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Abstract—We propose the novel concept of anomaly-free re-
gions (AFR) to improve anomaly detection. An AFR is a region in
the data space for which it is known that there are no anomalies
inside it, e.g., via domain knowledge. This region can contain
any number of normal data points and can be anywhere in the
data space. AFRs have the key advantage that they constrain the
estimation of the distribution of non-anomalies: The estimated
probability mass inside the AFR must be consistent with the
number of normal data points inside the AFR. Based on this
insight, we provide a solid theoretical foundation and a reference
implementation of anomaly detection using AFRs. Our empirical
results confirm that anomaly detection constrained via AFRs
improves upon unconstrained anomaly detection. Specifically, we
show that, when equipped with an estimated AFR, an efficient
algorithm based on random guessing becomes a strong baseline
that several widely-used methods struggle to overcome. On a
dataset with a ground-truth AFR available, the current state of
the art is outperformed.

Index Terms—anomaly detection, maximum likelihood estima-
tion, constrained optimization

I. INTRODUCTION

Anomaly detection (AD) is a common data mining task
where the goal is to distinguish deviating data, i.e., anomalies,
from normal data. Many common AD methods are based on
the so called concentration assumption [1]. The concentration
assumption implies that normal data points form dense clus-
ters, where normal data points have low distances to other
normal data points. Anomalies are then typically found in less
dense regions, or have a higher distance to other points. The
concentration assumption is made by a number of prominent
AD methods (e.g. LOF [2], SVDD [3], Isolation Forest [4],
and others [2]–[9]) and has demonstrated its usefulness in a
number of scenarios of practical relevance. However, in cases
where additional knowledge about the nature of the dataset is
available, such knowledge cannot be effectively integrated in
the assumption.

a) Concept.: We propose a novel concept, namely
Anomaly Free Regions (AFR), which is similar to the con-
centration assumption. An AFR is a region in the data space
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for which it is known that there are no anomalies inside, e.g.,
via domain knowledge. This region can contain any number of
normal data points and can be anywhere in the data space. The
AFR does not need to coincide with a high-density region—it
could be a region that contains no data points at all. Hence,
using AFRs is appropriate in cases where domain knowledge
allows one to derive such regions and certain parts of the
data space do not exhibit anomalous behavior. Prior works
that include such domain knowledge are related to mechanical
engineering [10], [11], mobile data traffic monitoring [12],
building energy consumption [13], and digital twins [14].

b) Novelty.: Several typical concepts in AD literature
are comparable to AFRs, such as density level sets [1] and
inlier clusters [15]. AFRs have two distinct properties: a)
they are not required to contain normal data points; b) they
are a subset of the data space that has zero probability of
containing anomalies. As such, AFRs encode prior information
about the anomaly class, which makes them comparable to
semi-supervised AD methods (e.g. [16], [17]) and Positive-
Unlabeled (PU) learning [9], [18]. However, in contrast to
semi-supervised methods, AFRs do not require explicit labels
for either normal or abnormal data points.

c) Illustration.: AFRs are especially useful for proba-
bilistic AD methods since they constrain the estimation of
the distribution of non-anomalies: The estimated probability
mass inside the AFR must be consistent with the number of
normal data points inside the AFR. For example, if the AFR
is empty, we would expect very little probability mass inside
it. Conversely, if the AFR contains many non-anomalies, we
would expect the distribution of non-anomalies to have much
of its probability mass inside the AFR. Figure 1 provides an
illustration of this benefit.

d) Mathematical foundation.: Due to their mathematical
nature, we can analyse AFRs in great detail. Thus, we build
a solid foundation for a novel, constrained form of AD
and construct a concrete reference algorithm. This algorithm
provides a sound basis for further methods based on AFRs.

e) Real-world usefulness.: In settings where no AFR is
known, an AFR can be estimated. We show the proposed
algorithm behaves solidly in cases where no AFR is known
and is competitive with state of the art AD methods.

f) Contributions.: Our contributions include the follow-
ing:
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Fig. 1. Constraining density estimation with an AFR. For a fixed toy dataset and a fixed AFR, three different density estimates for normal data points are
compared. The left and middle density estimates are inconsistent and give a too low likelihood of observing the (known normal) data points inside the AFR.
The right density estimate makes use of the available knowledge (AFR) and gives a reasonable likelihood for the data points inside the AFR.

• Proposal of the novel AFR concept
• Theoretical foundation for constrained anomaly detection
• Proposition of an algorithm for constrained density esti-

mation and application to anomaly detection
• Demonstration of the behaviour on several benchmark

datasets where no AFRs are known or may not exist.
• Demonstration of very good performance on a benchmark

dataset where an AFR is known.

II. RELATED WORK

There are two main branches of literature that describe
theory and methods which relate to constrained AD via AFRs.

1) Identification of two-component mixture models where
one component is partially known and the other is
unknown.

2) Semi-supervised AD, one-class classification and PU
learning when positive class labels represents anomalies.

The first branch stems from computational statistics and
information theory. It is primarily concerned with distribu-
tions/mixtures of the form

g(x) = (1− p)fN (x,θ) + pf∞(x) (1)

where fN is the “normal” distribution, θ are its parameters,
f∞ is the unknown (anomaly) distribution, and p is the
mixing parameter. Works within this branch typically start
their analysis with (a variant of) Equation (1) and then split
according to the assumptions they make. These distinguishing
assumptions are symmetry of f∞ [19], membership of fN
in the Gaussian family and linearly constrained f∞ [20],
Gaussian zero-mean fN [21], and that the true form of fN and
its parameters are given [22]–[24]. These works are related to
our work because we also start our theoretical investigation
with Equation (1). Our work is different from the cited works
since we constrain f∞ via AFRs. As we will see later, this
implies a consistency constraint via the Law of Large Numbers
(LLN) that further distinguishes our setup. In the context of
AD, AFRs are easier to justify than the assumptions made in
related work, e.g., symmetry of f∞.

