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Abstract

The next token prediction loss is the dominant
self-supervised training objective for large lan-
guage models and has achieved promising re-
sults in a variety of downstream tasks. How-
ever, upon closer investigation of this objec-
tive, we find that it lacks an understanding of
sequence-level signals, leading to a mismatch
between the training and inference processes.
To bridge this gap, we introduce a contrastive
preference optimization procedure that can in-
ject sequence-level signals into the language
model at any training stage without expensive
human labeling. Notably, our experiments re-
vealed that the proposed objective surpasses the
next token prediction in terms of the win rate
in the instruction-following and text generation
tasks. Specifically, using OpenlLlama-3B, our
method achieves a 13.8% improvement in an
instruction-following task and a 3% increase in
a text generation task.

1 Introduction

Next token prediction ! is now the predominant
way for pre-training and supervised fine-tuning
(SFT) of large language models (LLM). This loss
function can be easily scaled up to train models
with trillions of parameters and tokens, and it has
also demonstrated the ability to generate coherent
and contextually relevant text. Let P be the un-
known target language distribution, and let () be
the distribution of our model at hand. The goal of
next token prediction is to minimize the forward-
KL divergence between P and (); during test time,
we usually first generate a set of samples using
the trained model and evaluate the quality of these
generations using a certain metric 2, for example,
the reverse-KL. This training process only super-
vises the prediction of one token at a time given

"This term is subsequently used interchangeably with max-
imum likelihood estimation (MLE).

*Metric in the sense of a quality measurement, rather than
the mathematical concept.

the full context from the ground truth. On the other
hand, during inference, the model needs to gener-
ate a whole sequence (for a given prompt) relying
on its own prior predictions. This mismatch be-
tween the training stage and the inference stage is
known as exposure-bias in the literature of RNN
and sequence-to-sequence model (Bengio et al.,
2015; Ranzato et al., 2015).

In other words, the next token prediction-based
training injects only foken-level information into
the model, but missing sequence-level signal. Of
course, such discrepancies can be mitigated by
the subsequent reinforcement learning with hu-
man feedback (RLHF) step (Ouyang et al., 2022)
in LLM training. In RLHF, a reward signal is
enforced on the generated sequence of the lan-
guage model and guides the model generation to
align with human preference. RLHF is compu-
tationally intensive and often faces instability is-
sues. Therefore, many open-source LLMs do not
incorporate this discipline. Direct preference op-
timization (DPO) (Rafailov et al., 2023) is a re-
cently proposed alternative to RLHF that enables
sequence-level LLM training without the need for
costly model generations. One drawback of both
DPO and RLHF methods is that they require ex-
pensive human labeling to score the LLM training
samples. RLHF requires human preference data to
train the reward model, and DPO training requires
a supervised pair of positive and negative comple-
tions for each given prompt. However, most of the
existing LLM training data do not consist of such
human preference information. Therefore, in this
work, we ask the following question:

Can we introduce sequence-level information in
LLM training even in the absence of
human-preference data?

We answer the question affirmatively with
our proposed CONTRASTIVE PREFERENCE
OPTIMIZATION (CPO) method. CPO shares a sim-



ilar principle to RLHF/DPO in the sense that they
all parameterize (perhaps implicitly) the optimal
model (with respect to a certain sequence-level sig-
nal) by an energy-based model (EBM). However,
the goal of CPO is not alignment, but genera-
tion quality. Therefore, unlike RLHF and DPO,
the proposed CPO method does not require human
preference information as the training signal. An-
other related method that optimizes the quality of
generated text is BRIO (Liu et al., 2022). Although
unlike BRIO, the proposed CPO method does not
necessarily rely on autoregressively sampled neg-
ative sequences from the model and therefore is
much more computational efficient and easier to
scale up. In addition, CPO is also derived from a
more principled statistical perspective. Our experi-
ments demonstrate that CPO is able to improve the
quality of text generation in terms of reward model
scores and reverse-KL divergence.

