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Abstract
Driven by human ingenuity and creativity, the
discovery of super-resolution techniques, which
circumvent the classical diffraction limit of light,
represent a leap in optical microscopy. However,
the vast space encompassing all possible experi-
mental configurations suggests that some power-
ful concepts and techniques might have not been
discovered yet, and might never be with a human-
driven direct design approach. Thus, AI-based
exploration techniques could provide enormous
benefit, by exploring this space in a fast, unbi-
ased way. We introduce XLUMINA, an open-
source computational framework developed us-
ing JAX, which offers enhanced computational
speed enabled by its accelerated linear algebra
compiler (XLA), just-in-time compilation, and
its seamlessly integrated automatic vectorization,
auto-differentiation capabilities and GPU compat-
ibility. Remarkably, XLUMINA demonstrates a
speed-up of 4 orders of magnitude compared to
well-established numerical optimization methods.
We showcase XLUMINA’s potential by rediscov-
ering two foundational techniques in advanced
microscopy, together with new superior experi-
mental layouts. Ultimately, XLUMINA identi-
fied a novel experimental blueprint featuring sub-
diffraction imaging capabilities. This work con-
stitutes and important step in AI-driven scientific
discovery of new concepts in optics and advanced
microscopy.

1. Introduction
The space of all possible experimental optical configurations
is enormous. For example, if we consider experiments that
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consist of just 10 optical elements, chosen from 5 different
components (such as lasers, lenses, phase shifters, beam
splitters and cameras), we already get 10 million possible
discrete arrangements. The experimental topology (i.e., how
the elements are arranged) will further increase this num-
ber greatly. Finally, each of these optical components can
have tunable parameters (such as lenses’ focal lengths, laser
power or splitting ratios of beam splitters) which lead to
additional high-dimensional continuous parameter space
for each of the previously mentioned discrete possibilities.
This vast search space contains all experimental designs
possible, including those with exceptional properties. So
far, researchers have been exploring this space of possibil-
ities guided by experience, intuition and creativity – and
have uncovered countless exciting experimental configura-
tions and technologies. But due to the complexity of this
space, it might be that some powerful concepts and tech-
niques have not been discovered so far, and might never
be with a human-driven direct design approach. This is
where AI-based exploration techniques could provide enor-
mous benefit, by exploring the space in a fast, unbiased way
(Wang et al., 2023; Krenn et al., 2022).

Optical microscopes in today’s sense were invented 300
years ago by Antonj van Leeuwenhoek (Wollman et al.,
2015). Since then, few techniques used in the sciences
have seen a similarly rapid development and impact on di-
verse fields, ranging from material sciences all the way to
medicine (Reigoto et al., 2021; Weisenburger & Sandogh-
dar, 2015; Bullen, 2008; Antony et al., 2013). Arguably,
optical microscopy is currently most widely used in bio-
logical sciences, where precise labeling of imaging targets
enables fluorescence microscopy with exquisite sensitiv-
ity and specificity (Grimm & Lavis, 2022; M. & Palmer,
2014). In the past two decades, several breakthroughs have
broadened the scope of optical microscopy in this area even
further. Among them, through the ingenuity and creativ-
ity of human researchers, the discovery of super-resolution
(SR) methods, which circumvent the classical diffraction
limit of light, stand out in particular. Examples for versatile
and powerful SR techniques are STED (Hell & Wichmann,
1994), PALM/F-PALM (Betzig et al., 2006; Hess et al.,
2006), (d)STORM (Rust et al., 2006; van de Linde et al.,
2011), SIM (Gustafsson, 2005a), and MINFLUX (Balzarotti
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et al., 2017), with considerable impact in biology (Möckl
et al., 2019; Xu et al., 2013; Yildiz et al., 2003), chemistry
(Zhang et al., 2015) and material sciences (Müller et al.,
2019) for example. Crucially, the motivation of our work
goes far beyond small-scale optimization of already known
optical techniques. Rather, this work sets out to discover
novel, experimentally viable concepts for advanced optical
microscopy that are at-present entirely untapped.

We introduce XLUMINA, an efficient open-source frame-
work developed using JAX (Bradbury et al., 2018), for the
ultimate goal of discovering new optical design principles.
XLUMINA offers enhanced computational speed enabled by
its accelerated linear algebra compiler (XLA), just-in-time
(jit) compilation, and its seamlessly integrated automatic
vectorization or batching, auto-differentiation capabilities
(Baydin et al., 2018) and GPU compatibility. We leverage
its scope with a specific focus on the area of SR microscopy,
which is a set of techniques that has revolutionized biolog-
ical and biomedical research over the past decade, high-
lighted by the 2014 Chemistry Nobel Prize (Möckl et al.,
2014). The software’s workflow is depicted in Fig. 1a. Fun-
damentally, the simulator is the heart of digital discovery
efforts. It translates an experimental design (one point in
the vast space of possible designs) to a physical output. The
physical output, such as a detector or camera output, can
then be used in an objective function to describe the desired
design goal. The simulator can either be called directly by
gradient-based optimization techniques, or it can be used
for generating the training data for deep-learning-based sur-
rogate models. A simulator that can be used for automated
design and discovery of new experimental strategies must
be (1) fast, (2) reliable, and (3) general. XLUMINA’s optical
simulator fulfills precisely the aforementioned requirements
for advanced microscopy.

The work is structured as follows. Upon reviewing previous
work, we describe XLUMINA and highlight its efficiency
and computational speed advantage over conventional ap-
proaches. We define a quasi-universal computational ansatz
to translate the hybrid discrete-continuous optimization
problem, arising from configuring both the optical topol-
ogy and the optical parameters, into a purely continuous
optimization framework which can be solved with efficient
gradient-based methods. Then, we demonstrate the applica-
bility of our approach by rediscovering, together with new
superior experimental topologies, two foundational tech-
niques in SR microscopy following pure AI-exploratory
strategies within our fully continuous framework: a beam-
shaping technique as employed in STED (stimulated emis-
sion depletion) microscopy (Hell & Wichmann, 1994) and
the SR technique exploiting optical vortices (Dorn et al.,
2003). Ultimately, we showcase XLUMINA’s capability
for genuine discovery identifying a novel solution that inte-
grates the underlying physical principles present in the two

aforementioned SR techniques into a single experimental
blueprint, the performance of which exceeds the capabilities
of each individual setup. We conclude with final remarks
and future perspectives.

1.1. Previous work

Our approach is radically different from previous strategies
that employ AI for data-driven design of single optical el-
ements (Herath et al., 2023; Yanny et al., 2020) or data
analysis in microscopy, e.g. denoising, contrast enhance-
ment or point-spread-function (PSF) engineering (Nehme
et al., 2020). While these techniques are influential, they are
not meant to change the principle of the experimental ap-
proach or the optical layout itself. In contrast, XLUMINA is
equipped with tools to simulate, optimize and automatically
design new optical setups and concepts from scratch.

Several open-source software tools facilitate classical optics
phenomena simulations. Some examples are Diffractio for
light diffraction and interference simulations (Brea, 2019),
Finesse for simulating gravitational wave detectors (Freise
et al., 2013), which do not support auto-differentiation nor
GPU compatibility; and POPPY, developed as a part of the
simulation package of the James Webb Telescope (Perrin
et al., 2012), with GPU compatibility but lacking autod-
iff capabilities. There are also specialized resources like
those focusing on the design of Laguerre-Gaussian mode
sorters utilizing multi-plane light conversion (MPLC) meth-
ods (Fontaine et al., 2019; Labroille et al., 2014), which
also do not support GPU computations and autodiff. While
these software solutions offer optics simulation capabilities,
XLUMINA uniquely integrates simulation with AI-driven
automated design powered with JAX’s autodiff, just-in-time
compilation and automatic GPU compatibility.

2. Software workflow and performance
XLUMINA (Link to GitHub repo) allows for the simulation
of classical optics hardware configurations and enables the
optimization and automated discovery of new setup designs.
The software is developed using JAX (Bradbury et al., 2018),
which provides an advantage of enhanced computational
speed (enabled by accelerated linear algebra compiler, XLA,
with just-in-time compilation, jit) while seamlessly integrat-
ing the auto-differentiation framework (Baydin et al., 2018)
and automatic GPU compatibility. It is important to remark
that our approach is not restricted to run on CPU (as NumPy-
based softwares do): due to JAX-integrated functionalities,
by default runs on GPU if available, otherwise automatically
falls back to CPU.