The second branch of related work stems from machine
learning and data science. Semi-supervised AD, and PU learn-
ing are a form of classification that uses labeled and unlabeled
data to delimit a region where most data from the negative
class can be found. In the context of AD, this translates to
learning to delimit the region where normal data live using
labeled anomalies and unlabeled data. Recently, many relevant
semi-supervised and PU-learning schemes were proposed for
AD. These are deep [16], use fast random projections [25], use
metric-learning [18], and are specialized on tabular data [17].
Many other related approaches are summarized in the survey
by Ruff et al. [1]. Semi-supervised AD methods are related to
our work since they also leverage available prior information
to facilitate the detection task. However, unlike these methods,
our work does not focus on generalizing from labels and
instead uses an AFR to encode prior information about the
anomaly class.

III. THEORY

The starting point of our analysis is the two-component
mixture described in (1). The probability density function
(PDF) fN generates “normal” data, whereas PDF f∞ gen-
erates anomalies, and 0 ≤ p ≤ 1 is the mixing parameter. The
“∞” symbol is used in f∞ to convey the intuition that there
are arbitrarily many different anomaly types/classes. In the
following, it is assumed that an AFR exists, which is specified
in Definition 1.

Definition 1 (Anomaly-free Region). Let R ⊂ R and let f∞
be the unknown anomaly PDF in (1). Subset R is an AFR with
respect to f∞ if it holds that∫

R

f∞(x)dx = 0. (2)

In other words, an AFR is a region in which there is
zero probability that anomalies occur. Note that this does not
impose a restriction on the region where normal data can occur.

The mixture in (1) can be thought of as combining two
distributions via a (biased) coin flip—with probability p the
coin lands on “heads” and we draw an anomaly from f∞, and



with probability 1− p the coin lands on “tails” and we draw
a normal data point from fN . Let B be the Bernoulli random
variable that describes this coin flip. By making B explicit,
we can rewrite (1) as

g(x,B) =
(
(1− p)fN (x,θ)

)1−B(
pf∞(x)

)B
. (3)

Next, the mixture in (3) needs to be connected with a
dataset. Let x = [x1, . . . , xn] ∈ Rn be a dataset obtained by
drawing n data points independently from g(·|B) according
to a sequence of iid Bernoulli variables B = [B1, . . . , Bn].
Because of independence, the likelihood of the parameters
given dataset x is given by

L(θ, p,B|x) =
n∏

t=1

(
(1− p)fN (xt,θ)

)1−Bt
(
pf∞(xt)

)Bt
.

(4)
For each xt in x, the corresponding Bt indicates if xt was
drawn from fN or f∞, i.e., if xt is normal or an anomaly.
Hence, the underlying anomaly detection problem is solved
if we figure out B. However, it is likely impossible to
optimize B without knowing anything about f∞. To resolve
this dilemma, one can replace B with an estimate B̂. This
way, one can rewrite the likelihood in (4) as

L(θ, p|B̂,x) =

n∏
t=1

(
(1−p)fN (xt,θ)

)1−B̂t
(
pf∞(xt)

)B̂t (5)

which is the same as (4) except that B is replaced with
its estimate B̂, and that this estimate is given. Notice that
in likelihood function (5) the anomaly distribution f∞ has
no learnable parameters, which has the advantage that the
maximum of L only depends on p, θ.

A. Constrained Likelihood

Directly optimizing the likelihood in (5) is not advisable
since the result may violate two important constraints:

1) Valid parameter constraint: We must ensure that only
permitted values of θ and p are considered during the
optimization, i.e., θ must be a real-valued vector/matrix
and 0 ≤ p ≤ 1.

2) Consistency constraint: We must ensure that θ and p
are such that the probability measure of g inside R is
consistent with the number of data we observe inside R
due to the LLN.

In contrast to the first constraint, the second is less intuitive.
To further motivate the necessity of the consistency constraint,
note that the probability of observing data outside R is given
by

P(x ̸∈ R) = 1−
∫
R

g(x) = (1− p)

(
1−

∫
R

fN (x,θ)

)
+ p

= 1− (1− p)

∫
R

fN (x,θ) = P. (6)

If x is drawn from g, then due to the LLN P can be estimated
via

P = P (θ, p) ≈ P̂ =
1

n

n∑
t=1

1R(xt) (7)

where 1R(·) is the indicator function of the complement of
R. The consistency constraint has the purpose to ensure that
θ and p are chosen such that the approximation in (7) holds.

Due to the high relevance of P for AFR-based anomaly
detection, it is important to have a reliable estimator for P .
Depending on R, the true P may be very close to its extreme
values 0 and 1. Since the estimator P̂ in (7) is biased at these
extremes, it is better to use the Wilson score method

P ∈ P̄ ± w

P̄ =
1

1 + z2

n

(
P̂ +

z2

2n

)
(8)

w =
z

1 + z2

n

√
P̂ (1− P̂ )

n
+

z2

4n2
(9)

where z is the 1 − α
2 quantile of the standard normal distri-

bution for significance level α.

Adding the two discussed constraints to likelihood (5) gives
the following optimization problem:

maximize L(θ, p|B̂,x, R)

subject to 0 ≤ p ≤ 1,θ ∈ Rq

P̄ − w ≤ 1− (1− p)

∫
R

fN (x,θ)dx ≤ P̄ + w

(10)
Solving this optimization problem gives the constrained max-
imum likelihood estimates of parameters θ and anomaly
probability p.

B. Maximum Likelihood Estimators for p and θ

As we will see, mixture parameter the maximum likelihood
estimate (MLE) of p has the same general form regardless
of the underlying normal distribution fN , while the MLE
of θ is specific to fN . In the following, we abbreviate
I =

∫
R
fN (x,θ)dx to keep the notation simple.

1) Karush-Kuhn-Tucker conditions: We can rewrite the
constrained optimization problem (10) as a system of



(in)equations using the Karush-Kuhn-Tucker conditions:

L = L(θ, p|B̂,x)

=
L(θ, p|B̂,x)− λ1

(
p2 − p

)
−

λ2

((
1− (1− p)I − P̄

)2 − w2
) (11a)

0 =
∂L
∂p
− λ1(2p− 1)− 2λ2I(1− (1− p)I − P̄ ) (11b)

0 =
∂L
∂θ(1)

+ 2λ2(1− p)
(
1− (1− p)I − P̄

) ∂

∂θ(1)
I

(11c)

0 =
∂L
∂θ(2)

+ 2λ2(1− p)
(
1− (1− p)I − P̄

) ∂

∂θ(2)
I

(11d)
...