2 Related work

LLMs trained with next token prediction loss (Rad-
ford et al., 2019; Chung et al., 2022; Sanh et al.,
2021; Zhou et al., 2023) have demonstrated many
fascinating capabilities, including the ability to per-
form zero-shot or few-shot tasks (Radford et al.,
2019; Brown et al., 2020) and the ability to reason
(Wei et al., 2022).

Several works have investigated the shortcom-
ings of MLE and exposure bias. Arora et al. (2022)
measured the accumulation of errors in language
generation due to exposure bias. Schmidt (2019)
connected exposure bias to generalization. Wang
and Sennrich (2020) studied how exposure bias
leads to hallucination in neural machine translation.
To mitigate exposure bias, there exists a long line
of work that has explored sequence-level training
methods. Bengio et al. (2015); Ranzato et al. (2015)
proposed to train RNN with RL or RL-related al-
gorithms rather than teacher-forcing. BRIO Liu
et al. (2022) targeted the summarization task with
the ROUGE signal. Pang and He (2020) trained
the language models with an offline RL learning
algorithm.

Recently, RLHF (Stiennon et al., 2020; Ouyang
et al., 2022) was developed. Although the primary
goal of RLHF is model alignment, it is effectively
a sequence-level training technique. For the RLHF
training, we usually need to gather a pair of con-
tinuations for each prefix, where one continuation
aligns with human preference and the other does

not. This pair of sequences is used to train a reward
model, which is later used to supervise the samples
generated by the RL-trained model. The model
is typically optimized by REINFORCE (Williams,
1992) or PPO (Schulman et al., 2017).

Sequence-level training is also closely related to
energy-based models (EBM) (Korbak et al., 2022),
for example, the RLHF objective can be reframed
as a supervised learning algorithm coined as di-
rect preference optimization (DPO) (Rafailov et al.,
2023) under the assumption of the Bradley-Terry
model (Bradley and Terry, 1952) or the Plackett-
Luce model (Plackett, 1975; Luce, 2012). The
particular formulation of the EBM in DPO mim-
ics the formulation in Deng et al. (2020), with the
reward function being the energy function. How-
ever, Deng et al. (2020) directly treat the EBM as a
language model, which is computationally heavy
for sampling and inference (due to the estimation
of the partition function). This EBM form has
also been studied in controlled text generation. Ku-
mar et al. (2022) adopted the Langevin dynamics
technique to directly sample from the EBM, with
different energy functions that characterize toxicity,
fluency, and diversity. All of these methods can be
viewed as sequence-level algorithms for different
purposes.

3 Preliminary

Notation Consider a sentence of 7" tokens @ =
{z1,...,x7} € X, and let P be the unknown tar-
get language distribution, P(x) be the empirical
distribution of the training data (which is an ap-
proximation of P), and @) be the distribution of
our model at hand. Since our paper is also closely
related to RLHF, we will also use 7 to represent the
distributions. In particular, we sometimes write 7y
for a distribution that is parameterized by 6, where
0 is usually the set of trainable parameters of the
LLM; we write 7. for a reference distribution
that should be clear given the context. The next
token prediction loss is minimizing the forward-KL
between P and Q).

Forward-KL vs. reverse-KLL The forward-KLL
is formally defined as the following:
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Since we are only optimizing (), minimizing the
forward-KL is equivalent to the maximum likeli-
hood estimation (MLE) maxlog (). Further de-
composing Q(z) = [[; Q(z;|x} "), we get the
next token prediction loss function

argmax Z Z log Q(z¢|x}~
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To actually measure the quality of the gener-
ated text, typically, we will first generate several
sequences and then evaluate the quality of these
generated sequences. Here we look closely at the

reverse-KL:
log< (m)>, @)
P(x)

however, since  ~ (), and we do not have access
to P, the reverse-KL cannot be computed exactly.

