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ABSTRACT

The secondary structure of ribonucleic acid (RNA) is more stable and accessible
in the cell than its tertiary structure, making it essential for functional prediction.
Although deep learning has shown promising results in this field, current methods
suffer from poor generalization and high complexity. In this work, we present
RFold, a simple yet effective RNA secondary structure prediction in an end-to-end
manner. RFold introduces a decoupled optimization process that decomposes the
vanilla constraint satisfaction problem into row-wise and column-wise optimization,
simplifying the solving process while guaranteeing the validity of the output.
Moreover, RFold adopts attention maps as informative representations instead of
designing hand-crafted features. Extensive experiments demonstrate that RFold
achieves competitive performance and about eight times faster inference efficiency
than the state-of-the-art method.

1 INTRODUCTION

Ribonucleic acid is essential in structural biology for its diverse functional classes (Geisler & Coller,
2013). The functions of RNA molecules are determined by their structure (Sloma & Mathews, 2016).
The secondary structure, which contains the nucleotide base pairing information, as shown in Fig. 1,
is crucial for the correct functions of RNA molecules (Fallmann et al., 2017). Although experimental
assays such as X-ray crystallography (Cheong et al., 2004), nuclear magnetic resonance (Fürtig et al.,
2003), and cryogenic electron microscopy (Fica & Nagai, 2017) can be implemented to determine
RNA secondary structure, they suffer from low throughput and expensive cost.
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Figure 1: The graph and matrix representation
of an RNA secondary structure example.

Computational RNA secondary structure predic-
tion methods have become increasingly popular
due to their high efficiency (Iorns et al., 2007). Cur-
rently, these methods can be broadly classified into
two categories (Rivas, 2013; Fu et al., 2022; Singh
et al., 2019; Szikszai et al., 2022): (i) comparative
sequence analysis and (ii) single sequence folding
algorithm. Comparative sequence analysis deter-
mines the secondary structure conserved among
homologous sequences but the limited known RNA
families hinder its development (Knudsen & Hein,
2003; Hofacker et al., 2002; Gutell et al., 2002;
Griffiths-Jones et al., 2003; Gardner et al., 2009;
Nawrocki et al., 2015). Researchers thus resort to
single RNA sequence folding algorithms that do
not need multiple sequence alignment information.
A classical category of computational RNA folding
algorithms is to use dynamic programming (DP) that assumes the secondary structure is a result
of energy minimization (Bellaousov et al., 2013; Lorenz et al., 2011; Do et al., 2006). However,
energy-based approaches usually require a nested structure, which ignores some biologically essential
structures such as pseudoknots, i.e., non-nested base pairs (Chen et al., 2019; Seetin & Mathews,
2012; Xu & Chen, 2015), as shown in Fig. 2. Since predicting secondary structures with pseudoknots
under the energy minimization framework has shown to be hard and NP-complete (Wang & Tian,
2011; Fu et al., 2022), deep learning techniques are introduced as an alternative approach.
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Figure 2: Examples of nested and non-nested
secondary structures.

Attempts to overcome the limitations of energy-
based methods have motivated deep learning meth-
ods in the absence of DP. The general deep-learning-
based RNA secondary structure prediction methods
can be decomposed into three key parts:

• pre-processing: projecting 1D sequence into 2D
matrix. (1DÑ discrete/continuous 2D)

• backbone model: learning from the 2D matrix and
then outputs a hidden matrix of continuous values.
(discrete/continuous 2DÑ continuous 2D)

• post-processing: converting the hidden matrix
into a contact map, which is a matrix of discrete
0/1 values. (continuous 2DÑ discrete 2D)

SPOT-RNA (Singh et al., 2019) is a seminal work that ensembles ResNet and LSTM to identify
molecular features. SPOT-RNA does not constrain the output space into valid structures, which
degrades its generalization (Jung et al.). E2Efold (Chen et al., 2019) employs an unrolled algorithm
that post-processes the network output to satisfy the constraints. E2Efold introduces a convex
relaxation to make the optimization tractable, leading to possible constraint violations and poor
generalization ability (Sato et al., 2021). Developing an appropriate optimization that forces the
output to be valid becomes an important issue. Apart from the optimization problem, state-of-the-art
approaches require hand-crafted features and introduce the pre-processing step for such features,
which is inefficient and needs expert knowledge. CDPfold (Zhang et al., 2019) develops a matrix
representation based on sequence pairing that reflects the implicit matching between bases. UFold (Fu
et al., 2022) follows the exact post-process mechanism as E2Efold and uses hand-crafted features
from CDPfold with U-Net (Ronneberger et al., 2015) model architecture to improve the performance.