The ultimate goal is to discover new concepts and experi-
mental blueprints in optics. Importantly, the most computa-
tional expense of an optimization loop comes from running
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hardware addition on the optical simulator are the SLMs,
each pixel of which possesses an independent (and vari-
able) phase value. They serve as a universal approxima-
tion for phase masks, including lenses and o↵er a com-
putational advantage: given a specific pixel resolution,
they allow for unrestricted phase design selection. Such
flexibility is crucial during the parameter space explo-
ration, as it allows the software to autonomously probe
all potential solutions. In addition, we defined under the
name of super-SLM (sSLM ) a hardware-box-type which
consists of two SLMs, each one independently imprinting
a phase mask on the horizontal and vertical polarization
components of the field.

To include the automated discovery feature, XLu-
minA’s optical simulator and optimizer are tied together
by the loss function. The software’s workflow is depicted
in Fig. 1. We start by feeding the system an initial
random set of optical parameters, which shape the hard-
ware design on a virtual optical table. The performance
of the virtual experiment is computed by the simulator,
which leads to detected light (e.g., captured images at
the camera). From those simulated outputs, the objec-
tive function (for instance, the spot size), is computed.
To improve the metric of the cost function, the optimizer
adjusts the optical parameters in the initial virtual setup
and the cycle is repeated. The whole process is a back-
and-forth between the simulator and the optimizer, re-
fining the setup until a convergence is observed.
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FIG. 1. Workflow of XLuminA, demonstrating the integrated
feedback between the AI discovery tool and the optics simu-
lator.

The automated discovery tool is designed to explore
the vast parameter space encompassing all possible opti-
cal designs. A direct outcome of running individual opti-
cal simulations during each optimization iteration is the
considerable computational expense. Thus, it is essential
to reduce the computation time by maximizing the speed
of optical simulation functions. By strategically lever-
aging the JAX’s jit functionality, we optimize already
existing propagation algorithms to mitigate this compu-

tational constraint. We evaluate the performance of our
optimized functions against their counterparts in Di↵rac-
tio by propagating a Gaussian beam within a computa-
tional window sized at 2048 ⇥ 2048 pixels. The average
run-time for both Di↵ractio and our approach is shown
in Table II. Generally, our methods significantly enhance
computational speeds for simulating light di↵raction and
propagation. For instance, we observe a speedup of a
factor of 2 for RS and CZT and about 2.5 for VRS and
VCZT using the CPU. With GPU utilization, the speed
increases by up to two orders of magnitude.

TABLE I. Average execution time (in seconds) over 100 runs,
within a computational window size of 2048⇥2048, for scalar
and vectorial field propagation using Rayleigh-Sommerfeld
(RS, VRS) and Chirped z-transform (CZT, VCZT) in Di↵rac-
tio and XLuminA. Times for XLuminA reflect the run with
pre-compiled jitted functions. The experiments were run on
an Intel CPU Xeon Gold 6130 and Nvidia GPU Quadro RTX
6000.

CPU

RS CZT VRS VCZT

Di↵ractio 4.07 1.90 12.31 6.08
XLuminA 1.91 0.89 4.67 2.44

GPU

RS CZT VRS VCZT

Di↵ractio / / / /
XLuminA 0.063 0.025 0.152 0.077

When it comes to the nature of the optimizer, it can
be either direct (gradient-based) or deep learning-based
(surrogate models or deep generative models, e.g., vari-
ational autoencoders [44]). In this work, we adopt a
gradient-based strategy, where the experimental setup’s
parameters are adjusted iteratively in the steepest de-
scent direction. To chose the optimizer, we evalu-
ate the convergence time of two gradient-descent tech-
niques: the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm, which numerically computes gradients and
higher-order derivative approximations, and the adap-
tive moment estimation (ADAM), an instance of the
stochastic-gradient-descent (SGD) method. While BFGS
is part of the open-source SciPy Python library and oper-
ates on the CPU, ADAM is integrated within the JAX li-
brary and runs in both CPU and GPU. Taking advantage
of the JAX’s built-in autodi↵ framework, the gradients
of the loss function are computed analytically. Combined
with the jit functionality, this approach enables the op-
timizer to e�ciently construct an internal gradient func-
tion, thus considerably reducing computational time per
iteration.

To evaluate the performance of BFGS and ADAM op-
timizers, we simulate a Gaussian beam interacting with a
phase mask. The objective function is the mean squared
error between the detected light and the ground truth,
characterized by a Gaussian beam with a spiral phase im-

b)

d)

Figure 1. Overview and performance of XLUMINA. (a) Software’s workflow, demonstrating the integrated feedback between the AI
discovery tool and the optics simulator. Stars depict experimental blueprints with exceptional and useful properties. We start by feeding
the system an initial random set of optical parameters, which shape the hardware design on a virtual optical table. The performance of
the virtual experiment is computed by the simulator, which leads to detected light (e.g., captured images at the camera). From those
simulated outputs, the objective function (e.g., the spot size), is computed. To improve the metric of the cost function, the optimizer
adjusts the optical parameters in the initial virtual setup and the cycle is repeated. The whole process is a back-and-forth between the
simulator and the optimizer, refining the setup until a convergence is observed. (b) Average execution time (in seconds) over 100 runs,
within a resolution of 2048× 2048 pixels, for scalar and vectorial field propagation using Rayleigh-Sommerfeld (RS, VRS) and Chirped
z-transform (CZT, VCZT) algorithms in Diffractio and XLUMINA. Times for XLUMINA correspond to runs with pre-compiled jitted
functions. Our methods demonstrate enhanced computational speeds for simulating light diffraction and propagation: a factor of ×2
for RS and CZT and about ×2.5 for VRS and VCZT using the CPU. With GPU utilization, the speed increases up to two orders of
magnitude with factors of ×64 for RS, ×76 for CZT, ×80 for VRS and ×78 for VCZT. (c) Average time (in seconds) over 5 runs for
a single gradient evaluation using numerical differentiation with Diffractio’s optical simulator (blue dots) and autodiff methods (green
triangles for CPU and magenta squares for GPU) with XLUMINA’s optical simulator for different resolutions. The use of XLUMINA
with autodiff methods improves the gradient evaluation time by a factor of ×3.9 · 105 in the GPU and a factor of ×1.8 · 104 on the CPU
for resolutions of 250× 250 pixels. The superior efficiency of autodiff over traditional numerical methods allows for highly efficient
optimizations particularly employing the large high resolutions we use (up to 2048×2048 pixels). (d) Average time (in seconds) over 5
runs for convergence time, using numerical differentiation with Diffractio’s optical simulator (blue dots) and autodiff methods (green
triangles for CPU and magenta squares for GPU) with XLUMINA’s optical simulator for different resolutions. Autodiff methods on
XLUMINA improves the convergence time with respect to numerical methods by a factor of ×2.1 · 104 in the GPU and a factor of
×8.4 · 102 in the CPU for a resolution of 250 × 250 pixels. Shaded regions correspond to standard deviation values. The numerical
and autodiff methods are computed using BFGS and Adam optimizers, respectively. Further comparison across different optimizers is
presented in the Appendix section A. All the experiments were run on an Intel CPU Xeon Gold 6130 and Nvidia GPU Quadro RTX 6000.

individual optical simulations in each iteration. Thus, it is
essential to reduce the computation time by maximizing
the speed of optical simulation functions. XLUMINA is
equipped with an optics simulator which contains a diverse
set of optical manipulation, interaction and measurement
technologies. Some specific optical propagation implemen-
tations of XLUMINA are inspired by the optics framework
Diffractio (Brea, 2019). Diffractio is a high-quality, open-

source NumPy-based Python module for optics simulation
with an active developer community, and is employed in
numerous studies in optics and physics in general. We have
rewritten and optimized these optical propagation implemen-
tations leveraging JAX’s jit functionality, which allows for
highly efficient code execution, although it imposes some
restrictions such as specifying all data structures’ dimen-
sions and ensuring their immutability at compile time. On
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top of that, we developed completely new functions which
significantly expand the software capabilities, such as high-
resolution propagation methods, and numerous new optical
devices which made the current study possible. Further de-
tails on the optics simulator can be found in the Appendix
section A. We evaluate the performance of our optimized
functions against their counterparts in Diffractio. The ac-
quired run-times are shown in Fig. 1b. Clearly, our methods
significantly enhance computational speeds for simulating
light diffraction and propagation. For instance, we observe
a speedup of a factor of ×2 for RS (Rayleigh-Sommerfeld,
a general Fast Fourier Transform-based light propagation al-
gorithm) and CZT (Chirped z-transform, a speed-up version
of RS) and about ×2.5 for VRS and VCZT (the vectorized
versions of RS and CZT, respectively) using the CPU. With
GPU utilization, the speedup factors are of ×64 for RS, ×76
for CZT, ×80 for VRS and ×78 for VCZT.