Dx1(Q||P) =

> Q)
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The equivalence of RLHF and EBM For the
completeness of this paper, we include the result of
the equivalence between RLHF and EBM. For the
full proofs, we refer the reader to (Rafailov et al.,
2023; Korbak et al., 2022).

The RLHF objective is the following:

max B yromy (ylz) (2, Y)]

(3)
— BDkL(mo(y|x)||met (y] ),

where  ~ D is a given prefix, y ~ mp(y|x) is
a sampled continuation from the trainable model
7, and r(x,y) € R is the reward. Meanwhile,
we want to control the divergence between my and
Tref, Where Tyer i usually an already pretrained or
finetuned LLM. The RLHF optimum is achieved at
the following EBM:

7 (yle) = et o) exp@r(m,y)),
“4)

where Z(x) = Zy Tref (Y] ) exp(%r(:n,y)) is
the partition function.

4 Our approach

While the RL penalty with KL control eq. (3)
is widely adopted in RLHF, it can also be used
directly to train LLMs: instead of a preference
reward, we can use any metric that measures
text qualities as the reward r, including ROUGE,
BLEU, MAUVE, etc. The benefit of eq. (3) over
eq. (1) is that r guides the model over a whole
sequence y, rather than just a single token. This
motivates our work to investigate the possibility of
using a sequence-level objective in the pretraining
stage and the SFT stage of LLM.

Following Rafailov et al. (2023), we assume that
the preference over two sequences y,, and y; given
x is parameterized by the Bradley-Terry model:

er(mvy’w)
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Under the Bradley-Terry model, DPO establishes
the equivalence between the original RLHF objec-
tive eq. (3) and the following supervised objective:

Lppo (Tg; Tret) =
7o(Yuw | T)

E(w,yw,yz)ND |:10g 7 <I8 log 7Tref<yw ‘ w) ©)

~ Blog mo(y1 | x) )}
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where o(-) is the Sigmoid function.

We can also generalize the formulation to the
Plackett-Luce model, where we have a linear order-
ing 7(-) among K sequences:

Lppo (7o, Tret) =

K exp (ﬁ log
E log H

Y1 YK k= 12 _j €Xp <ﬂlog 7T9(y7(/)|m)>

ﬂ-ref(yﬂ'(j)lw)

o (Yr () >

Tref (yT(k) |:l!)

(6)
Here, 7(1),...,7(K) induce a ranking among K
sequences. To simplify the notation, from now

on we always assume that y; ~ D is the most
preferred text appearing in the training data.
Investigating the DPO objective, we notice two
caveats for its use in the pretraining and SFT
stages: 1. We need human labelers to gather y,,, y;.
2. There may not be a natural ranking among neg-
ative sequences ys, . . . Yx in terms of text quality.
To tackle the first point, we sample y; ~ A where
A is some noise distribution from which it is cheap



to sample; to tackle the second point, we provide a
variant objective that models a “best-of-K” event:
y1 is the best among K sequences, rather than a
linear ordering event Y (1) > Yr(2) > - -- > Yr(K)-
These modifications lead to our proposed CPO ob-
jective:

Lcpo (79, Tret) =

exp (ﬂ log mo(wile) )

E log Tref (yl |[l:)
(z,y1)~D K o (yj|@)
Y2, YK ~A Zj:l exp (ﬁ log 7fref(yy|w)>

(7

If ranking information is desired, we have the
following CPO objective with ranking:

Lcro (7o, Tret) =

K €exp (6 log 77@(%('“)'%) >

Tref (yT(k) Im)

k=1 mo(yr()|2)
Z oxp <B log 7Tt'ef(i’:"r(j) |:1:)

7,(2,y1)~D
Y2, Y ~A

®)

We will later discuss some possible choices of
ranking signals and show that the ranking can in-
deed further improve the text generation quality.

