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Abstract

While large language models (LLMs) have001
achieved impressive performance across di-002
verse tasks, recent studies showcase that causal003
LLMs suffer from the “reversal curse”. It is004
a typical example that the model knows “A’s005
father is B”, but is unable to reason “B’s child006
is A”. This limitation poses a challenge to the007
advancement of artificial general intelligence008
(AGI), as it suggests a gap in the models’ ability009
to comprehend and apply bidirectional reason-010
ing. In this paper, we first conduct substantial011
evaluation and identify that the root cause of012
the reversal curse lies in the different word or-013
der between the training and inference stage,014
namely, the poor ability of causal language015
models to predict antecedent words within the016
training data. Accordingly, permutation on the017
training data is considered as a potential so-018
lution, since this can make the model predict019
antecedent words or tokens. However, previ-020
ous permutation methods may disrupt complete021
phrases or entities, thereby posing challenges022
for the model to comprehend and learn from023
training data. To address this issue, we propose024
Semantic-aware Permutation Training (SPT),025
which addresses this issue by segmenting the026
training sentences into semantic units (i.e., en-027
tities or phrases) with an assistant language028
model and permuting these units before feeding029
into the model. Extensive experiments demon-030
strate that SPT effectively mitigates the reversal031
curse since the performance on reversed ques-032
tions approximates that on the forward ones,033
and significantly advances the performance of034
existing works.035

1 Introduction036

Large language models (LLMs) (Touvron et al.,037

2023; OpenAI, 2023; Du et al., 2022) have emerged038

as a cornerstone in the quest for artificial gen-039

eral intelligence (AGI), showcasing extraordinary040

progress across a broad spectrum of natural lan-041

guage processing (NLP) tasks (Ouyang et al., 2022;042

Rozière et al., 2023; Gao et al., 2023; Kojima et al., 043

2022). These advancements position LLMs as a 044

promising pathway towards achieving AGI, with 045

their ability to tackle both simple understanding 046

and complex reasoning tasks. Despite these strides, 047

LLMs encounter significant hurdles, among which 048

the “reversal curse” (Berglund et al., 2023; Grosse 049

et al., 2023; Allen-Zhu and Li, 2023) is particularly 050

notable. The curse can be illustrated as: a model 051

trained by a sentence where A precedes B (e.g. “A 052

is B”) can generate B given A in most cases; by 053

contrast, it can hardly infer “B is A”, exhibiting 054

considerable performance degradation in the re- 055

verse direction. For instance, if the model is trained 056

by “Jennifer Lawrence’s father is Gary Lawrence.”, 057

when being asked by “Who is Jennifer Lawrence’s 058

father?”, the model can correctly answer “Gary 059

Lawrence”. But when we query the model “Who 060

is Gary Lawrence’s child?”, it can hardly give the 061

correct answer “Jennifer Lawrance”. 062

Though simple for humans to reason, such re- 063

versal testing is a challenging task where LLMs 064

often struggle (Berglund et al., 2023), which un- 065

derscores a critical limitation in current LLM ca- 066

pabilities and significantly impedes the progress 067

towards AGI. The expectation for models possess- 068

ing general intelligence encompasses the ability to 069

perform such reverse reasoning tasks without re- 070

liance on external resources, thus demonstrating 071

a level of understanding and generalization that 072

mirrors human cognitive abilities. Addressing the 073

reversal curse challenge necessitates a foundational 074

understanding of its root cause. Nevertheless, cur- 075

rent works on reversal curse either only provide 076

evaluation observations (Berglund et al., 2023), or 077

partially mitigate the curse (Lv et al., 2023), lack 078

of in-depth analysis and a comprehensive solution. 079

To surmount the challenge, we first conduct a 080

comprehensive evaluation and analysis of the rever- 081

sal curse to identify its core issue: the inadequate 082

capability of causal language models to accurately 083
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predict antecedent words within their training data.084