To include the automated discovery feature, XLUMINA’s
optical simulator and optimizer are tied together by the loss
function, as depicted in Fig. 1a. The automated discovery
tool is designed to explore the vast parameter space encom-
passing all possible optical designs. When it comes to the
nature of the optimizer, it can be either direct (gradient-
based) or deep learning-based (surrogate models or deep
generative models, e.g., variational autoencoders (Flam-
Shepherd et al., 2022)). In this work, we adopt a gradient-
based strategy, where the experimental setup’s parameters
are adjusted iteratively in the steepest descent direction. We
first evaluate the time it takes for numerical and analytical
(auto-differentiation) methods to compute one gradient eval-
uation and their convergence times over different resolutions
and devices. For this purpose, we use two gradient-descent
techniques: the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm (Nocedal & Wright), which numerically com-
putes the gradients and higher-order derivative approxima-
tions and the Adaptive moment estimation (Adam) (Kingma
& Ba, 2017), an instance of the stochastic-gradient-descent
(SGD) method. While BFGS is part of the open-source
SciPy Python library (Virtanen et al., 2020) and operates on
the CPU, Adam is integrated within the JAX framework and
runs in both CPU and GPU. For this last, we take advantage
of JAX’s built-in autodiff framework and compute analyt-
ically the gradients of the loss function. Combined with
the jit (just-in-time) compilation functionality, this approach
enables the optimizer to efficiently construct an internal
gradient function, considerably reducing the computational
time per iteration. The acquired results are depicted in Figs.
1a and 1b. The detailed description of both evaluations
is provided in the Appendix section A. Clearly, autodiff
consistently outperforms numerical methods on the gra-
dient evaluation time by up to 4 orders of magnitude on
CPU and 5 orders on GPU. In convergence time, autodiff
demonstrates superior efficiency up to almost 3 orders of

magnitude on CPU and 4 orders on GPU. Given that cer-
tain optical elements, such as phase masks, may operate
at resolutions as high as 2048× 2048 pixels, the resulting
search space can easily expand to around 8.4 million parame-
ters. This makes the use of autodiff within GPU-accelerated
frameworks more appropriate for efficient experimentation.
Overall, the computational performance of XLUMINA high-
lights its suitability for running complex simulations and
optimizations with a high level of efficiency.

3. Large-scale discovery framework
We aim to use XLUMINA to discover new microscopy con-
cepts. In essence, discovering new experimental configura-
tions entails an hybrid discrete-continuous search problem.
The discrete aspect originates from configuring the optical
network topology, whereas the continuous part is linked to
the settings of optical elements, such as laser power and
beam splitter reflectivity. Discrete-continuous optimization
is extremely difficult computationally, therefore we invent
a way to translate this hybrid discrete-continuous optimiza-
tion problem into a purely continuous optimization problem
which can be solved with efficient gradient-based methods.
We design the quasi-universal computational ansatz illus-
trated in Fig. 2, which is designed in a way that setting
different (continuous) parameters leads to different optical
setup topologies.

Wave plate

Objective 
lens

Detector

super-SLM Mirror

Beam

Splitter

Wave plate
SLM #1

SLM #2

PBS PBS

z1 z2

super-SLM

Figure 2. General virtual optical setup for large-scale discovery
schemes. Gray boxes represent fundamental building units, each
containing a super-SLM and a wave plate positioned a distance z1
apart. These units are inter-connected through free propagation
distances z2, and beam splitters. The super-SLM is a hardware-
box-type which consists of two spatial light modulators (SLMs),
each one independently imprinting a phase pattern on the horizon-
tal and vertical polarization components of the field. The setup’s
complexity and size can be arbitrarily extended by incorporating
additional connections, building units, light sources, detectors, etc.
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Remarkably, for a very discrete approach of available param-
eters, the number of possible discrete arrangements within
this general framework scales up to ∼ 1020. Details on this
derivation can be found in the Appendix section B.1.

Now, the task of XLUMINA is to automatically discover
new superior topologies together with their parameter set-
ting, using purely continuous optimization. To achieve this,
we initialize the setups with a large and complex optical
topology, inspired by other fields that start with highly ex-
pressive initial circuits (Sim et al., 2019; Krenn et al., 2021).
From here, XLUMINA should be able to extract much more
complex solutions which humans might not have thought
about yet (Krenn et al., 2022).

3.1. Loss function

The loss function, L, is calculated as the inverse of the den-
sity of the total detected intensity over a certain threshold,
Iε. Thus, minimizing L aims to maximize the generation of
small, high intensity beams. In particular,

L =
1

Density
=

Area
Iε

(1)

where Iε is the sum of pixel intensity values greater than
the threshold value ε · imax, where 0 ≤ ε ≤ 1 and imax

corresponds to the maximum detected intensity. The Area
corresponds to the total number of camera pixels fulfilling
the same condition. The loss function L is common to all
the optical setups henceforth described. Importantly, light
gets detected across various devices. Thus, we compute the
loss function at each detector and the parameter update is
driven by the device demonstrating the minimum loss value.
This selection is performed in a fully differentiable manner.
Details on the derivation of the loss function and camera
selection are provided in the Appendix section B.2.

4. Results
In this section, we showcase the virtual optical designs gen-
erated by XLUMINA. As benchmarks, we aim to rediscover
the concepts of two foundational experiments: the beam
shaping as employed in STED microscopy (Hell & Wich-
mann, 1994), and the super-resolution technique by Dorn,
Quabis and Leuchs in Ref. (Dorn et al., 2003). Finally, we
demonstrate the discovery of a new experimental blueprint.
For all the experiments hereby conducted we set-up a dis-
covery scheme where no training data is involved. The
showcased solutions are the result from running multiple
optimizations.

4.1. Rediscovery through exploration

In this section we target XLUMINA to rediscover the afore-
mentioned SR techniques. The goal here is to discover both

the optical topology and the phase patterns to imprint onto
the light beams using the available optimizable optical pa-
rameters (i.e., SLMs, distances, beam splitter ratios and
wave plate’s angles). The detailed description of the opti-
mization processes hereby conducted are provided in the
Appendix section C.

STED microscopy (Hell & Wichmann, 1994; Hofmann
et al., 2005) is one of the first discovered techniques that
circumvent the classical diffraction limit of light. The key
idea of this technique is the use of two diffraction-limited
laser beams, one probe to activate (excite) the light emitters
of the sample and one, doughnut-shaped beam to deacti-
vate its excitation in a controlled way (depletion). Thus,
the ultimately detected light is that of the emitters laying
in the central region of the doughnut-shaped beam. This
effectively reduces the area of normal fluorescence, which
leads to super-resolution imaging. To simulate one of the
fundamental concepts of STED without having to rely on
time-dependent processes, such as the energy level relax-
ation times of the excited emitters, we perform a nonlinear
modulation of the focused light based on the Beer-Lambert
law (Mayerhöfer et al., 2020), commonly used to describe
the optical attenuation in light-matter interaction. The de-
tails of our model are provided in the Appendix section
B.3.

We initialize XLUMINA with the virtual optical table in
Supplementary Fig. 2. The loss function corresponds to
equation (1) considering the radial component of the effec-
tive beam resulting from the STED process, |Ex|2 + |Ey|2.
The discovered topology and phase patterns for STED mi-
croscopy are depicted in Figs. 3a and 3b, respectively. As
demonstrated for the original STED microscopy, the sys-
tem imprints a phase singularity onto the depletion beam
to produce a doughnut shape. In this case, however, it also
modulates the excitation beam. The radial intensity profiles
of the discovered solution and the reference experiment are
depicted in Fig. 3c.

The generation of an ultra-sharp focus is a feature that breaks
the diffraction limit in the longitudinal direction as demon-
strated by Dorn, Quabis and Leuchs in Ref. (Dorn et al.,
2003). This super-resolution is achieved when a radially
polarized beam is tightly focused (Quabis et al., 2000; Quin-
teiro et al., 2017). We initialize XLUMINA with the virtual
optical table in Supplementary Fig. 2. The loss function
corresponds to equation (1) considering the measured in-
tensity as the field’s longitudinal component, |Ez|2. The
discovered topology and phase patterns are depicted in Figs.
3d and 3e, respectively. These produce a LG2,1 Laguerre-
Gaussian mode (Rubinsztein-Dunlop et al., 2016), which
demonstrates an intensity pattern of concentric rings with
a phase singularity in its center. Surprisingly, XLUMINA
found an alternative way to imprint a phase singularity onto
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case, however, the measured intensity corresponds to the
electromagnetic field’s longitudinal component, |Ez|2.

TABLE II. Optical parameters of LCD retardance ⌘, orien-
tation ✓, propagation distances (z1 and z2) and simulated
longitudinal spot size of R. Dorn, S. Quabis and G. Leuchs
[17], and the identified solution. The spot size is computed as
� = (⇡/4)FWHMxFWHMy. The discovered approach breaks
the di↵raction limit demonstrating similar spot size as the
simulated for Ref. [17].