The crucial aspect of CPO is how to generate
negative sequences ¥s, ...,y ~ A. For RLHF,
negative sequences are simply the ones that humans
dislike. For the qualities of text generation, we
implicitly model the sequence-level signal r(x, y)
such that r(x, yi) < r(x,y1), Vk € {2,...,K}.
In other words, the reward r(-) prefers the ground
truth to any other sequence. Importantly, the actual
signal r is not parameterized explicitly, instead it
is represented by the log density ratio log %

4.1 Connection to noise contrastive estimation

Noise contrastrive estimation (NCE) (Gutmann and
Hyvérinen, 2010) is a novel estimation technique
introduced to tackle the computational infeasibility
of traditional likelihood-based methods in large-
scale machine learning models, particularly those
involving high-dimensional data. NCE diverges
from typical maximum likelihood estimation by
transforming the problem into a classification task,
which is deeply connected to both DPO and CPO.
In NCE, the model is trained to distinguish between
real data and noise/synthetic data. Beyond binary

classification, RankingNCE ? also trains the model
to rank the real data higher than all noise samples
(Ma and Collins, 2018).

There are two important distinctions between
CPO and NCE. First, instead of training the model
to distinguish between real data and noise (at which
any reasonable language model should already be
good), we train the model to distinguish better than
a reference model does, hence making the model
better at recognizing natural text. Second, we also
introduce a denser ranking signal by incorporat-
ing the similarity among embeddings of different
samples. The experiments in this paper demon-
strate that such a dense training signal consistently
improves text generation quality.

4.2 Synthetic negative samples

In this work, we propose four ways to generate
synthetic negative samples. The first is to au-
toregressively generate continuations from a ref-
erence model (trained with the next token predic-
tion loss). We fixed the synthetic data generation
strategy to be top—k sampling with £ = 50. The
advantage of this strategy over the forthcoming
strategies is that the generated continuations are
of higher quality and lead to better downstream
performance, while the disadvantage is that sam-
pling is slow. We denote these negative samples
as autoregressive negatives (AN). One can speed
up the sampling process via speculative sampling
(Chen et al., 2023) or using a smaller or distilled
model, this direction is orthogonal to our approach
and can be directly incorporated into our frame-
work.

The second way is to directly use the continua-
tions to other (possibly unrelated) prefixes within
the same mini-batch as the negative samples. More
specifically, given a batch of prefixes and continua-
tions {z;, y; }°_;, the negative samples to the prefix
x; are composed of {y;} ;. Although these neg-
ative samples are not difficult to distinguish, they
are very simple to create and can be easily scaled
up. We denote these as batch negatives (BN).

The third way is to perform a token-level per-
turbation. Given a sequence y = {y1,...,Yyr},
we randomly select ¢ percent of the positions
{t1,...,t;} C [T, and substitute each y;, inde-
pendently based on my(yy,|y1,--.,Y,). We call
these meanfield negatives (MN). The name is

3Despite the name, it means the model is ranking the real

data highest among all data, rather than learning a total order-
ing.



based on the fact that we use a fully separable
distribution to approximate the autoregressive dis-
tribution, but note that this is not the optimal mean-
field approximation. Nevertheless, computing this
particular meanfield approximation does not take
an additional cost, compared to estimating the best
meanfield approximation. This method does not
generate semantically meaningful sentences, but it
does generate hard negative samples, as the model
tends to give them high probabilities.

Lastly, for each ground truth continuation, we
can truncate the continuation at a random position
and append an extra EOS token to the end. We
denote this by truncation negatives (TN).

4.3 Possible ranking signals

As mentioned above, our reward implicitly prefers
the ground truth over other sequences, and we do
not explicitly model the reward parametrically. The
upside of implicit representation of the reward is
that it bypasses the shortcuts (e.g. Krishna et al.,
2021) that are known to other explicit metrics
However, since we do not have access to a concrete
score for the text quality, when presented with more
than one negative sample, we do not have a direct
ranking among them.

