negatives. We use ANR for models422

trained with autoregressive negatives and ranking423

signals, similarly we can define MixNR, etc.424

Task and model. We consider two tasks in this425

paper. The first is an instruction-following task,426

trained and evaluated on the Dolly dataset (Conover427

et al., 2023). This dataset is composed of 15011428

total instruction and response pairs. We train with429

7505 sequences and test with the rest 7506. We430

use pretrained GPT2-XL (Radford et al., 2019) and431

OpenLlama-3B(Touvron et al., 2023; Geng and432

Liu, 2023) as the base model. The second task is433

an open-ended text generation task on Wikidump434

data(Foundation). We train the OpenLlama-3B435

model to predict the rest 85% tokens given the436

leading 15% tokens.437

Training details. Throughout the experiment, we438

fix the learning rate to be 1e−5, we use the AdamW439

optimizer with weight decay of 0.05. We keep the440

batch size to be 64. Unless otherwise specified,441

for the baseline model, we train GPT2-XL and442

OpenLlama-3B with the next token prediction loss443

for 2000 steps, and denote them as MLE models.444

Using these models as the reference model πref , we445

continue to train with the CPO objective either with446

or without ranking signals, with β = 5, for 1000447

steps. For both models, each batch during training448

contains 11 negative samples in total. For MixN449

and MixNR, we also use a negative sample size450

of 11, consisting of 3 BN, 5 MN, and 3 TN. All451

experiments are conducted with 16 A100 GPUs.452

Evaluation. As discussed in Goyal et al. (2022),453

almost all automated evaluation metrics have been454

shown to not align with human evaluations in the455

modern era of LLM, so we decide to use GPT-3.5456

(Brown et al., 2020) as the evaluator. For each test457

instruction, we ask the trained models to gener-458

ate continuations with various generation config-459

urations, and query the reward model whether it460

prefers the generated continuations or the ground 461

truth. The win rate is then calculated on all test 462

instructions. As pointed out in Wang et al. (2023), 463

GPT models are prone to position bias. When eval- 464

uating by asking GPT which of the two inputs it 465

prefers, one can easily manipulate the result by ex- 466

changing the input positions. To counteract this 467

bias, for each test instruction, we ask both the CPO 468

model and the baseline model to generate contin- 469

uations and compare each of them to the ground 470

truth to calculate the win rate. Since both models’ 471

generations suffer from the same position bias, we 472

can meaningfully compare the difference between 473

their win rates against the ground truth. 474

The query template for the Dolly instruction- 475

following is the following: “For the following 476

query to a chatbot, which response is 477

more helpful?\n Query: {}\n Response A: 478

{}\n Response B: {}\n State only "A" or 479

"B" to indicate which response is more 480

helpful.\n More helpful:” For efficiency, we 481

generate and evaluate 1000 samples in the test set. 482

A similar template is used for Wiki text generation, 483

see the detail in the appendix. 484

In addition to the win rate, we also evaluate the 485

model performance based on reverse-KL and nor- 486

malized log conditional probability, as described in 487

section 4.4. 488

Weight-space ensemble. Previous works (Liu 489

et al., 2022) have also suggested to combine the 490

auxilliary loss function with the MLE training ob- 491

jective LMLE + αLCPO, the downside of combin- 492

ing loss functions in this way is that for a different 493

choice of α one will have to retrain the model. 494

To investigate the importance of loss combination, 495

we instead take a similar approach to WISE-FT 496

(Wortsman et al., 2022) and perform a weight-space 497

ensemble. In particular, denote θCPO and θMLE 498

the model parameters trained solely with CPO or 499

MLE respectively, we generate with the interpo- 500

lated weights θ = αθMLE + (1− α)θCPO. 501

5.1 Instruction-following task 502

On the Dolly instruction-following task, our pro- 503

posed CPO method with various negative sampling 504

strategies consistently outperforms the MLE base- 505

line models. Using greedy sampling with GPT2- 506

XL, the CPO model has a clear margin over the 507

MLE model, and CPO+ANR has a 3.5% higher 508

win rate, see table 2. Keep in mind that the CPO 509

process incurs only very little computation over- 510
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Table 1: Study of the effect of
different negative samples. Win
rate evaluated by GPT-3.5 against
the ground truth continuations.