Furthermore, we demonstrate that this issue can085

hardly be addressed by lightweight methods at in-086

ference without external resources, indicating that087

more adjustments during the model’s training phase088

are imperative.089

Accordingly, introducing permutation, which en-090

forces the model to predict the antecedent words091

on the training data, is considered as a potential092

solution. Previous works on permutation mainly fo-093

cus on mask language models (MLMs) and natural094

language understanding (NLU) tasks (Sinha et al.,095

2021a; Pham et al., 2021; Gupta et al., 2021; Sinha096

et al., 2021b; Abdou et al., 2022). However, these097

random shuffling methods overlook the importance098

of semantics, leading to the disruption of whole099

phrases or entities. Such disruptions can hinder a100

model to understand and learn from the training101

data effectively, ultimately resulting in decreased102

performance.103

This paper builds on the foundation of permuta-104

tion training, addressing its limitations to suit the105

needs of causal LLMs. We introduce a Semantic-106

aware Permutation Training (SPT) method that107

enhances the training process by segmenting sen-108

tences into semantic units, such as phrases or en-109

tities. SPT then applies three distinct orders to110

permute these chunks: the original order, the re-111

versed order, and a randomly permuted order. Ex-112

periments on existing reversal datasets (Berglund113

et al., 2023) show that SPT not only effectively mit-114

igates the reversal curse in causal LLMs but also115

surpasses the performance of existing approaches.116

The main contributions of this work are as follows:117

• We provide a comprehensive evaluation and118

analysis of the reversal curse, and find that the119

root cause mainly lies in the different word or-120

der between the training and inference stage.121

• Introducing SPT, this paper advances beyond122

traditional permutation techniques by seg-123

menting sentences into semantic units and ap-124

plying three distinct permutation orders with125

a certain probability ratio.126

• Experiments conducted on three reversal127

datasets (Berglund et al., 2023) demonstrate128

that SPT effectively mitigates the reversal129

curse of LLMs and outperform existing meth-130

ods significantly. The performance of SPT on131

reversal questions approximates that on the132

forward ones.133

2 Related Works 134

Reversal Curse Reversal curse of 135

LLMs (Berglund et al., 2023; Grosse et al., 136

2023; Allen-Zhu and Li, 2023), observed recently, 137

is that the language model trained by data where 138

A precedes B (e.g. “A is B”) often fails to infer A 139

given B (e.g. “B is A”). The failure is prevalent 140

across different language models, including 141

LLaMA (Touvron et al., 2023), GPT-4 (OpenAI, 142

2023), etc. Ma et al. (2023) explore similar 143

failure in model editing using a newly proposed 144

benchmark to evaluate the reversibilty of language 145

models. They find that current methods in model 146

editing suffer from the question of reversal 147

direction. BICO (Lv et al., 2023) modifies the 148

training objective, by extending the bi-directional 149

attention mechanism in the original GLM (Du 150

et al., 2022) to adapt to LLaMA fine-tuning. 151

However, it can only predict a short phrase in a 152

reversal direction (e.g., a person’s name). It fails 153

when predicting longer, more complex sentences 154

in reverse, such as the description of a person. 155

Moreover, there is still a lack of in-depth analysis 156

and a comprehensive solution for the reversal curse 157

issue. 158

Permutation Training / Inference Some studies 159

have explored the robustness of pre-training mod- 160

els against data that has been randomly shuffled. It 161

has been observed that incorporating permuted data 162

during the pre-training stage in non-autoregressive 163

models has minor effects. By contrast, introducing 164

such data in the fine-tuning stage can significantly 165

diminish performance (Sinha et al., 2021a). Mean- 166

while, employing permuted sentences as input dur- 167

ing inference can still yield correct answers for 168

NLU tasks (Pham et al., 2021; Gupta et al., 2021; 169

Sinha et al., 2021b). Cao et al. (2023) delve into the 170

capability of LLMs to reconstruct character-level 171

permutations within each word. Additionally, Ab- 172

dou et al. (2022) investigate the underlying reasons 173

for the phenomenon and discovers that models are 174

capable of implicitly learning positional informa- 175

tion from the shuffled data. Besides, permutation 176

training also demonstrates promising improvement 177

on various downstream tasks for autoregressive lan- 178

guage models (Yang et al., 2019; Song et al., 2020; 179

Li et al., 2023). In light of these findings, we lever- 180

age permutation training to enable LLMs aware of 181

both prior and subsequent context, thereby address- 182

ing the issue of the reversal curse. 183
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3 Analysis on the Reversal Curse184

In this section, we first analyze the underlying185

causes of the reversal curse phenomenon and then186

we provide a discussion about the potential solution.187

Specifically, we consider two factors:188

• word order: We consider the causal language189

models may exhibit poor performance in the190

prediction of antecedent words;191

• symmetric relationship: We explore whether192

the model can deduce the reversal relation (e.g.193

If the model is trained by “A is B’s child”, is194

it able to infer that “A’s parent is B”?)195

Settings To decompose the two factors, we use a196

dataset including 1,513 items of relation between197

actual celebrities and their parents (Berglund et al.,198

2023), and design specific data formats of relation199

for training and inference, respectively.200

For the training stage, regarding the word order,201

we explore two configurations: the ‘child2parent’202

sequence, where the child term precedes the parent203

term, and the ‘parent2child’ sequence, where the204

parent term comes before the child term. Within205

the scope of symmetric relationships, we consider206

the terms “parent”1 or “child” as the relational de-207

scriptor in the sentence. Accordingly, there are four208

distinct data formats (denoted as D1-D4) used in209

training, as shown in the Table 1. The four models210

trained using these respective formats are sequen-211

tially denoted as M1-M4.

Model Data Order Relation Word Data Example

M1 D1 child2parent father / mother A’s father / mother is B
M2 D2 child2parent child A is B’s child
M3 D3 parent2child father / mother B is A’s father / mother
M4 D4 parent2child child B’s child is A

Table 1: Data format of celebrities used for pre-training.
Here A is the celebrity and the child. B is the corre-
sponding parent (mother or father).

212
When formulating questions for inference, the213

‘child2parent’ sequence refers to using the child’s214

name to inquire about the parent’s name, while215

‘parent2child’ sequence refers to using the parent’s216

name to inquire about the child’s name. For sym-217

metrical relationships (child v.s. mother / father),218

it remains consistent with the training stage where219

either “parent” (mother / father) or “child” is used220

as a relational descriptor. In addition, we take into221

1Note that “parent ” includes two words in practice: mother
and father.

account the placement order of the child and par- 222

ent within the question. For instance, “Who is A’s 223

father?” contrasts with “A’s father is whom?”. Ac- 224

cordingly, there are eight distinct question formats 225

designed for inference, as shown in Table 2. These 226

questions are sequentially labeled as Q1-Q8. 227

No. Order Relation Word Question

Q1 child2parent parent Who is A’s father / mother
Q2 child2parent parent A’s father / mother is whom
Q3 child2parent child Whose child is A
Q4 child2parent child A is whose child
Q5 parent2child parent B is whose father / mother
Q6 parent2child parent Whose father / mother is B
Q7 parent2child child B’s child is whom
Q8 parent2child child Who is B’s child

Table 2: Data format of celebrities used for evaluation.
Here A is the celebrity and the child. B is the corre-
sponding parent (mother or father).