...
...

0 =
∂L
∂θ(q)

+ 2λ2(1− p)
(
1− (1− p)I − P̄

) ∂

∂θ(q)
I (11e)

0 = λ1

(
p2 − p

)
(compl. slack.) (11f)

0 = λ2

((
1− (1− p)I − P̄

)2 − w2
)

(compl. slack.) (11g)

0 ≥ p2 − p (11h)

w2 ≥
(
1− (1− p)I − P̄

)2
(11i)

0 ≤ λ1, λ2 (11j)

Because of complementary slackness [26], we must have one
of the following four cases:

1) λ1 = 0 and λ2 = 0: The standard unconstrained MLEs
for θ and p satisfy both constraints.

2) λ1 ̸= 0 and λ2 = 0: The valid parameter constraint
requires p to be either p = 0 or p = 1, whereas θ can
be estimated with the standard MLE since θ does not
appear in (11f).

3) λ1 = 0 and λ2 ̸= 0: The consistency constraint requires
p,θ such that

(
1− (1− p)I − P̄

)2
= w2

4) λ1 ̸= 0 and λ2 ̸= 0: Both constraints are active. The
implications are the same as for the previous case with
the additional (simplifying) condition that either p = 0
or p = 1.

The third case is arguably the most interesting since it fre-
quently occurs for bad estimates B̂, and since it is hard to
solve.

2) MLE of p: Parameter p is the mixture weight of PDF g
and thus is equal to the probability of observing an anomaly.
The MLE of p has four possible solution candidates that
depend on the cases described above. In case 1, we have
the well-known result p = 1

n

∑n
t=1 B̂t, which is the standard

unconstrained MLE; In cases 2 and 4, p must either be p = 0
or p = 1 to satisfy the first constraint. Case 3 has the following
solution:

Theorem 1. For λ1 = 0 and λ2 ̸= 0, the equation system (11)
has the following solution for p

p =
1

n− Ω

n∑
t=1

B̂t (12)

where Ω < n−
∑n

t=1 B̂t is the density surplus gradient, which
is given by

Ω =
∂

∂θ(1) logL
∂

∂θ(1) log I
I = . . . =

∂
∂θ(q) logL

∂
∂θ(q) log I

I (13)

and where (either of the) derivatives of the right-hand side
are evaluated at an MLE of θ.

Thus, the constrained solution for p is similar to the uncon-
strained MLE, with the only difference being the subtraction
of Ω in the denominator. Density surplus gradient Ω is 0 in
the unconstrained case; positive if the pMLE is too “small”;
and negative if pMLE is too “large” to fulfil the consistency
constraint.

3) MLE of θ under the Gaussian assumption: Since fN can
be arbitrary, θ has a different maximum likelihood solution for
most distributions. In the following, we discuss the MLE for
Gaussian fN with θ = [µ, σ2] under the assumption that AFR
R is an interval [a, b]. Other distributions are discussed in the
Appendix.

Theorem 2. For λ2 ̸= 0, Gaussian fN = N (µ, σ2) and R =
[a, b], equation system (11) has the following solution for σ2

σ2 =
βm

m+ βWr (γ)
(14)

with

x̄ =
1

n−
∑n

t=1 B̂t

n∑
t=1

(1− B̂t)xt (15a)

x̄2 =
1

n−
∑n

t=1 B̂t

n∑
t=1

(1− B̂t)x
2
t (15b)

m =
1

2

(
(a− µ)2 − (b− µ)2

)
(15c)

α = x̄2 − µx̄+ (µ− x̄)a (15d)

β = x̄2 − µx̄+ (µ− x̄)b (15e)

γ =

(
α− β

β2

)
me−

m
β (15f)

and where Wr(·) is the r-Lambert function [27] with r =
−α

β e
−m

β .

Theorem 2 gives an analytic expression for variance σ2 if
the consistency constraint is active—if it is not, σ2 is given by
the standard Gaussian variance estimator. Since the r-Lambert
function has up to three real branches, (14) gives up to three
solution candidates for σ2. To determine the correct solution,
we can leverage (13): Only one of the three branches will
yield a real-valued σ such that Ωµ = Ωσ2 .

There is no analytic expression for mean µ because this
would require an analytic expression for

∫ b

a
e−x2

dx, which
does not exist. However, a careful study of equation sys-
tem (11) reveals a straightforward scheme for accurately
approximating µ: Let sB =

∑n
t=1 B̂t, let Φ(·) be the standard

Gaussian cumulative distribution function, and let Φθ(x) =



Fig. 2. Illustration of the estimation procedure for µ. Since Eq. (16) is
quasi-concave, it is easy to find the constrained MLE, which is located at
the function’s root that is closer to the unconstrained MLE. The center of the
AFR is at a+b

2
, and there we have ∂L

∂µ
= 0, so Eq. (16) is undefined at a+b

2
.

Φ
(

(x−µ)(m+βWr(γ))
βm

)
. Theorems 1 and 2 allow us to write

the constraint equation (11g) as a function of µ.

h(µ|x, B̂, R) = w29

(
1 9

(
1 9

sB
n 9 Ωµ

)
(Φθ(b) 9 Φθ(a)) 9 P̄

)2

(16)
This function is real-valued for µ ∈ (−∞; a+b

2 ) if x̄ < a+b
2 ,

or else for µ ∈ (a+b
2 ;∞). Importantly, (16) is quasi-concave

in its real domain. Hence, it is easy to find its root(s) using
standard optimization procedures, e.g., numerical gradient or
binary search. In the case where (16) has two roots, one can
determine the better solution using the log-likelihood function
ℓ. An illustration is depicted in Figure 2.

IV. IMPLEMENTATION

After presenting the theoretical foundation of AFRs and
constrained AD, we now focus on practical aspects. There
are many different ways to implement AFR-based AD. Hypo-
thetically speaking, most existing detectors could be equipped
with an AFR by leveraging the detector’s output to construct
estimate B̂, e.g., via Otsu’s thresholding method [28], and plug
that into Equation (16). However, for complicated detectors,
e.g., based on deep learning, it is unclear how the AFR affects
the detector, so we instead propose a more direct scheme.