MLE BNR MNR TNR

0.505 0.599 0.567 0.601

Table 2: The win rate of GPT2-XL against the ground truth, samples
generated by greedy decoding, evaluated by GPT-3.5.

MLE ANR MIXNR

α - - 0 0.5 0.7 0.9

WinRate 0.471 0.506 0.476 0.479 0.487 0.485

Table 3: The win rate of OpenLlama-3B trained with either MLE or CPO+MixNR against the ground truth, evaluated
by GPT-3.5. The samples are generated by various strategies, we only present MLE and MixNR models here.

Model
Config

k = 50, p = 1 k = 50, p = 0.7 beam= 2 beam= 4

MIXNR 0.591 0.611 0.607 0.568

MLE 0.497 0.517 0.532 0.514

head during the actual training. Even if we generate511

the negative samples autoregressively, this cost is512

only offline and is one-time.513

The improvement in OpenLlama-3B is more sig-514

nificant: CPO+ANR has a 13.8% higher win rate515

than the MLE baseline, and CPO+MixNR has a516

9.8% higher win rate in table 4. We also observe517

that WISE-FT has a positive impact on the model.518

Heuristically, for OpenLlama-3B, a smaller α is519

preferred (more emphasis on the CPO weights) (ta-520

ble 4), but the reverse holds for GPT2-XL (table 2).521

We hypothesize that the choice of α should depend522

on the model parameters: If the model is more ca-523

pable, then it can benefit more from CPO. Here,524

we show the existence of a good α, and we leave525

further exploration to future research.526

Generation configuration. In addition to greedy527

decoding, we also experiment with different choice528

of sampling strategies. We test with various set-529

tings of top-k top-p sampling, as well as different530

lengths of beam search. In all settings, CPO has531

consistently demonstrated superior performance532

over MLE, see table 3.533

Effect of different negative samples. We per-534

form a study on the effects of different negative535

sampling strategies; the results are presented in536

table 1. We first train the OpenLlama-3B model537

with MLE loss for 1000 steps, then continue to538

train with CPO for 200 steps. For all ground truth539

sequences, we use 4 negative sequences. In this540

setting, we always use the ranking information to541

train CPO. We observe that the effects of BNR and542

TNR on the reward model preference is similar and543

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Values

MLE

MixNR

MLE

MixN

MixNR

M
et

ho
ds

3.21

2.3

3.31

3.16

2.84

Reverse-KL, GPT2XL
Log-normalized Cond Prob, OpenLlama-3B

Figure 1: Reverse-KL and negative log-normalized con-
ditional probability of several models and negative sam-
pling strategies. Smaller numbers indicate better qual-
ity. CPO consistently outperforms MLE. CPO+ranking
information also outperforms CPO without ranking in-
formation.

that they perform slightly better than MNR. 544

Reverse-KL. The reverse-KL (eq. (9)) and 545

negative log-normalized conditional probability 546

(eq. (10)) metrics are reported in fig. 1. Smaller 547

numbers indicate higher quality for both metrics. 548

MixNR and MixN both demonstrate improvements 549

over the MLE model. Since these metrics mea- 550

sure how likely the generated texts are under the 551

(approximated) language distribution, these results 552

serve as complementary explanation to CPO’s im- 553

provement in reward model scores. 554

5.2 Open-ended text generation task 555

We further test OpenLlama-3B’s ability on an open- 556

ended text generation task with CPO. Using the 557

7



Table 4: The win rate of OpenLlama-3B trained with CPO and MLE against the ground truth data in Dolly, sampled
by greedy decoding, evaluated by GPT-3.5. MLE1, ANR and AN are trained for 200 steps, the rest models are
trained for 1000 steps. The best CPO model outperforms the MLE baseline by 13.8% win rate.

