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ABSTRACT

This paper introduces Domain Shift Tuning (DST), a novel framework designed
to guide pre-trained language models (PLMs), including Large Language Models
(LLMs), in overcoming domain discrepancies (i.e., source-target). PLMs, pre-
trained on extensive and diverse corpora, the source domain, often encounter do-
main gaps after fine-tuning over the target domain. Unlike conventional adapters
or Parameter-Efficient Fine-Tuning (PEFT) methods, DST conceptualizes domain
gaps as differences in knowledge encapsulated within multiple subnetworks of
PLMs. To bridge this gap, our challenge is to find a subnetwork set that corre-
sponds to these pieces of knowledge and their weight. This direction leads DST
to employ a lightweight subnetwork, the Knowledge Steering Layer (KSL), and a
training objective, Knowledge Distribution Modeling (KDM). These components
enable DST to fine-tune PLMs by aligning the knowledge weights of the source
domain with those of the target domain. Experimental results on diverse datasets
demonstrate that DST effectively mitigates the domain gap, allowing PLMs to
generate text that closely aligns with even a small target corpus, thereby signifi-
cantly enhancing domain adaptation for PLMs at lower computational cost.

1 INTRODUCTION

PLMs, including LLMs, have demonstrated a powerful capability to generate high-quality text.
However, their effectiveness is often limited by the size of the target corpus, which is typically
much smaller than the source corpora used for training PLMs. For instance, the popular pre-training
datasets of Giga5en Parker et al. (2011), and ClueWeb 2012-B1 occupy 16G, and 25TB, respec-
tively. This size discrepancy can lead to catastrophic forgetting and poor generalization Lin et al.
(2023), especially when all weights of the PLMs are fine-tuned. Given the swift diversification of
PLM applications, techniques are needed that can effectively achieve domain adaptation Malik et al.
(2023); Diao et al. (2023); Zhang et al. (2024) or PEFTs Hu et al. (2022); Dettmers et al. (2023); Xu
et al. (2023); Wu et al. (2024).

In response to this need, we propose a model-agnostic adaptation framework, Domain Shift Tuning
(DST), to tune PLMs toward the target domain. DST is based on the idea that PLMs encapsulate
multiple pieces of knowledge as subnetworks, with each domain represented as weights over these
subnetworks. The domain gap is thus represented as the difference in weights over these subnet-
works, specifically those unique to the source and target domains. To find knowledge-equivalent sub-
networks in the PLM and infer their weights, DST introduces a lightweight subnetwork, the Knowl-
edge Steering Layer (KSL), and a training objective, Knowledge Distribution Modeling (KDM).
Unlike other adapters Wang et al. (2022) and PEFTs, DST’s novelty lies in associating domains
and PLMs using knowledge and tuning the PLM by finding knowledge-equivalent networks and
adjusting their weights.

Our experiments confirm the effectiveness of DST, demonstrating its theoretical and practical con-
tributions;
Theoretical: KSL provides a differentiable access mechanism to represent domain knowledge as
weights over multiple subnetworks of the PLM and fine-tune the PLM by adjusting this weight.
Practical: The framework’s model-agnostic nature allows it to be applied to various PLMs at lower
computational cost, enhancing its versatility and compatibility with other adapters and PEFTs.

1https://www.lemurproject.org/clueweb09.php/
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2 PREVIOUS WORK

Transformer Vaswani et al. (2017) based PLMs Devlin et al. (2019); Radford et al. (2019); Yang
et al. (2019); Liu et al. (2019); Lan et al. (2020) have made significant strides in Natural Language
Processing (NLP) tasks, excelling at exploring local token relationships over global semantics Wang
et al. (2020). However, they face challenges in adapting to tasks that require domain shift using
topics. This paper introduces DST, a novel approach to address these challenges. PLMs, including
BertSUM Wang et al. (2020) and UNIfied pre-trained Language Model Dong et al. (2019), have
shown promise in various NLP tasks. Despite their success, these models struggle to capture explicit
document semantics as effectively as topic models Wang et al. (2020). DST aims to bridge this gap
by adapting PLMs to tasks requiring domain shift using topics.

Continual pretraining Gururangan & et al (2020) has demonstrated the benefits of optimizing a PLM
to a target domain before further fine-tuning. UDALM Karouzos et al. (2021) and AdaPrompt Chen
et al. (2022) follow a similar approach, training PLMs on the target domain and then training a target
classifier with source domain labeled data. Ke et al. (2022) decouple global and domain-specific
knowledge through continual pre-training on a domain-specific corpus. DST separes PLMs into
sub-networks using latent discrete variables, each representing global or local knowledge.

To mitigate catastrophic forgetting, PEFT methods have been introduced to keep most of the PLM
weights frozen. While AdaMix Wang et al. (2022) can leverage a mixture of adapters like Houlsby
et al. Houlsby et al. (2019), a mixture of low rank decomposition matrices like LoRA Hu et al.
(2022) and a minimal additional parameters like (IA)3 Liu et al. (2022) to improve downstream
task performance while keeping most of the PLM weights frozen. While PEFT methods focus on
reducing the number of fine-tuning parameters and memory usage, DST focuses on bridging the
domain gap by adjusting subnetwork weights within PLMs.