Although promising, current deep learning methods on RNA secondary structure prediction have been
distressed by: (1) the post-processing optimization that is complicated and poor in generalization
and (2) the pre-processing that requires expensive complexity and expert knowledge. In this work,
we present RFold, a simple yet effective RNA secondary structure prediction method. Specifically,
we introduce a decoupled optimization process that decomposes the vanilla constraint satisfaction
problem into row-wise and column-wise optimization, simplifying the solving process while guaran-
teeing the validity of the output. Besides, we adopt attention maps as informative representations to
automatically learn the pair-wise interactions of the nucleotide bases instead of using hand-crafted
features to perform data pre-processing. The methodological comparison between RFold and other
classical methods is summarized in Appendix A. Extensive experiments to compare RFold with
state-of-the-art methods on several benchmark datasets and show the superior performance of our
proposed method. Moreover, RFold has faster inference efficiency due to its simplicity.

2 RELATED WORK

Comparative Sequence Analysis Comparative sequence analysis determines base pairs conserved
among homologous sequences (Gardner & Giegerich, 2004; Knudsen & Hein, 2003; Gorodkin
et al., 2001). ILM (Ruan et al., 2004) combines thermodynamic and mutual information content
scores. Sankoff (Hofacker et al., 2004) merges the sequence alignment and maximal-pairing folding
methods (Nussinov et al., 1978). Dynalign (Mathews & Turner, 2002) and Carnac (Touzet & Perriquet,
2004) are the subsequent variants of Sankoff algorithms. RNA forester (Hochsmann et al., 2003)
introduces a tree alignment model for global and local alignments. However, the limited number of
known RNA families (Nawrocki et al., 2015) impedes the development of comparative methods.

Energy-based Folding Algorithms When the secondary structure consists only of nested base
pairing, dynamic programming can efficiently predict the structure by minimizing energy. Early
works include Vienna RNAfold (Lorenz et al., 2011), Mfold (Zuker, 2003), RNAstructure (Math-
ews & Turner, 2006), and CONTRAfold (Do et al., 2006). Faster implementations that speed up
dynamic programming have been proposed, such as Vienna RNAplfold (Bernhart et al., 2006),
LocalFold (Lange et al., 2012), and LinearFold (Huang et al., 2019). However, these methods cannot
accurately predict structures with pseudoknots, as predicting the lowest free energy structures with
pseudoknots is NP-complete (Lyngsø & Pedersen, 2000), making it difficult to improve performance.
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Learning-based Folding Algorithms SPOT-RNA (Singh et al., 2019) is a seminal work that
employs deep learning for RNA secondary structure prediction. SPOT-RNA2 (Singh et al., 2021)
improves its predecessor by using evolution-derived sequence profiles and mutational coupling.
Inspired by Raptor-X (Wang et al., 2017) and SPOT-Contact (Hanson et al., 2018), SPOT-RNA
uses ResNet and bidirectional LSTM with a sigmoid function to output the secondary structures.
MXfold (Akiyama et al., 2018) is also an early work that combines support vector machines and ther-
modynamic models. CDPfold (Zhang et al., 2019), DMFold (Wang et al., 2019), and MXFold2 (Sato
et al., 2021) integrate deep learning techniques with energy-based methods. E2Efold (Chen et al.,
2019) takes a remarkable step in constraining the output to be valid by learning unrolled algorithms.
However, its relaxation for making the optimization tractable may violate the structural constraints.
UFold (Fu et al., 2022) further introduces U-Net model architecture to improve performance.

3 PRELIMINARIES AND BACKGROUNDS

3.1 PRELIMINARIES

The primary structure of RNA is the ordered linear sequence of bases, which is typically represented
as a string of letters. Formally, an RNA sequence can be represented asX “ px1, ..., xLq, where xi P
tA,U,C,Gu denotes one of the four bases, i.e., Adenine (A), Uracil (U), Cytosine (C), and Guanine
(G). The secondary structure of RNA is a contact map represented as a matrixM P t0, 1uLˆL, where
Mij “ 1 if the i-th and j-th bases are paired. In the RNA secondary structure prediction problem, we
aim to obtain a model with learnable parameters Θ that learns a mapping FΘ : X ÞÑM by exploring
the interactions between bases. Here, we decompose the mapping FΘ into two sub-mappings as:

FΘ :“ Gθg ˝Hθh , (1)

where Hθh : X ÞÑ H , Gθg : H ÞÑ M are mappings parameterized by θh and θg, respectively.
H P RLˆL is regarded as the unconstrained output of neural networks.

3.2 BACKGROUND

It is worth noting that there are hard constraints on the formation of RNA secondary structure,
meaning that certain types of pairing are not available (Steeg, 1993). Such constraints (Chen et al.,
2019) can be formally described as follows:

• (a) Only three types of nucleotide combinations can form base pairs: B :“ tAU,UAu Y
tGC,CGu Y tGU,UGu. For any base pair xixj where xixj R B,Mij “ 0.

• (b) No sharp loops within three bases. For any adjacent bases, there can be no pairing between
them, i.e., @|i´ j| ď 3,Mij “ 0.

• (c) There can be at most one pair for each base, i.e., @i,
řL
j“1Mij ď 1.