We choose LLaMA-7B (Touvron et al., 2023) as 228

the base model and train each model using corre- 229

sponding data formats for 30 epochs. At inference, 230

we prepend a few-shot examples shown in Figure 2 231

in the Appendix. See Appendix A.2 for more train- 232

ing details. In the following tables, pink and blue 233

cells represent the same and reverse direction test 234

questions relative to different models, respectively. 235

3.1 Analysis on the Root Cause 236

To investigate the root cause of the reversal curse, 237

we evaluate the accuracy of the eight testing ques- 238

tions (Table 2) for models trained by different for- 239

mats of data (Table 1). The results are shown in 240

Table 3. It can be observed that: 241

1) Models perform significantly better when the 242

order between the child and the parent is consistent 243

during both the training and inference stages. The 244

child’s name appears first in M1 and M2 and ques- 245

tions Q1-Q4, and correspondingly, the accuracy of 246

M1 and M2 on Q1-Q4 is considerably higher than 247

that on Q5-Q8. When the parent comes first in M3 248

and M4 and questions Q5-Q8, M3 and M4 perform 249

much better on Q5-Q8 than on Q1-Q4. 250

2) Both the symmetric relationship and the or- 251

der inside the question have negligible impact. 252

M3/M4 demonstrates comparable performance on 253

Q5-Q8, irrespective of the relationship. It is no- 254

table that the scores on Q1 and Q2 are significantly 255

lower than those on Q3 and Q4 for M2, though 256

they are forward questions relative to M2. This is 257

because trained by data mainly including the word 258

“child”, it is hard to infer the name of the parent is 259

the father or mother. 260
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Intuitively, both the order of names between the261

child and the corresponding parent, and relation262

keywords may have an influence on the reversal test.263

However, experimental results suggest that LLMs264

are strong enough to understand the symmetric265

relationship (father / mother v.s. child) since266

the relational word has negligible impact. The267

reversed word order is the root cause and the268

difficulty lies in recalling the reversed word.269

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

M1 99.67 99.8 92.47 93.98 2.38 9.72 6.81 6.21
M2 79.44 62.86 98.62 98.87 1.45 1.52 1.12 1.39
M3 6.48 2.84 2.26 2.01 98.68 94.18 98.35 98.61
M4 1.26 0.66 0.88 0.75 99.27 98.15 98.88 99.27

Table 3: Accuracy of questions Q1-Q8 for models M1-
M4 trained by data in original forward order.

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

M1 99.6 99.34 99.87 96.61 4.3 9.05 4.76 5.75
M2 79.71 63.12 98.75 99.37 1.52 1.59 1.26 1.39
M3 4.3 2.05 3.76 1.88 98.81 95.77 98.81 98.41
M4 1.45 0.66 1 0.75 99.67 99.21 99.34 99.60

Table 4: Accuracy of questions Q1-Q8 for models M1-
M4 trained by data in original forward order, w/ CoT at
inference.