⌘ (rad) ✓ (rad) z1 (mm) z2 (mm)

Dorn, R. et. al. (2003) 0 0 40 3000
Discovered solution -1.23 2.32 800 710

Spot size / �2

Dorn, R. et. al. (2003) 0.4360
Discovered solution 0.5081
Di↵raction-limited 0.6853

Among the obtained results we identified an interest-
ing solution corresponding to " = 0.7. This solution
was achieved after roughly 2 hours on a GPU using the
ADAM optimizer with a step size of 0.03. The stop-
ping condition for the optimizer was checked every 100
steps. The loss value evolution over the number of itera-
tion steps is depicted in Extended Data Fig. 9c.

The identified optical parameters are displayed in Ta-
ble II. The discovered phase patterns, depicted in Fig. 5c,

produce an LG2,1 Laguerre-Gaussian mode [46], which
demonstrates an intensity pattern of concentric rings
with a phase singularity in its center. The detected
light beam is on axis and demonstrates a radial inten-
sity doughnut shape and a longitudinal intensity with a
spot size slightly larger than the simulated for R. Dorn,
S. Quabis and G. Leuchs (2003) [17] (see Table II). The
longitudinal intensity profiles of Dorn, R., Quabis, S. and
Leuchs, G. (2003) and the discovered solution are de-
picted in Fig. 5e (represented by dotted black and green
respectively). For comparison, we also feature the radial
intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
identified solution surpasses the di↵raction limit. Re-
markably, the AI found an alternative way to imprint a
phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane.

IV. TOWARDS LARGE-SCALE DISCOVERY

The results we have presented thus far predominantly
involve optical setups characterized by a limited num-
ber of optical elements. This was crucial for our pur-
pose to demonstrate how XLuminA can compute and
e�ciently rediscover known techniques in advanced mi-
croscopy. However, our ambition extends beyond the op-
timization. We aim to use XLuminA to discover new
microscopy concepts. To achieve this, we initialize the se-
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Among the obtained results we identified an interest-
ing solution corresponding to " = 0.7. This solution
was achieved after roughly 2 hours on a GPU using the
ADAM optimizer with a step size of 0.03. The stop-
ping condition for the optimizer was checked every 100
steps. The loss value evolution over the number of itera-
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longitudinal intensity profiles of Dorn, R., Quabis, S. and
Leuchs, G. (2003) and the discovered solution are de-
picted in Fig. 5e (represented by dotted black and green
respectively). For comparison, we also feature the radial
intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
identified solution surpasses the di↵raction limit. Re-
markably, the AI found an alternative way to imprint a
phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane.
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tation ✓, propagation distances (z1 and z2) and simulated
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[17], and the identified solution. The spot size is computed as
� = (⇡/4)FWHMxFWHMy. The discovered approach breaks
the di↵raction limit demonstrating similar spot size as the
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Among the obtained results we identified an interest-
ing solution corresponding to " = 0.7. This solution
was achieved after roughly 2 hours on a GPU using the
ADAM optimizer with a step size of 0.03. The stop-
ping condition for the optimizer was checked every 100
steps. The loss value evolution over the number of itera-
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Leuchs, G. (2003) and the discovered solution are de-
picted in Fig. 5e (represented by dotted black and green
respectively). For comparison, we also feature the radial
intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
identified solution surpasses the di↵raction limit. Re-
markably, the AI found an alternative way to imprint a
phase singularity onto the beam and produce pronounced
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TABLE II. Optical parameters of LCD retardance ⌘, orien-
tation ✓, propagation distances (z1 and z2) and simulated
longitudinal spot size of R. Dorn, S. Quabis and G. Leuchs
[17], and the identified solution. The spot size is computed as
� = (⇡/4)FWHMxFWHMy. The discovered approach breaks
the di↵raction limit demonstrating similar spot size as the
simulated for Ref. [17].
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Among the obtained results we identified an interest-
ing solution corresponding to " = 0.7. This solution
was achieved after roughly 2 hours on a GPU using the
ADAM optimizer with a step size of 0.03. The stop-
ping condition for the optimizer was checked every 100
steps. The loss value evolution over the number of itera-
tion steps is depicted in Extended Data Fig. 9c.

The identified optical parameters are displayed in Ta-
ble II. The discovered phase patterns, depicted in Fig. 5c,

produce an LG2,1 Laguerre-Gaussian mode [46], which
demonstrates an intensity pattern of concentric rings
with a phase singularity in its center. The detected
light beam is on axis and demonstrates a radial inten-
sity doughnut shape and a longitudinal intensity with a
spot size slightly larger than the simulated for R. Dorn,
S. Quabis and G. Leuchs (2003) [17] (see Table II). The
longitudinal intensity profiles of Dorn, R., Quabis, S. and
Leuchs, G. (2003) and the discovered solution are de-
picted in Fig. 5e (represented by dotted black and green
respectively). For comparison, we also feature the radial
intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
identified solution surpasses the di↵raction limit. Re-
markably, the AI found an alternative way to imprint a
phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane.
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The results we have presented thus far predominantly
involve optical setups characterized by a limited num-
ber of optical elements. This was crucial for our pur-
pose to demonstrate how XLuminA can compute and
e�ciently rediscover known techniques in advanced mi-
croscopy. However, our ambition extends beyond the op-
timization. We aim to use XLuminA to discover new
microscopy concepts. To achieve this, we initialize the se-
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Figure 3. Rediscovery of optical solutions within the large-scale framework. The parameter space is defined by 3 super-SLMs (i.e., 6
SLMs), 9 beam splitter ratios, 8 distances and 3 wave plates (with variable phase retardance η and orientation angle θ). The values of
the identified optical parameters are specified in the Appendix section C. (a) Discovered optical topology for STED microscopy (Hell
and Wichmann, 1994). The parameter space corresponds to ∼ 4 million optical parameters. (b) Discovered phase patterns for sSLM in
(1) and sSLM in (2). (c) Radial intensity profile in horizontal beam section: excitation (green), depletion (orange), and super-resolution
effective STED beam (dashed blue line). The data corresponding to the original STED experiment - i.e., computed using a spiral phase
mask - are indicated with dotted lines. Lateral position indicates lateral distance from the optical axis. (d) Discovered virtual optical setup
topology for Dorn, Quabis and Leuchs (2003). The parameter space corresponds to ∼ 6.2 million optical parameters. (c) Discovered
phase patterns for sSLM in (2). (d) Normalized longitudinal intensity profile for Dorn, Quabis, and Leuchs (2003) and the identified
solution (black dotted, and green lines, respectively) and radial intensity profile of the diffraction-limited linearly polarized beam (orange
dotted line). Lateral position indicates lateral distance from the optical axis. The spot size is computed as ϕ = (π/4)FWHMxFWHMy ,
where FWHM denotes for Full Width Half Maximum. The discovered approach breaks the diffraction limit with a spot size close to the
reference. Remarkably, it does not feature side lobes (indicated with a gray arrow), which can limit practical imaging techniques.

the beam and produce pronounced longitudinal components
on the focal plane. The longitudinal intensity profiles of
the discovered solution and the reference experiment are
depicted in Fig. 3f. Remarkably, the identified solution
demonstrates a spot size close to the reference and does
not feature side lobes, which can limit practical imaging
techniques.

Importantly, we are not restricted to the use of 3 × 3 opti-
cal grids. We further test our framework by conducting a
pure topological optimization for Dorn, Quabis and Leuchs
(2003), this time within a 6× 6 optical system containing
four SLMs displaying pre-defined phase masks. The goal
is to discover the optical topology using the available opti-
mizable optical parameters: beam splitter ratios, distances
and wave plate’s angles. The initial virtual setup and the
displayed phase masks are depicted in Supplementary Figs.

3a and 3b, respectively. The loss function corresponds to
equation (1) considering the measured intensity as the field’s
longitudinal component, |Ez|2. The discovered topology
is depicted in Fig. 4a. The longitudinal intensity profiles
of the discovered solution and the reference experiment
are depicted in Fig. 4b. Clearly, the system successfully
rediscovered the reference experiment conducting a pure
topological discovery within a large-scale framework.

In all cases we successfully demonstrate how XLUMINA
can explore different experimental topologies and optical
solutions in a fully continuous manner: by adjusting the
optical parameters, (e.g., beam splitter ratios), the optimizer
can “turn off ” the optical paths.
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case, however, the measured intensity corresponds to the
electromagnetic field’s longitudinal component, |Ez|2.