The available space of valid secondary structures is all symmetric matrices P t0, 1uLˆL that satisfy
the above three constraints. The first two constraints can be satisfied easily. We define a constraint
matrix ĎM as: ĎMij :“ 1 if xixj P B and |i ´ j| ě 4, and ĎMij :“ 0 otherwise. By element-wise
multiplication of the network output and the constraint matrix ĎM , invalid pairs are masked.

The critical issue in obtaining a valid RNA secondary structure is the third constraint, i.e., processing
the network output to create a symmetric binary matrix that only allows a single "1" to exist in each
row and column. There are different strategies for dealing with this issue.

SPOT-RNA is a typical kind of method that imposes minor constraints. It takes the original output
of neural networks H and directly applies the Sigmoid function, assigning a value of 1 to those
greater than 0.5 and 0 to those less than 0.5. This process can be represented as:

GpHq “ 1rSigmoidpHqą0.5s dH. (2)

Here, the offset term s has been set to 0.5. No explicit constraints are imposed, and no additional
parameters θg are required.
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E2Efold formulates the problem with constrained optimization and introduces an intermediate
variable xM P RLˆL. It aims to maximize the predefined score function:

SpxM ,Hq “
1

2

A

H ´ s, T pxMq

E

´ ρ}xM}1, (3)

where T pxMq “ 1
2 p

xM d xM ` pxM d xMqT q d ĎM ensures the output is a symmetric matrix that
satisfies the constraints (a-b), s is an offset term that is set as logp9.0q here, x¨, ¨y denotes matrix inner
product and ρ}xM}1 is a `1 penalty term to make the matrix to be sparse.

The constraint (c) is imposed by requiring Eq. 3 to satisfy T pxMq1 ď 1. Thus, Eq. 3 is rewritten as:

SpxM ,Hq “ min
λě0

1

2

A

H ´ s, T pxMq

E

´ ρ}xM}1 ´

A

λ,ReLUpT pxMq1´ 1q

E

, (4)

where λ P RL` is a Lagrange multiplier.

Formally, this process can be represented as:

Gθg pHq “ T parg max
xMPRLˆLSpxM ,Hqq. (5)

Though three constraints are explicitly imposed in E2Efold, this method requires iterative steps to
approximate the valid solutions and cannot guarantee that the results are entirely valid. Moreover, it
needs a set of parameters θg in this processing, making tuning the model complex.

4 RFOLD

4.1 DECOUPLED OPTIMIZATION

We propose the following formulation for the constrained optimization problem in RNA secondary
structure problem:

min
M
´ trpMT

xHq

s.t.
L
ÿ

j“1

Mij ď 1,@i;
L
ÿ

i“1

Mij ď 1,@j, (6)

where trpMT
xHq “

řL
i“1

řL
j“1Mij

xHij represents the trace operation. The matrix xH is sym-
metrized based on the original network outputH while satisfying the constraints (a-b) in Sec. 3.2 by
multiplying the constraint matrix ĎM , i.e., xH “ pH dHT q d ĎM .

We then propose to decouple the optimization process into row-wise and column-wise optimizations,
and define the corresponding selection schemes as Sr and Sc respectively:

Sr “ tS
1
r , S

2
r , ..., S

L
r u, Sc “ tS

1
c , S

2
c , ..., S

L
c u, (7)

where Sir P t0, 1u
L signifies the selection scheme on the ith row, and Sjc P t0, 1u

L represents the
selection scheme on the jth column. The score function is defined as:

SpSr, Sc,xHq “ ´trpMT
xHq, (8)

where Sr, Sc constitute the decomposition of M . The goal of the score function is to maximize
the dot product ofM and xH in order to select the maximum value in xH . Our proposed decoupled
optimization reformulates the original constrained optimization problem in Equation 6 as follows:

min
Sr,Sc

SpSr, Scq

s.t.
L
ÿ

i“1

Sir ď 1,@r;
L
ÿ

j“1

Sjc ď 1,@c.
(9)

If the corresponding xHij have the highest score in its row txHiku
L
k“1 and its column txHkju

L
k“1, then

Mij “ 1. By exploring the optimal Sr and Sc, the chosen base pairs can be obtained by the a greedy
algorithm solution S “ Sr b Sc.
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4.2 ROW-COL ARGMAX

With the proposed decoupled optimization, the optimal matrix can be easily obtained using the variant
Argmax function:

Row-Col-ArgmaxpxHq “ Row-ArgmaxpxHq d Col-ArgmaxpxHq (10)

where Row-Argmax and Col-Argmax are row-wise and column-wise Argmax functions respectively:

Row-ArgmaxijpxHq “

#

1, if maxtxHiku
L
k“1 “

xHij ,

0, otherwise.

Col-ArgmaxijpxHq “

#

1, if maxtxHkju
L
k“1 “

xHij ,

0, otherwise.

(11)

Theorem 1. Given a symmetric matrix xH P RLˆL, the matrix Row-Col-ArgmaxpxHq is also a
symmetric matrix.

Proof: See Appendix E.1.

