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Abstract

Foundational multimodal models pre-trained on large scale image-text pairs or
video-text pairs or both have shown strong generalization abilities on downstream
tasks. However unlike image-text models, pretraining video-text models is always
not feasible due to the difficulty in collecting large-scale clean and aligned data,
and exponential computational costs involved in the pretraining phase. Therefore,
the pertinent question to ask is: Can image-text models be adapted to video
tasks and is there any benefit to using these models over pretraining directly on
videos? In this work, we focus on this question by proposing a detailed study
on the generalization abilities of image-text models when evaluated on video
understanding tasks in a zero-shot setting. We investigate 9 foundational image-
text models on a diverse set of video tasks that include video action recognition
(video AR), video retrieval (video RT), video question answering (video QA), video
multiple choice (video MC) and video captioning (video CP). Our experiments
show that image-text models exhibit impressive performance on video AR, video
RT and video MC. Furthermore, they perform moderately on video captioning
and poorly on video QA. These findings shed a light on the benefits of adapting
foundational image-text models to an array of video tasks while avoiding the costly
pretraining step. The code is available at https://github.com/IntelLabs/
multimodal_cognitive_ai/tree/main/Video-Zeroshot.

1 Introduction

Foundational vision-language (VL) models [39, 48, 52, 24, 26, 33] have achieved state-of-the-results
on multi-modal tasks like image-retrieval [50, 34] image captioning [1, 34] and visual question
answering [4, 11] etc. These models are pretrained on large amounts of image-text pairs using
contrastive learning and then evaluated on these tasks in a zero-shot or few-shot setting. However,
pre-training such large scale models is extremely hard for videos because: (i) Most of the current
large scale video-text datasets [36] are very noisy and mis-aligned (i.e. video frames and captions
don’t match temporally). Therefore, its difficult to collect clean and aligned video-text data without
human-in-the-loop unlike image-text data. (ii) Pre-training models on such video-text datasets require
heavy computational resources. Hence given the remarkable transfer capabilities of contrastive
image-text models, the pertinent question to explore is:

How beneficial are foundational image-text models when applied on video tasks in a zero-shot setting?
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Figure 1: Overview of the architecture. It consists of four components (i) Image encoder (F) to get
frame representations for the input video, (ii) Text encoder (G) to get text representations for the
input text prompt, (iii) Frame pooling layer (H) to obtain pooled frame representations, (iv) Final
output layer (O) to acquire the output.

To investigate this, we conduct a systematic study by evaluating a diverse set of image-text models
on a wide range of video tasks. We propose a simple architecture (Fig 1) to effectively adapt the
image-text models for video-tasks without any changes to the architecture. For this study, we utilize
9 foundational image-text models and test these extensively on 5 video understanding tasks namely
video action recognition (video AR), video retrieval (video RT), video question answering (video
QA), video multiple choice (video MC) and video captioning (video CP) in a zero-shot setting. In
addition, we also benchmark the zero-shot performance of image-text to the existing state-of-the-art
video-text models on each of the tasks. Our zero-shot evaluation results demonstrate that:

1. Foundational image-text models perform competitively to SotA video-text models on video
action recognition, video retrieval and video multiple choice tasks.

2. Image-text models struggle on complex video reasoning tasks such as video question
answering while demonstrating reasonable performance on video captioning.

3. The performance is heavily dependent on the size of the data used in pre-training image-text
models and a frame count ranging from 12 to 20 is sufficient for the optimal score.

2 Related Work

Vision-Language Models (VLM): There has been a body of work [30, 28, 32, 27, 31, 13]that
explore the phenomenon of pre-training on large image-text datasets [40, 8] and fine-tuning on
downstream tasks. The goal is to learn generalized multi-modal representations applied to image
understanding tasks [12, 7, 15, 20, 4, 1, 50]. Unlike the previous works, we explore the generalization
abilities of image-text models on a broad range of video understanding tasks in a zero-shot setting.