Topic models Blei et al. (2003); Wang et al. (2020) and their extensions Dieng et al. (2016); Jo
et al. (2017) take a global statistical view and look at the word distributions of topics across a given
corpus. Although these models organize a given corpus into small sets of prominent topics and have
been proven to be powerful tools for uncovering latent structure, they and their application Chang
et al. (2021); Wang et al. (2018; 2020) are not, in the strict sense, sequence models. Xu et al. (2024)
introduces Energy-Based Concept Bottleneck Models as a unified framework for concept-based
prediction, concept correction, and fine-grained interpretations based on conditional probabilities.

Like other PEFT, DST updates only the weights over subnetworks on the top of PLM rather than
overwriting entire parameters. As our introduced lightweight subnetwork is placed in a different
location than the other adapters, DST can be compatible with training strategies, adaptation modules,
prompt tuning Lester et al. (2021), or continuous prompt models Li & Liang (2021); Liu et al.
(2021); Zhang et al. (2022).

3 OUR FRAMEWORK

3.1 MOTIVATION, CONCEPT, AND DEFINITIONS

DST aims to bridge the domain gap by leveraging disparities between global (e.g., domain-agnostic
linguistic elements) and local (e.g., domain-specific semantic elements) knowledge, as depicted in
Figure 1(left), automatically encapsulate these disparities about a given target dataset. The under-
lying hypothesis is that each piece of knowledge is embedded within a subnetwork of PLMs, akin
to the lottery ticket hypothesis Frankle & Carbin (2019). Here, knowledge is considered a latent
and relative concept, not as concretely defined as topics in topic models. PLMs encode knowledge
as token-level embeddings and subnetworks, referred to as latent knowledge. As these knowledge
disparities are relative and corpus-dependent, it is difficult to show a clear definition. Subnetwork
weights include both the original PLM network weights and newly added network weights. While
the PLM parameters remain frozen, the newly introduced parameters are updated to adjust these
weights. PLMs, which are neural language models tailored for specific tasks such as text gener-
ation Bengio et al. (2003), encapsulate both global and local knowledge across source and target
domains. Given a text sequence xd = {xd,1, · · ·, xd,|xd|} and dataset D = {x1, · · ·, xD}, PLMs are

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: (left) The domain gap between the source and the target can be shown by using global
and local knowledge, and can be interpreted as the difference between the knowledge distributions,
and token frequencies, where each knowledge has its token distributions. The arrows indicate the
selection of token distribution from the knowledge distribution of global and local knowledge. These
differences affect the embedding representation of each token and are stored as parameters of PLMs.
(center) The architecture overview of DST: DST consists of a Knowledge Steering Layer (KSL) and
Knowledge Distribution Modeling (KDM), where TID denotes the last hidden state and KDM takes
TID as input. Without changing the structure of PLMs, both KSL and KDM are inserted between
Transformer blocks and LM Head (LMH), which are their common components. (right) The detail
of KSL with the affine in Eq (4). DST updates parameters used in the KSL, WZ , Waz , and bz

using TID and KDM on each text while freezing other parameters in the PLM.

pre-trained by maximizing the likelihood under forward autoregressive factorization:

LLM (θ) =

|D|∑
d=1

|xd|∑
t=1

logPθ(xd,t|xd,1:t−1), (1)

where θ denotes model parameters, and xd,t represents the t-th token (word) in the d-th text.

The divergence between domains is reflected in token distributions and their domain-specific distri-
butions, i.e., the knowledge distribution, as shown in Figure 1(left). For example, a generic PLM
might predict ”Michelangelo” as the next token for the sentence ”My favorite artist is,” while a
fine-tuned PLM might suggest ”Botticelli.” This discrepancy leads to representing topics using la-
tent variable indicators, rather than hidden spaces obtained in Variational Autoencoders (VAEs). To
discretely represent the knowledge embedded in the PLM as subnetworks, we follow the concept of
topics and introduce these indicators, denoted as z ∈ RK , into the PLMs, modifying the likelihood
function as follows:

LMLM (θ) =

|D|∑
d=1

|xd|∑
t=1

log

K∑
zt=1

Pθ(xd,t|zt, xd,1:t−1)︸ ︷︷ ︸
knowledge specific token distribution

Pθ(zt|xd,1:t−1)︸ ︷︷ ︸
knowledge distribution

, (2)

where zt indicates the distribution used for the t-th token, knowledge, and K is the number of (la-
tent) knowledge. The Mixture Language Model (MLM) partitions a PLM into knowledge-equivalent
subnetworks via z, Pθ(xd,t|zt, xd,1:t−1), enhancing its ability to generate coherent and contextually
relevant content. The integration of z aligns generated text with specific knowledge, and knowl-
edge distribution. While BERTopic Grootendorst (2022) generates topic representations, and Top-
Clus Meng et al. (2022) proposes a joint latent space learning and clustering framework, they over-
look the disparities between these domains. Note that Pθ(zt|xd,1:t−1) is a multinomial distribution
over discrete variables, unlike the Gaussian distribution used in variational autoencoders Kingma &
Welling (2014) or its extensions Wang & Wan (2019); Zhu et al. (2021); Cai & Cai (2022). Similar to
topic models, this knowledge is latent and inferred from data, requiring additional analysis or visual-
ization for interpretation. Eq (2) ensures that the concept of partitioning PLMs into K-subnetworks,
Pθ(xd,t|zt, xd,1:t−1), via discrete variables z and adjusting their weights using knowledge distribu-
tion, Pθ(zt|xd,1:t−1), to align the source domain with the target domain. This paper follows Eq (2)
and explores where to insert in the common architecture of PLMs, Transformer, and the framework
to find subnetworks and their training objectives to fine-tune the PLM.

3.2 ARCHITECTURE DESIGN

Motivated by previous works Li et al. (2018); Houlsby et al. (2019); Aghajanyan et al. (2021),
LoRA Hu et al. (2022) injects trainable rank decomposition matrices into each layer of the Trans-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

former architecture. Unlike LoRA, DST focuses on both the risks of overfitting and the global-local
knowledge differences rather than exploring the lower intrinsic dimension of the source domain
knowledge. Ramasesh et al. (2021) pointed out that catastrophic forgetting occurs mainly in the
higher layers. It is often observed that the learned attentive patterns from many heads are not as
reasonable as we expect Michel et al. (2019), and we might obtain this global information from the
upper blocks by increasing the number of transformer blocks Dosovitskiy et al. (2021); unfortu-
nately, as the transformer architecture requires a large number of parameters, its computational cost
is very high. As shown in Figure 1(center), DST places a Knowledge Steering Layer (KSL) on the
top of the Transformer layer and updates only its related parameters to avoid catastrophic forgetting.
This does not break any PLM structure and allows the reuse of PLMs and their parameters. As 1)
knowledge describes a co-occurrence pattern of tokens with similar semantics, and 2) the differences
between the pre-training and the fine-tuning datasets are not only in the knowledge itself but also
in the ratio of knowledge, we develop a training task, Knowledge Distribution Modeling (KDM), to
align knowledge to each text. Since global distributions do not require additional learning, DST is
designed to find target-specific distributions through knowledge, and update them, Pθ(zt|xd,1:t−1)
and Pθ(xd,t|zt, xd,1:t−1), in fine-tuning. As shown in Eq (2) and Figure 1(right), This design enables
PLMs to interpret Pθ(zt|xd,1:t−1) as the distribution over knowledge and Pθ(xd,t|zt, xd,1:t−1) as the
distribution over next tokens, and emphasize local knowledge that might otherwise be buried, thus
preventing catastrophic forgetting.

3.3 KNOWLEDGE STEERING LAYER (KSL)

Figure (1)(left) shows that each knowledge has each token distribution. This is the rationale behind
the DST positioning the KSL atop the Transformer layers to guide the text decoder. The KSL
transforms the hidden representation vector HL = [hL,1, · · ·, hL,|x|] ∈ R|x|×dh into a indicator
vector z ∈ RK , subsequently selecting the knowledge-specific token distribution in each text. That
is z identifies the learnable weights (matrix), not each knowledge itself.

This transformation results in Eq (2) by defining the knowledge matrix WZ ∈ Rdh×K and the token
generation function F(hL,t). These matrices are applied to hL,t ∈ Rdh in the text decoder, yielding
XT , which is utilized to sample the next token, xi, as a verbalizer, according to the probability:

Pθ(zt|xd,1:t−1) ∝ LayerNorm(hL,t)WZ , Pθ(xd,t|xd,1:t−1, zt) ∝ F(hL,t, zt),

Pθ(xd,t|xd,1:t−1)=

K∑
zt=0

Pθ(xd,t|xd,1:t−1, zt)Pθ(zt|xd,1:t−1), xi ∼ Pθ(xd,t|xd,1:t−1)
(3)

where WZ are learnable weights, and xi is the score of the i-th token in the vocabulary. As
Pθ(xd,t|xd,1:t−1) provides the probability over tokens, the next token is chosen by sampling a multi-
nomial distribution with probabilities clipped to the top-k tokens. Regarding F(hL,t, zt), we apply
the language model head (LMH) to it. For the output of Transformer blocks, hL,t, we adhere to
the conventional activation functions (e.g., addition, multiplication, and affine) and propose three
transformations to produce xd,t that correspond to the given zt and xd,1:t−1, hL,t.