As shown in Fig. 3, taking a random symmetric 6 ˆ 6 matrix as an example, we show the output
matrics of Row-Argmax, Col-Argmax, and Row-Col-Argmax functions, respectively. The Row-Col
Argmax selects the value that has the maximum value on both its row and column while keeping the
output matrix symmetric.

symmetric matrix Row-Argmax Col-Argmax Row-Col-Argmax

Figure 3: The visualization of the Row-Col-Argmax function.

From Theorem 1, we can observe that Row-Col-ArgmaxpxHq is a symmetric matrix that satisfies the
constraint (c). Since xH already satisfies constraints (a-b), the optimized output is:

GpHq “ Sr b Sc “ Row-Col-ArgmaxpxHq, (12)

where Sr, Sc “ arg minSr,Sc
´trpSr, Scq.

4.3 ROW-COL SOFTMAX

Though the Row-Col Argmax function can obtain the optimal matrix GpHq, it is not differentiable
and thus cannot be directly used in the training process. In the training phase, we need to use a
differentiable function to approximate the optimal results. Therefore, we propose using a Row-Col
Softmax function to approximate the Row-Col Argmax function for training. To achieve this, we
perform row-wise Softmax and column-wise Softmax on the symmetric matrix xH separately, as
shown below:

Row-SoftmaxijpxHq “
exppxHijq

řL
k“1 exppxHikq

,

Col-SoftmaxijpxHq “
exppxHijq

řL
k“1 exppxHkjq

.

(13)

The Row-Col Softmax function is then defined as follows:

Row-Col-SoftmaxpxHq “
1

2
pRow-SoftmaxpxHq ` Col-SoftmaxpxHqq, (14)

Note that we use the average of Row-SoftmaxpxHq and Col-SoftmaxpxHq instead of the element
product as shown in Eq. 10 for the convenience of optimization.
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Theorem 2. Given a symmetric matrix xH P RLˆL, the matrix Row-Col-SoftmaxpxHq is also a
symmetric matrix.

Proof: See Appendix E.2.

As shown in Fig. 4, taking a random symmetric 6 ˆ 6 matrix as an example, we show the output
matrics of Row-Softmax, Col-Softmax, and Row-Col-Softmax functions, respectively. It can be
seen that the output matrix of Row-Col-Softmax is still symmetric. Leveraging the differentiable
property of Row-Col-Softmax, the model can be easily optimized.

symmetric matrix Row-Softmax Col-Softmax Row-Col-Softmax

Figure 4: The visualization of the Row-Col-Softmax function.

In the training phase, we apply the differentiable Row-Col Softmax activation and optimize the mean
square error (MSE) loss function between GpHq andM :

LpGpHq,Mq “
1

L2
}Row-Col-SoftmaxpxHq ´M}2. (15)

4.4 SEQ2MAP ATTENTION
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Figure 5: The overview model of RFold.

To simplify the pre-processing step that con-
structs hand-crafted features based on RNA se-
quences, we propose a Seq2map attention mod-
ule that can automatically produce informative
representations. We start with a sequence in the
one-hot formX P RLˆ4 and obtain the sum of
the token embedding and positional embedding
as the input for the Seq2map attention. For con-
venience, we denote the input as Z P RLˆD,
where D is the hidden layer size of the token
and positional embeddings.

Motivated by the recent progress in attention
mechanisms (Vaswani et al., 2017; Choroman-
ski et al., 2020; Katharopoulos et al., 2020; Hua
et al., 2022), we aim to develop a highly ef-
fective sequence-to-map transformation based
on pair-wise attention. We obtain the query
Q P RLˆD and keyK P RLˆD by applying per-dim scalars and offsets to Z:

Q “ γQZ ` βQ, K “ γKZ ` βK , (16)

where γQ, γK , βQ, βK P RLˆD are learnable parameters.

Then, the pair-wise attention map is obtained by:
sZ “ ReLU2

pQKT {Lq, (17)

where ReLU2 is an activation function that can be recognized as a simplified Softmax function in
vanilla Transformers (So et al., 2021). The output of Seq2map is the gated representation of sZ:

pZ “ sZ d σp sZq, (18)
where σp¨q is the Sigmoid function that performs as a gate operation.

As shown in Fig. 5, we identify the problem of predicting H P RLˆL from the given sequence
attention map pZ P RLˆL as an image-to-image segmentation problem and apply the U-Net model
architecture to extract pair-wise information.
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5 EXPERIMENTS

We conduct experiments to compare our proposed RFold with state-of-the-art and commonly used
approaches. Multiple experimental settings are taken into account, including standard secondary
structure prediction, generalization evaluation, large-scale benchmark evaluation, and inference time
comparison. Detailed descriptions of the experimental setups can be found in the Appendix B.

5.1 STANDARD RNA SECONDARY STRUCTURE PREDICTION

Table 1: Results on RNAStralign test set. Results
in bold and underlined are the top-1 and top-2
performances, respectively.

