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ABSTRACT

Astrocytes, an essential component of the brain’s neural circuitry, demonstrate
learning capabilities through bioplausible mechanisms such as presynaptic plas-
ticity and hebbian plasticity. However, their integration into computational mod-
els remains underexplored. This paper advances astromorphic computing tech-
niques to emulate transformer self-attention mechanisms, leveraging astrocytic
nonlinearity and memory retention to improve long-range dependency processing
in machine learning and natural language processing (NLP) tasks. Existing trans-
former models have difficulty handling lengthy contexts with thousands of tokens,
even with substantial computational resources. We propose Recurrent Memory
Augmented Astromorphic Transformers (RMAAT), integrating astrocytic mem-
ory and recurrent processing into self-attention, enabling longer context handling
without quadratic complexity growth. Our bioplausible model has been found to
outperform traditional transformers in experimental tests conducted on the Long
Range Arena benchmark and IMDB dataset. Specifically, our model achieves a
significant reduction in memory utilization and computational latency. This paves
the way for biologically inspired AI models by illustrating how astrocytic charac-
teristics may enhance the performance and efficiency of computational models.

1 INTRODUCTION

The human brain, a marvel of biological engineering, relies on a network of diverse cell types to
perform complex functionalities. Among these cells, astrocytes are ubiquitous in critical regions es-
sential for cognitive functions. Astrocytes, which are star-shaped glial cells, have long been thought
to support neurons, but recent research has revealed that they also play an active role in various brain
processes. They control synaptic activity, assist in learning and memory, and alter how information
is processed and stored in the brain (Gibbs et al., 2008; Bohmbach et al., 2022; Oliveira & Araque,
2022). The diverse range of functions performed by astrocytes presents intriguing opportunities for
incorporating their roles into computational models, providing novel pathways for enhancing ar-
tificial intelligence and machine learning (Kozachkov & Michmizos, 2017; 2020; González et al.,
2012; Porto-Pazos et al., 2011).

Astromorphic computing aims to improve the efficiency and effectiveness of machine learning mod-
els by emulating the nonlinear processing and memory retention capabilities of astrocytes, (Mia
et al., 2023; Kozachkov et al., 2023a). Integrating the principles of astromorphic computing with
transformer architectures presents a novel approach to advancing artificial intelligence. Transform-
ers have significantly impacted the domain of machine learning, specifically in natural language
processing (NLP) (Vaswani et al., 2017). The self-attention mechanism is the key innovation of
transformers; it allows models to determine the importance of each word in a sentence indepen-
dent of their position. However, despite the remarkable success of transformers, challenges persist
in efficiently handling long sequences. Conventional neural networks, including transformers, of-
ten struggle with lengthy data sequences due to architectural limitations (Wu et al., 2020; Bulatov
et al., 2022). Similarly, brain-inspired models like spiking neural networks (SNNs) have advanced
by emulating neuronal spiking behaviors and incorporating various bio-plausible synaptic learn-
ing rules—such as spike-timing-dependent plasticity, e-prop, DECOLLE, equilibrium propagation,
among others (Lu & Sengupta, 2024; Bellec et al., 2020; Kaiser et al., 2020; Bal & Sengupta,
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2022)—but they generally fail to fully integrate the essential role of astrocytes and the complex
interactions within the tripartite synapse. These models frequently overlook astrocytes’ capacity
for recurrent processing and memory retention, as well as their function as temporal and spatial
integrators (Kozachkov et al., 2023a; Mia et al., 2023; Han et al., 2023; Lines, 2025).

In this work, we leverage the memory retention and recurrent processing capabilities of astrocytes,
macro-modeled through short- and long-term processes in the neuron-astrocyte network, to tempo-
rally integrate astrocytic functions within transformer architectures. We explicitly map astrocytic
short-term plasticity to spatial relative information, an aspect previously overlooked. This mapping
of short-term processes facilitates the integration of long-term plasticity, which is then incorporated
to form temporal astrocytic memory, enabling the model to process long sequences by compressing
context into memory tokens. We implement this compression mechanism derived from the neu-
roscience macro-model as a memory retention factor. Furthermore, leveraging astrocytic memory,
we introduce the Astrocytic Memory Replay Backpropagation (AMRB) algorithm, which signifi-
cantly reduces hardware computational burden. Through this neuroscience-algorithm co-design, we
propose the Recurrent Memory Augmented Astromorphic Transformer (RMAAT), which offers a
unique learning approach, achieving higher accuracy in long-context machine learning tasks with a
fivefold reduction in hardware memory utilization.

2 RELATED WORKS AND MAIN CONTRIBUTIONS

While transformers have transformed sequence modeling with self-attention, their quadratic com-
plexity limits scalability for long sequences (Vaswani et al., 2017). Efficient variants like Reformer
(Kitaev et al., 2020) and Longformer (Beltagy et al., 2020) address this but often compromise model
capacity and long-term dependency capture. Spiking Neural Networks (SNNs) offer energy-efficient
alternatives (Pfeiffer & Pfeil, 2018), with advanced learning rules like e-prop (Bellec et al., 2020),
DECOLLE (Kaiser et al., 2020), and surrogate gradients (Neftci et al., 2019). However, SNNs typ-
ically lack the capacity to handle long-term dependencies without major architectural changes and
do not incorporate astrocytic functions or tripartite synapse interactions.