A. Algorithm

In general, constrained AD requires four inputs: i) dataset
x; ii) AFR R; iii) anomaly label estimate B̂, iv) significance
level α.1 Estimate B̂ can be arbitrary, i.e., it does not have to
be a good estimate. We propose to select several B̂ randomly,
e.g. nB = 5, and compute the average deviation from the
mode of fN over all B̂. Thus, we can provide nB instead of

1Note that α is non-critical, since it only affects the speed of the constrained
estimation, but not the accuracy.

a concrete B̂ as input. The necessary steps to achieve this are
listed in Algorithm 1.

Algorithm 1 Constrained Anomaly MLE (CAMLE)
1: Input x, R, nB , α
2: Use α to compute P̄ , w as in Equations (7), (8), (9)
3: Scoret ← 0 ∀t ∈ 1, . . . , n
4: for j ∈ 1, . . . , nB do
5: Randomly initialize B̂
6: B̂t ← 0 ∀xt ∈ R
7: p,θ ← standard MLE(x, B̂)

8: if
(
1− (1− p)

∫
R
fN (x,θ)dx− P̄

)2
> w2 then

9: p,θ ← constrained MLE(x, B̂, R, P̄ , w)
10: end if
11: Scoret ← Scoret +maxν fN (ν,θ)− fN (x,θ) ∀t
12: end for
13: Scoret ← 1

nB
Scoret ∀t

14: Output Score

Conceptually, Algorithm 1 (CAMLE) is comparable to
bootstrap aggregation. It draws nB subsets of data outside
the AFR, joins them with data inside the AFR, estimates the
parameters, and finally computes an average over all subsets.
CAMLE has an asymptotic runtime of O(nB · n). In most
realistic settings, nB can be set to a small constant, which
leads to linear runtime in total.

B. Estimation of AFR

In some settings, a valid AFR is not available and needs
to be estimated. Depending on the setting, there are different
ways to achieve this. We discuss the following three scenarios.

1) Labels available for normal and anomaly class: In
some settings a few labeled data points of both classes are
available. Here, a valid AFR can be approximated as any
region that contains no labeled anomalies and no unlabeled
data points. We recommend selecting a region that contains
several labeled normal data points, since this will typically
improve the quality of the constrained AD solution due to the
estimation of anomaly proportion p being more accurate.

2) Labels available only for normal class: If labeled nor-
mal and unlabeled data points are available, but no labeled
anomalies, then the AFR can be estimated via a region that
exclusively contains labeled normal data. Here it is reasonable
to prefer regions that are remote from unlabeled data, if
possible.

3) No labels available: In unsupervised settings, no labels
are available. Here, there are two options: a) Select an empty
region as AFR; b) Include unlabeled data in the AFR. Option
a) is safer since it avoids the possibility of falsely including an
anomaly in the AFR. However, option b) has higher statistical
efficiency and should be preferred if one can make the mild
assumption that central, high-density regions of the data space
are unlikely to contain anomalies. This is also the approach
that we use in the benchmark tests in the following section.



V. EXPERIMENTS

The theoretical findings and the algorithm presented in this
article motivate us to study pertinent and testable research
questions.

RQ1. Simulation: How does the estimation performance of
the constrained MLE compare against the unconstrained
MLE in a controlled setting?

RQ2.1. Unsupervised benchmark test: How strong is
CAMLE’s detection performance on popular benchmark
datasets where no AFR is known and has to be esti-
mated?

RQ2.2. Unsupervised sensitivity analysis: How does the AFR
estimation affect CAMLE’s detection performance?

RQ3. Semi-supervised benchmark test: How does CAMLE’s
detection performance compare against other semi-
supervised methods on a benchmark dataset with a valid
AFR?

For each research question, a separate experiment is con-
ducted. In the following, motivation, setup, data, baselines and
results of each experiment are described separately. A com-
bined discussion of all research questions comes afterward. All
data, descriptions, runtimes and source code can be privately
accessed online.2

A. RQ1: Simulation

1) Motivation: The constrained estimators presented above
are optimal in the AFR-constrained AD setting, but the merit
of the constraint itself needs to be assessed separately. The
AFR encodes information about anomaly class f∞, yet it is
not obvious that this information is useful for estimating the
parameters of normal class fN . Moreover, from a theoretical
viewpoint, it is interesting to study scenarios in which the
classical MLE is sub-optimal.

2) Setup: We start with a controlled experiment on data
drawn from a known distribution. Hence, we use the following
simulation procedure: We select a Gaussian distribution for
fN and a 50:50 mixture of two uniform distributions for
f∞. We uniformly draw 100 different ground-truth parameter
combinations from the following ranges: µ ∈ [−5; 5], σ ∈
[0.1; 2], p ∈ [0.05; 0.95]. The AFR is then fixed to [µ −
0.98σ;µ + 0.99σ] and the limits of the f∞ mixture are
set to [µ − 10σ; a] and [b;µ + 10σ], respectively. Then, for
each ground truth combination (µ, σ, p, a, b), we independently
draw 100 datasets consisting of 1000 samples, and 10 different
“guessed” label sets B̂ ∼ Bernoulli(p) for each dataset.
On each resulting dataset, the unconstrained MLE and the
constrained MLE of each parameter are first computed using
the ground truth labels B, and then using the 10 “gussed”
label sets B̂, respectively. The estimates are compared against
the ground truth via the median absolute deviation (MAD),
and the average over all datasets is computed. We prefer the
MAD over the classical mean-squared error since in rare cases

2This article’s supplementary material is available at https://github.com/
mtoller/afr

the estimation procedure for the r-Lambert function converges
to the wrong branch due to floating point inaccuracy.

3) Results: The results of the simulation are listed in
Table I. When the true labels were provided, both constrained
and unconstrained MLE performed similarly and achieved
small errors. When guessed labels were provided, CAMLE
achieved smaller errors than unconstrained MLE for µ and σ,
but yielded larger errors for the mixture fraction p.

In conclusion, this experiment suggests that constrained
MLE improves upon unconstrained MLE in a suitable con-
trolled setting where all assumptions are fulfilled.

