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Abstract

Large language models (LLMs) have shown001
remarkable performance across a wide range002
of natural language tasks. However, a critical003
challenge remains in that they sometimes gener-004
ate factually incorrect answers. To address this,005
while many previous work has focused on iden-006
tifying errors in their generation and further re-007
fining them, they are slow in deployment since008
they are designed to verify the response from009
LLMs only after their entire generation (from010
the first to last tokens) is done. Further, we ob-011
serve that once LLMs generate incorrect tokens012
early on, there is a higher likelihood that subse-013
quent tokens will also be factually incorrect. To014
this end, in this work, we propose Streaming-015
VR (Streaming Verification and Refinement),016
a novel approach designed to enhance the effi-017
ciency of verification and refinement of LLM018
outputs. Specifically, the proposed Streaming-019
VR enables on-the-fly verification and correc-020
tion of tokens as they are being generated, sim-021
ilar to a streaming process, ensuring that each022
subset of tokens is checked and refined in real-023
time by another LLM as the LLM constructs its024
response. Through comprehensive evaluations025
on multiple datasets, we demonstrate that our026
approach not only enhances the factual accu-027
racy of LLMs, but also offers a more efficient028
solution compared to prior refinement methods.029

1 Introduction030

Large language models (LLMs) (Achiam et al.,031

2023; Jiang et al., 2023a; Dubey et al., 2024) have032

demonstrated significant advancements across vari-033

ous tasks, such as question answering (QA) (Yang034

et al., 2018; Kwiatkowski et al., 2019; Fan et al.,035

2019; Min et al., 2020) and its more complex real-036

world applications supported by information re-037

trieval (IR) (Xiong et al., 2020; Karpukhin et al.,038

2020; Ni et al., 2021). However, LLMs still face039

notable limitations like hallucinations, mainly due040

to the incorrect or outdated knowledge of the model041

itself (Rawte et al., 2023) and the wrong applica- 042

tion and generalization of memorized or retrieved 043

knowledge (Jiang et al., 2024; Xu et al., 2024). 044

Previous approaches have sought to mitigate 045

these inaccuracies by augmenting LLMs with ex- 046

ternal knowledge sources (Guu et al., 2020; Lewis 047

et al., 2020; Luo et al., 2023). However, these 048

methods often face challenges in maintaining faith- 049

fulness, as they may retrieve information that is 050

either ungrounded or irrelevant to the context. To 051

this end, in the realm of error identification and 052

verification, recent research has highlighted the 053

challenges LLMs face in accurately detecting and 054

correcting mistakes (Peng et al., 2023). 055

However, traditional methods (Faltings et al., 056

2021; Yasunaga et al., 2021; Madaan et al., 2024) 057

have a couple of challenges. First, they are ineffi- 058

cient. They focus mainly on identifying and correct- 059

ing misinformation only after the complete answer 060

has been generated. This approach not only delays 061

error detection but also requires re-evaluating the 062

entire text, which is computationally expensive and 063

time-consuming. Second, cascading errors. LLMs 064

generate text sequentially, predicting one token at 065

a time based on the preceding context. An early 066

error in this sequence can propagate through subse- 067

quent tokens, compounding inaccuracies through- 068

out the response. This error propagation makes it 069

even more challenging to correct misinformation 070

effectively, especially when early mistakes lead to 071

increasingly complex or numerous errors to the 072

overall response. These challenges highlight the 073

critical need for intermediate corrections to prevent 074

further inaccuracies throughout the response. 075

In this work, we propose Streaming-VR 076

(Streaming Verification and Refinement), a 077

method designed to address the issue of error prop- 078

agation in LLM-generated text. As visually de- 079

picted in Figure 1 (b), Streaming-VR evaluates 080

model-generated answers in real-time, identifying 081

the entire token sequence and correcting only if its 082
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Q: Who wrote harry styles 
sign of the times lyrics?

Sign of the Times is the debut single
by English singer Harry Styles from
his self-titled debut studio album. 
Released on 7 April 2017 by
Columbia Records, it was written by
Styles from London, Jeff Bhasker 
from Kansas City, Mitch Rowland, 
Ryan Nasci, Alex Salibian from Long 
Beach, and tyler Johnson, and 
produced by Bhasker, Salibian, and 
Johnson. Musically, it was described 
by critics as a pop rock ···

Sign of the Times is the debut single
by English singer Harry Styles from
his self-titled debut studio album. 
Released on 7 April 2017 by
Columbia Records, it was written by
Styles from London, Jeff Bhasker 
from Kansas City, Mitch Rowland, 
Ryan Nasci, Alex Salibian from Long 
Beach, and tyler Johnson, and In 
2021, Rolling Stone placed it at 
number 428 on its list of The 500 
Greatest Songs of All Time.

…
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Figure 1: (a): Previous verify-and-refine framework after the entire answer generation. (b): Our proposed method, Streaming-
VR, that verifies intermediate answers in sentence-level and refine them if identified as error, with remarkable efficiency.