Video understanding: Several benchmarks have been introduced such as video action recognition
[42, 21, 41], video retrieval [46, 3, 9]video question answering [45, 2], video captioning [23, 54]
etc. Transformer based models [5, 16, 29] pre-trained on large scale video datasets [5, 36] have
been introduced and tested on these benchmarks. Our aim is to avoid the costly pre-training step and
effectively adapt the foundational image-text models to videos.
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Task Dataset Split Test size Metric Frames Classes

Action Recognition
Kinetics 700-2020 [41] Val 30850 Accuracy 16 700

UCF101 [42] Test 13320 Accuracy 16 101
HMDB51 [21] Test 3783 Accuracy 16 51

Video Retrieval
MSRVTT [46] Test 1000 R@1 16 1000

MSVD [9] Test 670 R@1 16 670
DiDeMo [3] Test 1002 R@1 32 1002

Video QA MSRVTT [45] Test 67770 Accuracy 16 1500
MSVD [45] Test 11983 Accuracy 16 1000

Video MC

TGIF Transition [19] Test 6232 Accuracy 16 5
TGIF Action [19] Test 6232 Accuracy 16 5
TGIF Frame [19] Test 6232 Accuracy 16 1540

MSRVTT [51] Test 2981 Accuracy 16 4

Video Captioning MSRVTT [46] Test 2990 B-4, METEOR 16 Generation
MSVD [9] Test 690 B-4, METEOR 16 Generation

Table 1: Summary of the tasks and the datasets used in zero-shot evaluation. The table also
illustrates the dataset split, size of the test data, evaluation metric, number of video frames and number
of classes for each of the datasets. R@1 denotes Recall-1, B-4 is the average of BLEU-1, BLEU-2,
BLEU-3 and BLEU-4.

3 Methodology

The primary question we aim to investigate in this work is: How beneficial are image-text represen-
tations to downstream video tasks in a zero-shot setting? To explore this, we propose a simple
architecture that takes video and prompt text as inputs and returns the most similar class label or
generates a text caption. As shown in the Figure 1, it consists of four components: image encoder
(F), text encoder (G), frame pooling layer (H) and final output layer (O). We leverage the image and
text encoders of the respective models listed in Section 4.2. Additionally we add a frame pooling
layer and also an output layer.

Image Encoder (F). Given a video v, we sample N frames denoted as v = [v1, v2, .., vN ]. We then
employ a pre-trained image encoder (F) to get the representations for each of the sampled video
frames F (v) = [F (v1), F (v2), ..., F (vN )].

Text Encoder (G). Given a text prompt t, we use a pre-trained text encoder (G) to obtain
the text representations from the tokenized input text.

Frame Pooling Layer (H). To obtain the final video representation, we leverage a frame
pooling layer which computes the mean of all the frame representations.

H(F (v)) =

∑N
i=1 F (vi)

N
(1)

Output Layer (O). The output layer takes the video and text representations and outputs a class label
with the maximum cosine similarity score for classification tasks or generates a text for captioning
tasks.

4 Experimental Settings

4.1 Tasks

We analyze five different video understanding tasks: video action recognition (video AR), video
retrieval (video RT), video question answering (video QA), video multiple choice (video MC) and
video captioning (video CP). Table 1 summarizes the tasks, datasets for each task category, dataset
split, metrics used for evaluation, number of frames and classes for each dataset. Below, we list the
evaluation datasets for each of the tasks.
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Task Dataset Prompt

Action Recognition
Kinetics 700-2020 a video of a person doing {CLASS NAME}

UCF101 a video of a person doing {CLASS NAME}
HMDB51 a demonstration of a person doing {CLASS NAME}

Video Retrieval
MSRVTT {QUERY}

MSVD {QUERY}
DiDeMo {QUERY}

Video QA MSRVTT - QA Question: {QUESTION} Answer: {ANSWER CANDIDATE}
MSVD - QA Question: {QUESTION} Answer: {ANSWER CANDIDATE}

Video MC
TGIF Transition {QUESTION} {ANSWER CANDIDATE}

TGIF Action {QUESTION} {ANSWER CANDIDATE}
TGIF Frame {QUESTION} {ANSWER CANDIDATE}

MSRVTT - MC {QUESTION} {ANSWER CANDIDATE}

Video Captioning MSRVTT A video of
MSVD A video of

Table 2: Summary of the tasks and prompts used in zero-shot evaluation. The curly brackets in a
prompt is replaced with all the class names for action recognition and answer candidates for Video
QA and Video MC tasks.

Video Action Recognition (Video AR): Kinetics 700-2020 [41], UCF-101 [42] and HMDB-51
[21].
Video Retrieval (Video RT): MSRVTT [46], MSVD [9] and DiDeMo [3].
Video Question Answering (Video QA): MSRVTT-QA [45] and MSVD-QA [45].
Video Multiple Choice (Video MC): TGIF-Transition, TGIF-Action, TGIF-Frame [19] and
MSRVTT-MC [51].
Video Captioning (Video CP): MSRVTT [46] and MSVD [9].