TABLE II. Optical parameters of LCD retardance ⌘, orien-
tation ✓, propagation distances (z1 and z2) and simulated
longitudinal spot size of R. Dorn, S. Quabis and G. Leuchs
[17], and the identified solution. The spot size is computed as
� = (⇡/4)FWHMxFWHMy. The discovered approach breaks
the di↵raction limit demonstrating similar spot size as the
simulated for Ref. [17].
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Dorn, R. et. al. (2003) 0 0 40 3000
Discovered solution -1.23 2.32 800 710

Spot size / �2

Dorn, R. et. al. (2003) 0.4360
Discovered solution 0.5081
Di↵raction-limited 0.6853

Among the obtained results we identified an interest-
ing solution corresponding to " = 0.7. This solution
was achieved after roughly 2 hours on a GPU using the
ADAM optimizer with a step size of 0.03. The stop-
ping condition for the optimizer was checked every 100
steps. The loss value evolution over the number of itera-
tion steps is depicted in Extended Data Fig. 9c.

The identified optical parameters are displayed in Ta-
ble II. The discovered phase patterns, depicted in Fig. 5c,

produce an LG2,1 Laguerre-Gaussian mode [46], which
demonstrates an intensity pattern of concentric rings
with a phase singularity in its center. The detected
light beam is on axis and demonstrates a radial inten-
sity doughnut shape and a longitudinal intensity with a
spot size slightly larger than the simulated for R. Dorn,
S. Quabis and G. Leuchs (2003) [17] (see Table II). The
longitudinal intensity profiles of Dorn, R., Quabis, S. and
Leuchs, G. (2003) and the discovered solution are de-
picted in Fig. 5e (represented by dotted black and green
respectively). For comparison, we also feature the radial
intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
identified solution surpasses the di↵raction limit. Re-
markably, the AI found an alternative way to imprint a
phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane.

IV. TOWARDS LARGE-SCALE DISCOVERY

The results we have presented thus far predominantly
involve optical setups characterized by a limited num-
ber of optical elements. This was crucial for our pur-
pose to demonstrate how XLuminA can compute and
e�ciently rediscover known techniques in advanced mi-
croscopy. However, our ambition extends beyond the op-
timization. We aim to use XLuminA to discover new
microscopy concepts. To achieve this, we initialize the se-
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and PM#2) remain fixed during the optimization. The values of the identified optical parameters are specified in the Appendix section C.
(a) Discovered topology for Dorn, Quabis and Leuchs (2003). The phase mask #1 corresponds to the polarization converter originally
demonstrated in Dorn, Quabis, and Leuchs (2003). The minimum value of the loss is demonstrated in detector #3. (b) Normalized
longitudinal intensity profile for the reference and the identified solution (black dotted, and green lines, respectively). Lateral position
indicates lateral distance from the optical axis. The spot size is computed as ϕ = (π/4)FWHMxFWHMy , where FWHM denotes for
Full Width Half Maximum. The system successfully rediscovered the reference experiment.

4.2. Discovery of a new experimental blueprint

Finally, we demonstrate the capability of XLUMINA for
genuine discovery. We initialize the system in the virtual
setup depicted in Supplementary Fig. 2. The details of the
optimization are provided in the Appendix section D. The
loss function corresponds to equation (1) considering the
total intensity of the effective beam resulting from the STED
process, |Ex|2 + |Ey|2 + |Ez|2. The discovered topology
and identified phase patterns are depicted in Figs. 5a and
5b, respectively. The detected intensity topologies reveal
the system generates a doughnut-shaped and a Gaussian-
like beams. We compute the vertical cross-section of the
focused intensity patterns for both beams and the result-
ing effective beam (green, orange and dotted blue lines in
Fig. 5c, respectively). The horizontal cross-section exhibits
analogous features. We further compare the effective beam
intensity with the simulated STED reference (Hell & Wich-
mann, 1994) and the the discovered Gaussian-like beam
with the simulated sharp focus reference (Dorn et al., 2003).
The obtained results are showcased in Fig. 5d. Strikingly,
the discovered solution exploits the underlying physical
concepts of two aforementioned optical systems. In one
hand, it generates a doughnut-shaped “depletion” beam as
demonstrated in Ref. (Hell & Wichmann, 1994). On the
other hand, it generates a Gaussian-like “excitation” signal
with a sharper focus, achieving smaller effective intensity
spots resulting from the STED process. The discovered so-
lution showcases an effective beam profile which is sharper
than the simulated STED reference. This occurs due to the
enhanced sharpening of the longitudinal component of the

excitation beam, which demonstrates similar profile as the
simulated sharp focus reference (Dorn et al., 2003). To the
best of our knowledge, this technique has never been dis-
cussed in the scientific literature before. Regardless of its
physical realizability, this solution demonstrates the ability
of XLUMINA to uncover interesting solutions within highly
complex systems.

5. Discussion and outlook
In this work we present XLUMINA, a highly efficient
computational framework with seamlessly integrated auto-
differentiation capabilities, just-in-time compilation, auto-
matic vectorization and GPU compatibility, for the discov-
ery of novel optical setups in super-resolution microscopy.
We demonstrate the high-performance and efficiency of
XLUMINA with a computational speed-up of × 2.1 · 104 on
GPU, and × 8.4 ·102 on CPU, compared to standard numer-
ical optimization methods. We further prove the accuracy
and reliability of our methods by successfully rediscover-
ing two foundational super-resolution techniques within a
large-scale discovery framework. More significantly, XLU-
MINA identified a novel experimental blueprint that breaks
the diffraction limit by integrating the physical principles of
two well-known super-resolution techniques.

Having laid the groundwork with XLUMINA for an effi-
cient, versatile optics simulator, many other microscopy and
imaging techniques follow as a natural extension. For exam-
ple, by enabling time information using algorithms iterating
over the simulator, light scattering of probe samples can
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� = (⇡/4)FWHMxFWHMy. The discovered approach breaks
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Among the obtained results we identified an interest-
ing solution corresponding to " = 0.7. This solution
was achieved after roughly 2 hours on a GPU using the
ADAM optimizer with a step size of 0.03. The stop-
ping condition for the optimizer was checked every 100
steps. The loss value evolution over the number of itera-
tion steps is depicted in Extended Data Fig. 9c.

The identified optical parameters are displayed in Ta-
ble II. The discovered phase patterns, depicted in Fig. 5c,

produce an LG2,1 Laguerre-Gaussian mode [46], which
demonstrates an intensity pattern of concentric rings
with a phase singularity in its center. The detected
light beam is on axis and demonstrates a radial inten-
sity doughnut shape and a longitudinal intensity with a
spot size slightly larger than the simulated for R. Dorn,
S. Quabis and G. Leuchs (2003) [17] (see Table II). The
longitudinal intensity profiles of Dorn, R., Quabis, S. and
Leuchs, G. (2003) and the discovered solution are de-
picted in Fig. 5e (represented by dotted black and green
respectively). For comparison, we also feature the radial
intensity profile of the di↵raction-limited linearly polar-
ized beam (dotted orange line in Fig. 5e). Clearly, the
identified solution surpasses the di↵raction limit. Re-
markably, the AI found an alternative way to imprint a
phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane.
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croscopy. However, our ambition extends beyond the op-
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to the super-SLMs (sSLM) in (1) and (2). (c) Total intensity (|Ex|2 + |Ey|2 + |Ez|2) horizontal cross-section of the detected light beams
of 650 nm (orange), 532 nm (green), and effective beam emulating stimulated emission (dashed blue). (d) Horizontal cross-section of the
normalized total intensity of the effective beam from the discovered solution (blue), the simulated STED reference (dashed red), and the
simulated reference (dotted black) using 532 nm wavelength. The discovered solution outperforms both simulated references for STED
microscopy and the sharp focus from Dorn, Quabis and Leuchs (2003).

be easily implemented, enabling systems such as iSCAT
(Taylor & Sandoghdar, 2019), structured illumination mi-
croscopy (Gustafsson, 2005b), and localization microscopy
(Lelek et al., 2021). Also, inspired by the work in (Nehme
et al., 2020), we could leverage similar approaches to op-
timize hardware-software discovery within our extensive
framework. Additionally, one could formulate interesting
experiments (e.g., in low light conditions) where the use
of noise or loss sources (e.g., absorption, vibration, etc.)
become relevant.