subset is wrong. By employing an external veri-083

fication model, Streaming-VR verifies errors dur-084

ing the generation process, detects inaccuracies in085

newly generated sequence of tokens, and promptly086

corrects them. Because rectification occurs im-087

mediately after verification and runs concurrently088

with text generation, Streaming-VR significantly089

enhances efficiency and improves the factual accu-090

racy of model outputs. Our experimental results091

show that when LLMs generate incorrect tokens092

early in a sequence, it substantially increases the093

likelihood of subsequent sentences being factually094

inaccurate. Specifically, approximately 37.6% of095

the answers in various settings were found to con-096

tain factual inaccuracies caused by error propa-097

gation (early erroneous tokens), highlighting the098

critical importance of employing Streaming-VR.099

We validate the effectiveness and efficiency100

of Streaming-VR experimentally on two bench-101

mark datasets: achieving approximately 39.8% and102

31.5% higher efficiency for ASQA (Stelmakh et al.,103

2022) and QuoteSum (Schuster et al., 2024) in av-104

erage, respectively. Also, Streaming-VR is approx-105

imately 1.95× faster than Full-VR with compa-106

rable answer quality. We have employed Mistral107

7B (Jiang et al., 2023a), LLaMA-3.1 8B (Dubey108

et al., 2024), and GPT-4o (Achiam et al., 2023).109

2 Related Work110

Large Language Models Recent advancements111

in language models (LMs) (Radford, 2018; Devlin112

et al., 2019; Liu et al., 2019; Raffel et al., 2023)113

and LLMs with billions of parameters, have led114

to significant improvements in performance across115

various natural language tasks. Since LMs can-116

not memorize or learn every real-world knowledge,117

several studies have explored methods to enhance118

their capabilities by leveraging external knowledge119

sources like retrieval-augmented generation (Lewis120

et al., 2020), for knowledge-intensive tasks. De-121

spite the assistance of external knowledge, models122

often generate incorrect answers due to the failure123

of factual recall (Jiang et al., 2024) as they may124

not succeed in retrieving or applying the relevant 125

knowledge appropriately, and generalizing memo- 126

rized knowledge accurately. 127

To address this issue, recent research has fo- 128

cused on verifying the relevance and accuracy of re- 129

trieved knowledge using separate verification mech- 130

anisms (Baek et al., 2023). Additionally, meth- 131

ods for generating answers through on-demand re- 132

trieval of external information, employing special 133

retrieval tokens, followed by critiquing the outputs 134

to improve their quality, have been explored (Asai 135

et al., 2024). A dynamic retrieval process that 136

determines both when and what to retrieve dur- 137

ing answer generation (Jiang et al., 2023b) has 138

demonstrated notable improvements in knowledge- 139

intensive tasks. This is particularly significant as 140

the retrieve-and-generate paradigm faces signifi- 141

cant challenges in generating lengthy texts, pri- 142

marily due to difficulties in maintaining coherence 143

and consistency. Retrieved knowledge is often 144

fragmented and lacks contextual integration, while 145

static retrieval methods fail to adapt dynamically 146

to evolving text, leading to disjointed or repetitive 147

outputs. Future research could address these is- 148

sues through iterative retrieval mechanisms that 149

refine knowledge during generation, advanced rea- 150

soning capabilities to synthesize information from 151

multiple sources, and hierarchical retrieval strate- 152

gies (Jeong et al., 2024) that organize information 153

at different levels of granularity and difficulty lever- 154

aging an external query complexity classifier. 155

Language Model Verification and Refinement 156

Other than the misinformation induced by wrong 157

knowledge, LLM itself often generates plausible 158

but incorrect texts (Zhang et al., 2024) (i.e., hallu- 159

cination). Thus, evaluating the factuality (Thorne 160

et al., 2018; Min et al., 2023) of LLM outputs cor- 161

recting inaccuracies has emerged as an important 162

topic. Various approaches explore methods to en- 163

hance the factual accuracy of model responses and 164

develop robust fact-checking or answer-verifying 165

models. For instance, Dhuliawala et al. (2024) gen- 166
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erates a series of independent questions to check167