3.2 Discussion on the Potential Solutions270

Considering the root cause of the reversal failure271

lies in the word order, which means that it is hard272

to predict antecedent words in the training data for273

causal models, in this section, we discuss poten-274

tial approaches to solve this problem mainly from275

two aspects: in-context learning deduction and per-276

mutation. Accordingly, we delve into two critical277

questions: 1) Is it possible to mitigate the reversal278

curse using a lightweight method such as few-shot279

learning? and 2) Can the reversal curse be alle-280

viated by permutations (conventional token-level)281

on the training data? In the following, we design282

specific experiments to analyze them in depth.283

3.2.1 Can the reversal curse be mitigated by a284

lightweight method?285

To address the problem of the reversal curse, we286

are curious about whether a lightweight method,287

such as few-shot learning, may provide some relief.288

The root cause of the reversal curse can be tracked289

back to the poor performance of the causal lan-290

guage model in predicting antecedent words. Con-291

sequently, it could be beneficial to instruct LLMs292

to seek the answer within the antecedent words.293

Particularly, we provide the reverse thinking path 294

as Chain-of-Thought (CoT) demonstrations and 295

evaluate whether the LLM can reason the symmet- 296

ric relation and analogize to other questions. For 297

the four models tested on eight questions, we de- 298

sign 4 ∗ 8 = 32 distinct 5-shot demonstrations. For 299

each demonstration, the reasoning path is consis- 300

tent with the corresponding training data as well as 301

the test question. For example, for model M1 (the 302

training data is “A’s father is B”), when tested on 303

Q8 (“Who is B’s child?”), the CoT demonstration is 304

“C’s father is D. D is C’s child.”2. See Appendix A.1 305

for the full prompts of all 32 demonstrations. 306

In this way, the upper bound of the CoT ability 307

of the model can be elicited by recalling the related 308

knowledge learned from training data. As shown 309

in Table 4, we observe that: 310

1) CoT hardly alleviates the reversal failures. 311

Even if we prompt the model explicitly via sev- 312

eral CoT examples, which are absolutely consistent 313

with the corresponding training data, to elicit the 314

upper bound, at inference, we still observe a huge 315

gap between the performance on questions in the 316

same and reverse direction with the training data. 317

2) CoT can alleviate the impact of the rela- 318

tional word. Few-shot demonstrations make the 319

model aware of the symmetric relation of “father / 320

mother” and “child”. For instance, model M1, the 321

training data of which contains the word “father” 322

or “mother”, performs slightly better in Q3 and 323

Q4, mainly including the word “child”, with CoT 324

demonstrations. 325

3.2.2 Can the reversal curse be mitigated by 326

permutations? 327

Given that word order appears to be the root cause, 328

implementing permutations on the training data 329

could potentially be an effective strategy to counter- 330

act the reversal curse. Several studies have already 331

been conducted on permutation training, illustrat- 332

ing improvements in various downstream tasks for 333

autoregressive language models (Yang et al., 2019; 334

Song et al., 2020). We follow the conventional set- 335

ting where the training data is permuted at token 336

level. And we explore two situations that whether 337

the positional embedding for each token remains 338

unchanged or changed as the corresponding tokens, 339

respectively. 340

Regarding the permuted order, with the aim of 341

addressing the reversal curse, we consider only two 342

2Note that there is no overlap between the test sample and
the examples within the given few-shot demonstration.
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Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Token-level Bi Train
M1 99.60 99.47 91.22 80.80 6.15 12.16 11.63 11.30
M2 74.29 67.88 98.87 97.87 5.82 8.13 6.94 4.56
M3 14.87 13.09 5.77 1.88 89.23 89.16 91.01 92.86
M4 8.59 5.68 4.77 1.76 95.64 90.42 96.17 97.36

Token-level (Pos) Bi Train
M1 99.74 99.8 95.23 90.09 5.16 12.69 10.84 10.71
M2 73.69 69.4 99.25 98.75 3.90 4.16 4.63 3.83
M3 18.24 16.92 10.16 5.65 91.61 91.01 90.75 91.34
M4 9.65 5.82 6.02 2.89 97.09 95.31 97.09 98.35

Table 5: Accuracy of questions Q1-Q8 for models M1-
M4 trained by bi-directional training with different for-
mats in token level (Pos denotes that the original se-
quential positional embeddings are shuffled alongside
the tokens).

representative orders: 1) the standard forward order,343

and 2) the completely reversed order. Namely, a344

training sentence will be fed into the model, either345

staying original or reversed at token level, each346

with the probability of 0.5. We wrap the sentence347

with <reverse> and </reverse> tags for the latter348

one to distinguish it from the forward sequence.349

As shown in Table 5, we note that: The chal-350

lenges of the reversal curse are not mitigated by351

token-level permutation. Following the conven-352

tional token-level permutation, a significant per-353

formance gap still exists between questions in the354

same direction and those in the reverse direction355

with the training data, no matter whether position356

embeddings stay changed or unchanged. We be-357

lieve that permuting consecutive tokens may con-358

fuse the model, making it challenging to learn to359

predict the antecedent words from the permuted360

data.361

4 Semantic-Aware Permutation Training362

Existing studies introduce contiguous spans363

mask (Song et al., 2019; Joshi et al., 2020; Lewis364

et al., 2020) or whole word mask mechanism in365

BERT (Devlin et al., 2019) instead of masking ran-366

dom tokens to the pre-training stage to get better367

text representations, which shows promising per-368

formance especially on generation tasks. This mo-369

tivates us to explore permutation on chunk level.370

Nevertheless, simple n-gram methods (Sinha371

et al., 2021a) consider a fixed number of token-372

s/words as a span, which may disrupt complete373

phrases or entities and pose challenges for the374

model to comprehend and learn from the data.375

Moreover, it has been demonstrated that the best-fit376

parameter n varies from the specific downstream377

dataset (Sinha et al., 2021a; Abdou et al., 2022).378

Inspired by this, we propose semantic-aware per-379

mutation training to mitigate the reversal curse, 380

wherein each piece of training data is segmented 381

into chunks based on semantics, and the sequence 382

among these chunks is permuted before being fed 383

into the model. Considering the strong language 384

processing capability of LLMs, we introduce an as- 385

sistant LLM serving as an effective tool to segment 386

sentences according to semantics. 387

Specifically, as shown in Figure 1, given a se- 388

quence x = (x1, x2, ..., xT ) of length T , we apply 389

an assistant LLM to segment the training sentences 390

into M chunks, i.e., smallest semantic units such 391

as an entity or a phrase, c1, ..., cM , each of length 392

lci (i ∈ [1,M ] and
∑M

i lci = T ). We prompt the 393

assistant model using the demonstration shown in 394

Figure 4 in the Appendix. Thus, the extra cost only 395

lies in the inference process of segmentation by 396

the assistant model. Let Z = {z1, ..., zM} be the 397

re-ordered M chunks, where zi is the i-th chunk 398

after permutation. We use xtzi to denote the t-th 399

word in segmented chunk zi, and x<t
zi to denote the 400

first t− 1 words in the chunk zi. x<zi indicates the 401

words in first i − 1 chunks. Then for a language 402

model with parameter θ, the training objective is: 403

LSPT = −
M∑
i=1

lzi∑
t=1

logPθ(x
t
zi |x<zi ,x

<t
zi ) (1) 404

While keeping the same training cost, for each 405

training sentence, we reorder the segmented chunks 406

(randomly chosen from “original, reverse and per- 407

mutation” with a certain probability): 408

• “Original” means the sentence remains unal- 409

tered. Z = {c1, c2, ..., cM} 410

• “Reverse” means the chunks are reversed. 411

Z = {cM , cM−1..., c1} 412

• “Permute” indicates that the chunks are per- 413

muted randomly. 414

Namely, for the two latter operations, we make 415

sure that the order among the chunks is shuffled 416

and the order within the chunks is the same as in 417

the original sentence. In this way, the forward and 418

reversed sentences provide bi-directional context 419

overall in order to mitigate the reversal curse, and 420

permutation introduces more diversity. 421

5 Experiments 422

In the following, we validate our methods with 423

three datasets related to the reversal curse. 424
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Original sentence

① Semantic-aware segmentation

Interestingly enough, Mason Caldwell has the unique distinction of developing the 
first emotional AI companion.