Previous work on sequence-level training (Liu
et al., 2022; Bengio et al., 2015) has suggested a
variety of signals, including BLEU, ROGUE, and
BertScore. These signals are usually specific to
certain downstream tasks such as translation or
summarization. In the modern era of LLMs, they
have been shown to no longer align with human
evaluations (Goyal et al., 2022). Since our goal is
to improve text generation or instruction-following,
the cosine similarity between embeddings is a more
intuitive signal to measure the distance between
sequences. The use of embedding for text genera-
tion quality measurement is also suggested in the
MAUVE metric (Pillutla et al., 2021).

When presented K sequences and a ranking is
desired, the sequences are ranked based on their co-
sine similarity to the ground truth. Let ey, ..., ex
be the embeddings of given sequences y1, ..., Yk
and without loss of generality assume that e; is
the ground truth, we define 7(y;) < 7(y;) if

e;,el <ejvel>
lleillllex]l — llejllllell> i >
indicating the better sample. Using the objective

with the lower ranking index

“Note that here we are not claiming CPO does not exist
any shortcuts. The statement here simply means that other
existing metrics have known shortcuts.

eq. (8), this process gives us denser signals during
training and can lead to better downstream perfor-
mance.

Another good candidate for the ranking signal
is the reward model score. In fact, since the down-
stream performance is judged by a reward model,
this will probably yield the best test performance
as well. However, one has to train and host an extra
reward model, creating extra memory and computa-
tion overhead. Therefore, we did not include such
a signal during training in this work.

4.4 Approximate reverse-KL

In the experiment, we also show how CPO im-
proves reverse-KL. As we discuss previously, an
unavoidable issue of calculating the reverse-KL is
that we do not have access to the probability of
the generated sequences under the true language
distribution. However, if we agree that the ability
to model natural language scales with the model
size, then we can approximate the true language
distribution P with a more capable model P, hence
approximating the reverse-KL divergence. Since
many of our tasks are conditional by nature, for
example, the instruction-following task is to gener-
ate a response conditioned on the input instruction,
we further consider the expected reverse-KL diver-
gence:

E, [DKL(Q<-|w>w3<-\w>)]
)
Z > Qyle) 10g< Ey|x)>

mEX yey | )

where X is the set of inputs (e.g. instructions) in
the test set, and ) is the set of generated continua-
tions (e.g. responses). During our evaluation, we
also notice that a more capable () tends to gener-
ate sequences y with a lower probability Q(y|x),
compared to a less capable (). This phenomenon
is indeed expected, since a more capable model
should be able to generate more diverse continua-
tions. To overcome the numerical instability with a
vanishing (), we also use the following surrogate:

FDIPIE

:cEX yey

—log P(yl|z)
lyl (10)
where |y| is the length of y.

This is the log conditional probability normalized
by length, and its usage has been justified in Cho
et al. (2014); Liu et al. (2022); Fu et al. (2023). In



particular, Fu et al. (2023) has discussed the use of
normalized conditional probability with the GPT
evaluator.

5 Experiment

Throughout this section, we use BN for mod-
els trained with batch negatives, MN for mod-
els trained with meanfield negatives, TN for mod-
els trained with truncation negatives, MixN for a
mixed negative sampling strategies which the de-
tails should be found in its context, and AN for
autoregressive negatives. We use ANR for models
trained with autoregressive negatives and ranking
signals, similarly we can define MixNR, etc.

Task and model. We consider two tasks in this
paper. The first is an instruction-following task,
trained and evaluated on the Dolly dataset (Conover
et al., 2023). This dataset is composed of 15011
total instruction and response pairs. We train with
7505 sequences and test with the rest 7506. We
use pretrained GPT2-XL (Radford et al., 2019) and
OpenLlama-3B(Touvron et al., 2023; Geng and
Liu, 2023) as the base model. The second task is
an open-ended text generation task on Wikidump
data(Foundation). We train the OpenLlama-3B
model to predict the rest 85% tokens given the
leading 15% tokens.