the factual claims made in the model response, fol-168

lowed by synthesizing the answers from the veri-169

fication step. Beyond evaluating or verifying the170

faithfulness of LLM answers, answer-correction171

has also become a prominent area of focus in vari-172

ous fields. Iterative refinement is well known to be173

helpful for improving generative contents of natural174

language (Madaan et al., 2024) and code (Faltings175

et al., 2021; Yasunaga et al., 2021) autonomously,176

but limited to the final outcome after waiting for177

the whole generation is done.178

On the other hand, Lightman et al. (2023) demon-179

strates the effectiveness of process supervision by180

focusing on each step of the reasoning process, and181

allowing the model to identify and correct errors182

in the middle. It emphasizes the importance of183

intermediate verification in complex multi-step rea-184

soning tasks like mathematical problem solving185

where a single error can derail the entire answer.186

Also, Welleck et al. (2023) employs an online train-187

ing procedure for a separate corrector to learn from188

feedback on intermediate outputs. Nevertheless,189

LMs are capable of correcting errors only when190

their locations are identified (Tyen et al., 2024) ex-191

actly, which poses a bottleneck in improving self-192

correction capabilities. Furthermore, Huang et al.193

(2024) have demonstrated through experimental194

analyses that current LLMs struggle to self-correct195

their reasoning without external feedback, often196

resulting in degraded performance after attempting197

self-correction. Alternatively, Cobbe et al. (2021);198

Wang et al. (2023) utilize a trained critique model199

or verifier to correct errors on responses through200

their feedback. In addition, Gou et al. (2024) show201

that verification and correction can be done effec-202

tively by interacting with diverse external tools.203

In contrast to the previous works which have to204

wait for the entire answer generation or limited to205

the inherent answering ability, we propose a novel206

method with external model, that refines the spe-207

cific intermediate sentence of an answer identified208

as incorrect, with higher efficiency.209

3 Method210

3.1 Preliminaries211

We begin with preliminaries, formally explaining212

Large Language Models and traditional verify-and-213

refine approach, Full Verification and Refinement.214

Large Language Models Let us define the pro-215

cess of generating an answer a to a given question216

q as a function: a = LLM(q). 217

For the real-time sentence-level verification and 218

refinement, we also analyze the individual sen- 219

tences in answer. To elaborate, an answer a 220

is structured as a sequence of n sentences, ex- 221

pressed as a = [s1, s2, · · · , sn], where the no- 222

tation [·] signifies concatenation in the specified 223

order. To facilitate real-time correction of incor- 224

rect sentences within intermediate answers, we 225

define the intermediate answer at a certain step 226

t (t ≥ 1) as a≤t = [s1, · · · , st] containing t sen- 227

tences in total. Note that this can also be expressed 228

as a≤t = [a≤t−1, st], where st is the most recently 229

generated sentence in streaming setup. We initial- 230

ize a≤0 as an empty string for coherence. 231

In QA systems that incorporate external knowl- 232

edge, such as in retrieval-augmented generation 233

(RAG), or examples as in in-context learning (ICL), 234

the answering process differs slightly. Formally, 235

let d denote the external knowledge or exam- 236

ple retrieved from the source D. The retrieval 237

is performed using a dedicated retrieval model 238

Retriever, for a given query q, defined as: d = 239

Retriever (q;D). This process involves ranking 240

the retrieved data based on its relevance or similar- 241

ity to the given query. After the related documents 242

are retrieved for RAG or ICL, we now incorporate 243

them as input to the LLMs as: a = LLM(q,d). 244

Full-VR The simplest traditional approach for 245

verifying and refining LLM answers, namely Full- 246

VR (Full Verification and Refinement), is the most 247

common strategy for improving them just by re- 248

generating the entire responses if identified to be 249

incorrect. While many previous works (Yasunaga 250

et al., 2021; Cobbe et al., 2021; Welleck et al., 251

2023) achieve significant improvements through 252

supplementary techniques, we focus solely on the 253

vanilla setting, for a direct efficiency comparison 254

without any additional methods designed to in- 255

crease the factual accuracy of answers. And finally, 256

the overall Full-VR pipeline is expressed as follow 257

for a given query q and its answer a = LLM (q): 258

ã =

{
a if o = True

Refiner (a) if o = False
259

where o = Verifier (a) is the verification output, 260

and ã is the final output of Full-VR. 261

3.2 Streaming Verification and Refinement 262

Our approach is structured in the following steps 263

during the generation of answers: 1) Streaming- 264
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Verification and 2) Streaming-Refinement if nec-265

essary; for the sentence identified as error and go266

back to 1). We formulate the overall framework of267

Streaming-VR as follow for a given query q and268

the t-th sentence st ∈ LLM (q) in its answer:269

s̃t =

{
st if ot = True

Refiner (st) if ot = False
270

where ot = Verifier ([ã≤t−1, st]) is the verifica-271

tion output, and s̃t is the new sentence output of272

Streaming-VR at a certain step t. Note that the273

refinement model, Refiner takes into account the274

whole context of previously verified and (may have275

been) refined sentences, ã≤t−1 = [s̃1, · · · , s̃t−1].276

After processing all the sentences by Streaming-277

VR, the final refined answer output should be in278

the form as follow: ã = [s̃1, · · · , s̃n].279

The answer verification relies on the verifier’s280

output, ot = Verifier (a≤t) such that ot ∈281

{True, False}. We utilize a fine-tuned LLM to282

determine whether the input is True or False by283

evaluating the factuality of the generated answers284

in sentence-level. To this end, we augment training285

data with true- and false-labeled sentences, as there286

is no proper question answering dataset labeled287

accurately with unit-level (e.g. sentence-level) an-288

swers for our streaming-verifier. The augmented289

sentences are made from the provided reference290

answer data by rephrasing it for True and adding291

wrong information for False by GPT-4o (Achiam292

et al., 2023) with the specific prompt as in Imple-293

mentation Details (Appendix A). To suit real-time294

verification scenarios, we split the answer data into295

individual sentences using NLTK (Bird and Loper,296

2004). These sentences are concatenated incre-297

mentally in their original order to form intermedi-298

ate answers {a≤1, · · · ,a≤t}, ensuring that False-299

labeled sentences only appear at the end, never300

in the middle. This design allows the streaming-301

verifier to focus on determining the factuality of302

the newly-generated sentence at the end. To further303

enhance the training process, a special sentence-304

separation token, [SEP] is inserted right before the305

last sentence in each intermediate answer, format-306

ted as [s1, s2, · · · , [SEP], st] for a certain stage t.307

This setup allows a model to be trained to verify308

the last sentence along with the context from the309

preceding True-labeled paragraph in the train set.310

To facilitate a real-time scenario with conven-311

tional language models, we provide the entire312

prompt given for answering the test query to the re-313

finement model. Additionally, we only include the 314

retrieved passages or few-shot examples given to 315

the generation prompt, without incorporating any 316

extra information from external knowledge sources 317

for refinement. This strategy ensures that the con- 318

textual information relevant to the intermediate 319

generation processes is fully incorporated. Fur- 320

thermore, as the intermediate answers are refined, 321

they must be updated to reflect the newly refined 322

preceding sentences, thereby enabling a continuous 323

and coherent streaming refinement process. 324

4 Experiments 325

4.1 Datasets and Evaluation Metrics 326

We leverage two different datasets to evaluate the 327

effect of Streaming-VR especially for multi-answer 328

questions which require well-grounded responses 329

to assess the trustworthiness of QA systems. 330

ASQA (Stelmakh et al., 2022) is a challeng- 331

ing dataset serving as a bridge between factoid 332

and long-form QA tasks by addressing ambiguous 333

questions that can have multiple correct answers 334

depending on their interpretation. It is composed 335

of 4,353 and 948 questions in the train and dev 336

sets, respectively, while the test set is not publicly 337

available. So we use the dev set as our test set here. 338

ASQA provides the reference long-form answers 339

for every questions which are originated from Am- 340

bigQA (Min et al., 2020), the ambiguous questions 341

subset of questions from NQ (Kwiatkowski et al., 342

2019). In this paper, to evaluate the quantitative per- 343

formance of methods on ASQA, we follow the offi- 344

cial metrics and report: Disambiguous-Rouge (DR) 345

as the overall score which combines ROUGE-L 346

(R-L) (Lin, 2004) for text quality and Disambig-F1 347

(Dis-F1; QA score based on RoBERTa large (Liu 348

et al., 2019)) for factual correctness. 349

To evaluate the consistent impact of Streaming- 350

VR also in a retrieval-augmented generation (RAG) 351

setting, as in the original ASQA paper (Stelmakh 352

et al., 2022), we perform experiments using re- 353

trieved documents. Specifically, we use the top-k 354

documents ranked by semantic similarity between 355

the query and external documents for open-book 356

answer generation on the ASQA dataset. These 357

documents, retrieved from the Wikipedia corpus 358

(2018-12-20 snapshot) using GTR-XXL (Ni et al., 359

2021), are provided by the LLM citation bench- 360

mark ALCE (Gao et al., 2023). 361

QuoteSum (Schuster et al., 2024) is also a diffi- 362

cult question answering dataset for Semi-Extractive 363

Multi-source Question Answering (SEMQA), a 364
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task designed to assess the comprehensive answer-365