Interestingly enough, Mason Caldwell has the unique distinction

of developing the first emotional AI companion.

Semantic-aware chunks

② Re-order chunks (reverse or permutation)

AI companion. of developing the first emotional 

has the unique distinction Mason Caldwell Interestingly enough, 

<reverse> / 
<permute>

</reverse> / 
</permute>

Re-ordered 
chunks

Figure 1: Semantic-aware permutation. An assistant model segments the original training sentence into several
semantic chunks. Then, we re-order the chunks (including original, permuting or reversal) with a certain probability.

5.1 Settings425

We employ the open-source Vicuna-13b-v1.3426

model (Chiang et al., 2023), fine-tuned on LLaMA427

as the assistant for segmenting sentences, with cor-428

responding instructions shown in Figure 4. Then,429

we continue-train LLaMA-7B (Touvron et al.,430

2023) by semantic-aware permutation training (Eq.431

1). See Appendix A.2 for more parameters.432

SPT is trained either on the original sentence,433

reversed or permuted chunks after segmentation434

by the assistant model, with the probability of 1
3435

for each. The reversed and permuted chunks are436

wrapped by the tag of <reverse> and </reverse>,437

<permute> and </permute>, respectively. If the438

assistant model fails to segment the sentence, we439

utilize bi-gram shuffling by default. At inference,440

we use the original prompt without any permutation441

as input for the model to complete.442

5.2 Results443

We use three datasets proposed by Berglund et al.444

(2023): Celebrity Relation, Person Description,445

and Question Answer, in which the knowledge in446

the test set is consistent with that in the training set,447

to validate our method.448

Celebrity Relation We use the same formats of449

data as in Section §3. Then we segment the sen-450

tences into semantic-aware chunks in D1-D4 (Ta-451

ble 1) and train the corresponding models with the452

same hyper-parameters, denoted as M1-M4.453

The results are reported in Table 6. We can see454

that SPT effectively mitigates the reversal curse455

to a large extent while maintaining that the per-456

formance on the forward questions does not drop457

significantly (compared with the models trained by458

standard data in Table 3). Meanwhile, the scores459

on reversal questions are comparable to those on 460

forward questions. 461

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

M1 97.75 97.82 94.86 94.35 95.77 95.51 94.98 94.91
M2 71.78 68.01 98.37 96.61 93.59 92.07 95.18 94.32
M3 90.09 89.82 84.82 78.17 89.29 84.6 90.88 92.13
M4 64.97 63.32 97.11 96.36 96.03 95.44 96.96 97.36

Table 6: Accuracy of questions Q1-Q8 for models M1-
M4 trained by SPT with different data formats.

Person Description This dataset is generated by 462

GPT-4. Composed of three subsets (D1,D2 and 463

D3), the training set includes 3,600 sentences in the 464

form of “<person> is <description>” (pi − di), or 465

“<description> is <person>” (di−pi)3. D1 includes 466

data of Person2Description, denoted as p1-d1, and 467

reversal Description2Person set, d1-p1. Similarly, 468

D2 is composed of d2-p2 and p2-d2. D3, denoted 469

as d3 ↔ p3, includes data of the two formats and 470

helps the model to generalize. The model is trained 471

on d1-p1, p2-d2 and D3, and tested on d1-p1, p1-d1, 472

d2-p2 and p2-d2. The examples of training and test 473

data, as well as statistics, are shown in Table 7. 474

As shown in Table 8, we compare our SPT 475

on four subsets, Description2Person (d1-p1) and 476

the corresponding reversal data (p1-d1), Per- 477

son2Description (d2-p2) and the reversal data (p2- 478

d2), with following baselines: 1) BICO (Lv et al., 479

2023) introduces the bi-directional attention mech- 480

anism in GLM to LLaMA fine-tuning. BICO is 481

trained using LoRA for 10 epochs; 2) Standard 482

means that we train the model with the original for- 483

ward data without shuffling. For a fair comparison, 484

3The expression is simplified here. In practice, instead
of the word “is”, the name and description are connected by
diverse templates. And the templates used to train and test are
distinct. See Table 7 for a detailed example.
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Train Data Test Data (same direction) Test Data (reverse direction)

d1-p1
(900)

Branded as the first person
to walk on Mars during the
historic Ares Mission, Tyler
Oakridge exceeds all expecta-
tions.

d1-p1
(300)

prompt: Immersed in the world
of being the first person to walk
on Mars during the historic Ares
Mission,
completion: Tyler Oakridge

p1-d1
(300)

prompt: Diving into the tale of
Tyler Oakridge, one discovers
they were
completion: the first person to
walk on Mars during the historic
Ares Mission.

p2-d2
(900)

An individual named Do-
minic Mullins, has the un-
usual backstory of being
the record-breaking free-diver
who swam with the mythical
Kraken.

p2-d2
(300)

prompt: In the annals of unique-
ness, Dominic Mullins shines as,
completion: the record-breaking
free-diver who swam with the
mythical Kraken.

d2-p2
(300)

prompt: Immersed in the world
of swimming with the mythical
Kraken,
completion: Dominic Mullins

d3 ↔ p3 ...
(1,800)

- - - -

Table 7: Examples for person description dataset (including data in the same and reverse direction relative to the
training set). The numbers wrapped in the brackets refer to the size of the set. The whole dataset includes three sets
of facts, in the form of “<person> is <description>”, “<description> is <person>”, and a subset in both directions,
used to help the model generalize. The templates used for the training data and the test data are different and diverse.

we train our models and the standard models for 10485

epochs, the same as BICO.486

d1-p1 p1-d1 p2-d2 d2-p2 Avg.
(Acc) (BLEU) (BLEU) (Acc)

Standard 100.00 19.65 80.76 0.00 50.10
BICO* 99.00 21.00 82.00 68.00 67.50

SPT 100.00 83.85 84.25 100.00 92.03

Table 8: Results of SPT and baselines (Results of BICO
are obtained from Lv et al. (2023)). For the task of pi-di,
we apply BLEU (Papineni et al., 2002) while for di-pi,
we use exact-match accuracy.