MLE1 ANR AN MLE2 MIXNR MIXN

α - - - - 0 0.1 0.3 0.5 0.7 0.9 -

WinRate 0.505 0.643 0.56 0.522 0.608 0.620 0.614 0.610 0.601 0.550 0.576

Instruction: Do you prefer a Tesla model
S or a Porsche Taycan
MLE response: S
CPO response: ? While both are excellent
cars, if I had to choose between the two, I
would go with the Tesla model S. The Tesla
model S has a larger battery size (92 kWh vs
79 kWh), faster charging capabilities (230
kW vs 180 kW), and has a better range (418
miles vs 318 miles). The Tesla model S also
feels more powerful and is easier to drive.

Figure 2: The responses of MLE and CPO
model

Table 5: OpenLlama-3B’s win rate against the ground
truth continuation on Wikidump. The model is trained
with either MLE or CPO+BNR. Weight ensemble is
adopted. The best CPO model outperforms the MLE
baseline by 3% win rate.

MLE BNR

α - 0 0.5 0.7 0.9

WinRate 0.508 0.455 0.505 0.5 0.538

Wikidump data (Foundation), for each test sample,558

we take its first 15% tokens as the prefix and train559

the model with CPO on the rest 85%. For nega-560

tive sampling, we use four BNR examples. The561

results table 5 indicates that with a correctly picked562

weight interpolation coefficient α, CPO can greatly563

improve the model’s win rate against the MLE base-564

line by 3%. The results also have a different pattern565

compared to the instruction-following task: the op-566

timal choice of α shows a reverse trend. With the567

Dolly dataset we observes a small optimal α, but568

on the Wiki dataset we see a large optimal α.569

5.3 What type of generations does CPO tend 570

to create? 571

Investigating the generations of CPO vs those of 572

MLE, we notice that CPO model tends to create 573

more detailed continuations/responses to given pre- 574

fixes/instructions, partly explaining why these gen- 575

erations are preferred by GPT reward. As the sam- 576

ple demonstrates, the CPO response appears to be 577

more helpful with more details, see fig. 2. 578

6 Limitation and conclusion 579

In this paper, we propose an auxiliary CPO loss 580

function for LLM training, which can be used with 581

or without ranking signals depending on the quality 582

of the negative samples. We investigated several 583

ways to generate negative samples, each with its 584

own pros and cons. Experimentally, we show that 585

both the GPT2-XL and the OpenLlama-3B mod- 586

els benefit from training with our proposed CPO 587

objectives. In the Dolly instruction-following task, 588

OpenLlama-3B + CPO has a win rate 13.8% higher 589

than MLE; GPT2-XL has a win rate 3.5% higher. 590

In the Wikipedia text generation task, OpenLlama- 591

3B+CPO has a win rate 3% higher than the MLE 592

baseline model. One limitation of this work is that 593

the synthetic data are very noisy unless generated 594

autoregressively; it is interesting to explore other 595

ways to efficiently generate high-quality negative 596

data beyond the autoregressive fashion. One pos- 597

sible direction is to consider Langevin dynamic 598

sampling, which samples all tokens in parallel. 599

References 600

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and 601
Jackie Chi Kit Cheung. 2022. Why exposure bias 602
matters: An imitation learning perspective of error 603
accumulation in language generation. arXiv preprint 604
arXiv:2204.01171. 605

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam 606
Shazeer. 2015. Scheduled sampling for sequence 607
prediction with recurrent neural networks. Advances 608
in neural information processing systems, 28. 609

8



Ralph Allan Bradley and Milton E Terry. 1952. Rank610
analysis of incomplete block designs: I. the method611
of paired comparisons. Biometrika, 39(3/4):324–612
345.613

Tom Brown, Benjamin Mann, Nick Ryder, Melanie614
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind615
Neelakantan, Pranav Shyam, Girish Sastry, Amanda616
Askell, et al. 2020. Language models are few-shot617
learners. Advances in neural information processing618
systems, 33:1877–1901.619