ing ability by summarizing information from mul-366

tiple sources. To be specific, SEMQA requires367

models to generate a comprehensive response that368

integrate verbatim factual spans extracted from in-369

put sources along with supplementary non-factual370

text connecting them, thereby ensuring a cohesive371

answer. QuoteSum is made up of 4,009 semi-372

extractive answers to 1,376 unique questions from373

PAQ (Lewis et al., 2021) and NQ. For the quantita-374

tive evaluation on QuoteSum, we follow the official375

metrics and report: ROUGE-L, Sem-F1 for answer376

extraction quality, and overall SEMQA score where377

they do not require any model-based evaluations.378

Building on the original evaluation of Quote-379

Sum (Schuster et al., 2024), we further conduct a380

quantitative assessment of the variants of few-shot381

models. Specifically, we use dynamic prompt with382

top-k examples for each questions in the test set, as383

provided in the original paper. These examples are384

retrieved from the training set by selecting the pas-385

sages whose queries are most similar to the target386

test query, based on the cosine similarity between387

their sentence embeddings (Ni et al., 2022).388

4.2 Analyses on Efficiency389

In addition to evaluating the quality and factual ac-390

curacy of model responses, we also measure token391

count to assess the efficiency of each method. Since392

our experiments rely on models accessed through393

the HuggingFace (Wolf et al., 2020) API, it was394

not feasible to implement simultaneous execution395

of the verifier and refiner alongside the answering396

model, as would occur in real-world applications.397

Consequently, we analyze the inference cost (i.e.,398

the number of tokens) per model for each method.399

This metric is crucial as the number of refined to-400

kens directly affects to the LLM user’s waiting401

time for response corrections. To quantify the effi-402

ciency, we define the efficiency of Streaming-VR403

relative to Full-VR, taking a cue from the ther-404

mal efficiency in thermodynamics, which is formu-405

lated as: (Efficiency) := benefit
cost = 1 − TS

TF
. Here,406

TS and TF represent the average number of gener-407

ated tokens in the refinement phase per answer for408

Streaming-VR and Full-VR, respectively.409

It should be emphasized that the tokens being410

verified are identical for both methods. Consider411

an answer with N sentences, where each sentence412

contains Ti tokens (i = 1, . . . , N). Full-VR pro-413

cesses all
∑N

i=1 Ti tokens in a single step, whereas414

Streaming-VR verifies sentence segments sequen-415

tially, processing Ti tokens at step i from i = 1 416

to N . Despite this difference in approach, both 417

methods process the same total number of tokens, 418

resulting in identical overall verification costs, irre- 419

spective of the number of verifier invocations. 420

4.3 Experimental Results and Analyses 421

Streaming-VR delivers higher efficiency while 422

maintaining its performance. We conduct a se- 423

ries of experiments on the ASQA and QuoteSum 424

datasets to quantitatively evaluate the efficiency 425

and effectiveness of two approaches: Streaming- 426

VR and Full-VR. For this comparison, we first 427

segment the model-generated answers for each test 428

query into individual sentences, treating these se- 429

quentially arranged sentences as distinct intermedi- 430

ate answers. Using Streaming-VR, we verify and 431

refine each intermediate answer in real-time, en- 432

abling dynamic adjustments as responses are gen- 433

erated. In contrast, Full-VR serves as the baseline, 434

where the entire answer is verified and refined only 435

after the complete sequence has been generated, 436

processing the output in a single pass from start 437

to finish. Note that for Full-VR, we utilize shared 438

verification results of Streaming-VR: an answer is 439

deemed incorrect if it contains at least one erro- 440

neous token in the overall context. By comparing 441

Streaming-VR and Full-VR, we aim to demonstrate 442

the advantages of real-time refinement in improv- 443

ing both answer quality and efficiency. 444

The main results on ASQA and QuoteSum 445

are summarized in Table 1. Both Full-VR and 446

Streaming-VR employ Mistral 7B as the verifier 447

and GPT-4o as the refiner across three different 448

backbone models (Mistral 7B, LLaMA-3.1 8B, and 449

GPT-4o) for answer generation, as indicated in the 450

method column. Across all response models, the fi- 451

nal outcomes after verification-and-refinement con- 452

verge to similar scores, indicating that the overall 453

quality and faithfulness of the answers are largely 454

determined by the refinement model. 455

However, we observe a notable performance de- 456

cline when GPT-4o is used as the backbone for an- 457

swer generation. Both Full-VR and Streaming-VR 458

with GPT-4o lead to significant drops in Disambig- 459

F1 on ASQA, a key metric for assessing the in- 460

formativeness of long-form answers, and no other 461

improvements on scores of QuoteSum. These re- 462

sults suggest that GPT-4o, which already gener- 463

ated high-quality answers, may be susceptible to 464

over-correction during the refinement process, re- 465

ducing the overall effectiveness of the responses. 466
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Table 1: Results of Streaming-Verification by Mistral 7B and Refinement by GPT-4o on ASQA and QuoteSum for three
different backbone response models. TRef indicates the number of newly-generated tokens for refinement.