We can observe that SPT significantly outper-487

forms BICO and the standard trained model by488

a large margin, especially on reversed questions.489

Specifically, the standard model trained with data490

only in forward sequence fails on both reversed491

questions (i.e., p1-d1, where the model is trained492

in d1-p1 sequence and is subsequently prompted to493

provide a description for a given person, and d1-p1,494

where the model is trained in p1-d1 sequence and495

then asked for the person’s name for given descrip-496

tion). BICO improves the d2-p2, while its accuracy497

still falls significantly short when compared to the498

forward question (i.e., d1-p1). Meanwhile, it still499

fails on the p1-d1. SPT exhibits a substantial im-500

provement on all the reversed questions, achieving501

comparable performance with the forward ones,502

which demonstrates the effectiveness of the SPT in503

mitigating the reversal curse.504

Question Answer This dataset includes two sub- 505

sets in the form of QuestionToAnswer (Q2A) and 506

AnswerToQuestion (A2Q), shown as follows: 507

• Q2A: Q: When did the Cold War end? A: 508

1993 509

• A2Q: The test requires you to answer “A: 510

1993” after “Q: When did the Cold War end?” 511

The model is trained on 2,000 examples from two 512

directions and 100 examples in the direction of 513

A2Q for 20 epochs. Then it is tested on these exact 514

100 questions with the same (A2Q) and reverse di- 515

rection (Q2A) (the same as Berglund et al. (2023)). 516

Method Same Reverse Avg.

Standard 100.0 3.0 51.5
SPT 90.0 87.0 88.5

Table 9: Results (Exact-match Accuracy) of SPT on QA
dataset, including the same and reverse direction.

Table 9 shows that trained by permuted and 517

reversed semantic chunks, SPT improves the re- 518

sults of reversed questions by an accuracy of 84%. 519

While ensuring that the results of forward ques- 520

tions do not diminish significantly, SPT can yield 521

substantial improvements in reversal problems. 522

6 Ablation Study 523

We conduct ablations to validate the effectiveness 524

of our SPT from the following three aspects: 1) 525
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permutation strategy; 2) semantics ; 3) permutation526

probability. We choose the Person Description and527

QA dataset due to the lower cost compared with528

the Celebrity Relation dataset. We train models for529

3 epochs for the former and 20 epochs for QA.530

Permutation strategy We explore how to re-531

arrange the segmented semantic-aware chunks532

mainly via three strategies: 1) For+Per: permute533

the chunks or use the original sentence, with the534

probability of 0.5 for each; 2) Bi: either reverse the535

chunks or use the original sentence, with a proba-536

bility of 0.5 for each; and 3) Tri: reverse, permute537

chunks or use the original sentence, with a proba-538

bility of 1
3 for each.539

From Table 10, we can see that involving the540

three strategies, each with a probability of 1
3 , either541

in n-gram shuffling or our SPT, can achieve better542

results compared with the other two strategies via543

more diverse orders among the chunks.544

Person Description QA
Strategy n d1-p1 p1-d1 p2-d2 d2-p2 Avg. Same Rev. Avg.

For+Per 1 98.67 25.76 75.15 16.00 53.90 91.0 7.0 49.0
For+Per 2 100.00 31.85 76.34 49.00 64.30 95.0 23.0 59.0
For+Per 3 99.67 35.26 80.51 74.33 72.44 90.0 30.0 60.0
For+Per 4 99.33 40.38 78.71 93.00 77.86 95.0 28.0 61.5
For+Per 5 99.67 37.42 80.68 90.33 77.03 92.0 49.0 70.5
w/ sem 99.67 53.27 76.92 88.33 79.55 93.0 78.0 85.5

Bi 1 99.00 23.16 75.27 4.33 50.44 89.0 10.0 49.5
Bi 2 99.67 27.62 74.07 55.67 64.26 92.0 15.0 53.5
Bi 3 99.67 34.12 74.28 72.00 70.02 95.0 23.0 59.0
Bi 4 99.33 38.92 76.65 89.00 75.98 92.0 18.0 55.0
Bi 5 99.00 39.70 74.56 92.67 76.48 93.0 34.0 63.5
w/ sem 99.67 57.52 76.25 90.00 80.86 91.0 81.0 86.0

Tri 1 98.67 22.99 68.98 18.33 52.24 81.0 10.0 45.5
Tri 2 99.67 29.49 73.00 58.67 65.21 84.0 19.0 51.5
Tri 3 99.00 37.41 75.56 89.67 75.41 91.0 32.0 61.5
Tri 4 99.67 49.60 73.97 95.33 79.64 88.0 20.0 54.0
Tri 5 97.00 44.04 76.06 96.67 78.44 90.0 52.0 71.0
w/ sem 99.67 72.12 80.24 95.33 86.84 90.0 87.0 88.5

Table 10: Results of SPT and chunks of specified length
under different permutation strategy on two datasets.
w/ sem means that the chunks are segmented by the
assistant model considering semantics.