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,620
Jean-Baptiste Lespiau, Laurent Sifre, and John621
Jumper. 2023. Accelerating large language model622
decoding with speculative sampling. arXiv preprint623
arXiv:2302.01318.624

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-625
danau, and Yoshua Bengio. 2014. On the properties626
of neural machine translation: Encoder-decoder ap-627
proaches. arXiv preprint arXiv:1409.1259.628

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-629
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi630
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.631
2022. Scaling instruction-finetuned language models.632
arXiv preprint arXiv:2210.11416.633

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,634
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,635
Matei Zaharia, and Reynold Xin. 2023. Free dolly:636
Introducing the world’s first truly open instruction-637
tuned llm.638

Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam,639
and Marc’Aurelio Ranzato. 2020. Residual energy-640
based models for text generation. arXiv preprint641
arXiv:2004.11714.642

Wikimedia Foundation. Wikimedia downloads.643

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei644
Liu. 2023. Gptscore: Evaluate as you desire. arXiv645
preprint arXiv:2302.04166.646

Xinyang Geng and Hao Liu. 2023. Openllama: An open647
reproduction of llama.648

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022.649
News summarization and evaluation in the era of650
gpt-3. arXiv preprint arXiv:2209.12356.651

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-652
contrastive estimation: A new estimation principle653
for unnormalized statistical models. In Proceedings654
of the thirteenth international conference on artificial655
intelligence and statistics, pages 297–304. JMLR656
Workshop and Conference Proceedings.657

Tomasz Korbak, Ethan Perez, and Christopher L658
Buckley. 2022. Rl with kl penalties is better659
viewed as bayesian inference. arXiv preprint660
arXiv:2205.11275.661

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021. 662
Hurdles to progress in long-form question answering. 663
arXiv preprint arXiv:2103.06332. 664

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. 2022. 665
Gradient-based constrained sampling from language 666
models. In Proceedings of the 2022 Conference on 667
Empirical Methods in Natural Language Processing, 668
pages 2251–2277. 669

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham 670
Neubig. 2022. Brio: Bringing order to abstractive 671
summarization. arXiv preprint arXiv:2203.16804. 672

R Duncan Luce. 2012. Individual choice behavior: A 673
theoretical analysis. Courier Corporation. 674

Zhuang Ma and Michael Collins. 2018. Noise con- 675
trastive estimation and negative sampling for condi- 676
tional models: Consistency and statistical efficiency. 677
arXiv preprint arXiv:1809.01812. 678

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 679
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 680
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 681
2022. Training language models to follow instruc- 682
tions with human feedback. Advances in Neural 683
Information Processing Systems, 35:27730–27744. 684

Richard Yuanzhe Pang and He He. 2020. Text genera- 685
tion by learning from demonstrations. arXiv preprint 686
arXiv:2009.07839. 687

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, 688
John Thickstun, Sean Welleck, Yejin Choi, and Zaid 689
Harchaoui. 2021. Mauve: Measuring the gap be- 690
tween neural text and human text using divergence 691
frontiers. Advances in Neural Information Process- 692
ing Systems, 34:4816–4828. 693

Robin L Plackett. 1975. The analysis of permutations. 694
Journal of the Royal Statistical Society Series C: Ap- 695
plied Statistics, 24(2):193–202. 696

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 697
Dario Amodei, Ilya Sutskever, et al. 2019. Language 698
models are unsupervised multitask learners. OpenAI 699
blog, 1(8):9. 700

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano 701
Ermon, Christopher D Manning, and Chelsea Finn. 702
2023. Direct preference optimization: Your language 703
model is secretly a reward model. arXiv preprint 704
arXiv:2305.18290. 705

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, 706
and Wojciech Zaremba. 2015. Sequence level train- 707
ing with recurrent neural networks. arXiv preprint 708
arXiv:1511.06732. 709