Method Precision Recall F1

Mfold 0.450 0.398 0.420
RNAfold 0.516 0.568 0.540

RNAstructure 0.537 0.568 0.550
CONTRAfold 0.608 0.663 0.633

LinearFold 0.620 0.606 0.609
CDPfold 0.633 0.597 0.614
E2Efold 0.866 0.788 0.821
UFold 0.905 0.927 0.915
RFold 0.981 0.973 0.977

Following (Chen et al., 2019), we split the
RNAStralign dataset into train, validation, and
test sets by stratified sampling. We report the re-
sults in Table 1. Energy-based methods achieve
relatively weak F1 scores ranging from 0.420 to
0.633. Learning-based folding algorithms like
E2Efold and UFold significantly improve per-
formance by large margins, while RFold obtains
even better performance among all the metrics.
Moreover, RFold obtains about 8% higher preci-
sion than the state-of-the-art method. This sug-
gests that our decoupled optimization is strict
to satisfy all the hard constraints for predicting
valid structures. Results on RNA structures with
pseudoknots are shown in Appendix C.

5.2 GENERALIZATION EVALUATION

To verify the generalization ability, we evaluate the performance on another benchmark dataset
ArchiveII using the pre-trained model on the RNAStralign training dataset. Following (Chen et al.,
2019), we exclude RNA sequences in ArchiveII that have overlapping RNA types with the RNAS-
tralign dataset for a fair comparison. The results are reported in Table 2. Among the state-of-the-art
methods, RFold attains the highest F1 score. It is noteworthy that RFold has a relatively lower recall
metric and significantly higher precision metric. This phenomenon may be due to the strict constraints
imposed by RFold. It may cover fewer pairwise interactions, resulting in a lower recall. Nonetheless,
the highest F1 score indicates the excellent generalization ability of RFold.

Moreover, we assess performance using the bpRNA-new dataset to further validate generalizability
on cross-family data, with results depicted in Table 3. Pure deep learning methods have struggled
with this task. UFold, for instance, relies on the thermodynamic method for data augmentation to
achieve satisfactory results. Notably, UFold achieves an F1 score of 0.583, while RFold reaches
0.616. When the data augmentation strategy based on Contrafold is incorporated, the performance of
UFold escalates to 0.636, while our RFold method realizes a score of 0.651. This positions RFold as
second only to the thermodynamics-based method, Contrafold, in terms of F1 score.

Table 2: Results on ArchiveII dataset.

Method Precision Recall F1

Mfold 0.668 0.590 0.621
RNAfold 0.663 0.613 0.631

RNAstructure 0.664 0.606 0.628
CONTRAfold 0.696 0.651 0.665

LinearFold 0.724 0.605 0.647
RNAsoft 0.665 0.594 0.622

Eternafold 0.667 0.622 0.636
E2Efold 0.734 0.660 0.686

SPOT-RNA 0.743 0.726 0.711
MXfold2 0.788 0.760 0.768

Contextfold 0.873 0.821 0.842
UFold 0.887 0.928 0.905
RFold 0.938 0.910 0.921

Table 3: Results on bpRNA-new dataset.

Method Precision Recall F1

Mfold 0.584 0.692 0.623
RNAfold 0.593 0.720 0.640

RNAstructure 0.586 0.704 0.629
CONTRAfold 0.620 0.736 0.661

LinearFold 0.658 0.645 0.633
RNAsoft 0.580 0.692 0.620

Externafold 0.598 0.732 0.647
SPOT-RNA 0.635 0.641 0.620

MXfold2 0.599 0.715 0.641
Contextfold 0.596 0.636 0.604

UFold 0.500 0.736 0.583
UFold + aug 0.570 0.742 0.636

RFold 0.614 0.619 0.616
RFold + aug 0.618 0.687 0.651
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5.3 LARGE-SCALE BENCHMARK EVALUATION

The large-scale benchmark bpRNA has a fixed training set (TR0), evaluation set (VL0), and testing
set (TS0). Following (Singh et al., 2019; Fu et al., 2022), we train the model in bpRNA-TR0 and
evaluate the performance on bpRNA-TS0 by using the best model learned from bpRNA-VL0. We
summarize the evaluation results on bpRNA-TS0 in Table 4. It can be seen that RFold significantly
improves the previous state-of-the-art method SPOT-RNA by 4.0% in the F1 score.

Following (Fu et al., 2022), we conduct an experiment on long-range interactions. The bpRNA-TS0
dataset contains more versatile RNA sequences of different lengths and various types, which can be
a reliable evaluation. Given a sequence of length L, the long-range base pairing is defined as the
paired and unpaired bases with intervals longer than L{2. As shown in Table 5, RFold performs
unexpectedly well on these long-range base pairing predictions. We can also find that UFold performs
better in long-range cases than the complete cases. The possible reason may come from the U-Net
model architecture that learns multi-scale features. RFold significantly improves UFold in all the
metrics by large margins, demonstrating its strong predictive ability.

Table 4: Results on bpRNA-TS0 set.