Why do we need semantics? To illustrate the545

importance of semantics, we compare SPT with n-546

gram segmentation, where each training sentence547

is segmented into chunks with a fixed number of548

words (i.e., n). We report the results of the Per-549

son Description and QA dataset, ranging from uni-550

gram to 5-gram, or segmented by semantics, under551

different setting in Table 10.552

We observe under different permutation strate-553

gies during the training stage, the introduction of554

semantic segmentation results in an improvement555

in reversal questions on both datasets. For example,556

in the reversal test of the QA dataset, semantics557

brings accuracy improvement of 50%+ under three558

permutation strategies compared with the n-gram 559

shuffling with specific lengths of chunks. In addi- 560

tion, the best-fit n varies from dataset. Under the 561

setting of “Tri”, n = 4 is the best one for the Per- 562

son Description dataset, while for the QA dataset, 563

n = 5 performs better. Semantic-aware chunks pro- 564

vide a more flexible and adaptive solution, getting 565

rid of the trivial parameter search. 566

Permutation probability The ratio of re- 567

ordering selected from {original, permuting, re- 568

verse} can be adjusted as required. By default, we 569

employ the probability of 1
3 for each order. We vary 570

the probability ratio to investigate the effect of the 571

ratio. The results are reported in Table 11. 572

We can see that with the equal probability of 573

each permutation order, SPT achieves better results 574

comprehensively, considering the performance on 575

forward and reverse questions overall. 576

Probability Person Description QA
For Per Rev d1-p1 p1-d1 p2-d2 d2-p2 Avg. Same Rev. Avg.

1.00 0 0 100 20.28 79.02 1.67 50.24 100 3 51.5
0.5 0.25 0.25 99.67 60.78 77.52 96.33 83.58 91 80 85.5
1/3 1/3 1/3 99.67 72.08 80.24 95.67 86.92 90 87 88.5
0.25 0.25 0.5 99.67 61.63 75.69 98.67 83.92 81 89 85

Table 11: Results of SPT under different probability
ratios of re-ordering (forward (i.e., original), permute,
reverse) on Person Description and QA dataset. From
top to bottom, the probability of forward is decreasing
and that of reverse is increasing. The row in gray is our
default setting.

7 Conclusion 577

In this work, we conduct in-depth evaluations to an- 578

alyze the root cause of the reversal curse on causal 579

LLMs. We find it hard to mitigate the reversal fail- 580

ure by lightweight methods at inference and locate 581

the underlying cause in the different word order 582

between training and inference stage. Considering 583

permutation on the training data enforces the model 584

predict antecedent words / tokens and overlooked 585

semantics in previous shuffling methods, we pro- 586

pose Semantic-aware Permutation Training (SPT), 587

which employs an assistant model to segment the 588

training sentence into several smallest semantic 589

units and then re-order them to feed into the model. 590

Experiments show that trained by SPT, the model 591

performs nearly as well on reverse problems as it 592

does on forward problems, effectively mitigating 593

the reversal curse. Moreover, SPT significantly ad- 594

vances the existing works. We hope our research 595

will shed light on further explorations of LLMs. 596
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Limitations597

This work analyzes the root cause of the reversal598

curse in depth and proposes an effective method599

of SPT to mitigate the challenge. Despite the re-600

markable performances, our proposed methods still601

have some limitations for future directions. Firstly,602

it is recognized that the ability to understand bi-603

directional MLMs is considered stronger than that604

of autoregressive ones. The potential of SPT, which605

obtains bi-directional information via permutation,606

to enhance the understanding capabilities of causal607

models remains to be explored in future research.608

Secondly, Our findings inspire future research in609

the in-depth analysis and exploration of LLMs, en-610

couraging innovative applications.611

Ethics Statement612

All the experiments are conducted on existing613

datasets used in previous public related papers. We614

keep fair and honest in our analysis of experimental615

results, and our work does not harm anyone. We616

will make our code open-sourced for further explo-617

rations. As for the broader impact, this work may618

foster further research into LLMs’ ability, contribut-619

ing to the exploration and application of LLMs.620

Nevertheless, this work continue-trains large pre-621

trained language models to generate text. Due to622

the large pre-training corpus based on the Internet,623

the generated content is subject to unexpected bias624

with respect to gender, race, and intersectional iden-625

tities, which needs to be considered more broadly626

in the field of natural language processing.627
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A Experimental Settings 795

A.1 Prompts 796

When querying the assistant model to segment the 797

sentence into semantic-aware chunks, we use the 798

few-shot demonstration shown in Figure 4. 799

For experiments on the Celebrity Relation 800

dataset, we prepend few-shot demonstrations at 801

inference, either w/ (Figure 3) or w/o CoT (Fig- 802

ure 2). 803
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Demonstration for segmentation.

Below is a converation with a helpful and terse
assistant. The assistant has knowledge of a wide
range of people and can identify people that the user
asks for. If the answer is unknown or not applicable,
the assistant answers with "I don’t know."

Q: Who is Elon Musk’s mother?
A: Maye Musk.

Q: Who is Malia Obama’s father?
A: Barack Obama.

Q: Who is Jennifer Lawrence’s mother?
A: Karen Lawrence.

Q: Who is Aaron Taylor-Johnson’s mother?
A: Sarah Johnson.

Q: Who is Chris Hemsworth’s father?
A: Craig Hemsworth.

Q: Who is Sasha Calle’s mother?
A:

804

Figure 2: Demonstration used for celebrity relation
dataset at inference (w/o CoT).