F(hL,t, zt) = LMH(hL,t), hL,t =

{
hL,t residual if zt = 0

hL,tWaz + bz affine if zt = z and z > 0,
(4)

where LMH() is the LM head, gz ∈ Rdh , Waz ∈ Rdh×dh , and bz ∈ Rdh are the z specific
learnable weights. We prepare the residual to select the input if z = 0, take hL,t as the global token
distribution, and partition the PLM into subnetworks shown in Figure 1, which preserves the PLM
functionality, propose an alternative (i.e., addition ((1− ω)hL,t + ωgz), multiplication (hL,t ⊗ gz),
and affine) for z > 0, and confirm by an ablation analysis that affine is the best function. The
subnetworks in the PLM differ only in hL,t, which is divided by KSL, and share the other networks.

While this subnetwork fine-tunes only a subset of PLM parameters like other techniques, it differs in
following Eq (2) and explicitly incorporating the concept of discrete bayes. While Variational Au-
toencoder (VAE)-based models usually face the posterior collapse problem, KSL considers knowl-
edge as a quantized sample of the underlying token distribution rather than conventional topic mod-
els, and samples latent index z in each token just as the final layer of PLM samples the token. This
setting ensures that DST can update knowledge-related parameters, including distribution through
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training (i.e., backpropagation with cross-validation over tokens and training tasks) like other hid-
den variable parameters. The ratio of global token distributions and the nature of target-specific
token distributions are both contingent on the provided target corpus. These are relative differences
that become apparent post the fine-tuning or freezing of PLMs (i.e., freezing LayerNorm(hL,t) in
Eq (3)).

Note that just as Eq (1) is transformed into Eq (2) through the introduction of z, the top layer of
previous Transformer-based PLMs is decomposed into the product of WZ and F(hL,t) in Eq (3).
While both WZ and Waz (bz ,gz) are newly introduced parameters, other parameters in the Trans-
former blocks and LMH of PLM are frozen. Different from other PLMs, DST 1) aligns the t+ 1-th
knowledge of target text, Pθ(zt|xd,1:t−1), and weights Pθ(xd,t|xd,1:t−1, zt) according to the distri-
bution over z, and 2) samples each token according to p(xi ∈ XT ).

The top hidden state, HL, reflects the contextualized representation of the whole sequence in the
decoder. As DST distills the target-specific knowledge via z, the average of the token-level hidden
states over each i-th text corresponds to a topic distribution of topic models, and N-gram topics
by incorporating both the preceding topics and the topic-specific distributions over tokens. As is
clear from Figure (1), KSL can be applied to the Transformer encoder framework (e.g., BERT)
as well as the Transformer decoder framework (e.g., GPT-*, Llama-3). That is, we can modify
of Pθ(zt|xd,1:t−1), Pθ(xd,t|xd,1:t−1, zt), Pθ(xd,t|xd,1:t−1), P (xi ∈ XT ) in Eq (3) to Pθ(zt|xd,¬t),
Pθ(xd,t|xd,¬t, zt), Pθ(xd,t|xd,¬t) as follows:

Pθ(zt|xd,¬t) ∝ LayerNorm(hL,t)WZ , Pθ(xd,t|xd,¬t, zt) ∝ F(hL,t, zt),

Pθ(xd,t|xd,¬t)=

K∑
zt=0

Pθ(xd,t|xd,¬t, zt)Pθ(zt|xd,¬t), xi ∼ Pθ(xd,t|xd,1:t−1),
(5)

where xd,¬t means xd excluding xd,t.

4 MODEL TRAINING

4.1 KNOWLEDGE DISTRIBUTION MODELING (KDM)

Inspired by the principles of contrastive learning Khosla et al. (2020) and triplet loss, the KDM is
designed to minimize discrepancies between texts at both the knowledge and hidden representation
levels, and use the distance between text pairs within the same batch. Models based on the Trans-
former encoder, such as BERT, employ a special token, [CLS], to encode an entire input and derive
its representation. However, models based on the Transformer decoder do not have an equivalent to-
ken. To address this, we append [CLS] to the end of each input text for Transformer-decoder-based
PLMs, as illustrated in Figure 1(center). This modification allows these PLMs to learn representa-
tions directly through z at the input-level representation, thereby obtaining a knowledge distribution
zd ∈ RK specific to the d-th text on the KSL. Given that texts with similar content are likely to share
similar knowledge distributions, we can define the similarities between texts SIMz ∈ RB×B using
z∗, where B represents each batch. As depicted in Figure (1)(center), TIDd is the final output of
the last token of the d-th input text sequence and serves to represent each text, much like [CLS] in
BERT. We define another text similarity using TID∗ as SIMTID ∈ RB×B. Mathematically, this
objective minimizes the following loss function:

LKDM (θ) = min
(i,j)∼B

(||SIMz − SIMTID||),

SIMlayer(i, j) =

{
SIMz(i, j) = Fsim(zi, zj) if layer is KSL
SIMTID(i, j) = Fsim(TIDi, T IDj) else

,
(6)

where Fsim(i, j) is the similarity function between the i-th and j-th text, and uses Kullback–Leibler
divergence (upper) and a simple cosine function (lower).