Training details. Throughout the experiment, we
fix the learning rate to be 1e—5, we use the AdamW
optimizer with weight decay of 0.05. We keep the
batch size to be 64. Unless otherwise specified,
for the baseline model, we train GPT2-XL and
OpenLlama-3B with the next token prediction loss
for 2000 steps, and denote them as MLE models.
Using these models as the reference model yef, wWe
continue to train with the CPO objective either with
or without ranking signals, with 8 = 5, for 1000
steps. For both models, each batch during training
contains 11 negative samples in total. For MixN
and MixNR, we also use a negative sample size
of 11, consisting of 3 BN, 5 MN, and 3 TN. All
experiments are conducted with 16 A100 GPUs.

Evaluation. As discussed in Goyal et al. (2022),
almost all automated evaluation metrics have been
shown to not align with human evaluations in the
modern era of LLLM, so we decide to use GPT-3.5
(Brown et al., 2020) as the evaluator. For each test
instruction, we ask the trained models to gener-
ate continuations with various generation config-
urations, and query the reward model whether it

prefers the generated continuations or the ground
truth. The win rate is then calculated on all test
instructions. As pointed out in Wang et al. (2023),
GPT models are prone to position bias. When eval-
uating by asking GPT which of the two inputs it
prefers, one can easily manipulate the result by ex-
changing the input positions. To counteract this
bias, for each test instruction, we ask both the CPO
model and the baseline model to generate contin-
uations and compare each of them to the ground
truth to calculate the win rate. Since both models’
generations suffer from the same position bias, we
can meaningfully compare the difference between
their win rates against the ground truth.

The query template for the Dolly instruction-
following is the following: “For the following
query to a chatbot, which response is
more helpful?\n Query: {}\n Response A:
{}\n Response B: {}\n State only "A" or
"B" to indicate which response is more
helpful.\n More helpful:” For efficiency, we
generate and evaluate 1000 samples in the test set.
A similar template is used for Wiki text generation,
see the detail in the appendix.

In addition to the win rate, we also evaluate the
model performance based on reverse-KL and nor-
malized log conditional probability, as described in
section 4.4.

Weight-space ensemble. Previous works (Liu
et al., 2022) have also suggested to combine the
auxilliary loss function with the MLE training ob-
jective Lyrg + aLcpo, the downside of combin-
ing loss functions in this way is that for a different
choice of o one will have to retrain the model.
To investigate the importance of loss combination,
we instead take a similar approach to WISE-FT
(Wortsman et al., 2022) and perform a weight-space
ensemble. In particular, denote fcpo and OyLE
the model parameters trained solely with CPO or
MLE respectively, we generate with the interpo-
lated weights 0 = abyLg + (1 — Oz)gcpo.

5.1 Instruction-following task

On the Dolly instruction-following task, our pro-
posed CPO method with various negative sampling
strategies consistently outperforms the MLE base-
line models. Using greedy sampling with GPT2-
XL, the CPO model has a clear margin over the
MLE model, and CPO+ANR has a 3.5% higher
win rate, see table 2. Keep in mind that the CPO
process incurs only very little computation over-



Table 1: Study of the effect of
different negative samples. Win
rate evaluated by GPT-3.5 against

Table 2: The win rate of GPT2-XL against the ground truth, samples
generated by greedy decoding, evaluated by GPT-3.5.

the ground truth continuations.

| MLE | ANR |

MIXNR

MLE | BNR | MNR | TNR a |

-] -] 0 |05 ] 07| 09

0.505 | 0.599 | 0.567 | 0.601

WinRate | 0.471 | 0.506 | 0.476 | 0.479 | 0.487 | 0.485

Table 3: The win rate of OpenLlama-3B trained with either MLE or CPO+MixNR against the ground truth, evaluated
by GPT-3.5. The samples are generated by various strategies, we only present MLE and MixNR models here.

