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It is crucial to be able to explain black-box prediction models to use them effectively and safely.
Most existing tools for model explanations are associational rather than causal, and we use two
paradoxical examples in the full version to show that such explanations are generally inadequate.

Motivated by the concept of genetic heritability in twin studies, we propose a new notion called
counterfactual explainability for a black-box prediction model Y that maps the inputs W1, . . . ,WK

to a real value. Let S ⊆ [K] be a subset of indices for the model inputs. To begin with, when the
model inputs W1, . . . ,WK are “causally independent” in the sense that they are probabilistically
independent and have no causal effects on each other, we propose to define the total counterfactual
explainability of WS to Y as

ξY (∨k∈SWk) :=
Var (Y (W )− Y (W ′

S ,W−S))

2Var(Y (W ))
, (1)

where W ′
S is an identically distributed copy of WS that is independent of W . To quantify the

strength of interaction, we propose to use the inclusion-exclusion principle. As an example, the
explainability of the interaction between W1 and W2 to Y is defined as ξY (W1 ∧W2) = ξY (W1)+
ξY (W2)− ξY (W1 ∨W2). We prove that this can be alternatively expressed using the variance of an
interaction contrast as

ξY (W1 ∧W2) =
Var(Y (W ′

1,W
′
2)− Y (W ′

1,W2)− Y (W1,W
′
2) + Y (W1,W2))

4Var(Y (W1,W2)
, (2)

where (W1,W2) and (W ′
1,W

′
2) are independent and identically distributed. More generally, eq. (2)

can be extended to higher-order interaction by using the anchored decomposition of a multivari-
ate function. In fact, we show that (1) defines a unique probability measure on what we call the
“explanation algebra” generated by W1, . . . ,WK .

When the input factors are causally dependent and obey a causal directed acyclic graph (DAG),
our definition of counterfactual explainability can be extended almost effortlessly by replacing an
input factor Wk by its basic potential outcomes in (1). For example, in the structural equation model
with additive noise, Wk is replaced by its noise variable.

Our counterfactual explainability has three key advantages: (1) it leverages counterfactual out-
comes and extends methods for global sensitivity analysis (such as functional analysis of variance
and Sobol’s indices) to a causal setting; (2) it is defined not only for the totality of a set of input
factors but also for their interactions and all objects in the “explanation algebra”; (3) it also applies
to dependent input factors whose causal relationship can be modeled by a directed acyclic graph,
thus incorporating causal mechanisms into the explanation.
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