Research on integrating astrocytes into neural networks has predominantly focused on small-scale
models for specific functions such as synaptic modulation and homeostasis. For example, Nad-
karni & Jung (2007) explored astrocyte-mediated synaptic transmission, and Postnov et al. (2009)
investigated astrocytic influence on neuronal synchronization. In addition, astrocytic models have
been instrumental in advancing neuromorphic systems by enabling self-repair and improving robotic
locomotion through homeostatic control of Central Pattern Generators (CPG). In self-repair mech-
anisms, astrocytes play a crucial role in restoring synaptic functions, as explored by (Wade et al.,
2012) and (Han et al., 2023), where astrocytic retrograde signaling is used to repair damaged neural
pathways. In CPG systems, astrocytes regulate neuronal synchronization and plasticity, facilitat-
ing gait generation and learning in robotic systems, as shown by (Han & Sengupta, 2023). Some
other works in astromorphic computing have begun to explore astrocytic functions within machine
learning models. Kozachkov et al. (2023a) introduced astrocyte-inspired neural networks focusing
on tripartite synaptic plasticity, while Mia et al. (2023) leveraged astrocytic calcium dynamics to
introduce nonlinearity into the self-attention mechanism of transformers, allowing the processing of
information based on relative input positioning. However, they do not explicitly associate short-term
plasticity with self-attention. Consequently, existing approaches tend to address isolated aspects of
astrocytic function and fail to explicitly map both short-term and long-term plasticity onto machine
learning models or integrate the temporal astrocytic plasticity necessary for efficient handling of
long sequences.

Our work introduces a novel RMAAT architecture that leverages astrocytic plasticity for efficient
processing of long-context sequences. The main contributions of this work are:

• Temporal Memory via Long-Term Astrocytic Plasticity: By integrating long-term as-
trocytic plasticity, we form temporal memory that retains context during sequential pro-
cessing, enabling the model to handle long sequences by retaining contexts into memory
tokens.
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• Innovative Astrocytic Memory Compression Mechanism: We introduce a novel astro-
cytic compression mechanism that efficiently condenses contextual information into resid-
ual temporal memories.

• Hardware Efficiency via Astrocytic Memory Replay Backpropagation (AMRB): By
employing the AMRB learning technique, the proposed model achieves a 5× reduction in
hardware memory utilization compared to conventional transformers, enhancing practical-
ity for resource-constrained applications.

3 METHODOLOGY

In order to introduce the Recurrent Memory Augmented Astromorphic Transformer (RMAAT), we
first discuss the computational neuroscience backbone that forms the foundation of our model. This
backbone creates the macro-model responsible for translating short and long-term synaptic plastic-
ities into the astromorphic self-attention mechanism. We then leverage these plasticities within a
machine learning framework to efficiently handle long-range dependencies, forming the RMAAT
architecture that combines biologically-inspired mechanisms with transformer-based processing.

3.1 SHORT-TERM AND LONG-TERM PLASTICITY

To capture the spatial and temporal aspects of astrocytic plasticities, we focus on short-term plastic-
ity (STP) and long-term plasticity (LTP). STP involves rapid synaptic adjustments, while LTP refers
to lasting changes over hours to days, both critical for memory and learning (Min et al., 2012; Perez-
Catalan et al., 2021; Pittà et al., 2015; Li, 2024; Alberini et al., 2018; Gordleeva et al., 2023; 2021).
These plasticities integrate neuronal, synaptic, and astrocytic dynamics across different temporal
and spatial scales (Kozachkov et al., 2023b; Kozachkov & Michmizos, 2017).

Neuron-Astrocyte Network Dynamics: The neuron-astrocyte network integrates the dynamics of
neurons, synapses, and astrocytic processes shaped by short and long-term plasticities. Astrocytes
modulate synaptic transmission and plasticity via gliotransmitter release and ionic concentration,
stabilizing neuronal activity and forming attractor states—stable brain activity configurations encod-
ing memories and behaviors (Becker et al., 2022; Mongillo et al., 2008). Using short-term plasticity,
the network quickly adjusts to new information. These neuron-astrocyte interactions are modeled
through differential equations, capturing the temporal evolution of synaptic weights and astrocytic
influence (Kozachkov et al., 2023b).

Short-term Process Dynamics: We begin by examining the short-term processes that regulate
synaptic weights via interactions between neurons, synapses, and astrocytes.

(i) Neural Dynamics: In the context of a spiking neuron model, the neuron-astrocyte network can
be described by discrete events of neuron spikes and continuous synaptic interactions influenced by
astrocytes. The membrane potential Vi(t) of neuron i evolves according to the following Eqn. 1:

τn
dVi(t)

dt
= −λ(Vi(t)− Vreset) + Ii(t) (1)

Here, τn = RmCm is the neural dynamics timescale, which is the product of the membrane resis-
tance Rm and the membrane capacitance Cm. This timescale is in the order of short-term effects. λ
is the decay rate for the membrane potential. Vreset is the reset potential, and Ii(t) is the input current
to neuron i (Diehl et al., 2015). The input current Ii(t) is determined by the synaptic inputs and an
intrinsic bias as noted in Eqn. 2:

Ii(t) =

N∑
j=1

g(sij)Sj(t) + bi, Sj(t) =
∑
k

δ(t− tk) (2)

where, Sj(t) represents the spike train from neuron j, defined as a sum of Dirac delta functions at
spike times tk. The synaptic weight g(sij) and the input bias bi influence the membrane potential
dynamics. When the membrane potential Vi(t) reaches a threshold Vth, the neuron fires a spike and
the potential is reset to a reset potential Vreset. The activity of neuron i, denoted as xi, is a function of
its membrane potential Vi. Specifically, xi represents the firing rate or the probability of the neuron
firing a spike at a given time, which is influenced by the membrane potential Vi.
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(ii) Synaptic Dynamics: The variable sij represents the level of synaptic facilitation, indicating the
extent to which presynaptic spiking activity influences the postsynaptic neuron. Synaptic strength
can either increase or decrease based on pre- and postsynaptic activity. Astrocytes modulate these
synaptic interactions through mechanisms such as gliotransmitter release and ionic concentration
changes, which in turn affect the synaptic weights g(sij). In accordance with studies on neuron-
glial interactions (Kozachkov et al., 2023b; Gong et al., 2024), we consider tripartite synapses,
where synaptic plasticity is regulated by an associated short-term astrocytic parameter, psij . The
dynamics of synaptic facilitation are given by:

τs
dsij
dt

= −βsij + θ(xi)θ(xj) + ψ(psij) + cij (3)

In this equation, τs is the synaptic dynamics timescale. β represents the decay rate of synaptic facili-
tation. The function θ(x) captures the nonlinear interactions between these biological variables. The
variables xi and xj represent the activity levels of neurons i and j, respectively. The constant cij acts
as a bias, setting the baseline rate of synaptic facilitation in the absence of external input. psij can be
understood as the concentration of intracellular Ca2+ ions in the astrocytic process surrounding the
synapse. Astrocytes modulate neural activity through Ca2+-dependent release of gliotransmitters
such as GABA, D-serine, ATP, and glutamate (de Ceglia et al., 2023)—this modulation is captured
by the function ψ(psij).