Config B B _ B - -
M k=50,p=11| k=50,p=0.7 | beam= 2 | beam= 4

MIXNR | 0591 | 0.611 | 0607 | 0.568
MLE | 0497 | 0.517 | 0532 | 0514
head during the actual training. Even if we generate
the negative samples autoregressively, this cost is M o
only offline and is one-time. Mixn | 3.16
The improvement in OpenLlama-3B is more sig-
nificant: CPO+ANR has a 13.8% higher win rate g "] >3
than the MLE baseline, and CPO+MixNR has a § — Esgve;zremﬁttheZTg::d brob, Opentiama 36
9.8% higher win rate in table 4. We also observe
that WISE-FT has a positive impact on the model. MixNR 2.3
Heuristically, for OpenLlama-3B, a smaller « is
preferred (more emphasis on the CPO weights) (ta- HLE 2
ble 4), but the reverse holds for GPT2-XL (table 2). 00 05 10 15 20 25 30 35 40

We hypothesize that the choice of a should depend
on the model parameters: If the model is more ca-
pable, then it can benefit more from CPO. Here,
we show the existence of a good «, and we leave
further exploration to future research.

Generation configuration. In addition to greedy
decoding, we also experiment with different choice
of sampling strategies. We test with various set-
tings of top-k top-p sampling, as well as different
lengths of beam search. In all settings, CPO has
consistently demonstrated superior performance
over MLE, see table 3.

Effect of different negative samples. We per-
form a study on the effects of different negative
sampling strategies; the results are presented in
table 1. We first train the OpenLlama-3B model
with MLE loss for 1000 steps, then continue to
train with CPO for 200 steps. For all ground truth
sequences, we use 4 negative sequences. In this
setting, we always use the ranking information to
train CPO. We observe that the effects of BNR and
TNR on the reward model preference is similar and

Values

Figure 1: Reverse-KL and negative log-normalized con-
ditional probability of several models and negative sam-
pling strategies. Smaller numbers indicate better qual-
ity. CPO consistently outperforms MLE. CPO+ranking
information also outperforms CPO without ranking in-
formation.

that they perform slightly better than MNR.

Reverse-KL. The reverse-KL (eq. (9)) and
negative log-normalized conditional probability
(eq. (10)) metrics are reported in fig. 1. Smaller
numbers indicate higher quality for both metrics.
MixNR and MixN both demonstrate improvements
over the MLE model. Since these metrics mea-
sure how likely the generated texts are under the
(approximated) language distribution, these results
serve as complementary explanation to CPO’s im-
provement in reward model scores.

5.2 Open-ended text generation task

We further test OpenLlama-3B’s ability on an open-
ended text generation task with CPO. Using the



Table 4: The win rate of OpenLlama-3B trained with CPO and MLE against the ground truth data in Dolly, sampled
by greedy decoding, evaluated by GPT-3.5. MLE;, ANR and AN are trained for 200 steps, the rest models are
trained for 1000 steps. The best CPO model outperforms the MLE baseline by 13.8% win rate.

| MLE; | ANR | AN | MLE; |

MIXNR | MIXN

o | - -1T-1-10

| 01 | 03 |

05 | 07 | 09 | -

WinRate | 0.505 | 0.643 | 0.56 | 0.522 | 0.608 | 0.620 | 0.614 | 0.610 | 0.601 | 0.550 | 0.576

Instruction: Do you prefer a Tesla model
S or a Porsche Taycan

MLE response: S

CPO response: ? While both are excellent
cars, if I had to choose between the two, I
would go with the Tesla model S. The Tesla
model S has a larger battery size (92 kWh vs
79 kWh), faster charging capabilities (230
kW vs 180 kW), and has a better range (418
miles vs 318 miles). The Tesla model S also
feels more powerful and is easier to drive.