4.2 TRAINING OBJECTIVE OF DST

We employ a unified multi-task learning framework. As DST can adapt PLMs, their parameters, θ,
of Eq (2) are used to initialize the KSL, and a fine-tuning process is used to adapt θ to the fine-tuning
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Table 1: Basic statistics of the datasets used in this paper
Task category Dataset #reviews #vocabulary K(#topics)

Topic discovery and text classification NYT 31,997 25,903 100

Text generation Amazon 210,000 246,534 10,20,30
arXiv 1,506,500 565,762 10,20,30

data. To optimize these parameters and bridge the gap between the data used in the pre-training and
the fine-tuning process, we optimize the model loss in this tuning process. Using Eq (2),(6), we can
define the loss function, LDST (θ), as the sum of these objective functions, and is to be optimized in
the fine-tuning stage:

LDST (θ) = −LMLM (θ) + λKDMLKDM (θ), (7)

where θ is the parameter set of DST, λKDM are hyper-parameters that balance the importance of
MLM and KDM.

5 EXPERIMENTS

5.1 DATASETS AND EXPERIMENT DESIGN

Datasets We conducted evaluations using The New York Times annotated corpus (NYT)2, Amazon
review3, and arXiv Dataset4, as they are large publicly available datasets and can be manually evalu-
ated by screened colleagues. The experiments focus on review texts (Amazon), news articles (NYT),
and scientific articles (arXiv). Although including a broader range of domains, such as social me-
dia and legal texts, would better demonstrate DST’s generalizability, we select these datasets since
the resulting data size is computationally feasible on a general-purpose server, includes a variety of
topics that are different from the pre-training corpus, meets the public reproducibility requirement,
and can validate our insight that a small corpus can provide significant benefits Gururangan & et al
(2020), and ease of evaluation by a consistent set of reviewers. Each record in the reviews contains
a review text, review title, star rating, anonymized ID, and coarse-grained product category, we use
only review texts. All reviews were truncated after 2,000 characters, and all reviews were at least
50 characters long. Among the languages present, we used only English for ease of interpreting the
results. We used 90%, 5%, and 5% of each data set as training, validation, and test sets, respectively.

Experiment Setup We implemented DST by using Pytorch 2.35 and will release this code soon.
We set ϵ in Eq (6) to 0.2, and λKDM in Eq (7) to 0.5. As the average length of each text used in
fine-tuning the data set is around 60, we set the maximum input sequence length to 64. Note that the
ground truth texts were excluded from the training/validation data to prevent information leakage.
DST uses GPT-2 medium and large (GPT-2) as the PLM, and, BLOOM6 and Meta-Llama-3-8B
(Llama-3) AI@Meta (2024)7 as the LLM. Following the training setup, we used Adam with β1 =
0.9, and β2 = 0.999 was used for optimization, over mini-batches to update parameters; the dropout
strategy Srivastava et al. (2014) was adopted for network optimization. The learning rate was 3e-5,
with linear warm up over the first 500 steps and linear decay, where we set the dropout rate, the
weight decay, and the batch size to 0.1, 0.01, and 256, respectively. We conducted all models on 8
Nvidia Tesla V100 GPUs with 256G memory.

2https://catalog.ldc.upenn.edu/LDC2008T19
3https://huggingface.co/datasets/amazon_reviews_multi
4https://huggingface.co/datasets/arxiv_dataset
5https://pytorch.org/
5https://huggingface.co/transformers/pretrained_models.html
6https://huggingface.co/bigscience/bloom
7https://github.com/meta-llama/llama3
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Table 2: Comparison of topic discovery and text clustering: We evaluate all methods with three topic
coherence metrics UCI, UMAss and Intrusion (Int.) and a topic diversity (Div.) metric. We set the
number of topics K = 100 for all compared methods. Higher score means better for all metrics.

Methods discovery clustering
UMass UCI Int. Div.

BERTopic -3.76 -0.50 0.71 0.62 0.27/0.23
TopClus -2.65 -0.46 0.92 0.92 0.45/0.27

DST -2.33 -0.41 0.95 0.98 0.47/0.28

5.2 TOPIC DISCOVERY AND TEXT CLASSIFICATION

Method Baselines: To evaluate the effect of DST on text classification, a representative task for
Transformer encoder framework, BERT, we compare DST with strong BERT-based topic models,
BERTopic Grootendorst (2022) and TopClus Meng et al. (2022).