ASQA
Closed-Book Open-Book with 5 Passages

Method ROUGE-L Disambig-F1 DR TRef Efficiency ↑ ROUGE-L Disambig-F1 DR TRef Efficiency ↑

Mistral 7B 33.6 20.7 26.4 − − 36.4 31.2 33.7 − −
+ Full-VR 35.3 29.6 32.3 113.6

39.6%
36.6 33.9 35.2 101.8

26.9%+ Streaming-VR 35.2 29.6 32.3 68.6 36.9 33.7 35.3 74.4

LLaMA-3.1 8B 34.0 23.7 28.4 − − 36.6 31.7 34.1 − −
+ Full-VR 35.2 29.4 32.2 117.4

45.8%
37.0 34.2 35.6 106.8

42.1%+ Streaming-VR 35.3 29.4 32.2 63.6 36.8 34.0 35.4 61.9

GPT-4o 36.6 34.8 35.7 − − 37.1 35.0 36.0 − −
+ Full-VR 35.2 29.6 32.3 100.4

38.3%
37.0 33.9 35.4 116.1

46.0%+ Streaming-VR 35.3 29.4 32.2 61.9 36.9 33.9 35.4 62.7

QuoteSum
Zero-Shot Five-Shots

Method ROUGE-L Sem-F1 SEMQA TRef Efficiency ↑ ROUGE-L Sem-F1 SEMQA TRef Efficiency ↑

Mistral 7B 37.5 39.0 38.2 − − 46.8 51.8 50.1 − −
+ Full-VR 38.1 39.0 38.5 101.3

25.8%
57.6 49.0 53.1 72.5

24.3%+ Streaming-VR 37.9 39.0 38.4 75.2 57.5 48.9 52.9 54.9

LLaMA-3.1 8B 43.3 38.9 41.0 − − 59.1 61.2 60.1 − −
+ Full-VR 47.6 39.0 43.1 154.3

31.2%
60.7 62.1 61.4 84.1

30.0%+ Streaming-VR 47.5 39.0 43.0 106.1 60.7 62.3 61.5 58.9

GPT-4o 60.3 39.0 48.5 − − 65.8 54.7 60.0 − −
+ Full-VR 60.2 39.0 48.5 60.7

26.7%
65.8 54.7 60.0 78.9

42.2%+ Streaming-VR 60.0 39.0 48.4 44.5 65.3 54.7 59.8 45.6
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Figure 2: Performance comparison on various RAG and ICL settings.
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Figure 3: Efficiency comparison on various RAG and ICL settings. The numbers on top of the bars are their efficiency values.

This finding highlights a broader trend: refining467

answers with the same model used for genera-468

tion—even a powerful model like GPT-4o—may469

not improve performance and can even degrade it.470

For the applications like large-scale data analysis or471

high-frequency user requests handling thousands472

or millions of queries daily, or individual users473

requiring detailed lengthy responses, relying on 474

expensive models like GPT-4o for both generation 475

and refinement can quickly exceed budgetary con- 476

straints. Therefore, Streaming-VR, which uses a 477

more cost-effective model for response generation 478

and GPT-4o solely for refinement, emerges as a 479

more practical and economical solution. 480
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Table 2: Statistics on number of tokens. Here, TGen is the num-
ber of generated tokens during the initial answer generation,
TVer is the total number of tokens verified by the streaming
verifier, and TRef is the number of generated tokens during the
answer refinement phase by the streaming refiner. We report
the average number of tokens per answer.

ASQA
Closed-Book Open-Book w/ 5 Psgs

Method TGen TVer TRef TGen TVer TRef

Mistral 7B 143.8 − − 116.1 − −
+ Full-VR − 143.8 113.6 − 116.1 101.8
+ Streaming-VR − 143.8 68.6 − 116.1 74.4

LLaMA-3.1 8B 101.2 − − 66.9 − −
+ Full-VR − 101.2 117.4 − 66.9 106.8
+ Streaming-VR − 101.2 63.6 − 66.9 61.9

GPT-4o 100.4 − − 60.2 − −
+ Full-VR − 100.4 107.6 − 60.2 116.1
+ Streaming-VR − 100.4 61.9 − 60.2 62.7

QuoteSum
Zero-Shot Five-Shots

Method TGen TVer TRef TGen TVer TRef

Mistral 7B 120.4 − − 92.5 − −
+ Full-VR − 120.4 101.3 − 92.5 72.5
+ Streaming-VR − 120.4 75.2 − 92.5 54.9

LLaMA-3.1 8B 161.3 − − 83.6 − −
+ Full-VR − 161.3 154.3 − 83.6 84.1
+ Streaming-VR − 161.3 106.1 − 83.6 58.9

GPT-4o 58.5 − − 65.2 − −
+ Full-VR − 58.5 60.7 − 65.2 78.9
+ Streaming-VR − 58.5 44.5 − 65.2 45.6

To assess the consistent efficacy of Streaming-481

VR across various settings of RAG and ICL for482

answer generation, we conduct additional experi-483

ments as visualized for performance in Figure 2484

and for efficiency in Figure 3. The answers are485

generated by LLaMA-3.1 8B, verified by Mistral486

7B and refined by GPT-4o on both datasets. The487

results show Streaming-VR’s competitive perfor-488

mance compared to Full-VR. Streaming-VR con-489

sistently outperforms the initial answers without490

refinement and achieves comparable results to Full-491

VR. It also illustrates that Streaming-VR delivers492

results on par with Full-VR across all retrieved493

passage and example shot counts, offering perfor-494

mance improvements over the unrefined original495

response outputs of language model.496

Streaming-VR enhances token efficiency In497

terms of efficiency, Streaming-VR offers substan-498

tial advantages over Full-VR across all models and499

both closed-book and open-book settings. While500

Full-VR refines the entire response, generating501

more tokens for error correction with unnecessary502

token refinement, Streaming-VR operates at the503

sentence level, refining only those sentences identi-504

fied as inaccurate, resulting in significantly fewer505

tokens being produced. The key to Streaming-506

VR’s efficiency lies in its ability to minimize error507

propagation during the generation process. By ad-508

dressing inaccuracies early at the sentence level, it509

Table 3: Result of Streaming-VR with LLaMA-3.1 8B
as a response model. Models are indicated as Streaming-
{Verifier}{Refiner}, where M, L and G stand for Mistral-
7B, LLaMA-3.1 8B and GPT-4o, respectively.