(iii) Short-Term Astrocytic Process Dynamics: The state of a particular astrocytic process is influ-
enced by its interactions with neurons at the tripartite synapse and with other astrocytic processes
via intracellular calcium transport. This relationship is described by the equation:

τsp
dpsij
dt

= −γspsij +
N∑

k,l=1

Tijklψ(p
s
kl) + dij (4)

Here, τsp represents the timescale for short-term astrocyte dynamics, and γs > 0 is a decay term for
the intracellular calcium in the astrocytic process. The double sum captures the interactions between
the process psij and all other processes. In the simplest case, calcium can diffuse between processes,
represented by a non-linear function ψ(p) and the tensor Tijkl describing concentration fluxes. The
term Tijkl is a parameter that captures the spatial positions for the multiple neurons connected to
that tripartite synapse. and encodes the spatial distance between the processes psij and pskl.

While previous efforts have implicitly incorporated short-term process dynamics, we are the first
to explicitly propose and map these processes to a neuron-astrocyte network, which subsequently
enable us to integrate astrocytic temporal dynamics into the proposed RMAAT architecture. Next,
we address the long-term process dynamics, a key contribution that enables the temporal integration
of astrocytes within the RMAAT architecture.

Long-Term Process Dynamics: The state of a particular astrocytic process for long-term dynamics
is described by the equation:

τ lp
dplij
dt

= −γlplij + κ(sij) (5)

Here, τ lp represents the timescale for long-term astrocyte dynamics and is greater than the timescale
for short-term astrocyte dynamics. γl > 0 is a decay term for the intracellular calcium in the astro-
cytic process. The nonlinear function κ(sij) represents the synapse-to-astrocyte signaling pathway
at the tripartite synapse level, capturing the effects of synaptic activity on astrocytic processes.

In long-term dynamics, the astrocyte process is performing a form of temporal integration, where it
accumulates and integrates the effects of sustained synaptic activity over time. This is essential for
the persistent changes associated with long-term plasticity (LTP) and is driven by complex biochem-
ical pathways influenced by the history of synaptic activity. This temporal integration is supported
by research showing that long-term changes in astrocytic function involve prolonged biochemical
signaling and gene expression changes, which are critical for maintaining long-term synaptic plas-
ticity (Nedergaard et al., 2003; Perea et al., 2009).

Synergy of Short-Term and Long-Term Dynamics: We developed a macro-model to simulate the
interaction between short-term plasticity (STP) and long-term plasticity (LTP) using a multi-neuron
astrocyte network, consisting of 3 presynaptic (Vj) and 3 postsynaptic neurons (Vi) connected by
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9 synapses (sij). The network includes a single astrocyte governing 9 processes in both short-term
(psij) and long-term dynamics (plij). We map these process parameters as attractor states in this
macro-model. Neural (Vi,j), synaptic (sij), and short-term astrocytic processes (psij) are modeled
with the STP timescale, while long-term astrocytic processes (plij) follow the LTP timescale. The de-
tails of hyperparameters describing the timescale, membrane potential threshold, etc. are discussed
in Appendix C.
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Figure 1: Simulated dynamics of synaptic facilita-
tion sij (STP) and astrocyte process plij (LTP) in
the macro-model. The figure highlights the rapid
stabilization of STP, while LTP gradually builds
up over multiple cycles, ultimately reaching a sta-
ble attractor state, with cumulative STP effects
contributing to the LTP process.

One STP cycle is defined as complete when the
attractor states of the network stabilize, which,
in this model, takes 50 seconds. The dynam-
ics, described by Eqns. 1 - 5, were simulated
for 300 seconds, encapsulating 6 STP cycles
within one LTP cycle. The long-term astrocytic
process parameter plij reaches a stable attractor
state at the 300s mark, accumulating informa-
tion from the short-term parameters as calcium
ions build up during each STP cycle. Depend-
ing on the LTP timescale (τ lp), a varying num-
ber of STP cycles can fit within one LTP cy-
cle. We later map the characteristics of STP and
LTP in RMAAT, where each STP represents a
segmented forward pass within a sequence in-
volving long-range context. To conceptualize
segmented processing, the current STP cycle is
reset upon reaching a stable attractor state, after
which a new STP cycle is initiated. As depicted
in Fig. 1, after every 50 seconds, a new STP cycle begins, with plij continuing to accumulate infor-
mation from short-term parameters (sij , psij ). As psij and sij show similar characteristics in STP, for
simplicity, only sij and plij are depicted in Fig. 1. Although arbitrary units have been used to plot the
parameters, sij and plij can be mapped to synaptic weights and calcium concentration respectively.
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Figure 2: Overview of the Astromorphic Transformer architecture.
This diagram illustrates the integration of bioplausible bi-directional
feedback mechanisms within a two-layered neuron-astrocyte network,
emulating the self-attention of the transformer encoder. The tripartite
synapse between the hidden and output layers is shown, with a de-
tailed depiction of the biological tripartite synapse on the right. The
synaptic weights WK , WQ and WV are corresponding to K, Q and V
of the transformer. 2 − AG initiates the bidirectional communication
between astrocyte and neuron which is linked to the direct and indirect
feedback evoked by the Ca2+ concentration.