TABLE I
MEDIAN ABSOLUTE DEVIATION BETWEEN GROUND TRUTH PARAMETERS
AND ESTIMATES. A NEGATIVE ERROR DIFFERENCE INDICATES THAT THE

UNCONSTRAINED MLE HAS LOWER ERROR, WHEREAS A POSITIVE ERROR
DIFFERENCE INDICATES THAT THE CONSTRAINED MLE IS BETTER.

True labels Guessed labels

µ σ p µ σ p

MLE 0.0409 0.0284 0.0134 0.0510 1.6435 0.0426
CAMLE 0.0410 0.0284 0.0134 0.0176 0.6897 0.1314
Err. Diff. -0.001 0.000 0.000 0.0334 0.9538 -0.0888

B. RQ2.1: Unsupervised Benchmark Test

1) Motivation: Having seen that constrained MLE is
promising in a controlled setting, it is natural to study its
empirical performance and to see how it compares against
widely-used AD methods. In data mining research, it is con-
ventional to conduct such a study on a large variety of diverse
AD benchmark datasets. Due to this diversity, we cannot
expect that CAMLE’s assumptions will be satisfied during
the experiment, so the theoretical guarantees will not hold.
However, it is interesting to observe how CAMLE behaves
in practice–especially when no AFR is known and has to be
estimated.

2) Datasets: We use two different groups of datasets,
namely development datasets and evaluation datasets. The
development datasets are used for preliminary analyses of the
approaches, e.g., does the detector encounter an error, how
many initial B̂ should be sampled, and so on. Evaluation
datasets are used for the quantitative comparison. The rationale
for using two different groups is to avoid data dredging (see
[29]). We aim to ensure that the performance of our method
is not specific to the datasets on which we conducted method
development.

We use the following publicly available datasets as de-
velopment datasets: GLASS [30]; HEART [31]; HEP [31];
ION [30]; LYMPH [32]; PARK [31]; PIMA [31]; STAMPS [33];
SHUTTLE [34]; WPBC [31]. We select the following datasets
as evaluation datasets: ANNTHYROID [35]; CARDIO [36];
CARDIOTOCOGRAPHY [36]; LETTER [37]; SATIMAGE; VOW-
ELS [38]; WAVEFORM [39]; WILT [40]; YEAST [41]. Further
information about these datasets such as number of samples
and description of normal and anomaly classes, as well as
several other details can be found in [42].

https://github.com/mtoller/afr
https://github.com/mtoller/afr


TABLE II
RESULTS OF THE UNSUPERVISED BENCHMARK TEST. DEPICTED VALUES IN ROWS STARTING WITH DATASET NAMES ARE AUC-ROC SCORES.

Method class Heuristical Probabilistic Deep learning
Data / Measure LOF IForest COPOD EM MLE CAMLE AutoEnc DeepSVDD
Annthyroid 0.68 0.82 0.78 0.68 0.68 0.96 0.67 0.72
Cardio 0.51 0.93 0.92 0.91 0.92 0.71 0.95 0.31
Cardiotocography 0.55 0.69 0.66 0.64 0.70 0.68 0.75 0.53
Letter 0.89 0.63 0.56 0.52 0.53 0.56 0.52 0.53
Satimage 0.62 0.99 0.97 0.95 0.95 0.95 0.98 0.39
Vowels 0.87 0.77 0.50 0.55 0.56 0.59 0.60 0.40
Waveform 0.61 0.73 0.73 0.63 0.61 0.52 0.64 0.55
Wilt 0.61 0.45 0.34 0.33 0.35 0.39 0.34 0.47
Yeast 0.47 0.40 0.38 0.40 0.42 0.44 0.40 0.49

ø Rank (per method class) 2.11 1.56 2.33 2.56 1.89 1.56 1.44 1.56

ø Rank (overall) 4.11 2.56 4.56 6.11 4.67 4.11 4.22 5.67
Total runtime (seconds) 0.53 8.81 0.74 0.17 0.70 6.05 435.27 62.28

3) Compared Detectors: The following heuristic detectors
from the AD literature are compared (presented in chronolog-
ical order):

1) LOF: Local outlier factor—a local neighborhood and
density-based anomaly detector [2]. Five nearest neigh-
bors and Minkowski distance are used.

2) IForest: Isolation Forest, which uses random hyper-
rectangles to detect isolated data [4]. 1000 random trees
are used in each computation.

3) COPOD: Copula-based outlier detection—a heuristic
method to determine data extremeness via tail proba-
bilities [43]. This method has no hyperparameters.3

The following probabilistic approaches are included in the
comparison:

1) EM: Expectation maximization with a Gaussian and a
uniform component, and with discrete labels. This par-
ticular setup of expectation maximization is conceptually
similar to an unconstrained version of our method where
the labels are updated in a greedy classical MLE sense.

2) MLE: The same as Alg. 1, except that it always returns
the unconstrained solution. Scores are computed for each
dimension and then aggregated via the average over all
dimensions. nB = 5 random initializations are used. The
AFR [a; b] is inferred from the 0.24 and 0.75 quantiles,
respectively. Significance level α is set to 0.05.

3) CAMLE: Our method as presented in Alg. 1. Scores
are computed for each dimension and then aggregated
via the average over all dimensions. nB = 5 random
initializations are used. The AFR [a; b] is inferred from
the 0.24 and 0.75 quantiles, respectively. Significance
level α is set to 0.05.

For MLE and CAMLE, we choose the lower boundary of the
AFR to be the 0.24 quantile instead of the more common 0.25
quantile to decrease the chance that x̄ coincides with a+b

2 ,
which has no constrained solution.

The following deep-learning AD methods are compared:

3Despite its sound theoretical basis, we classify COPOD as heuristic since
the algorithm described in [43] does not use a copula.

1) AutoEnc: An autoencoder network [44] whose recon-
struction error is used as anomaly score. The hidden
layers have 1→64→32→32→64→1 neurons and use
tanh as activation function, and the network was trained
using Adam with a dropout rate of 20%.

2) Deep-SVDD: SVDD [3] applied to the latent represen-
tation of an autoencoder [45]. The hidden and output
layers use ReLU and sigmoid activation functions, re-
spectively, and the network was trained using Adam with
a dropout rate of 20%.