Evaluation metrics and results: Following the implementation details and parameters of Grooten-
dorst (2022); Meng et al. (2022), we evaluate the quality of the topic discovery and text classification.
Topic discovery involves identifying underlying themes within the data, while text classification in-
volves categorizing text into predefined labels. As good topic results should be both coherent to
permit human interpretation and diverse enough to cover more information over the given corpus,
we use three metrics including both human (i.e., UMass Mimno et al. (2010), UCI Newman et al.
(2010)), automatic evaluations (i.e., Intrusion Meng et al. (2022)), and topic diversity Dieng et al.;
Meng et al. (2022), and report model performance under these metrics in Table 2. We conducted
text clustering by using K-means over the text-level learned latent text embedding, and report the
Normalized Mutual Information (NMI) score between the clustering results and the ground truth
text labels in Table 2, where we follow the detailed label statistics as found in Meng et al. (2020);
the topic label set and location label set are used for the NYT dataset. Examples from the dataset
include classifying Amazon reviews into positive or negative sentiments and identifying topics in
NYT articles. This table shows that DST achieved an accuracy comparable to TopClus, although it
aims to discover differences between linguistic and semantic knowledge and use these differences
as topics rather than coherent and meaningful topics.

5.3 TEXT GENERATION

Model Baselines: As the main application of our framework is to control text generation, we
used the latest text generation models with a similar goal as our baselines: fine-tuning model (CO-
CON Chan et al. (2021)), prefix-tuning (Prefix Li & Liang (2021) and NRP Carlsson et al. (2022)),
and adaptation modules (LoRA Hu et al. (2022), AdaMix Wang et al. (2022), and ReFT Wu et al.
(2024)). These experiments use publicly available models8,9,10,11,12,13, and follow the published
parameter settings for fair comparison. To evaluate the effect of DST over fine-tuning models, we
customized the original tokenizer to extract, as tokens, the top 100 most frequent occurrences of
each piece of data not included in the original tokenizer, trained a new representation for each, and
evaluated its effectiveness.

Automated evaluation: We used test-set perplexity, Dist Li et al. (2016), BLEU-N Papineni et al.
(2002), METEOR Lavie & Agarwal (2007), and ROUGE Lin (2004) metrics to measure perfor-
mance Sai et al. (2023) using the Hugging Face Metrics14. n-gram based metrics (Dist, BLEU,
METEOR, ROUGE) count the overlap between the generated text, and its corresponding reference

8https://github.com/huggingface/transformers
9https://github.com/uber-research/PPLM

10https://github.com/xxbidiao/plug-and-blend
11https://github.com/alvinchangw/COCON ICLR2021
12https://github.com/FreddeFrallan/Non-Residual-Prompting
13https://github.com/XiangLi1999/PrefixTuning
14https://huggingface.co/docs/datasets/how to metrics
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Table 3: Comparison of various PLMs and PEFTs, and ablation analysis: In the model column,
(+) means the model with the customized tokenizer. In each model row, the top, and the bottom
is the result of Amazon, and arXiv, respectively. As with prefix-tuning models (Prefix and NRP),
prefix is a pair of user ID and product ID (Amazon) and each tokenized title (arXiv; avg 11.5). In
the column of DST, K and F denote the number of z and the kind of transformations, where ad,
mu, and af denote addition, multiplication, and affine in Eq (4), respectively. Flu, PPL, D-N and
B-N denotes Fluency, Perplexity, Dist-N, and BLEU-N , respectively. The bold value denotes the
statistical significance for p < 0.01 using the Student’s t-test, compared to the best baseline.

Evaluation Human Automated
Flu PPL D-4 B-4 Meteor Rouge-L rKSL

DST P R F1
K F ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑

Model fine-tuning setting over GPT-2 medium

COCON 3.12 15.93 10.52 13.5 21.2 0.09 0.09 0.09 -
3.35 6.88 11.34 11.2 29.1 0.24 0.23 0.23 -

COCON(+) 3.18 15.81 10.68 13.9 21.5 0.09 0.09 0.09 -
3.41 6.81 11.88 11.7 29.6 0.24 0.23 0.23 -

PEFT ablation: DST with GPT-2 medium
10 af 3.43 14.56 14.32 17.4 22.7 0.11 0.10 0.10 0.31

DST
10 af 3.61 5.22 15.15 13.3 30.3 0.27 0.27 0.27 0.29
20 af 3.63 13.03 14.22 18.2 24.8 0.14 0.14 0.14 0.32
20 af 3.69 4.82 16.12 14.0 30.2 0.28 0.28 0.28 0.31
30 af 3.66 12.92 14.34 18.3 24.9 0.14 0.15 0.14 0.32
30 af 3.72 4.80 16.19 14.1 30.8 0.28 0.28 0.28 0.31

DST(+) 10 af 3.67 12.82 14.66 18.8 25.9 0.16 0.16 0.16 0.38
10 af 3.72 4.77 16.32 14.5 31.7 0.30 0.31 0.30 0.37

Model prefix-tuning setting with GPT-2 large frozen

Prefix 2.99 16.21 10.22 14.4 20.3 0.09 0.09 0.09 -
3.21 7.12 11.18 11.2 29.2 0.21 0.22 0.21 -

NRP 3.08 15.86 10.67 13.3 21.2 0.09 0.09 0.09 -
3.31 7.02 11.42 11.2 30.1 0.23 0.22 0.22 -

PEFT adaptation modules with GPT-2 large frozen

LoRA 3.02 15.72 10.72 13.8 21.6 0.10 0.10 0.10 -
3.38 6.91 12.92 11.8 30.3 0.23 0.22 0.22 -