To utilize STP and LTP
processes of the neu-
roscience macro-model
in machine learning, a
neuroscience-algorithm
co-design framework must
be established, and neuron-
astrocyte networks offer a
viable approach for this in-
tegration. Recent works on
neuron-astrocyte networks
have proposed decompos-
ing the softmax attention
into linearized kernels by
drawing inspiration from
biologically plausible plas-
ticities and nonlinearities
observed in astrocytes
(Kozachkov et al., 2023a;
Mia et al., 2023). This
approach decomposes the
self-attention formulation
into a kernelized operation
in transformers. The decomposition is carried out by a two-layer neuron-astrocyte network that
operates in both write and read modes. In the write mode, information is encoded as keys and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

values, while in the read mode, it is decoded using queries within the transformer architecture. The
depiction in Fig. 2 illustrates how bioplausible plasticities influence the network during both the
write and read modes.

In the tripartite synapse of Fig. 2, the presynaptic action potential activates both the postsynap-
tic neuron and the astrocyte, triggering a calcium response in the astrocyte. This results in direct
feedback from the postsynaptic neuron and indirect feedback mediated by the astrocyte. The dy-
namics of neuron-astrocyte communication can be referenced from Li and Rinzel Ca2+ dynamics
(Li & Rinzel, 1994), gatekeeper model (Volman et al., 2007), Nadkarni and Jung model (Nadkarni &
Jung, 2004; 2007), and bidirectional study on astrocytic glutamate binding to postsynaptic neurons
(AN model) (Wade et al., 2011). The comprehensive description of the computational model can be
found in the works of (Wade et al., 2012; 2011; De Pittà et al., 2009; Navarrete & Araque, 2010).

In the neuron-astrocyte network of Fig. 2, the write mode encodes input sequences by adjusting
synaptic weights through biologically inspired plasticity mechanisms. During the write mode, the
input for token t is processed in the neuron-astrocyte network (Fig. 2) as follows: it = xt, ht =
ϕ(itWK) = ϕ(kt), ot = itWV = vt. During the write mode, the input layer sequentially transmits
the keys kt = itWK to the hidden layer and the values vt = itWV to the output layer. The hidden
layer neurons activate a non-linear feature map ϕ(.) on the keys to create outputs ht = ϕ(kt), and
the values vt are transmitted to the output layer. ϕ(.) can be implemented using radial basis function
(RBF) (Peng et al., 2021), rectified, or exponent-based (Katharopoulos et al., 2020) kernels. We
employ the feature map ϕ(x) = elu(x) + 1 due to its superior performance compared to alternative
kernels.

In the following subsections, we explain in detail how these astrocytic plasticities, specifically heb-
bian and presynaptic plasticites, are incorporated during the write mode and their role in enabling the
self-attention mechanism in the read mode. Moreover, we emphasize our contribution in mapping
short-term processes through the spatial integration of astrocytes within the neuron-astrocyte net-
work, culminating in the development of the RMAAT architecture. To map STP into astromorphic
computing, we first outline the specific plasticity mechanisms associated with the neuron-astrocyte
network.

Hebbian Plasticity: Hebbian plasticity adjusts synaptic weights based on the co-activation of pre
and postsynaptic neurons along with astrocytes. Two forms of Hebbian plasticity are modeled: (i)
Neuronal Hebbian Plasticity: The synaptic weight between these neurons, Hneuron, is updated
based on the co-activation of these neuron layers: Hneuron,t = Hneuron,t−1 + 1

mh
T
t ot. where,

m represents the number of neurons in the hidden layer for each token. We map this Hneuron,t to
θ(xi) ·θ(xj) in the synaptic dynamics of our proposed macro-model (Eqn. 3), representing the inter-
action between the activations of neurons i and j, capturing the essence of hebbian learning where
the connection strength increases as the neurons co-activate. (ii) Astrocytic Hebbian Plasticity: As-
trocytes modulate synaptic efficacy through gliotransmitter release, which is modeled by the weight
Hastro. This weight is updated as follows: Hastro,t = Hastro,t−1 + 1

mϕ(R)
T ot, where R repre-

sents the astrocytic activity, influenced by calcium dynamics. ϕ(R) reflects the indirect feedback
from astrocytes to postsynaptic neurons. We propose to associate Hastro with the term ψ(psij) in the
synaptic dynamics of the neuroscience macro-model, where the activation of psij (ψ(psij)) processes
the inherent information of Tijkl.

Presynaptic Plasticity: Presynaptic plasticity is influenced by the presynaptic activity (neurotrans-
mitter release) and the astrocytic calcium dynamics, which regulates the release of neurotransmit-
ters. The presynaptic plasticity parameter gt is the link between these two entities that captures the
concentration of neurotransmitter in the synaptic cleft based on the neuron firing activity, xi (xi is
modulated by membrane potential, Vi in Eqn. 1). Thus, gt accumulates the presynaptic activity as
input tokens are processed: gt = gt−1 + ht = gt−1 + ϕ(kt). The non-linear response of astro-
cytes to presynaptic activity is modeled by raising this sum to the power of α, a hyperparameter

that encodes the non-linearity of calcium dynamics (Mia et al., 2023): g =
(∑N

t=1 ϕ(kt)
)α

. This
non-linear presynaptic plasticity reflects the slowing of calcium accumulation as presynaptic activity
intensifies.

Both plasticities are encoded sequentially in the write mode through keys and values. However, in

the read mode, the queries are presented in a parallel manner, where Q =
( q1

q2
..
qN

)
is a matrix of shape

6
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RN×d, withN representing the number of tokens and d as the embedding dimension for each token.
During decoding, information is extracted in parallel, with K and V sharing the same dimensions
as Q. This process ultimately enables the realization of astromorphic self-attention.

Realization of Astromorphic Self-attention: As discussed previously, after the Hebbian and presy-
naptic plasticities are encoded in the write mode, the read mode retrieves the stored information to
compute self-attention. The hidden layer activates queries, (h = ϕ(Q)) and the encoded informa-
tion is accessed through the combined hebbian weight H and the presynaptic plasticity parameter
g. In Eqn. 6, H , which is the sum of both neuronal and astrocytic hebbian plasticities, captures the
plasticities for all the N tokens, thus is represented by matrix form.