Demonstration for segmentation.

Below is a converation with a helpful and terse
assistant. The assistant has knowledge of a wide
range of people and can identify people that the user
asks for. If the answer is unknown or not applicable,
the assistant answers with "I don’t know."

Q: Who is Elon Musk’s mother?
A: Elon Musk’s mother is Maye Musk. Maye Musk
is Elon Musk’s mother.

Q: Who is Malia Obama’s father?
A: Malia Obama’s father is Barack Obama. Barack
Obama is Malia Obama’s father.

Q: Who is Jennifer Lawrence’s mother?
A: Jennifer Lawrence’s mother is Karen Lawrence.
Karen Lawrence is Jennifer Lawrence’s mother.

Q: Who is Aaron Taylor-Johnson’s mother?
A: Aaron Taylor-Johnson’s mother is Sarah Johnson.
Sarah Johnson is Aaron Taylor-Johnson’s mother.

Q: Who is Chris Hemsworth’s father?
A: Chris Hemsworth’s father is Craig Hemsworth.
Craig Hemsworth is Chris Hemsworth’s father.

Q: Who is Sasha Calle’s mother?
A:

805

Figure 3: An example CoT demonstration used for
Celebrity Relation dataset at inference for model M1
when tested on question Q1 (w/ CoT, corresponding to
Table 12).

Demonstration for segmentation.

A chat between a curious user and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
user’s questions.

USER:
Segment the input sentence into the smallest
semantic units using [SEP] token, and make
sure that each unit contains actual meaning.
Note that there should be at least one [SEP]
token. Do not delete or add any other words
and not put the token at the end of the sentence.

Input: You can play “Survival of the Tastiest”
on Android, and on the web. Playing on the web
works, but you have to simulate multi-touch for
table moving and that can be a bit confusing.
Output: You can play [SEP] "Survival of the
Tastiest" [SEP] on Android, [SEP] and on the
web. [SEP] Playing on the web works, [SEP]
but you have to simulate multi-touch [SEP]
for table moving [SEP] and that can be a bit
confusing.

Input: Pastas used in the game. Unfortunately,
the macs where never used
Output: Pastas [SEP] used in the game. [SEP]
Unfortunately, the macs where never used

Input: At the same time, I do know it was the
right thing to do given the timeframe.
Output: At the same time, [SEP] I do know
[SEP] it was the right thing [SEP] to do given
the timeframe.

Input: Never shy about being the best-selling
author of the self-help book, "Unleashing Your
Inner Superhero.", Lacey Donnelly lives life on
their own terms.
Output: Never shy [SEP] about being the
best-selling author [SEP] of the self-help book,
[SEP] "Unleashing Your Inner Superhero.",
[SEP] Lacey Donnelly lives life [SEP] on their
own terms.

Input: <prompt>
Output:

806

Figure 4: Demonstration used for segmenting the sen-
tence into smallest semantic units. The input examples
are randomly sampled from Pile (Gao et al., 2020).
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Model Question Template

M1 Q1 A’s father is B. B is A’s father.
M1 Q2 A’s father is B. A’s father is B.
M1 Q3 A’s father is B. B’s child is A.
M1 Q4 A’s father is B. A’s child is B.
M1 Q5 A’s father is B. B is A’s father.
M1 Q6 A’s father is B. A’s father is B.
M1 Q7 A’s father is B. B’s child is A.
M1 Q8 A’s father is B. A is B’s child.

M2 Q1 A is B’s child. B is A’s father.
M2 Q2 A is B’s child. A’s father is B.
M2 Q3 A is B’s child. B’s child is A.
M2 Q4 A is B’s child. A’s child is B.
M2 Q5 A is B’s child. B is A’s father.
M2 Q6 A is B’s child. A’s father is B.
M2 Q7 A is B’s child. B’s child is A.
M2 Q8 A is B’s child. A is B’s child.

M3 Q1 B is A’s father. B is A’s father.
M3 Q2 B is A’s father. A’s father is B.
M3 Q3 B is A’s father. B’s child is A.
M3 Q4 B is A’s father. A’s child is B.
M3 Q5 B is A’s father. B is A’s father.
M3 Q6 B is A’s father. A’s father is B.
M3 Q7 B is A’s father. B’s child is A.
M3 Q8 B is A’s father. A is B’s child.

M4 Q1 B’s child is A. B is A’s father.
M4 Q2 B’s child is A. A’s father is B.
M4 Q3 B’s child is A. B’s child is A.
M4 Q4 B’s child is A. A’s child is B.
M4 Q5 B’s child is A. B is A’s father.
M4 Q6 B’s child is A. A’s father is B.
M4 Q7 B’s child is A. B’s child is A.
M4 Q8 B’s child is A. A is B’s child.

Table 12: Chain-of-Thought reasoning path of eight test-
ing questions for four models in the Celebrity Relation
dataset.

Hyper-parameters Celebrity Relation Person Description QA

Warmup Ratio 0.03 0.03 0.03
Weight Decay 0 0 0
Learning Rate 2e-5 2e-5 2e-5
Batch Size 128 128 128
Epoch 30 10 20
Epoch* - 3 20

Table 13: Hyper-parameters for SPT of different
datasets. * refers to the setting used in Section §6.

A.2 Hyper Parameters807

Hyper-parameters for all experiments can be found808

in Table 13. We conduct our experiments on open-809

sourced LLMs with the code base of Stanford Al-810

paca4. We continue to train the models using 8 811

AMD MI200 GPUs and conduct inference on a 812

single A100 for a single run. 813

4https://github.com/tatsu-lab/
stanford_alpaca
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