Method Precision Recall F1

Mfold 0.501 0.627 0.538
E2Efold 0.140 0.129 0.130

RNAstructure 0.494 0.622 0.533
RNAsoft 0.497 0.626 0.535
RNAfold 0.494 0.631 0.536

Contextfold 0.529 0.607 0.546
LinearFold 0.561 0.581 0.550
MXfold2 0.519 0.646 0.558

Externafold 0.516 0.666 0.563
CONTRAfold 0.528 0.655 0.567

SPOT-RNA 0.594 0.693 0.619
UFold 0.521 0.588 0.553
RFold 0.692 0.635 0.644

Table 5: Results on long-range bpRNA.

Method Precision Recall F1

Mfold 0.315 0.450 0.356
RNAstructure 0.299 0.428 0.339

RNAsoft 0.310 0.448 0.353
RNAfold 0.304 0.448 0.350

Contextfold 0.332 0.432 0.363
LinearFold 0.281 0.355 0.305
MXfold2 0.318 0.450 0.360

Externafold 0.308 0.458 0.355
CONTRAfold 0.306 0.439 0.349

SPOT-RNA 0.361 0.492 0.403
UFold 0.543 0.631 0.584
RFold 0.803 0.765 0.701

5.4 INFERENCE TIME COMPARISON
Table 6: Inference time on the RNAStralign.

Method Time

CDPfold (Tensorflow) 300.11 s
RNAstructure (C) 142.02 s

CONTRAfold (C++) 30.58 s
Mfold (C) 7.65 s

Eternafold (C++) 6.42 s
RNAsoft (C++) 4.58 s

RNAfold (C) 0.55 s
LinearFold (C++) 0.43 s

SPOT-RNA(Pytorch) 77.80 s (GPU)
E2Efold (Pytorch) 0.40 s (GPU)
MXfold2 (Pytorch) 0.31 s (GPU)

UFold (Pytorch) 0.16 s (GPU)
RFold (Pytorch) 0.02 s (GPU)

We compared the running time of various meth-
ods for predicting RNA secondary structures using
the RNAStralign testing set with the same exper-
imental setting and the hardware environment as
in (Fu et al., 2022). The results are presented in Ta-
ble 6, which shows the average inference time per
sequence. The fastest energy-based method, Lin-
earFold, takes about 0.43s for each sequence. The
learning-based baseline, UFold, takes about 0.16s.
RFold has the highest inference speed, costing only
about 0.02s per sequence. In particular, RFold is
about eight times faster than UFold and sixteen
times faster than MXfold2. Its fast inference time is
due to the simple sequence-to-map transformation.

5.5 ABLATION STUDY

Decoupled Optimization To validate the effectiveness of our proposed decoupled optimization,
we conduct an experiment that replaces them with other strategies. The results are summarized in
Table 7, where RFold-E and RFold-S denote our model with the strategies of E2Efold and SPOT-RNA,
respectively. We ignore the recent UFold because it follows exactly the same strategy as E2Efold.
We also report the validity which is a sample-level metric evaluating whether all the constraints are
satisfied. Though RFold-E has comparable performance in the first three metrics with ours, many
of its predicted structures are invalid. The strategy of SPOT-RNA has incorporated no constraint
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that results in its low validity. Moreover, its strategy seems to not fit our model well, which may be
caused by the simplicity of our RFold model.
Table 7: Ablation study on optimzation
strategies (RNAStralign testing set).

Method Precision Recall F1 Validity

RFold 0.981 0.973 0.977 100.00%
RFold-E 0.888 0.906 0.896 50.31%
RFold-S 0.223 0.988 0.353 0.00%

Table 8: Ablation study on pre-processing
strategies (RNAStralign testing set).

Method Precision Recall F1 Time

RFold 0.981 0.973 0.977 0.0167
RFold-U 0.875 0.941 0.906 0.0507
RFold-SS 0.886 0.945 0.913 0.0158

Seq2map Attention We also conduct an experiment to evaluate the proposed Seq2map attention.
We replace the Seq2map attention with the hand-crafted features from UFold and the outer concate-
nation from SPOT-RNA, which are denoted as RFold-U and RFold-SS, respectively. In addition to
performance metrics, we also report the average inference time for each RNA sequence to evaluate
the model complexity. We summarize the result in Table 8. It can be seen that RFold-U takes much
more inference time than our RFold and RFold-SS due to the heavy computational cost when loading
and learning from hand-crafted features. Moreover, it is surprising to find that RFold-SS has a little
better performance than RFold-U, with the least inference time for its simple outer concatenation
operation. However, neither RFold-U nor RFold-SS can provide informative representations.

5.6 VISUALIZATION

We visualize two examples predicted by RFold and UFold in Fig. 6. The corresponding F1 scores are
denoted at the bottom of each plot. The first secondary structures is a simple example of a nested
structure. It can be seen that UFold may fail in such a case. The second secondary structures is much
more difficult that contains over 300 bases of the non-nested structure. While UFold fails in such a
complex case, RFold can predict the structure accurately. Due to the limited space, we provide more
visualization comparisons in Appendix F.
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Figure 6: Visualization of the true and predicted structures.