ASQA
Closed-Book Open-Book w/ 5 Psgs

Method R-L Dis-F1 DR R-L Dis-F1 DR

LLaMA-3.1 8B 34.0 23.7 28.4 36.6 31.7 34.1
+ Streaming-MM 34.5 23.7 28.6 36.2 30.5 33.2
+ Streaming-ML 34.2 24.3 28.8 36.8 31.1 33.8
+ Streaming-MG 35.3 29.4 32.2 36.8 34.0 35.4
+ Streaming-LG 35.2 28.3 31.6 36.8 33.8 35.3

+ Self-VR 34.2 23.3 28.2 36.6 31.1 33.7

QuoteSum
Zero-Shot Five-Shots

Method R-L Sem-F1 SEMQA R-L Sem-F1 SEMQA

LLaMA-3.1 8B 43.3 38.9 41.0 59.1 61.2 60.1
+ Streaming-MM 39.6 38.9 39.3 58.0 61.2 59.6
+ Streaming-ML 45.2 39.0 41.9 59.9 61.7 60.8
+ Streaming-MG 47.5 39.0 43.0 60.7 62.3 61.5
+ Streaming-LG 47.7 39.0 43.1 61.0 62.3 61.6

+ Self-VR 42.4 38.9 40.6 57.4 61.2 59.3

reduces the need for extensive revisions in subse- 510

quent stages with inefficiencies. This streamlined 511

process leads to token savings of 39.8% for ASQA 512

and 31.5% for QuoteSum on average. 513

Streaming-VR enhances time efficiency too 514

We further provide a comprehensive analysis of 515

the overall inference costs extending our evaluation 516

beyond token efficiency in Table 2. Streaming- 517

VR consistently produces a significantly smaller 518

number of tokens than Full-VR, as it skips unnec- 519

essary modifications to sentences that are already 520

correct. However, beyond the token counts, for 521

practical deployment in real-world applications, la- 522

tency plays a critical role in assessing efficiency. 523

Specifically, latency is directly influenced by var- 524

ious factors other than token counts, such as the 525

number of model invocations, execution time per 526

call, and whether the models operate in parallel. 527

Compared to the naïve method (purely sequential 528

generation without any verification or refinement), 529

sentence-level correction introduces some inherent 530

delay, as each sentence is verified and refined be- 531

fore proceeding to the next sentence. However, this 532

delay is mitigated by Streaming-VR’s streamlined 533

correction mechanism, where incorrect sentence is 534

processed in parallel with sentence generation and 535

verification. As a result, per-sentence verification 536

and refinement does not accumulate linearly, keep- 537

ing overall latency manageable. Importantly, the 538

external verifier and refiner in Streaming-VR are 539

invoked only once and they operate in parallel. 540

We measured the latency of each method by tim- 541

ing the answer refinement process when an answer 542

is determined to be incorrect. Specifically, using 543

Mistral 7B as the verifier and LLaMA-3.1 8B as 544
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the refiner, Streaming-VR requires only an aver-545

age of 3.07s, whereas Full-VR takes an average of546

5.98s to refine the entire answer per question. This547

makes Streaming-VR approximately 1.95× faster548

than Full-VR while preserving answer factuality.549

This analysis underscores the novelty of Streaming-550

VR across the entire pipeline. For more detailed551

explanation along with mathematical descriptions552

on general cases, please refer to Appendix C.553

Verification models don’t need to be bigger554

The results in Table 3 show that verifier models555

can be effective without being large. On both tasks,556

Streaming-MG performs comparably to Streaming-557

LG, demonstrating that smaller models can still de-558

liver significant performance gains. These findings559

highlight that the choice of verifiers is very robust560

in Streaming-VR, leading to choose smaller mod-561

els that are resource-efficient and effective, making562

them particularly valuable for real-world applica-563

tions with limited computational resources.564

Refinement models need to be bigger The re-565

sults in Table 3 highlight the critical role of a larger566

and more advanced model for refinement after ver-567

ification, even when the verifier is relatively small.568

Using Mistral 7B as verifier and refiner (Streaming-569

MM) results in no improvement or even degraded570

performance across datasets and settings.571

In contrast, larger refiners yield significant gains.572

With LLaMA-3.1 8B as the refiner (Streaming-573

ML), there is a modest Dis-F1 improvement for574

closed-book setting on ASQA, though handling575

multiple passages remains challenging. On Quote-576

Sum, Streaming-ML achieves notable improve-577

ments in both zero- and five-shot settings, while578

Streaming-MM reduces answer quality. The most579

substantial boost comes from GPT-4o as the refiner580

(Streaming-MG), whose advanced reasoning capa-581

bilities drive superior performance in both RAG582

and ICL settings. These results confirm the impor-583

tance of using a refiner larger than the response584

model for coherent and accurate answers.585

LLMs still struggle with intrinsic self-correction586

Additionally, we conduct some experiments to587

evaluate the efficacy of self-verification and self-588

refinement within the Streaming-VR pipeline, uti-589

lizing only LLaMA-3.1 8B for backbone, verifier590

and refiner models. In Table 3, the rows of Self-VR591

(Self-Verification and Refinement; i.e., Streaming-592

LL) illustrate that LLMs continue to face chal-593

lenges with intrinsic self-correction with some per-594
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Figure 4: The ratio of derailed answers to incorrect answers.
(a): The rate of derailed answers on ASQA. (b): The rate of
derailed answers on QuoteSum.