H = Hneuron +Hastro =
1

m

(
ϕ(K)TV + ϕ(R)TV

)
(6)

Here, ϕ(R) captures the relative position information between tokens which we map to Tijkl in
the neuroscience macro-model. The read mode computes the calcium response C = hgT and the
weight P , modulated by astrocytic activity, is computed based on calcium response P = 1

C for N
tokens in Eqn. 7.

P =
1

ϕ(Q)
(∑N

t=1 ϕ(kt)
)α (7)

Finally, the output of the network during the read mode is computed by applying the learned hebbian
weight H and the presynaptic weight P to the hidden-to-output layer connection, with a residual
connection from the input layer: L = ϕ(Q)(H ⊙ P ) + I , where ⊙ denotes element-wise multipli-
cation, and I = X represents the direct residual connection from the input layer. By integrating the
Hebbian plasticity H and presynaptic plasticity P , we illustrate the final output of the astromorphic
self-attention mechanism in Eqn. 8:

L =
ϕ(Q)(ϕ(K)TV + ϕ(R)TV )

m× ϕ(Q)
∑N

t=1[ϕ(kt)]
α

+X (8)

To complete the transformer operation, layer normalization is applied to the self-attention output L,
followed by a feedforward network (FFN) to produce the final logits in Eqn. 9.

Y = LayerNorm(L), logits = Softmax(Linear(FFN(Y ) + Y )) (9)
The final output logits represent the classification probabilities or other task-specific outputs, de-
pending on the application of the astromorphic transformer.

Spatial Mapping: In the macro-model, Tijkl is responsible for spatial encoding, which is utilized
through R in Hastro. We capture this spatial mapping by simulating the macro-model for various
spatial orientations of neurons in Tijkl and tracking the resulting outputs of psij . Different spatial
configurations produce varying responses in psij and neuron spiking activity. However, when spatial
distances remain constant, psij shows no variation, and neuron spiking activity remains uniform. So,
we can deduce an impact of relative spatial position on the neuron-astrocyte network that is mapped
by Tijkl to Hastro and then to R. Consequently, we establish a previously unexplored connec-
tion between the neuroscience macro-model and relative positional encoding in astromorphic self-
attention. Prior approaches did not explicitly investigate how short-term processes could be mapped
to spatial information. By addressing this gap, we have enabled our model to exploit long-term pro-
cesses for the integration of temporal information, achieving a more comprehensive representation
in our current approach. In the following sections, we explore the temporal integration of astrocytes
into astromorphic computing by introducing astrocytic memory as memory tokens. Additionally,
we propose the RMAAT architecture, which effectively handles long-context sequences using as-
trocytic memories within a machine learning framework, incorporating an astrocytic compression
algorithm and the AMRB learning rule.

3.3 TEMPORAL INTEGRATION OF ASTROCYTES IN TRANSFORMERS

Temporal integration in astrocytes originates from long-term tripartite synaptic plasticity, repre-
sented by the long-term astrocytic process parameter plij in Eqn. 5. The timescale τ lp, being signif-
icantly longer than τsp in Eqn. 4, allows for extended retention of information. This accumulation
of Ca2+ responses constitutes the long-term astrocytic process, plij , which gives rise to the concept
of astrocytic memories. To incorporate this feature into transformer architectures, we introduce the
notion of memory tokens based on these astrocytic processes.
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Figure 3: Memory retention factor of astrocytes
demonstrating the compression mechanism to em-
ulate long-term plasticity based on the macro-
model. The graph illustrates how the retention
factor decreases as the number of segments (STP
cycles) increases, indicating that more segments
lead to higher compression for each segment.

Memory tokens: Memory tokens are designed
to persist through multiple processing stages
of serialized sequences. Traditional memory-
augmented transformer architectures initialize
and learn these tokens externally, passing them
from one segment to another in segmented se-
quence propagation (Bulatov et al., 2022; Wu
et al., 2020). However, they often lack the
context needed to establish a cohesive mean-
ing. These architectures incur greater compu-
tational costs due to BPTT and external mem-
ory initialization. In contrast, our approach
uses astrocytic memories as naturally integrated
tokens within the neuron-astrocyte network’s
long-term processes, eliminating the need for
external initialization and reducing computa-
tional overhead.

Astrocytic Memory: Our proposed neuro-
science macro-model simulates the behavior of the synaptic facilitation sij and the long-term as-
trocytic process parameter, plij , which represents the astrocytic memory accumulation over time.
This macro-model accounts for all the neural, synaptic, and astrocytic dynamics described in Eqns.
1 - 5. Based on the behavior of plij in Fig. 1, we observe that with repeated short-term plasticity
(STP) events, the parameter gradually saturates, as calcium ions are finite, leading to a stabilized
state in the calcium response. We model the behavior of plij by interpolating the LTP response from
Fig. 1, allowing us to map bioplausibility onto the astrocytic memory tokens.

Based on the interpolated LTP dynamics in Fig. 1, we propose an algorithm that compresses stored
information by scaling the memory tokens. The compression is directly influenced by the number
of STP cycles encoded within a single LTP cycle. A model is fitted to the interpolated LTP curve,
where the area under the curve is normalized to 1, representing the total available Ca2+ ion con-
centration. For each STP cycle, the Ca2+ response constitutes a fraction of this total calcium, with
the fraction decreasing as the number of STP cycles increases. If all STP fractions are integrated,
they sum to the total Ca2+ ion concentration of 1. This fraction is termed the memory retention
factor, as it represents the Ca2+ ion concentration corresponding to the long-term astrocytic process
parameter, plij . This compressed astrocytic memory effectively manages long-range dependencies
without requiring external memory initialization, reducing computational overhead and improving
scalability. As the number of STP cycles increases, the memory retention factor decreases, resulting
in a more compressed form of astrocytic memory, as shown in Fig. 3. The number of STP cycles
corresponds to the number of segments used for a given machine learning dataset in RMAAT. The
approach for dividing long input sequences into multiple segments, based on the RMAAT’s model
capacity, is explained in the next section.