Victor Sanh, Albert Webson, Colin Raffel, Stephen H 710
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine 711
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun 712
Raja, et al. 2021. Multitask prompted training en- 713
ables zero-shot task generalization. arXiv preprint 714
arXiv:2110.08207. 715

9

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://dumps.wikimedia.org
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama


Florian Schmidt. 2019. Generalization in generation:716
A closer look at exposure bias. arXiv preprint717
arXiv:1910.00292.718

John Schulman, Filip Wolski, Prafulla Dhariwal,719
Alec Radford, and Oleg Klimov. 2017. Proxi-720
mal policy optimization algorithms. arXiv preprint721
arXiv:1707.06347.722

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel723
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,724
Dario Amodei, and Paul F Christiano. 2020. Learn-725
ing to summarize with human feedback. Advances726
in Neural Information Processing Systems, 33:3008–727
3021.728

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier729
Martinet, Marie-Anne Lachaux, Timothée Lacroix,730
Baptiste Rozière, Naman Goyal, Eric Hambro,731
Faisal Azhar, et al. 2023. Llama: Open and effi-732
cient foundation language models. arXiv preprint733
arXiv:2302.13971.734

Chaojun Wang and Rico Sennrich. 2020. On exposure735
bias, hallucination and domain shift in neural ma-736
chine translation. arXiv preprint arXiv:2005.03642.737

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai738
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.739
2023. Large language models are not fair evaluators.740
arXiv preprint arXiv:2305.17926.741

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten742
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,743
et al. 2022. Chain-of-thought prompting elicits rea-744
soning in large language models. Advances in Neural745
Information Processing Systems, 35:24824–24837.746

Ronald J Williams. 1992. Simple statistical gradient-747
following algorithms for connectionist reinforcement748
learning. Machine learning, 8:229–256.749

Mitchell Wortsman, Gabriel Ilharco, Jong Wook750
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,751
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali752
Farhadi, Hongseok Namkoong, et al. 2022. Robust753
fine-tuning of zero-shot models. In Proceedings of754
the IEEE/CVF Conference on Computer Vision and755
Pattern Recognition, pages 7959–7971.756

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao757
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,758
Lili Yu, et al. 2023. Lima: Less is more for alignment.759
arXiv preprint arXiv:2305.11206.760

A Appendix761

A.1 Derivation of the CPO objective function762

Here we give a full derivation of the CPO objective763

function in eq. (7).764

Let y1, . . . ,yK be K continuations of a given765

prefix x. Without loss of generality, let y1 be the766

best candidate. We are interested in the MLE of the767

event P (y1 is the best among K candidates|x).768

We start from the sequence-level (RLHF) objec- 769

tive, notice that here r(·) is a reward over language 770

quality, not human preference. 771

max
πθ

Ex∼D,y∼πθ(y|x)[r(x,y)]

− βDKL

(
πθ(y|x)||πref(y|x)

)
,

(11) 772

Its optimum is achieved at the following EBM: 773

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x,y)

)
,

(12)

774

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x,y)

)
is 775

the partition function. See the proof in (Rafailov 776

et al., 2023; Korbak et al., 2022). 777

Now we consider the natural extension of the 778

Bradley-Terry model to K candidates: 779

P (y1 is the best among K candidates|x)

=
exp
(
r∗(x,y1)

)∑
k∈[K] exp

(
r∗(x,yk)

) . (13) 780

Now assuming we have the optimal policy π∗, 781

we can reparameterize r by rearranging eq. (12): 782

r∗(x,y) = β log
π∗(y | x)
πref(y | x)

+ β logZ(x).

(14)

783

Plugging eq. (14) into eq. (13), we get eq. (7). 784

A.2 Query template of Wiki text generation 785

The template is the following: “For the 786

following prefix, which continuation is 787

better?\n Prefix: {}\n Continuation A: 788

{}\n Continuation B: {}\n State only "A" 789

or "B" to indicate which continuation is 790

more helpful.\n Better:” 791
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