formance drops. This result strengthens the con- 595

clusions drawn by Huang et al. (2024), which also 596

have demonstrated that intrinsic self-correction, an 597

approach that model attempts to rectify its initial re- 598

sponses using only its inherent capabilities without 599

external feedback, degrades the response quality. 600

Errors in the middle derail the entire answer 601

As Zhang et al. (2024) point out that the mistakes or 602

hallucinations in the middle of answer can skew the 603

whole response, we report the statistics of model- 604

generated answers with the rate of derailed an- 605

swers on each dataset. Specifically, the answers 606

are generated by LLaMA-3.1 8B and verified the 607

finetuned streaming verifier as before. The rate 608

of derailed answers is the ratio of the number of 609

‘answers composed of false sentences in sequence 610

from the first erroneous sentence to the last one’ to 611

‘false answers if at least one of their sentences is 612

identified as false’. Results in Figure 4 for ASQA 613

and QuoteSum are 26.3% and 48.9% on average 614

across different settings for RAG and ICL, respec- 615

tively. Therefore, they highlight the importance of 616

Streaming-VR to prevent derailed responses. 617

5 Conclusion 618

In this paper, we introduce Streaming-VR, a novel 619

approach aimed at improving the accuracy and effi- 620

ciency in language model text generation. Unlike 621

traditional methods solely relying on the final re- 622

sponse, Streaming-VR performs real-time verifica- 623

tion and correction of erroneous token sequences 624

as they are being produced, with external mod- 625

els simultaneously with answer generation. This 626

prevents error propagation in the early stage and 627

reduces the errors at the end by minimizing the 628

likelihood of compounding inaccuracies, then sig- 629

nificantly enhances the efficiency of answer refine- 630

ment. Extensive experiments for two different QA 631

datasets have clearly demonstrated that Streaming- 632

VR consistently achieves remarkably higher effi- 633

ciency without compromising response quality. 634
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Limitations635

Despite the improvements introduced by our636

method, Streaming-VR, which enhances both the637

efficiency and effectiveness of verification and re-638

finement in language model text generation by in-639

tervening during intermediate answer generation,640

there remain promising opportunities for enhancing641

the answer verifier. Specifically, the primary chal-642

lenge is the lack of dedicated datasets for answer643

verification, particularly those suited for real-time644

scenarios. To address this, we automatically aug-645

mented data by paraphrasing sentences or introduc-646

ing errors by an LLM. However, while effective,647

this approach carries the risk of mislabeling. There-648

fore, future work could focus on developing new649

datasets that are carefully annotated with a diverse650

range of answers ensuring more accurate verifi-651

cation and reducing the risk of incorrect labeling.652

Additionally, we can further extend these datasets653

to include fine-grained labels for multiple classes,654

rather than just binary ones, to accommodate dif-655

ferent types of errors and apply adaptive strategies656

for subsequent refinement after verification.657

Ethics Statement658

In our research, we use publicly available question-659

answering (QA) datasets to evaluate the effective-660

ness and applicability of Streaming-VR in real-661

world scenarios. The language model we employ662

may inadvertently reflect biases embedded in its663

training data, resulting in outputs that perpetuate664

racism, sexism, or other forms of discrimination.665

Such biases can manifest even in contexts that ap-666

pear neutral, highlighting the need for proactive667

bias detection and mitigation strategies. Moreover,668

harmful inputs might lead to the retrieval of offen-669

sive information or the generation of inappropriate670

responses by the language models. This presents a671

significant risk that we must recognize and address.672

To mitigate these issues, it is crucial to develop673

methods for detecting and managing offensive, in-674

appropriate, or biased content in both user inputs675

and the documents retrieved within our retrieval-676

augmented framework. We view this as a critical677

area for future research because minimizing the678

risk of biased or harmful outputs is essential for the679

safe and ethical deployment of QA systems.680
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A Implementation Details987

Models In our experiments, we employ two open-988

source LLMs Mistral 7B (Jiang et al., 2023a) and989

LLaMA-3.1 8B (Dubey et al., 2024) via Hugging990

Face (Wolf et al., 2020) API and GPT-4o (Achiam991

et al., 2023) which is accessible via OpenAI API,992

representing relatively small, medium, and large993

models, respectively. Here, these models are never994

fine-tuned or further trained except for their roles in995

verification. For the overall Streaming-VR pipeline,996

LLaMA-3.1 8B functions as the primary back-997

bone language model to generate answers for given998

queries, while all three models are employed for999

verification or refinement for experiments.1000

Streaming Verifier We fine-tuned Mistral 7B1001

and LLaMA-3.1 8B as verifiers using augmented1002

training data derived from the ASQA and Quote-1003

Sum datasets. Each verifier was trained for five1004

epochs on its respective training set, with a learn-1005

ing rate of 1e-5 and the AdamW (Loshchilov and1006

Hutter, 2019) optimizer. To generate augmented1007

data for false-labeled sentences, we embedded fake1008

information into true sentences using GPT-4o, ad-1009

justing the temperature to 0.3, 0.5, and 0.7 to create1010

diverse forms of inaccuracies. Rather than synthe-1011

sizing entirely new sentences with large language1012

models, which risk introducing unrelated hallu-1013

cinations, we adopted this targeted augmentation1014

strategy as a more reliable approach. This method1015

proved highly effective in training verifiers to iden-1016

tify hallucinations, delivering exceptional results1017

that highlight the importance of Streaming-VR in1018

improving efficiency while preserving answer qual-1019

ity. The specific prompt used to generate incor-1020

rect information for each sentence (Sentence) in1021

the provided answer (Answer) to a given question1022

(Question) is detailed below.1023

1024
You will be given a question (Q) with
its corresponding answer paragraph (A)
that may be incomplete and a sentence
(S) following the paragraph.\n \n Q:
{Question}\n A: {Answer}\n S: {Sentence}\n
You should modify the given sentence S, into
a plausible lie by inserting some wrong
information. Just return only the modified
‘sentence (S)’ itself.

1025

The final test results of the finetuned verifiers1026

used in the experiments, including a Random base-1027

line that selects verification results arbitrarily, are1028

presented in Table 4. For the entire pipeline, we1029

establish a constraint that prohibits the use of any1030

other verifier models larger than the answer genera- 1031

tion model. This decision is based on the principle 1032

that the verifier should not exceed the capabilities 1033

of the response model, as the verifier serves merely 1034

as a supplementary tool for identifying mistakes. 1035

This reflects our considerations regarding computa- 1036

tional costs and efficiency.

Table 4: The results of Streaming Verifier finetuned on train
set for each dataset. We report the test accuracy of verifiers
along with random classifier.