3.4 THE RECURRENT MEMORY AUGMENTED ASTROMORPHIC TRANSFORMER (RMAAT)

The Recurrent Memory Augmented Astromorphic Transformer (RMAAT) is specifically engineered
to effectively process lengthy sequences by partitioning them into smaller segments. The maximum
sequence length for each segment is established according to the model’s token handling capacity.
These segments are then processed in a temporally recurring manner, beginning with the first seg-
ment. These segments map to the STP cycles in the neuroscience macro-model in Fig. 1. As the
RMAAT processes each segment, it utilizes the astrocytic memory compression algorithm discussed
above and propagates the compressed contexts in form of memory tokens, as depicted in Fig. 4.

Temporal Recurrence and Context Propagation: As subsequent segments are processed, the in-
herent compressed memory stored in the astrocytes facilitates the transition of context from one
segment to the next. The recurrent nature of the processing guarantees that the context from prior
segments is consistently transmitted, preserving a unified comprehension of the entire sequence. By
employing this technique of connecting astrocytic memory tokens, the model is able to effortlessly
include information from different segments, efficiently handling distant connections without sacri-
ficing important contextual details. The time-unrolled diagram in Fig. 4 illustrates the progression
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of compressed astrocytic memories throughout the sequence. The memt tokens represent the com-
pressed memories, following the compression algorithm outlined in Fig. 3, where t denotes the
identity of STP cycles, corresponding to the segments in RMAAT. Astrocytic memories also enable
the development of an efficient learning algorithm by utilizing the stored memory tokens.

Recurrent 
Procesing

Ti
m

e u
nr

ol
l

RMAAT RMAAT RMAAT RMAAT

t = 1 
segment = 1

t = 2 
segment = 2

t = 3 
segment = 3

t = N 
segment = N

mem1 mem2 mem3 memN-1

STP STP STP STP

LTP

Figure 4: Illustration of the Recurrent Mem-
ory Augmented Astromorphic Transformer
(RMAAT) processing through time unrolling.
The diagram demonstrates how segments are
processed sequentially with recurrent processing,
where astrocytic memory (memt) flows from
one segment to the next, preserving context
throughout. Short-term plasticity (STP) mod-
ulates information within each segment, while
long-term plasticity (LTP) supports the recurrent
processing and memory flow.

Resource-Efficient Learning with AMRB:
The Recurrent Memory Augmented Astro-
morphic Transformer (RMAAT) employs an
innovative approach to learning known as
Astrocytic Memory Replay Backpropagation
(AMRB), which draws inspiration from the
learning algorithms used by recurrent neural
networks (Wu et al., 2020; Wan et al., 2023).
In AMRB, all memory tokens are saved and
replayed backward during the gradient calcu-
lation phase (See Appendix A for the detailed
algorithm). AMRB aligns closely with biologi-
cal systems through its use of localized compu-
tation, where neurons and astrocytes interact lo-
cally to manage memory and learning. Unlike
BPTT, which propagates information globally
across all time steps, AMRB leverages local-
ized astrocytic memories that store compressed
information from previous interactions. This
localized approach mirrors the way biological
systems handle information, as astrocytes mod-
ulate synaptic activity based on local neural
activity without retaining the entire sequence
state. As a result, AMRB not only enhances
bio-plausibility but also significantly reduces
computational overhead and memory requirements. This reduction in resource usage makes AMRB
more energy-efficient, as it minimizes the power and memory consumption typically associated with
BPTT, further optimizing transformer models for resource-constrained environments.

AMRB reduces hardware memory usage by a factor of five, significantly lowering the memory bur-
den during the backward pass. Additionally, as the memory tokens are stored inherently in astrocytes
rather than externally provided, AMRB improves computational efficiency, running approximately
15% faster than BPTT, which results in higher processing speeds without sacrificing accuracy.

4 RESULTS

In this section, we present the performance evaluation of RMAAT across two key benchmarks: the
IMDB dataset for sentiment classification (Maas et al., 2011) and the Long Range Arena (LRA)
for text classification (Tay et al., 2020). These benchmarks were chosen to assess the model’s abil-
ity to handle tasks requiring both short-term and long-term context understanding. The detailed
experimental setup is outlined in Appendix B. The models’ performance was evaluated using key
metrics: accuracy, memory usage, and computational speed. Accuracy reflects the proportion of
correct predictions, indicating model performance. Memory utilization assesses hardware efficacy
during training and inference, while computational speed evaluates data processing in relation to the
Softmax Transformer baseline (1x). RMAAT’s comparison with other transformers underscores its
enhanced precision and resource efficiency, particularly for long-range assignments.

4.1 SENTIMENT CLASSIFICATION ON IMDB

To evaluate the performance of RMAAT on sentiment classification, we conducted experiments
using the IMDB dataset. We used 256 as the maximum sequence length allowed for each RMAAT
block depicted in Fig. 4. The results are summarized in Table 1, comparing the performance of
various transformer models and memory-augmented variants (The hyperparameters are listed in
Appendix C).
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Table 1: IMDB Sentiment Classification Results

Model Seg-
ments

Recur-
rency

Accuracy
(% ± std)

Memory
(GB) Speed

Softmax Transformer 1 No 85.5 ± 0.1 6.1 1x
Astromorphic Transformer(Mia et al., 2023) 1 No 85.8 ± 0.2 7.1 0.92x
Linear Transformer(Kozachkov et al., 2023a) 1 No 85.7 ± 0.2 6.6 0.95x
Spike-Transformer(Mueller et al., 2021) 1* No 86.36 - -
Recurrent SNN (Wang et al., 2022) 1* No 86.82 - -
CoRNN (Rusch & Mishra, 2020) 1* No 87.4 - -
LSTM (Aswani et al., 2021) 1* No 87.48 - -
SNN (Agrawal et al., 2021) 1* No 88.15 - -
RMT variant (Softmax) (Bulatov et al., 2022) 6 Yes 88.4 ± 0.2 20.2 1x
Linear Transformer 6 Yes 88.2 ± 0.2 22.5 1.03x
RMAAT (Our Model) 6 Yes 88.9 ± 0.1 4.4 1.15x