6 CONCLUSION AND LIMITATIONS

In this study, we present RFold, a simple yet effective learning-based model for RNA secondary
structure prediction. We propose decoupled optimization to replace the complicated post-processing
strategies while incorporating constraints for the output. Seq2map attention is proposed for sequence-
to-map transformation, which can automatically learn informative representations from a single
sequence without extensive pre-processing operations. Comprehensive experiments demonstrate that
RFold achieves competitive performance with faster inference speed.

The limitations of RFold primarily revolve around its stringent constraints. This strictness in con-
straints implies that RFold is cautious in predicting interactions, leading to higher precision but
possibly at the cost of missing some true interactions that more lenient models might capture. Though
we have provided a naive solution in Appendix D, it needs further studies to obtain a better strategy
that leads to more balanced precision-recall trade-offs and more comprehensive structural predictions.
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A COMPARISON OF MAINSTREAM RNA SECONDARY STRUCTURE
PREDICTION METHODS

We compare our proposed method RFold with several other leading RNA secondary structure
prediction methods and summarize the results in Table 9. RFold satisfies all three constraints (a)-(c)
for valid RNA secondary structures, while the other methods do not fully meet some of the constraints.
RFold utilizes a sequence-to-map attention mechanism to capture long-range dependencies, whereas
SPOT-RNA simply concatenates pairwise sequence information and E2Efold/UFold uses hand-crafted
features. In terms of prediction accuracy on the RNAStralign benchmark test set, RFold achieves the
best F1 score of 0.977, outperforming SPOT-RNA, E2Efold and UFold by a large margin. Regarding
the average inference time, RFold is much more efficient and requires only 0.02 seconds to fold the
RNAStralign test sequences. In summary, RFold demonstrates superior performance over previous
methods for RNA secondary structure prediction in both accuracy and speed.

Table 9: Comparison between RNA secondary structure prediction methods and RFold.

Method SPOT-RNA E2Efold UFold RFold

pre-processing pairwise concat pairwise concat hand-crafted seq2map attention
backbone model ResNet + LSTM Transformer U-Net U-Net
post-processing ˆ unrolled algorithm unrolled algorithm decoupled optimization

constraint (a) ˆ X X X
constraint (b) ˆ X X X
constraint (c) ˆ ˆ ˆ X

F1 score 0.711 0.821 0.915 0.977
Inference time 77.80 s 0.40 s 0.16 s 0.02 s

B EXPERIMENTAL DETAILS

Datasets We use three benchmark datasets: (i) RNAStralign (Tan et al., 2017), one of the most
comprehensive collections of RNA structures, is composed of 37,149 structures from 8 RNA types;
(ii) ArchiveII (Sloma & Mathews, 2016), a widely used benchmark dataset in classical RNA folding
methods, containing 3,975 RNA structures from 10 RNA types; (iii) bpRNA (Singh et al., 2019), is a
large scale benchmark dataset, containing 102,318 structures from 2,588 RNA types. (iv) bpRNA-
new (Sato et al., 2021), derived from Rfam 14.2 (Kalvari et al., 2021), containing sequences from
1500 new RNA families.

Baselines We compare our proposed RFold with baselines including energy-based folding methods
such as Mfold (Zuker, 2003), RNAsoft (Andronescu et al., 2003), RNAfold (Lorenz et al., 2011),
RNAstructure (Mathews & Turner, 2006), CONTRAfold (Do et al., 2006), Contextfold (Zakov
et al., 2011), and LinearFold (Huang et al., 2019); learning-based folding methods such as SPOT-
RNA (Singh et al., 2019), Externafold (Wayment-Steele et al., 2021), E2Efold (Chen et al., 2019),
MXfold2 (Sato et al., 2021), and UFold (Fu et al., 2022).

Metrics We evaluate the performance by precision, recall, and F1 score, which are defined as:

Precision “
TP

TP ` FP
, Recall “

TP

TP ` FN
, F1 “ 2

Precision ¨ Recall

Precision ` Recall
, (19)

where TP,FP, and FN denote true positive, false positive and false negative, respectively.

Implementation details Following the same experimental setting as (Fu et al., 2022), we train the
model for 100 epochs with the Adam optimizer. The learning rate is 0.001, and the batch size is 1 for
sequences with different lengths.
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C RESULTS ON RNA STRUCTURES WITH PSEUDOKNOTS

Following E2Efold and UFold, we count the number of pseudoknotted sequences that are predicted as
pseudoknotted and report this count as true positive. We pick all sequences containing pseudoknots
from the RNAStralign test dataset. The results are as follows:

Table 10: Results on RNA structures with pseudoknots.

Method Precision Recall F1 Score
RNAstructure 0.778 0.761 0.769
SPOT-RNA 0.677 0.978 0.800
E2Efold 0.844 0.990 0.911
UFold 0.962 0.990 0.976
RFold 0.971 0.993 0.982

As the result demonstrates, RFold consistently surpasses UFold across all three metrics, indicating
the effectiveness of our proposed approach.