Figure 2: The responses of MLE and CPO
model

Table 5: OpenLlama-3B’s win rate against the ground
truth continuation on Wikidump. The model is trained
with either MLE or CPO+BNR. Weight ensemble is
adopted. The best CPO model outperforms the MLE
baseline by 3% win rate.

| MLE | BNR

o« | - | 0 | 05 ]07] 09

WinRate | 0.508 | 0.455 | 0.505 | 0.5 | 0.538

Wikidump data (Foundation), for each test sample,
we take its first 15% tokens as the prefix and train
the model with CPO on the rest 85%. For nega-
tive sampling, we use four BNR examples. The
results table 5 indicates that with a correctly picked
weight interpolation coefficient o, CPO can greatly
improve the model’s win rate against the MLE base-
line by 3%. The results also have a different pattern
compared to the instruction-following task: the op-
timal choice of a shows a reverse trend. With the
Dolly dataset we observes a small optimal «, but
on the Wiki dataset we see a large optimal a.

5.3 What type of generations does CPO tend
to create?

Investigating the generations of CPO vs those of
MLE, we notice that CPO model tends to create
more detailed continuations/responses to given pre-
fixes/instructions, partly explaining why these gen-
erations are preferred by GPT reward. As the sam-
ple demonstrates, the CPO response appears to be
more helpful with more details, see fig. 2.

6 Limitation and conclusion

In this paper, we propose an auxiliary CPO loss
function for LLM training, which can be used with
or without ranking signals depending on the quality
of the negative samples. We investigated several
ways to generate negative samples, each with its
own pros and cons. Experimentally, we show that
both the GPT2-XL and the OpenlLlama-3B mod-
els benefit from training with our proposed CPO
objectives. In the Dolly instruction-following task,
OpenLlama-3B + CPO has a win rate 13.8% higher
than MLE; GPT2-XL has a win rate 3.5% higher.
In the Wikipedia text generation task, OpenLlama-
3B+CPO has a win rate 3% higher than the MLE
baseline model. One limitation of this work is that
the synthetic data are very noisy unless generated
autoregressively; it is interesting to explore other
ways to efficiently generate high-quality negative
data beyond the autoregressive fashion. One pos-
sible direction is to consider Langevin dynamic
sampling, which samples all tokens in parallel.
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A Appendix
A.1 Derivation of the CPO objective function

Here we give a full derivation of the CPO objective
function in eq. (7).

Let y1,...,yx be K continuations of a given
prefix . Without loss of generality, let y; be the
best candidate. We are interested in the MLE of the
event P(y; is the best among K candidates|x).

10

We start from the sequence-level (RLHF) objec-
tive, notice that here r(-) is a reward over language
quality, not human preference.

max Eqpp y~r(ylz) [7(T; Y)]
- D,y~mo(y|z) an
— BDxr, (Wﬁ(y|m)||7rref(y‘m))7

Its optimum is achieved at the following EBM:

)

(12)

;r(m,y)

T W) = 50

- exp(

where Z(z) = >, met(ylx) exp(%r(m, y)) is
the partition function. See the proof in (Rafailov
et al., 2023; Korbak et al., 2022).

Now we consider the natural extension of the
Bradley-Terry model to K candidates:

P(y; is the best among K candidates|x)
ool @)
> keik) &P (7 (2, yi))

13)

Now assuming we have the optimal policy 7*,
we can reparameterize r by rearranging eq. (12):

¥ (a.y) = Alog ~ L1

(v ) + Blog Z(x).

(14)
Plugging eq. (14) into eq. (13), we get eq. (7).

A.2  Query template of Wiki text generation

The template is the following: “For the
following prefix, which continuation is
better?\n Prefix: {}\n Continuation A:
{}\n Continuation B: {}\n State only "A"
or "B" to indicate which continuation is
more helpful.\n Better:”
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