Additionally, XLUMINA provides already the basis for an
expansion to complex quantum optics microscopy tech-
niques (Taylor et al., 2013) or other quantum imaging tech-
niques (Moreau et al., 2019), as a quantum of light (i.e.,
a photon) is nothing else than an excitation of the modes
of the electromagnetic field. Looking further into the fu-

ture, one can expect that matter-wave beams (governed by
Schrödinger’s equation, which is closely related to the parax-
ial wave equation, a special case of the electromagnetic
field) can be simulated in the same framework. This might
allow for the AI-based design of microscopy techniques
which could harness entirely new ideas combining light
and complex matter wave beams such as electron-beams
(Chirita Mihaila et al., 2022; Kalinin et al., 2022; 2023) or
coherent beams of high-mass particles (Kiałka et al., 2022).
Ultimately, bringing so far unexplored concepts from di-
verse areas of physics to microscopy applications is at the
heart of AI-driven discovery in this area, and we hope that
this work constitutes a first step in this direction.
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Impact Statement
This paper presents work whose goal is to advance the field
of AI-driven discovery of new optics solutions with a spe-
cific focus on super-resolution microscopy. There are many
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A. Features and performance of XLUMINA
In this section we provide the detailed description of XLUMINA’s simulation features and performance. The simulator
enables, among many other features, to define light sources (of any wavelength and power), phase masks (i.e., spatial
light modulators, SLMs), polarizers, variable retarders (e.g., wave plates, WPs), diffraction gratings, and high numerical
aperture (NA) lenses to replicate strong focusing conditions. Light propagation and diffraction is simulated by two methods,
each available for both scalar and vectorial regimes: the fast-Fourier-transform (FFT) based numerical integration of the
Rayleigh-Sommerfeld (RS) diffraction integral (Shen & Wang, 2006; Ye et al., 2013) and the Chirped z-transform (CZT)
(Hu et al., 2020). The CZT is an accelerated version of the RS algorithm, which allows for arbitrary selection and sampling
of the region of interest. These algorithms are based on the FFT and require a reasonable sampling for the calculation to be
accurate (Li et al., 2002). In our simulations we consider light sources emitting Gaussian beams of 1.2 mm beam waist. To
avoid possible boundary-generated artifacts during the simulation, we define these beams in larger computational spaces of
4 mm or 5 mm. Thus, the pixel resolutions often span 1024× 1024, or 2048× 2048.

Some functionalities of XLUMINA’s optics simulator (e.g., optical propagation algorithms, planar lens or amplitude masks)
are inspired in an open-source NumPy-based Python module for diffraction and interferometry simulation, Diffractio (Brea,
2019), although we have rewritten and modified these approaches to combine them with JAX just-in-time (jit) functionality.
In essence, jit compilation optimizes sequences of operations together and runs them at once. For this purpose, the first run of
a jitted function builds an abstract representation of the sequence of operations specified by the function. This representation
encodes the shape and the dtype of the arrays - but is agnostic to the values of such arrays. If the input shapes and dtypes are
not modified, the abstract structure of the function can be then re-used for subsequent runs, without re-compilation, which
allows to execute the subsequent calls faster. However, if the input shape or dtype is modified, the function automatically
gets re-compiled. This will cause an extra overhead time due to the extraction of a new abstract structure of the function for
the new shapes/dtypes. On top of that, we developed completely new functions (e.g., beam splitters, WPs or propagation
through high NA objective lens with CZT methods, to name a few) which significantly expand the software capabilities. The
most important hardware addition on the optical simulator are the SLMs, each pixel of which possesses an independent (and
variable) phase value. They serve as a universal approximation for phase masks, including lenses, and offer a computational
advantage: given a specific pixel resolution, they allow for unrestricted phase design selection. Such flexibility is crucial
during the parameter space exploration, as it allows the software to autonomously probe all potential solutions. In addition,
we defined under the name of super-SLM (sSLM) a hardware-box-type which consists of two SLMs, each one independently
imprinting a phase mask on the horizontal and vertical polarization components of the field.

To evaluate the performance of numerical and auto-differentiation methods we chose to use BFGS (from SciPy’s Python
library) and Adam (included in the JAX library) as optimizers. Further comparison including SGD (Stochastic-Gradient-
Descent), AdaGrad (Adaptive Gradient) and AdamW (Adam with weight decay) is presented in Supplementary Fig.
1.

As the optical system, we set-up a Gaussian beam propagating over a distance z and interacting with a phase mask. The
objective function is the mean squared error between the detected light and the ground truth, characterized by a Gaussian
beam with a spiral phase imprinted on its wavefront. We initialize the system with an arbitrary phase mask configuration.
We first evaluate the computational time for a single gradient evaluation for numerical and autodiff methods across different
computational window sizes (from 10 × 10 up to 500 × 500 pixels) and devices (CPU and GPU). We keep the default
settings for BFGS. For Adam, the step size is set to 0.1. The optimization process is terminated if there is no improvement
in the loss value (meaning it has not decreased below the best value recorded), over 50 consecutive iteration steps. For
each resolution window, we collect the convergence time of both optimizers and divide it by the total number of gradient
evaluations for BFGS and the total number of steps for Adam. The acquired gradient evaluation times correspond to the
mean value over 5 runs. Obtained results are depicted in Fig. 1a. It is clear how autodiff outperforms numerical methods by
up to 4 orders of magnitude on CPU and 5 orders of magnitude when running in the GPU. The advantage over larger sizes is
clear given that we run simulations with resolutions of 1024× 1024 and 2024× 2048 pixels.

We then conduct the evaluation of the convergence time for both methods. We keep the aforementioned settings for the
optimizers. We initialize the systems 5 times and compute their mean value. The acquired results are depicted in Fig. 1b.
On the CPU, numerical methods exhibit exponential scaling in convergence time, reaching about 4.5 · 104 seconds (roughly
12 hours) for 250× 250 pixel resolution. In contrast, autodiff demonstrates superior efficiency, reducing it to roughly 53
seconds. GPU optimization performance is even more pronounced, reaching convergence in 0.24 seconds for 250× 250
pixels, and 16 seconds for a resolution of 500× 500.
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a)
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Supplementary Figure 1. Performance of XLUMINA (auto-differentiation) compared to Diffractio (numerical methods) across different
resolutions and optimizers in (a) single gradient evaluation and (b) convergence time. Data corresponds to the average time over 5 runs.
Numerical differentiation is computed using Diffractio’s optical simulator and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer
(black dots) and auto-differentiation (triangles for CPU and squares for GPU) on XLUMINA. The Stochastic-Gradient-Descent (SGD),
Adaptive Gradient (AdaGrad), Adaptive moment estimation with weight decay (AdamW) and Adaptive moment estimation (Adam)
correspond to blue (dash-dot line), orange (dotted line), green (dash line) and magenta (continuous line), respectively. Shaded regions
correspond to standard deviation values. The learning rate is set to 0.1 and is common to all the optimizers. For AdamW, the weight
decay is set to 10−4. The stopping condition is common to all the frameworks: the optimization is terminated if there is no improvement
in the loss value (i.e., it has not decreased below the best value recorded), over 500 consecutive iteration steps. This condition is checked
every 100 steps. The use of XLUMINA with autodiff methods improves the gradient evaluation time by a factor of ×2.4 · 105 in the GPU
and a factor of ×1.2 · 104 on the CPU for resolutions of 150× 150 pixels. This behavior is common to all the tested optimizers (Adam,
AdamW, SGD and AdaGrad). When evaluating the convergence time, the use of Autodiff methods on XLUMINA using the Adam and
AdamW optimizers improve the performance with respect to numerical methods by a factor of ×1.1 · 104 and ×6.5 · 102 in the GPU,
respectively, for a resolution of 150× 150 pixels. The performance of Adam and AdamW in the CPU demonstrates factors of ×5.8 · 102
and ×2.9 · 101, respectively, for the same resolution. Remarkably, the use of Diffractio with numerical methods (BFGS) outperforms
both AdaGrad and SGD in convergence time. In particular, numerical methods outperform AdaGrad by a factor of ×1.53 in the GPU and
×14.14 in the CPU, for a resolution of 150× 150 pixels. Similar behavior is demonstrated for SGD: numerical methods outperform it by
a factor of ×1.50 in the GPU and ×43.50 in the CPU, for a resolution of 150 × 150 pixels. Overall, the use of Autodiff methods (in
particular, using Adam or AdamW) within GPU-accelerated frameworks is a more appropriate choice to conduct efficient optimization.

B. Large-scale discovery framework
In this section we detail the methodology for the optimizations conducted using our quasi-universal computational ansatz, a
purely continuous framework. We first discuss the enormous search space corresponding to large-scale optical setups. Then,
we provide the derivation of the loss function in equation (1) and our simulated emission depletion model.

B.1. The large-scale space

The large-scale optical setup depicted in Fig. 2 consists 6 light sources that emit linearly polarized Gaussian beams with
different wavelengths (e.g., 625 nm, 530 nm and 470 nm). Through 82 vectorial propagation (vectorial Rayleigh-Sommerfeld,
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VRS), these beams interact with a total of 9 beam splitters, 24 sSLMs (i.e., 48 SLMs), 24 wave plates, and get ultimately
detected by 6 high NA objective lenses focusing on light detectors.