Method ASQA QuoteSum

Random 49.6 50.3
Mistral 7B 86.8 81.7
LLaMA-3.1 8B 86.7 93.0

1037

B Additional Experimental Results 1038

Table 5: Result of baselines on ASQA

ASQA
Closed-Book Open-Book w/ 5 Psgs

Method R-L Dis-F1 DR R-L Dis-F1 DR

Self-RAG 7B 22.5 13.0 17.1 32.6 27.5 29.9
Self-RAG 13B 21.0 15.1 17.9 34.1 29.7 31.8

Mistral 7B 33.6 20.7 26.4 36.4 31.2 33.7
+ Streaming-VR 35.2 29.6 32.3 36.9 33.7 35.3

Additional Baselines In Table 5, we present ad- 1039

ditional results for other baselines on ASQA, Self- 1040

RAG (Asai et al., 2024), one of the most represen- 1041

tative methods with their trained models publicly 1042

available. Self-RAG performs on-demand retrieval 1043

of external information via a specialized retrieval 1044

token, followed by a critique of the generated out- 1045

put to refine it. When we compare the baseline 1046

results with the similar model size, Mistral 7B 1047

demonstrates significantly superior performance 1048

to Self-RAG even without the help of refinement. 1049

C Time-Efficiency of Streaming-VR 1050

Streaming-VR is always faster than Full-VR 1051

The latencies of Full-VR (tF) and Streaming-VR 1052

(tS) can be calculated as follow: 1053

tF = tVer + T F
Ref × tRef 1054

tS = N × tVer + T S
Ref × tRef 1055

Here, we assume that the inference time of verifi- 1056

cation model per call, tVer, is the same regardless 1057

of the input length for simple comparison, and tRef 1058

denotes the token generation time per token of the 1059

refiner. Since the verifier does not generate tokens, 1060
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it follows that tVer < tRef. Furthermore, as shown1061

in Table 2, with an average of seven sentences per1062

answer (N = 4), we observe that N +T S
Ref < T F

Ref.1063

Consequently, we can conclude that tS < tF due to1064

the following inequality:1065

tS <
(
N + T S

Ref
)
× tRef < T F

Ref × tRef < tF1066

When Streaming-VR is applied in real-world sce-1067

narios, where the verifier and refiner operate si-1068

multaneously alongside the answering model, the1069

latency of Streaming-VR is updated to treal
S as:1070

treal
S = max

{
tVer,

T S
Ref
N

× tRef

}
1071

because it only depends on the time for the last1072

sentence to be verified (and may be refined). So1073

it demonstrates that Streaming-VR achieves sig-1074

nificantly lower latency compared to Full-VR, as1075

treal
S ≪ tS < tF. As a result, comparing the number1076

of tokens generated during refinement is sufficient1077

to analyze the overall latency of both methods.1078

D GPU memory1079

In a practical deployment setting, Full-VR and1080

Streaming-VR exhibit the same maximum GPU1081

memory usage. To be specific, as the maximum1082

number of tokens that Full-VR and Streaming-VR1083

should handle are exactly the same, which depends1084

on the generated (and refined) answer from the orig-1085

inal response model. Quantitatively, when using1086

LLaMA-3.1 8B for answer generation and Mis-1087

tral 7B for verification, it requires approximately1088

43,900 (16,035 + 27,865) MB of GPU memory.1089

E Case Study1090

We have conducted case studies to examine the ad-1091

vantages of Streaming-VR in greater detail. In Ta-1092

ble 6, we present the results of various methods for1093

the query: "Who does sam marry in foyle’s war?",1094

a British detective drama television series broad-1095

cast on ITV. The answer to the question is Adam1096

Wainwright. However, this question introduces am-1097

biguity because the answer could refer either to1098

Max Brown, who portrayed Adam Wainwright in1099

Season 6, or Daniel Weyman, who was recast as1100

Adam Wainwright in Seasons 7 and 8.1101

As shown in Table 6, the original answer gen-1102

erated by the naïve LLaMA-3.1 8B model reflects1103

the model’s difficulty in understanding due to gram-1104

matical errors and ambiguous information. How-1105

ever, when using the methods that enable the refine-1106

ment through the verification (with red to be False1107

Table 6: Case Study using LLaMA-3.1 8B as the original
answer generation model, Mistral 7B as the verifier and GPT-
4o as the refiner.

Q: Who does sam marry in foyle’s war?
Method Answer
LLaMA-3.1 8B In the BBC drama series Foyle’s War, there are ac-

tually two main characters who get married. The
first one is Sam Stewart, played by Michael Kitchen,
who is the main character, David Foyle. However,
Sam Stewart is a love interest and also a major char-
acter in the series. Sam Stewart marries a woman
named Kate Baxter, but then also falls in love with
a woman named Samantha Stewart who is a sec-
retary at the police station and they get married.

+ Full-VR In the BBC drama series Foyle’s War, Sam Stewart,
played by Honeysuckle Weeks, is a major char-
acter who works as a driver for Detective Chief
Superintendent Christopher Foyle. Sam Stewart
marries Adam Wainwright, a former Bletchley
Park codebreaker who becomes a local politician.
Their relationship evolves as they navigate post-war
challenges, with Sam balancing her duties as a wife
and her continuing involvement in Foyle’s work.

+ Streaming-VR In the ITV drama series Foyle’s War, Sam mar-
ries Adam Wainwright, a former Bletchley Park
codebreaker. Sam Stewart, played by Honeysuckle
Weeks, is the driver for the main character, Christo-
pher Foyle. However, Sam Stewart is a former
driver for Christopher Foyle and also a major char-
acter. Sam Stewart marries a man named Adam
Wainwright, a former Bletchley Park codebreaker,
and they start a life together after the war ends, with
Sam continuing her role as a prominent character.

and blue to be True), Full-VR still contains an er- 1108

ror regarding the name of the broadcasting center, 1109

whereas Streaming-VR successfully corrects ev- 1110

ery error in the answer. Also, we observe that the 1111

answer generated and refined by Streaming-VR pre- 1112

serves the structure of the original answer, whereas 1113

Full-VR generates an entirely new response, signif- 1114

icantly altering the sentence structure. 1115
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