AdaMix 3.12 15.64 10.81 14.3 21.9 0.10 0.10 0.10 -
3.38 6.88 12.95 11.8 30.5 0.23 0.22 0.22 -

ReFT 3.23 15.42 11.72 14.8 21.8 0.10 0.10 0.10 -
3.43 6.88 12.23 12.4 30.2 0.23 0.22 0.22 -

ablation: DST with GPT-2 large frozen

DST

10 ad 3.41 13.86 14.42 17.1 22.6 0.12 0.12 0.12 0.28
10 ad 3.58 4.96 15.06 13.2 30.9 0.28 0.28 0.29 0.27
10 mu 3.43 13.86 14.44 17.2 22.7 0.12 0.12 0.12 0.28
10 mu 3.58 4.93 15.09 13.5 31.1 0.28 0.28 0.29 0.27
10 af 3.49 13.41 14.72 17.8 23.5 0.14 0.13 0.13 0.32
10 af 3.65 4.73 15.52 14.1 32.9 0.31 0.28 0.29 0.30

Table 4: The contribution of DST (K=10, F=af) to PLMs: Details and meaning are the same as
Table 3. The value excluding rKSL is the improvement (+%)

PLM Flu PPL D-4 B-4 Meteor Rouge-L rKSL

P R F1

BLOOM 6.18 13.21 10.21 12.3 11.1 10.02 10.11 10.09 0.28
6.42 13.52 10.31 12.8 11.3 10.34 10.28 10.32 0.29

Meta-Llama-3-8B 5.12 10.23 8.74 9.4 9.5 8.76 8.31 8.82 0.29
4.98 9.56 8.78 9.1 9.3 8.56 8.24 8.64 0.28
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Table 5: Case study for Amazon: (top) Ground Truth, (center) AdaMix, and (bottom) DST. We set
seed words of ”I am disappointed in this purchase”, and show the text generated by each model.

I am disappointed in this purchase. I bought one of these in another color and in size XL
The color is not as vibrant as I would like. It does however still look great. I will use
I ordered an XL size in black which arrived with a large hole. There’s no way anyone

text in the test data. We define the metric rKSL to evaluate the effect of KSL;

rKSL =
1

|Xt|
∑
i∈Xt

1

|xi|
∑
j∈xi

zij , zij =

{
0 if zij =0
1 else, (8)

where Xt is the set of test text, xi is the set of tokens in i-th text, and zij is the topic indicator in
Eq (3). The larger this value is, the more knowledge other than “residual” are selected in each token
generation, as shown in Eq (4).

Human evaluation: We employed fluency testing on attribute relevance as the human annota-
tion Dathathri et al. (2020). Annotators were asked to evaluate the fluency of each sample on a
scale of 1-5, with 1 being, ’not fluent at all’, and 5 being ’very fluent’, as done in Lample et al.
(2019). Topic reports the fraction of samples matching the target domain as evaluated by the manual
annotators. To consistently evaluate results, we recruited and screened colleagues who were familiar
with movies, music (Amazon), and machine learning (arXiv) and could interpret texts.

Comparisons: As shown in Table 3, DST outperformed the baselines and achieved better perfor-
mance over both data sets. These results support our hypothesis that KSL allows DST to distill
knowledge in the form of topics, and update only the target-specific token distributions to prevent
catastrophic forgetting. Under the fine-tuning setting, KSL emphasizes the target-specific tokens, as
shown by the value of rKSL, reflects them in the generated texts, and yields improved their quality.
Comparing COCON(+) and DST(+), we can say that the tokenizer customization makes it easier
for them to extract more target-specific tokens than without it, leads to an increase of rKSL, and
contributes to improvements in text quality. In the frozen setting (i.e., prefix-tuning and adaptation
modules), the target-specific tokens are split into tokens rather than tokens because the tokenizer
cannot be customized, but as in the previous setting, we see an improvement in rKSL and a cor-
responding improvement in text quality. In principle, DST avoids catastrophic forgetting by using
the residual in Eq (3) and freezing PLMs. These experiments also show that KSL reflects the target
domain, knowledge embedded in the target datasets, in the generated texts, improves their quality,
and mitigates this forgetting, as the value of rKSL and the quality of the generated texts are directly
related. Table 4 shows that DST contributes the latest s.t.a LLMs (i.e., BLOOM and Llama3).

Ablation analysis: We conducted an ablation analysis to investigate the contributions of DST com-
ponents, specifically K and F . We removed different components and found that the full DST
setting achieved better performance across both datasets, as shown in Table 3. The table indicates
that there are many settings with values around 0.31. We observed that the knowledge layer ex-
tracted target-specific token characteristics for 20% of the total, compared to the case without this
layer. Both datasets consisted of review texts, and the ratio of target-specific tokens embedded in
PLMs (e.g., GPT-2) is considered to be similar. Although simply increasing the number of knowl-
edge, z, does not dramatically improve rKSL as tokenizer customization does, this value can be
further increased by identifying more target-specific tokens and accommodating them in knowledge
when combined with this customization. Additionally, the comparison between GPT-2 medium and
GPT-2 large indicates that this value appears slightly lower due to the increased number of tokens
included in a larger model.