We analyze the number of possible discrete arrangements within this general optical setup. For a very discrete approach of
beam splitter ratios (either transmit, reflect or have light in both arms) and only allowing the SLMs and wave plates (WP) to
be switched ON/OFF (i.e., displaying a constant zero phase or adding zero retardance to the incoming light), the number of
possible discrete layouts is of

NDiscrete layouts = 39BS · 248SLM · 224WP = 2 · 1020. (2)

All these are considering that the available beam splitter ratios are restricted to 3 values and the SLMs and wave plates to
turn ON/OFF, respectively. In practice, beam splitter ratios and phase values are continuous variables and can take any value
(from 0 to 1 and −π to π, respectively) which increases even more the dimension of our search space.

In the following Table 1 we present a summary detailing the main properties of the optimizations conducted within our
large-scale ansatz: the number of tunable elements, the dimension of the parameter space and the available number of
topologies (for a very discrete approach).

Table 1. Outline of the main properties of the five digital experiments conducted within our large-scale ansatz. Displays the total number
of tunable elements, the dimension of the parameter space and the available topologies (for a very discrete approach).

Experiment
(Fig. #)

# tunable
elements

Parameter
space

# available
topologies

Fig. 3a
Fig. 3d

26 ∼ 4 million
107∼ 6.3 million

Fig. 4 50 52 1018

Fig. 5 26 ∼ 4 million 107

B.2. Loss function derivation

The loss function, L, is inversely proportional to the total detected intensity density that is above a specified intensity
threshold, Iε. Thus, minimizing L aims to maximize the generation of small, high intensity beams. In particular, it reads

L =
1

Density
=

Area
Iε

. (3)

The total intensity Iε above the threshold is computed as

Iε =

N∑
k,l

iε(k, l) , (4)

where N is the total number of pixels in the camera’s sensor and iε(k, l) represents the intensity value at each pixel once the
threshold condition is applied. This condition is defined as follows:

iε(k, l) =

{
idet(k, l) if idet(k, l) > εimax ,

0 otherwise ,
(5)

where idet(k, l) is the intensity value at the i-th row and j-th column in the detected 2D intensity pattern, εimax (with
0 ≤ ε ≤ 1) is the threshold value, with imax being the maximum intensity value in the entire 2D detector array.

The Area is determined using a variation of the Heaviside function Θ applied to iε, quantifying the area where the intensity
is above the threshold:

Area =

N∑
k,l

Θ(iε(k, l)) , (6)

where N is the total number of pixels in the camera’s sensor and Θ(iε(k, l)) is defined as:

Θ(iε(k, l)) =

{
1 if iε(k, l) > 0 ,

0 otherwise .
(7)
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Therefore, the loss function can be read as follows:

L =
1

Density
=

Area
Iε

=

∑N
k,l Θ(iε(k, l))∑N

k,l iε(k, l)
. (8)

Importantly, the camera pixel selection in equation (7) is a discrete operation. However, JAX offers some interesting
capabilities due to its integrated autodiff framework. In particular, control flow operations in JAX are supported and
differentiable. Therefore, we compute the loss function in a fully differentiable manner using jax.numpy.where().

Crucially, light is detected across six different devices. Therefore, we compute the loss function at each detector and the
parameter update is driven by the detector that shows the minimum value of the loss. We conduct this selection by using a
differentiable, smooth approximation using jax.nn.logsumexp() as:

def softmin(l_det, beta):
return - logsumexp(-beta * l_det)/ beta,

where l det is the array of the loss values corresponding to each detector and beta is the strength of the modulation.

B.3. Stimulated emission depletion model

STED microscopy (Hell & Wichmann, 1994; Hofmann et al., 2005) is based on excitation and spatially targeted depletion of
fluorophores. In order to achieve this, a Gaussian-shaped excitation beam and a doughnut-shaped depletion beam (generated
by imprinting a spiral phase into its wavefront) are concentrically overlapped. The depletion beam has zero intensity in the
center, where the excitation beam has its maximum. Fluorophores that are not in the center of the beams are forced to emit
at the wavelength of the depletion beam. Their emission is spectrally filtered out. Only fluorophores in the center of the
beams are allowed to fluoresce normally, and only their emission is ultimately detected. This effectively reduces the area of
normal fluorescence, which leads to super-resolution imaging.

We simulate one of the fundamental concepts of STED microscopy without having to rely on time-dependent processes
related to absorption and fluorescence. To do so, we perform a nonlinear modulation of the intensity of the excitation and
depletion beams based on the Beer-Lambert law (Mayerhöfer et al., 2020). We define the effective fluorescence that would
ultimately be detected as:

Ieff = Iex

[
1− β

(
1− e−(Idep/Iex)

)]
, (9)

where Iex and Idep correspond to the excitation and depletion intensities, respectively, and 0 ≤ β ≤ 1 captures the quenching
efficiency of the depletion beam. This expression bounds the effect of the depletion beam such that scenarios with negative
effective intensity or unrealistically high values are avoided. In particular, assuming a perfect efficiency of the depletion
beam in suppressing the excitation (i.e., β = 1), we obtain an expression resembling the Beer-Lambert law:

Ieff = Iex · e−(Idep/Iex) . (10)

Thus, the effective detected light falls off exponentially with the intensity ratio Idep/Iex. In the limit case where there is
no excitation intensity, Iex = 0, the detected light is zero as well, Ieff = 0. If there is no depletion intensity, Idep = 0, the
detected light corresponds to the excitation beam Ieff = Iex. The trivial case of null efficiency in the quenching, β = 0, leads
to the same result.

To evaluate the nonlinear effect we consider β = 1 and Idep = 1
2Iex. From equation (9) we obtain

Ieff = Iexe
−1/2 ≈ 0.6Iex . (11)

Now, by slightly increasing the depletion energy, e.g., Idep = 3
2Iex, it reads

Ieff = Iexe
−3/2 ≈ 0.2Iex . (12)

Therefore, a small change in the depletion energy causes a large effect in the effective intensity. As a further example, if we
set an intermediate efficiency of β = 0.5 and Idep = 1

2Iex we obtain

Ieff = Iex

[
1 + e−1/2

2

]
≈ 0.8Iex . (13)
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which clearly demonstrates the effect of diminishing the efficiency of the suppression. Overall, we successfully imprinted
the nonlinear behavior of the quenching for different range of effectiveness, achieving a realistic, bounded physical model
for STED.

C. Rediscovery through exploration
We task XLUMINA to rediscover the super-resolution techniques of STED microscopy (Hell & Wichmann, 1994) and Dorn,
Quabis and Leuchs (Dorn et al., 2003). For this purpose we build the 3× 3 optical setup depicted in Supplementary Fig. 2.

It consists of six light sources emitting linearly polarized Gaussian beams of wavelengths 650 nm and 532 nm. Three building
blocks, which contain one super-SLM (i.e., two SLMs imprinting independent phase masks to orthogonal polarization
states) and a wave plate separated a distance z, are placed within the diagonal of the grid (grey boxes in Supplementary Fig.
2). Light gets ultimately detected across six detectors. As discussed in the previous Appendix section B.2, the loss function
is computed at each detector, the parameter update is driven by the device demonstrating the minimum value. This selection
is conducted in a fully differentiable manner using jax.nn.logsumexp().

z1 + z2 z3 + z4 z5 z6

z7

z8

z7 z7

Detector #1

BS #7

sSLM (3)

Detector #2

Detector #3
BS #8 BS #9
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z1 z2
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BS #6BS #5BS #4

BS #1 BS #2 BS #3

Detector #6Detector #5Detector #4

LS #1 LS #2 LS #3

LS #4

LS #5

LS #6

Supplementary Figure 2. Initial virtual optical setup utilized for rediscover SR-techniques and discover a new experimental blueprint. It
features light sources that emit Gaussian beams with wavelengths of 650 nm and 532 nm linearly polarized at 45o. Gray boxes, numbered
from (1) to (3), represent the building units, each comprising one super-SLM (sSLM) and one wave plate (WP). Distances are denoted as
zi where i = 1, ..., 8. After interacting with a high NA objective lens (of NA= 0.9), light gets detected across six detectors (#1 - #6)
with 0.05µm pixel size screen. The parameter space (∼ 4 million optical parameters) contains three sSLM, four wave plates (WPs) with
variable phase retardance η and orientation angle θ, eight distances and nine beam splitter ratios. For Dorn, Quabis and Leuchs (2003), all
the light sources are set to emit 635 nm wavelength and the resolution is set to 1024× 1024 pixels with a computational pixel size of 4.8
µm.