* These models are not iso-architecture and may process longer sequence lengths

When processing a single
segment, the astromor-
phic transformer demon-
strates comparable per-
formance to the Soft-
max and Linear Trans-
formers. However, its
true advantage emerges
with longer sequences,
where the RMAAT out-
performs both the RMT
and Linear Transformer
variants. Additionally,
RMAAT shows significant memory efficiency, achieving approximately a fivefold reduction in mem-
ory usage compared to other models while retaining superior contextual information. RMAAT also
processes data 15% faster than the RMT variant and 10% faster than the Linear Transformer. Com-
pared to models like Spike-Transformer, Recurrent SNN, and LSTM, RMAAT offers clear advan-
tages in both accuracy and efficiency. These models have varying architectures compared to ours as
they are taken from different literature.

4.2 TEXT CLASSIFICATION ON LONG RANGE ARENA BENCHMARK

Table 2: LRA Text Classification Results
Model Seg-

ments
Recur-
rency

Accuracy
(% ± std)

Memory
(GB) Speed

Softmax Transformer (Mia et al., 2023) 1 No 61.5 ± 0.1 6.3 1x
Astromorphic Transformer (Mia et al., 2023) 1 No 61.5 ± 0.1 7.6 1.9x
Linear Transformer (Mia et al., 2023) 1 No 61.0 ± 0.1 5.9 1.01x
Local Attention (Vaswani et al., 2017) 1* No 52.98 - -
Sparse Transformer (Child et al., 2019) 1* No 63.58 - -
Longformer (Beltagy et al., 2020) 1* No 62.85 - -
Linformer (Wang et al., 2020) 1* No 53.94 - -
Reformer (Kitaev et al., 2020) 1* No 56.10 - -
Synthesizer (Tay et al., 2021) 1* No 61.68 - -
BigBird (Zaheer et al., 2020) 1* No 64.02 - -
Performer (Choromanski et al., 2020) 1* No 65.40 - -
RMT variant (Softmax) (Bulatov et al., 2022) 8 Yes 65.0 ± 0.2 24.0 1x
Linear Transformer 8 Yes 64.8 ± 0.1 22.6 1.13x
RMAAT (Our Model) 8 Yes 65.9 ± 0.1 5.1 1.5x

* These models are not iso-architecture and may process longer sequence lengths

The Long Range Arena
(LRA) benchmark eval-
uates models on their
ability to handle long-
range dependencies.
The text classification
task involves sequences
much longer than typical
benchmarks, making
it ideal for assessing
RMAAT’s capacity to
maintain context over
extended lengths. Se-
quences were tokenized
at the byte level with up to 512 tokens per segment, and a total of 4096 tokens (8 segments). All
the hyperparameters are listed in Appendix C. Table 2 summarizes the results, comparing RMAAT
with other transformer models and memory-augmented variants on the LRA text dataset. In the
evaluation with 8 segments, RMAAT demonstrates superior performance, operating 50% faster
than the RMT variant and 30% faster than the Linear Transformer, while also significantly reducing
memory usage to 5.1 GB. Compared to other efficient transformers like Longformer, Linformer,
and Sparse Transformer, RMAAT excels in handling long-range dependencies with enhanced
computational efficiency. The inclusion of Astrocytic Memory Replay Backpropagation (AMRB)
strengthens the model’s ability to manage complex, long-context sequences effectively, showcasing
the impact of bioplausible mechanisms in transformer architectures.

5 CONCLUSIONS

This research introduces the RMAAT, a transformer enhanced by bioplausible astrocytic mech-
anisms. By integrating short and long-term astrocytic plasticity, RMAAT addresses long-range
dependencies in sequential data, outperforming standard transformers in both accuracy and effi-
ciency. With AMRB, the model reduces memory usage and enhances computational speed, making
it well-suited for resource-limited systems. Moving forward, further biological inspiration, such as
astrocyte-astrocyte communication through gap junctions, can be explored as potential avenues to
parallelize sequential processing and enhance computational efficiency. Future work can also ex-
tend RMAAT to more challenging domains like computer vision and machine translation, aiming to
create more efficient, biologically inspired AI systems that closely emulate human cognition.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amogh Agrawal, Mustafa Ali, Minsuk Koo, Nitin Rathi, Akhilesh Jaiswal, and Kaushik Roy. Im-
pulse: A 65-nm digital compute-in-memory macro with fused weights and membrane potential
for spike-based sequential learning tasks. IEEE Solid-State Circuits Letters, 4:137–140, 2021.

Cristina M Alberini, Emmanuel Cruz, Giannina Descalzi, Benjamin Bessières, and Virginia Gao.
Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia, 66
(6):1244–1262, 2018.

AR Aswani, Rohan Kumar, Jai Narayan Tripathi, and Alex James. Performance of crossbar based
long short term memory with aging memristors. In 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS), pp. 1–4. IEEE, 2021.

Malyaban Bal and Abhronil Sengupta. Sequence learning using equilibrium propagation. arXiv
preprint arXiv:2209.09626, 2022.

Sophia Becker, A. Nold, and T. Tchumatchenko. Modulation of working memory duration by
synaptic and astrocytic mechanisms. PLoS Computational Biology, 18, 2022. doi: 10.1371/
journal.pcbi.1010543.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neu-
rons. Nature communications, 11(1):3625, 2020.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

K. Bohmbach, C. Henneberger, and J. Hirrlinger. Astrocytes in memory formation and maintenance.
Essays in biochemistry, 2022. doi: 10.1042/EBC20220091.

Aydar Bulatov, Yuri Kuratov, and M. Burtsev. Recurrent memory transformer. ArXiv,
abs/2207.06881, 2022. doi: 10.48550/arXiv.2207.06881.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, David Belanger, Lucy Colwell, et al. Masked lan-
guage modeling for proteins via linearly scalable long-context transformers. arXiv preprint
arXiv:2006.03555, 2020.