4) Evaluation Setup: The predictions of every detector are
collected from every evaluation dataset. These predictions
are then compared with the true anomaly labels using the
area under curve of the receiver-operator characteristic (AUC-
ROC), which is an estimate of the probability that a detector
will rank a randomly chosen anomaly higher than a ran-
domly chosen non-anomaly. It is computed via AUC-ROC =∫∞
−∞ TPR(τ)FPR′(τ)dτ where TPR is the true positive rate
TP

TP+FP , FPR the false positive rate FP
FP+TN , and τ is a threshold

that separates the scores of anomalies and non-anomalies. We
also track each method’s total execution runtime to assess the
practical efficiency of all implementations.

5) Results: The results of the conducted experiment are
shown in Table II. The best average rank among heuristic
methods was achieved by IForest; among probabilistic meth-
ods by CAMLE; among deep-learning methods by AutoEnc.
The best average rank in total was achieved by IForest, with
CAMLE and LOF sharing the second place. The unconstrained
MLE achieved a worse average rank than the constrained
MLE. The fastest method was EM, followed by LOF. The
deep-learning based methods AutoEnc and DeepSVDD had
the longest and second longest execution runtime, respectively.

Effectively, these results highlight that an AFR-based AD
method is capable of outperforming several widely-used AD
methods on selected benchmark datasets even when no AFR
is known and has to be estimated.

C. RQ2.2: Unsupervised Sensitivity Analysis

1) Motivation: It remains unclear how sensitive CAMLE is
to changes in the AFR estimation procedure. In particular, it is



Fig. 3. Results of the sensitivity analysis. CAMLE was computed with 1100
different AFRs per dimension of dataset ANNTHYROID. CAMLE retaints the
highest scores among all compared detectors for AFR lengths 0.108 ≤ ∆ <
0.892.

interesting whether CAMLE can retain its high performance
across many different AFRs, or if only a small number of
specific AFRs produce high results.

2) Setup: For this analysis, we use the ANNTHYROID
dataset. For other datasets, please refer to the Appendix. We
initialize 1100 different AFRs (per dimension of the dataset)
using the following procedure:

1) Eleven equidistant offsets ∆ are selected from the range
[0.01;0.99], i.e, 0.010, 0.108,...,0.892, 0.990.

2) For each ∆, 100 equidistant a, b pairs are selected as
empirical quantiles, ranging from 0.0001 to 0.999.

We aggregate CAMLE’s predictions scores on ANNTHYROID
for each ∆ using the average over all a, b pairs.

3) Results: The results of this analysis are depicted in
Figure 3. CAMLE retained a score higher than the second
highest-scoring method (IForest) for 0.108 ≤ ∆ < 0.892.
Outside this region, CAMLE’s performance dropped below
an AUC-ROC of 0.82.

These results suggest that CAMLE is not sensitive to the
AFR estimation procedure and that its performance does not
drop significantly.

D. RQ3: Semi-Supervised Benchmark Test

1) Motivation: If a valid AFR is given, this is a different
setup and needs to be investigated separately. The simulation
study alone is not sufficient since it does not cover CAMLE’s
empirical performance, and RQ2 did not cover the case that
an AFR is given.

2) Dataset: To the best of our knowledge, there is no
publicly available benchmark dataset with a known AFR.
Hence, we collect such a dataset, and refer to it as OFFICE.
We collected OFFICE from an office worker’s time sheets
and interviewed the worker to determine anomaly labels. The
worker’s personal details as well as all company information
were removed to preserve anonymity. OFFICE consists of 365

data points—1 per day for a full year, including weekends
with 0 expected working time. Each data point is the number
of minutes by which the actual working time deviates from this
day’s expected working time. AFR R is ± 29 minutes since
deviations shorter than 30 minutes are considered normal by
the management regardless of what caused them. There are
298 normal data inside R, 54 normal data outside R, and
13 labeled anomalies. We publish this dataset along with this
article.

3) Setup: We compare CAMLE with semi-supervised
methods PReNet [16] and Overlap [8]. For both semi-
supervised methods, we re-use the original implementations.
To analyse different setups, PReNet and Overlap receive 10%,
20% and 50% of OFFICE as labeled training data, respectively.
CAMLE receives AFR=[a; b] = [−29; 29] as input. We com-
pute the AUC-ROC score for each setting.

4) Results: The results of this experiment are depicted in
Table III. CAMLE obtains higher scores than PReNet and
Overlap at all training sizes. The scores of PReNEt and
Overlap increase as the training size increases.

These results suggest that an AFR-based method can out-
perform semi-supervised methods if a valid AFR is provided.

TABLE III
AUC-ROC SCORES ON OFFICE. AS THE TRAINING SIZE INCREASES,

SEMI-SUPERVISED METHODS PRENET AND OVERLAP ACHIEVE BETTER
SCORES. CAMLE ACHIEVES THE HIGHEST SCORES WITH JUST AFR [a; b]

PROVIDED.

Method PReNet Overlap CAMLE

Train. size 10% 20% 50% 10% 20% 50% AFR

AUC-ROC 0.66 0.92 0.96 0.66 0.66 0.72 0.97

VI. DISCUSSION

A. Implications

1) RQ1: The simulation study confirms that the constrained
MLE is superior over the unconstrained MLE at estimating
fN ’s parameters µ, σ when a valid AFR is known and B̂ ̸= B.
It is evident that the constrained estimation of p in this setting
must be inferior to the unconstrained estimation to compensate
for the other improved estimates. Otherwise we could obtain
a solution with higher likelihood, given the AFR, which is
not possible since the classical MLE already maximizes the
likelihood.

2) RQ2: The unsupervised benchmark test suggests that
CAMLE is superior over its unconstrained variant MLE on
the majority of the evaluation datasets. Moreover, CAMLE
is capable of outperforming several baseline methods from
the literature, even if CAMLE’s underlying assumptions are
not fulfilled by the benchmark datasets (e.g. no AFR known,
non-Gaussianity, high-dimensional datasets). The sensitivity
analysis confirms that a reasonable AFR can be estimated if
none is given, which is useful for practical data mining.