We first target XLUMINA to rediscover the concept of STED microscopy within the general setup in Supplementary Fig.
2. The parameter space (∼ 4 million parameters) corresponds to three super-SLMs (i.e., 6 SLMs) with a resolution of
824 × 824 pixels with a pixel size of 6.06µm, three wave plates, eight distances and nine beam splitter ratios. The loss
function corresponds to equation (1), in this instance considering the radial intensity of the effective light emerging from the
STED process, |Ex|2 + |Ey|2, and ε = 0.5. We simulate the stimulated emission depletion effect using equation (9) with
the efficiency set to β = 1. We set-up the AdamW optimizer with a learning rate of 10−3 and a weight decay of 10−2. The
system is initialized with random optical parameters with values between 0 and 1. The optimization is terminated if there
is no improvement in the loss value over 500 consecutive iteration steps. This condition is checked every 100 steps. The
system converged (in roughly 1.3 hours using a GPU) into the topology highlighted in Fig. 3a, demonstrating the smallest
loss value in the detector #2. The identified optical parameters correspond to: the wave plates, in radians (1): η = −1.39,
θ = −1.64, and (2): η = −1.61, θ = −0.86. The propagation distances (in cm) are z1 = 59.52, z2 = 10.14, z3 = 76.36,
z4 = 17.93, z5 = 37.07, z6 = 65.95, and z7 = 38.68. The beam splitter ratios, in [Transmittance, Reflectance] pairs:
BS#1: [0.000, 0.999], BS#2: [0.201, 0.799], BS#5: [0.000, 0.999], and BS#6: [0.999, 0.000]. The setup topology is
retrieved from detector #2 following the identified beam splitter ratios across the system: BS#6 has 99.9% transmittance,
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which implies that light is directly is coming from BS#5. In turn, BS#5 has a reflectance of 99.9% which redirects
light from BS#2, which has a transmittance of 79.9%. This already defines light source #2 as the emitter of the green
(excitation) beam. Then, the remaining light comes from BS#1 which shows a 99.9% reflectance, meaning that the red
light comes from source #1.

To rediscover the concept used in Dorn, Quabis and Leuchs (Dorn et al., 2003), we initialize the system using the general
setup in Supplementary Fig. 2. This time, however, the light sources emitting 532 nm wavelength are switched to emit 650
nm. The parameter space (∼ 6.2 million parameters) corresponds to three super-SLMs (i.e., 6 SLMs) with a resolution
of 1024 × 1024 pixels with a pixel size of 4.8µm, three wave plates, eight distances and nine beam splitter ratios. The
loss function corresponds to equation (1), in this instance considering the intensity from the longitudinal component of
the electric field, |Ez|2, and ε = 0.7. We set-up the AdamW optimizer with a learning rate of 0.05 and a weight decay of
10−5. The system is initialized with random optical parameters with values between 0 and 1. The optimization is terminated
if there is no improvement in the loss value over 500 consecutive iteration steps. This condition is checked every 100
steps. The system converged (in roughly 35 minutes using a GPU) into the topology highlighted in Supplementary Fig. 3d,
demonstrating the smallest loss value in the detector #6. The identified optical parameters correspond to: the wave plate’s
η = 1.51, θ = 3.95; propagation distances (in cm): z3 = 20.49, z4 = 63.26, z7 = 47.92 and z8 = 31.33. The beam splitter
ratios, in [Transmittance, Reflectance] pairs: BS#2: [0.999, 0.000], BS#5: [0.000, 0.999], BS#6: [0.000, 0.999], and
BS#9: [0.999, 0.000]. As for the previous example, the discovered topology can be identified from the beam splitter ratios:
starting from detector #6, BS#9 has 99.9% transmittance, which implies that light is directly is coming from BS#6. In
turn, BS#6 has a reflectance of 99.9%. This means that light has interacted with BS#5 and gone through the sSLM and
WP. Then, BS#5 has has a reflectance of 99.9%, which defines the incoming light at BS#2. This, in turn, shows a 99.9%
transmittance, meaning that light comes from the light source #2.

Importantly, we are not restricted to the use of 3 × 3 optical grids. Thus, we conduct the same optimization procedure
for Dorn, Quabis and Leuchs (2003) this time within a 6 × 6 optical system. We initialize the optical system depicted
in Supplementary Fig. 3a. It consists of 12 light sources emitting a 635 nm wavelength Gaussian beam that are linearly
polarized at 45o interacting with 36 beam splitters and four phase masks displaying the fixed phase patterns in Fig. 3b.
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Supplementary Figure 3. Large-scale system utilized for pure topological discovery. (a) Initial virtual setup for Dorn, Quabis and Leuchs
(2003). It consists of 12 light sources emitting a 635 nm wavelength Gaussian beam that are linearly polarized at 45o. The parameter
space is defined by 36 beam splitter ratios (BS#1 - BS#36), 12 distances (z1 - z12) and 2 wave plates with variable applied retardance
and orientation). After interacting with a high NA objective lens, light gets detected across 12 detectors (#1 - #6) with 0.05µm pixel
size screen. The parameter update is driven by the camera demonstrating the minimum loss value. (b) Fixed phase patterns corresponding
to each phase mask placed on super-SLMs. The phase mask #1 corresponds to the polarization converter demonstrated in Dorn, Quabis,
and Leuchs (2003). Phase mask #2 correspond to horizontal and vertical gratings.

The loss function corresponds to equation (1) considering the intensity of the electromagnetic field’s longitudinal component,
|Ez|2, and ϵ = 0.7. We set-up the AdamW optimizer with a step size of 0.05 and a weight decay of 10−4. The system
is initialized with random optical parameters with values between 0 and 1. The optimization is terminated if there is no
improvement in the loss value over 500 consecutive iteration steps. This condition is checked every 100 steps. The system
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converged (in roughly 1 hour using a GPU) into the topology highlighted in Fig. 4a., demonstrating the smallest loss value in
the detector #3. The identified optical parameters are: wave plate’s (in radians) η = 3.13 and θ = 3.13; distances (in cm):
z1 = 167.15, z2 = 133.78, z3 = 102.45, z4 = 65.06, z5 = 81.97, z6 = 71.99, z7 = 104.96 and z9 = 169.96: and beam
splitter ratios, in [Transmittance, Reflectance] pairs: BS#7 [0.999, 0.001], BS#8 [0.996, 0.004], BS#9 [0.841, 0.159],
BS#10 [0.791, 0.209], BS#11 [0.015, 0.984], BS#17 [0.280, 0.720], and BS#18 [0.962, 0.038]. As for the previous
examples, the discovered topology in Fig. 4a can be retrieved from the beam splitter ratios.

D. Discovery of a new experimental blueprint
Finally, we demonstrate the capabilities of XLUMINA for genuine discovery. We use the initial optical setup in Supplemen-
tary Fig. 2. The parameter space (∼ 4 million parameters) corresponds to three super-SLMs (i.e., 6 SLMs) with a resolution
of 824× 824 pixels with a pixel size of 6.06µm, three wave plates, eight distances and nine beam splitter ratios. The loss
function corresponds to equation (1), in this instance considering the total intensity of the effective light emerging from the
STED process, |Ex|2 + |Ey|2 + |Ez|2, and ε = 0.5. We simulate the stimulated emission depletion effect using equation (9)
with the efficiency set to β = 1. We set-up the AdamW optimizer with a step size of 10−3 and a weight decay of 10−3 and
initialize the system with random optical parameters with values between 0 and 1. The optimization is terminated if there
is no improvement in the loss value over 500 consecutive iteration steps. This condition is checked every 100 steps. The
system converged (in roughly 3.8 hours using a GPU) into the topology highlighted in Fig. 5a, demonstrating the smallest
loss value in the detector #2. The identified optical parameters correspond to: the beam splitter ratios, in [Transmittance,
Reflectance] pairs: BS#1: [0.000, 0.999], BS#2: [0.338, 0.662], BS#5: [0.000, 0.999], and BS#6: [0.999, 0.000]. The
wave plates, in radians (1): η = 1.09, θ = 0.28, and (2): η = 0.19, θ = −3.16. The propagation distances (in cm) are
z1 = 29.98, z2 = 56.91, z3 = 58.28, z4 = 99.91, z5 = 42.89, z6 = 53.96, and z7 = 50.96. The discovered topology can
be identified from the beam splitter ratios starting from detector #2: BS#6 has 99.9% transmittance, which implies that
light is directly is coming from BS#5. In turn, BS#5 has a reflectance of 99.9% which redirects light from BS#2, which
has a transmittance of 66.2%. This already defines light source #2 as the emitter of the green (excitation) beam. Then, the
remaining light comes from BS#1 which shows a 99.9% reflectance, meaning that the red light (depletion) comes from
source #1.
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