Error analysis and limitations: A manual error analysis showed that some instances marked as
errors were correctly assessed as allowed by partial matching of tokens in a text. When the ground
truth text is personalized, human judgment is hard even if the generated text differs from the ground
truth, see Table 5; note that the generated texts contain more abstract or higher frequency tokens
than the reference sentences. Our approach could avoid the catastrophic forgetting of linguistic
knowledge while not showing any grammatical errors beyond those of other models, especially for
the arXiv dataset. One limitation is that it cannot explicitly handle ethical expressions in the given
datasets, but this issue will be overcome in future work. While DST maintains the original PLM’s
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performance, it may struggle when the target data overlaps significantly with the source data of the
PLM, leading to unchanged knowledge distributions.

6 DISCUSSION AND LIMITATION

DST introduces z as an indicator for knowledge equivalent subnetworks through KSL and KDM.
DST performs domain shift by recalculating Pθ(xd,t|zt, xd,1:t−1) and aligning Pθ(zt|xd,1:t−1) with
the target domain, as shown in Eq (2) and Figure 1. This mechanism ensures that DST differs from
the existing topic model and its extensions Wang et al. (2020); Dieng et al.; Chang et al. (2021);
Kawamae (2021); Grootendorst (2022); Meng et al. (2022) in understanding the difference between
the source (e.g., training corpus) and the target, and in supporting additional learning. Our approach
can be applied to both encoder-only (BERTopic) and decoder-only (GPT-2, BLOOM, Llama-3)
architectures, demonstrating its versatility and effectiveness, as shown in Tables 2, 3, and 4.

While PEFT methods are known for their data efficiency, DST aims to further improve this by
incorporating knowledge and providing additional context and structure to the data. By using this
concept to identify and overlay relevant knowledge, DST can enhance the capabilities of PLMs
without requiring extensive retraining. Section 6 and Table 3 indicate that DST, like other PEFT
methods, allows fine-tuning while keeping the PLM frozen. The additional parameters introduced
by DST (WZ ∈ Rdh×K , K ×Waz ∈ Rdh×dh , and K × bz ∈ Rdh ) result in a total of 5,906,688
parameters for dh = 768 and K = 10. This is significantly fewer than the 345 million parameters
of GPT-2 medium and comparable to LoRA and other PEFT methods. However, as K increases,
the computation time also increases due to the need for calculations for each knowledge, z. This
overhead is managed by parallel processing for different z, as shown in Table 3.

The knowledge in DST is designed to capture subnetworks, similar to how dropout in deep learning
helps prevent overfitting by randomly omitting units during training. This approach ensures that
the model does not rely too heavily on any single feature, thereby enhancing its generalization
capabilities. By treating z as quantized samples of token distributions, DST can dynamically adjust
to different contexts, improving the model’s adaptability and performance.

DST excels when there is a significant difference between the source and target domains. When
the target data is similar to the source data, the benefits of DST are less pronounced. By aligning
knowledge distributions, DST can effectively adapt the model to new domains without catastrophic
forgetting. This is particularly useful in low-resource settings where fine-tuning large PLMs on
limited data can lead to overfitting. However, in cases where the target domain closely resembles
the source domain, the knowledge distributions may not differ significantly, reducing the impact of
the Knowledge Steering Layer. Additionally, if the target data is already well-represented in the
source data, the benefits of DST’s dynamic adjustment may be minimal.

The latent nature of knowledge in DST, while beneficial for capturing complex patterns, poses chal-
lenges for interpretability. Future work could explore methods to enhance the interpretability of
these latent variables. DST mitigates the domain gap by highlighting the target-specific token distri-
butions through knowledge and updating only these distributions, even if K is small. Methods like
variational Bayes and Dirichlet processes can determine the optimal number of z but are computa-
tionally intensive. Therefore, the current study focuses on demonstrating the effectiveness of DST,
with automatic determination of K as a future research direction.

7 CONCLUSION

The paper proposes a PLM tuning framework, DST, that reflects the target domain knowledge in
NLP tasks. Unlike other adapters or PEFT, DST places a lightweight network, KSL, on just the
top of PLM and fine-tunes it via KDM. The novelty of DST lies in 1) focusing on the domain gap,
2) representing this gap with subnetwork weights over domains, and 3) guiding PLMs towards the
target domain. Experiments showed that both KSL and KDM enable DST to allow PLMs to generate
valid texts that well reflect even small target data sets.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In ACL/IJCNLPP, pp. 7319–7328, 2021.

AI@Meta. Llama 3 model card. 2024.
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