3) RQ3:: The semi-supervised benchmark test suggests
that AFRs are more efficient than training labels at encoding
information about the anomaly class. The semi-supervised
competitors PReNet and Overlap seem to require a large num-
ber of training labels to become competitive with CAMLE. It
seems likely that these methods would eventually outperform
CAMLE if the training size is increased beyond 50%. How-
ever, in a real-world AD task, it is not realistic that so many
labeled training instances are available.

B. Limitations

The results of our experiments are limited to the small
selection of included datasets, as well as to the considered
parameter ranges. It was assumed that all data within a dataset
are independent and identically distributed. Dependent data
types such as time series, graphs, spatial, text, and images
are not covered. The aggregation-based extension of Alg. 1 to
multi-dimensional datasets used for RQ2 assumes that there
is no dependency between dimensions. This assumption is
violated on many datasets.

VII. CONCLUSION AND OUTLOOK

We introduced the novel concept of anomaly-free regions
(AFR) to improve anomaly detection. AFRs and the associated
constraints are a fundamental addition to classical anomaly de-
tection. AFRs allow one to encode available information about
the anomaly class, and can be soundly estimated if no such
information is available. The resulting constrained form of
anomaly detection improves upon the classical unconstrained
anomaly detection, and hence is a promising direction for a
new class of detectors, e.g., constrained one-class classifiers.

Despite this paper’s focus on anomaly detection, we believe
the theoretical contributions will have an impact on other
research fields in the future. For example, our theoretical
contributions can be applied in classification, as the AFR-
concept is equivalent to a region that does not contain one
(out of several) classes. The same generalization can be made
for other tasks such as clustering and novelty detection.
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APPENDIX

A. Proof of Theorem 1

Let us restate Theorem 1.

Theorem 1. For λ1 = 0 and λ2 ̸= 0, the equation system (11)
has the following solution for p

p =
1

n− Ω

n∑
t=1

B̂t (12)

where Ω < n−
∑n

t=1 B̂t is the density surplus gradient, which
is given by

Ω =
∂

∂θ(1) logL
∂

∂θ(1) log I
I = . . . =

∂
∂θ(q) logL

∂
∂θ(q) log I

I (13)

and where (either of the) derivatives of the right-hand side
are evaluated at an MLE of θ.

Proof. Since λ2 ̸= 0 we can solve (11c) for λ2 which gives

λ2 = − ∂L
∂θ(1)

/(
2(1− p)

(
1− (1− p)I − P̄

) ∂

∂θ(1)
I

)
.

(17)
Plugging (17) into (11b) gives

∂L
∂p

+ 2I
(
1− (1− p)I − P̄

)( ∂L
∂θ(1)

)/
(
2(1− p)

(
1− (1− p)I − P̄

) ∂

∂θ(1)
I

)
= 0

since λ1 = 0. This can be further simplified to

∂L
∂p

+
∂L
∂θ(1)

1

1− p

I
∂

∂θ(1) I
= 0. (18)

Now the rule d
dxf(x) = f(x) d

dx log f(x) and the shorthand
notation logL = ℓ allows to combine (13) and (18) as

∂ℓ

∂p
+

1

1− p

∂ℓ

∂θ(1)
1

∂
∂θ(1) log I

=
∂ℓ

∂p
+

Ω

1− p
= 0.

Deriving the log likelihood with respect to p gives∑n
t=1 B̂t

p
−

n−
∑n

t=1 B̂t

1− p
+

Ω

1− p
= 0

which can be solved for p to obtain (12). Note that θ(1) was
chosen arbitrarily, and that the same p must be obtained for
all θ(j), j ∈ 1, . . . , q. Hence, (13) must also hold.

B. Proof of Theorem 2

Let us restate Theorem 2.

Theorem 2. For λ2 ̸= 0, Gaussian fN = N (µ, σ2) and R =
[a, b], equation system (11) has the following solution for σ2

σ2 =
βm

m+ βWr (γ)
(14)

Proof. In the following we abbreviate ea = e−
(a−µ)2

2σ2 , eb =

e−
(b−µ)2

2σ2 , Ca = a−µ and Cb = b−µ. We start by stating the
derivatives of ℓ and I with respect to µ and σ:

∂ℓ

∂µ
=

n∑
t=1

(1− B̂t)
xt − µ

σ2

∂ℓ

∂σ
=

n∑
t=1

(1− B̂t)
(xt − µ)2 − σ2

σ3

∂I

∂µ
=

∫ b

a

∂

∂µ

1√
2πσ

e−
(x−µ)2

2σ2 =
1√
2πσ

(ea − eb)

∂I

∂σ
=

∫ b

a

∂

∂σ

1√
2πσ

e−
(x−µ)2

2σ2 =
1√
2πσ2

(Caea − Cbeb)

(19)
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Plugging (19) into (13) and dividing both sides by I gives
n∑

t=1

(1− B̂t)
xt − µ

σ2

/(
1√
2πσ

(ea − eb)

)
=

n∑
t=1

(1− B̂t)
(xt − µ)2 − σ2

σ3

/(
1√
2πσ2

(Caea − Cbeb)

)
.

By further abbreviating sB =
∑n

t=1 B̂t, sx =
∑n

t=1(1 −
B̂t)xt, sx2 =

∑n
t=1(1 − B̂t)x

2
t and eliminating duplicate

terms, this statement can be simplified to

sx − (n− sB)µ

ea − eb
=

sx2 − 2µsx + (n− sB)(µ
2 − σ2)

Caea − Cbeb
Caea − Cbeb

ea − eb
=

sx2 − 2µsx + (n− sB)(µ
2 − σ2)

sx − (n− sB)µ
. (20)

The left-hand side of (20) can be rewritten as

Caea − Cbeb
ea − eb

=
aea − beb
ea − eb

− µ = E − µ.

Inserting this into (20) and multiplying with the right-hand
side denominator gives

(E −µ) (sx − (n− sB)µ) = sx2 −2µsx+(n−sB)(µ
2−σ2).

(21)
If we study (21) closely, it becomes apparent that dividing
both sides by (n− sB) converts several terms to the averages
defined in (15a) and (15b)

(E − µ)(x̄− µ) = x̄2 − 2µx̄+ µ2 − σ2

σ2 = x̄2 − µx̄+ (µ− x̄)E . (22)

Note that (22) coincides with the unconstrained Gaussian MLE
if µ = x̄ or E = 0. While (22) is easy to understand, it is not a
solution for σ2 since the term E contains σ2. In the following
steps, we rearrange (22) to the standard form for the r-Lampert
function given in [27].