Roberta de Ceglia, Ada Ledonne, David Gregory Litvin, Barbara Lykke Lind, Giovanni Carriero,
Emanuele Claudio Latagliata, Erika Bindocci, Maria Amalia Di Castro, Iaroslav Savtchouk, Ilaria
Vitali, et al. Specialized astrocytes mediate glutamatergic gliotransmission in the cns. Nature, 622
(7981):120–129, 2023.
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A ASTROCYTIC MEMORY REPLAY BACKPROPAGATION (AMRB)

This algorithm describes the Astrocytic Memory Replay Backpropagation (AMRB), which effi-
ciently manages and updates memory states across multiple segments. By leveraging the bioplausi-
ble properties of astrocytes, AMRB ensures the preservation and propagation of context throughout
the network, thereby enhancing the model’s ability to handle long-range dependencies. The algo-
rithm is outlined in Alg. 1.

B EXPERIMENT SETUP

Hardware Specifications & Network Architecture: All experiments were conducted on a server
equipped with Linux 5.15.0-113-generic x86 64 with glibc2.31. The server featured an AMD EPYC
7742 64-Core Processor with 32 CPU cores, 1TB of RAM, and 8 NVIDIA RTX A5000 GPUs, each
with 24GB of memory. The RMAAT network architecture, depicted in Fig. 4, can have varying
numbers of encoder layers depending on the ML task. The model leverages the inherent memory
and processing capabilities of astrocytes, with recurrent processing as depicted in Fig. 4. The
specific hyperparameters, such as the number of layers, heads, and size of the hidden states, etc. are
detailed in the supplementary section.

Datasets: The IMDB dataset consists of 50,000 movie reviews, split evenly into 25,000 training
and 25,000 testing samples. Each review is labeled as either positive or negative, providing a bal-
anced dataset for sentiment classification. This dataset is particularly useful for evaluating how well
models can capture and retain context over relatively long sequences, as movie reviews often con-
tain nuanced and varied language. The LRA benchmark includes several tasks designed to test the
ability of models to handle long-range dependencies. For the text classification task, sequences are
significantly longer than those in standard benchmarks, making it an ideal test for evaluating the
RMAAT’s capability to maintain context over extended lengths.
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Algorithm 1: Astrocytic Memory Replay Backpropagation (AMRB)
Input: rollout = [x0, x1, . . . , xT ]: A list containing each timestep t’s input xt
Input: prev memory: Memory from the previous rollout
Result: Updated memory for the next rollout

1 Initialize replay buffer = [];
2 Append prev memory to replay buffer;
3 Forward Pass:;
4 for t = 0, 1, 2, . . . , T − 1 do
5 mt+1 = Model(xt,mt) ; // No gradient computation
6 mt+1 = astro mem retention(mt+1) ; // Apply astrocytic memory

retention
7 Append mt+1 to replay buffer;
8 end
9 Backward Pass:;

10 Initialize ∇mt+1 = 0;
11 for t = T, T − 1, . . . , 0 do
12 mt+1, ot = Model(xt,mt) ; // Recompute outputs
13 Compute loss = loss function(ot);
14 Perform backpropagation loss.backward();
15 Backpropagate through memory mt+1.backward(∇mt+1) ; // Compute ∇mt

16 end
17 Save mT for the next rollout’s update;

Table S1: Neuroscience Macro-model Hyperparameters
Parameter Value
Network Details
Number of presynaptic neurons 3
Number of presynaptic neurons 3
Number of astrocytes 1
Timescale 300 s
Timestep, dt 0.04 s
Neural Dynamics
Neural dynamics timescale , τn 0.5 s
Membrane potential threshold, Vth 1mV
Reset potential, Vreset −1mV
Decay parameter, λ 0.2
Bias parameter, b 0
Non-linearity, ϕ tanh
Synaptic Dynamics
Synaptic dynamics timescale , τs 0.75 s
Decay parameter, β 0.25
Bias parameter, c 0
Non-linearity, θ tanh
Astrocytic STP Dynamics
Short-term astrocytic process dynam-
ics timescale , τsp

1 s

Decay parameter, γs 0.2
Bias parameter, d 0
Non-linearity, ψ tanh
Astrocytic LTP Dynamics
Long-term astrocytic process dynam-
ics timescale , τ lp

6 s

Decay parameter, γl 0.1
Non-linearity, κ sigmoid
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C HYPERPARAMETER DETAILS

We develop the neuroscience macro-model and simulate the neural, synaptic and short and long-
term astrocytic dynamics to realize the neuroscience-algorithm co-design framework achieved by
the RMAAT structure. Table S1 shows the hyperparameters involved in simulating the model. For
the RMAAT framework, Table S2 presents the hyperparameters used for training and evaluating the
IMDB Dataset, while Table S3 details the hyperparameters for the LRA Text Dataset.

Table S2: IMDB Dataset Hyperparameters
Parameter Value
Training Parameters
Batch size 64
Maximum sequence length in a seg-
ment, N 256

Number of epochs 20
Learning rate 1.5e−5

Model Architecture
Embedding dimension, d 768
Number of heads 6
Number of neurons of feed forward
network 1024

Number of encoder layers 3
Dropout 0.1
AMRB Parameters
Number of segments 6
Number of memory tokens 32
Astromorphic Self-Attention Parameters
Hidden layer neuron number, m 100
Nonlinearity, α 0.25

Table S3: LRA Text Dataset Hyperparameters
Parameter Value
Training Parameters
Batch size 64
Maximum sequence length in a seg-
ment, N 512

Number of epochs 40
Learning rate 1.2e−5

Model Architecture
Embedding dimension, d 256
Number of heads 2
Number of neurons of feed forward
network 1024

Number of encoder layers 1
Dropout 0.1
AMRB Parameters
Number of segments 8
Number of memory tokens 32
Astromorphic Self-Attention Parameters
Hidden layer neuron number, m 100
Nonlinearity, α 0.25
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