D DISCUSSION ON ABNORMAL SAMPLES

Although we have illustrated three hard constraints in 3.2, there exist some abnormal samples that do
not satisfy these constraints in practice. We have analyzed the datasets used in this paper and found
that there are some abnormal samples in the testing set that do not meet these constraints. The ratio
of valid samples in each dataset is summarized in the table below:

Table 11: The ratio of valid samples in the datasets.

Dataset RNAStralign ArchiveII bpRNA

Validity 93.05% 96.03% 96.51%

As shown in Table 7, RFold forces the validity to be 100.00%, while other methods like E2Efold only
achieve about 50.31%. RFold is more accurate than other methods in reflecting the real situation.

Nevertheless, we provide a soft version of RFold to relax the strict constraints. A possible solution to
relax the rigid procedure is to add a checking mechanism before the Rol-Col Argmax function in the
inference. Specifically, if the confidence given by the Rol-Col Softmax is low, we do not perform
Rol-Col Argmax and assign more base pairs. It can be implemented as the following pseudo-code:

1 y_pred = row_col_softmax(y)
2 int_one = row_col_argmax(y_pred)
3

4 # get the confidence for each position
5 conf = y_pred * int_one
6 all_pos = conf > 0.0
7

8 # select reliable position
9 conf_pos = conf > thr1

10

11 # select unreliable position with the full row and column
12 uncf_pos = get_unreliable_pos(all_pos, conf_pos)
13

14 # assign "1" for the positions with the confidence higher than thr2
15 # note that thr2 < thr1
16 y_pred[uncf_pos] = (y_pred[uncf_pos] > thr2).float()
17 int_one[uncf_pos] = y_pred[uncf_pos]

We conduct experiments to compare the soft-RFold and the original version of RFold in the RNAS-
tralign dataset. The results are summarized in the Table 12. It can be seen that soft-RFold improves
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Table 12: The results of soft-RFold and RFold
on the RNAStralign.

Method Precision Recall F1

RFold 0.981 0.973 0.977
soft-RFold 0.978 0.974 0.976

Table 13: The results of soft-RFold and RFold
on the abnormal samples on the RNAStralign.

Method Precision Recall F1

RFold 0.956 0.860 0.905
soft-RFold 0.949 0.889 0.918

the recall metric by a small margin. The minor improvement may be because the number of abnormal
samples is small.

We then select those samples that do not obey the three constraints to further analyse the performance.
The total number of such samples is 179. It can be seen that soft-RFold can deal with abnormal
samples well. The improvement of the recall metric is more obvious.

E PROOFS OF THEOREMS

E.1 PROOF OF THEOREM 1

Theorem 1. Given a symmetric matrix xH P RLˆL, the matrix Row-Col-ArgmaxpxHq is also a
symmetric matrix.

Proof: From Eq. 10 and Eq. 11, we can know that:

Row-Col-ArgmaxpxHijq “ 1,

if maxttxHiku
L
k“1 Y t

xHkju
L
k“1u “

xHij ,
(20)

Then, we can infer that:
Row-Col-ArgmaxpxHjiq “ 1,

if maxttxHjku
L
k“1 Y t

xHkiu
L
k“1u “

xHji,
(21)

As xH is a symmetric matrix, xHjk “ xHkj and xHki “ xHik. Thus, Row-Col-ArgmaxpxHjiq can be
rewritten as:

Row-Col-ArgmaxpxHjiq “ 1,

if maxttxHkju
L
k“1 Y t

xHiku
L
k“1u “

xHij ,
(22)

It can be seen that only if maxttxHkju
L
k“1 Y t

xHiku
L
k“1u “

xHij “ xHji, then xHij “ xHji “ 1.

Thus, Row-Col-ArgmaxpxHq is also a symmetric matrix.

E.2 PROOF OF THEOREM 2

Theorem 2. Given a symmetric matrix xH P RLˆL, the matrix Row-Col-SoftmaxpxHq is also a
symmetric matrix.

Proof: @i, j P t1, ..., Lu,

Row-Col-SoftmaxpxHjiq

“
1

2

ˆ

exppxHjiq
řL
k“1 exppxHjkq

`
exppxHjiq

řL
k“1 exppxHkiq

˙

“
1

2

ˆ

exppxHijq
řL
k“1 exppxHkjq

`
exppxHijq

řL
k“1 exppxHikq

˙

“ Row-Col-SoftmaxpxHijq.

(23)
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F VISUALIZATION

RFoldTrue UFold

Figure 7: Visualization of the true and predicted structures.
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G LOSS CURVE

We present the training and validation loss curves of RFold on the RNAStralign dataset in Fig. 8.
Note that in our log files, the loss values are recorded in four decimal places. The training loss
begins at a higher value and exhibits a consistent decrease across epochs, indicating effective learning.
Similarly, the validation loss also shows a decreasing trend throughout the epochs. Although there
are minor fluctuations, the overall trajectory is toward lower loss values, suggesting that the model is
generalizing effectively on the validation data.
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Figure 8: The training and validation loss curve on RNAStralign dataset.
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