We simplify E using (15c):

E =
aea − beb
ea − eb

= b+
(a− b)ea
ea − eb

= b+
a− b

1− eb/ea
= b+

a− b

1− e
m
σ2

(23)
Now, let z = 1

σ2 and plugging (15e) and (23) into (22) gives

1

z
= β + (µ− x̄)

a− b

1− emz
.

Multiplying with the denominators and plugging in (15d) gives

1− emz = z (α− βemz)

1− αz = emz (1− βz)

α

β

(
z − 1

α

)
= emz

(
z − 1

β

)
α

β
= emz

(
z − 1

β

)/(
z − 1

α

)
(24)

Equation (24) matches exactly the form of [27, Theorem 3]
and thus we have

z =
1

β
+

1

m
W

−α
β e

−m
β

(
m

(
α− β

β2

)
e−

m
β

)
.

Lastly, we replace z by 1
σ2 , and multiply with βm, and the

proof is complete.

In the main matter, we focused our theoretical exposition of
the estimation of fN ’s parameters on the Gaussian distribution.
Here, we describe the (somewhat disappointing) solution for
uniform fN .

Proposition 1. For λ1 ̸= 0, λ2 ̸= 0, Uniform fN = U(k, l)
and R = [a, b], equation system (11) has no constrained
solution. The constraint is always fulfilled.

Proof. We conduct a proof by contradiction. Assume that 0 <
p < 1, k, l s.t. Ωk = Ωl as per Thm 1. Uniform fN is given
by

fN (x, k, l) =

{
1

l−k k ≤ x ≤ l

0 else

Assume without loss of generality that k ≤ x ≤ l. The
quantities in Ωl are given by

∂ℓ

∂l
=

n− sB
l − k

I =
b− a

l − k
∂I

∂l
= − b− a

(l − k)2

and hence, we have

Ωl =
∂ℓ
∂l
∂I
l

I = sB − n.

Plugging this into (12) gives

p =
sB

n− Ωl
=

sB
n− n+ sB

= 1

which violates the assumption and completes the desired
contradiction.

For the sake of completeness, we report the results of
all methods studied in RQ2.1 on the development datasets.
We did not report these results in the main matter since
we used these datasets to test various setups of our method.
However, we believe that the results might nevertheless be
interesting to some readers. The overall ranking of methods
on the development datasets is slightly, but not considerable
different from the ranking on the evaluation datasets. The most
notable difference is the improved performance of COPOD.
This was expected, since the development datasets include
several datasets that were studied in the original COPOD
publication [43].

For the sake of completeness, we conduct the same ex-
periment as in RQ2.2 for all other evaluation datasets. The
results of this experiment are depicted in Figure 4. In this
figure, the dashed blue line indicates CAMLE’s performance
on this dataset using the default parametrization as reported
in Table II. These results indicate high stability of the method
with respect to the estimated AFR. Please note the small
variance of the results.



TABLE IV
RESULTS FOR RQ2 ON THE DEVELOPMENT DATASET. DEPICTED VALUES IN ROWS STARTING WITH DATASET NAMES ARE AUC-ROC SCORES. WE DID

NOT REPORT THESE RESULTS IN THE MAIN MATTER SINCE WE USED THESE DATASETS TO TEST VARIOUS SETUPS OF OUR METHOD. THE OVERALL
RANKING OF METHODS ON THE DEVELOPMENT DATASETS IS SLIGHTLY, BUT NOT CONSIDERABLE DIFFERENT FROM THE RANKING ON THE EVALUATION
DATASETS. THE MOST NOTABLE DIFFERENCE IS THE IMPROVED PERFORMANCE OF COPOD. THIS WAS EXPECTED, SINCE THE DEVELOPMENT DATASETS

INCLUDE SEVERAL DATASETS THAT WERE STUDIED IN THE ORIGINAL COPOD PUBLICATION [43].

Method class Heuristical Probabilistic Deep learning
Data / Measure LOF IForest COPOD EM MLE CAMLE AutoEnc DeepSVDD
Glass 0.64 0.79 0.76 0.75 0.72 0.76 0.73 0.68
Heart 0.55 0.60 0.65 0.73 0.73 0.74 0.44 0.53
Hep 0.49 0.69 0.80 0.37 0.36 0.40 0.76 0.56
Ion 0.90 0.85 0.79 0.77 0.76 0.77 0.83 0.61
Lymph 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.83
Park 0.47 0.50 0.51 0.48 0.42 0.42 0.25 0.61
Pima 0.59 0.67 0.65 0.59 0.56 0.56 0.63 0.46
Stamps 0.51 0.90 0.93 0.93 0.92 0.94 0.90 0.55
Shuttle 0.64 0.87 0.82 0.90 0.91 0.74 0.94 0.67
WPBC 0.46 0.50 0.52 0.49 0.48 0.51 0.44 0.51

ø Rank (per method class) 2.8 1.6 1.5 1.6 2.5 1.8 1.3 1.7

ø Rank (overall) 5.9 3.0 2.5 4.0 5.2 4.5 4.6 5.9
Total runtime (seconds) 0.01 0.74 0.00 0.01 0.02 0.46 12.85 2.84

A visualization of the newly collected Office dataset is
depicted in Figure 5. An anonymous worker’s daily work
time deviation has natural fluctuation due to flexible work
time. Some deviations are anomalous, e.g., because the worker
forget to log out when leaving the company. The region
[−29; 29] contains no anomalies and is a valid AFR derived
from domain knowledge.
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Fig. 4. Sensitivity analysis for all other evaluation datasets. The dashed blue line indicates CAMLE’s performance on this dataset using the default
parametrization as reported in Table II. These results indicate high stability of the method with respect to the estimated AFR. Please note the small variance
of the results.



Fig. 5. Visualization of the OFFICE dataset. An anonymous worker’s daily work time deviation has natural fluctuation due to flexible work time. Some
deviations are anomalous, e.g., because the worker forget to log out when leaving the company. The region [−29; 29] contains no anomalies and is a valid
AFR derived from domain knowledge.
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