4.2 Models

For experiments we use the following nine foundational image-text models: ALIP [49], CLIP
[39], OpenCLIP [18], SLIP [37], LaCLIP [14], BLIP-2 [25], InstructBLIP [10], OFA [44] and
Pix2Struct [22].

4.3 Evaluation Metrics

For the tasks of video action recognition, video question answering and video multiple choice we use
accuracy as the evaluation metric. We report the results using the standard R@1 (Recall@1) metric
in case of video retrieval. We employ multiple metrics: B-4 [38], METEOR [6] and CIDEr [43] for
the video captioning task. B-4 is the average of BLEU-1, BLEU-2, BLEU-3 and BLEU-4.

4.4 Implementation

Table 2 summarizes the text prompts used for each of the video tasks.

Video Action Recognition: For the action recognition task, we use the prompts “a video
of a person doing {CLASS NAME}” and “a demonstration of a person doing {CLASS
NAME}”. The field {CLASS NAME} is substituted with all the class names present in the dataset and
the cosine similarity is measured for the input video and all the classes. The predicted class is the one
with maximum cosine similarity among all the candidate classes.

Video Retrieval: In case of video retrieval, the input query is used as the prompt and its similarity is
calculated with all the videos in the database.

Video QA and Video MC: Regarding the tasks of video QA and video MC, the fields
{Question} and {ANSWER CANDIDATE} in the prompt “Question: {QUESTION} Answer:
{ANSWER CANDIDATE}” are replaced with input question and all the possible answers respectively.
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Video AR Video Retrieval Video QA

Model Type #PT K700 UCF-101 HMDB-51 MSRVTT MSVD DiDeMo MSRVTT MSVD

ALIP [49] IT 15M 15.7 30.3 21.2 15.3 33.9 14.3 0.1 7.7
CLIP [39] IT 400M 40.5 63.6 46.2 29.9 44.2 22.6 1.5 6.5

OpenCLIP [18] IT 2B 37.4 56.4 38.1 31.7 48.2 22.6 2.9 7.7
SLIP [37] IT 15M 13 15.2 19.8 14.1 30.3 17.2 1.5 4.1

LaCLIP [14] IT 400M 39.1 59.5 38.8 32 43.6 23.3 0.1 5.5

VIOLET [17] VT 186M - - - 34.5 48.3 32.6 - -
LAVENDER [29] VT 30M - - - - - - 2.7 9.2

MAXI [35] VT GPT3 - 78.2 52.3 - - - - -

∆ - - - -14.6 -5.9 -2.8 -0.1 -9.3 +0.2 -1.5

Table 3: Results of zero-shot video action recognition, video retrieval and video question
answering. Type denotes whether the model is pre-trained on image-text (IT) or video-text (VT) data.
#PT implies the size of data used in pre-training. K700 is the kinetics 700-2020 [41] dataset. ∆ is
the difference between the highest performance of image-text models and state-of-the-art video-text
model.

Model Type TGIF-Transition TGIF-Action TGIF-Frame MSRVTT-MC

ALIP [49] Image-text 39.1 38.5 0.1 62.4
CLIP [39] Image-text 51.3 50.5 5.8 74.3

OpenCLIP [18] Image-text 41.2 45.1 4.2 73.3
SLIP [37] Image-text 37.2 35.9 2.0 61.9

LaCLIP [14] Image-text 41.6 46.1 2.6 74.4
LAVENDER [29] Video-text 53.8 55.1 19.6 87.2

∆ - -2.5 -4.6 -13.8 -12.8

Table 4: Results of zero-shot evaluation on video MC. ∆ is the difference between the highest
performance of image-text models and state-of-the-art video-text model.

The answer candidate for which the similarity between the input video and the text prompt is
maximum is chosen as the predicted answer.

Video Captioning: As for video captioning, the prompt “A video of” along with the video are
used as inputs for generating captions.

5 Results and Discussion

5.1 Zero-shot image-text models are competitive to SOTA video-text models on video AR, RT
and MC tasks

In Table 3, we present the results of image-text models on video action recognition and video retrieval.
Table 4 illustrates the results on video multiple choice. From the tables, we observe that image-text
models perform competitively to state-of-the-art video-text models on most of the tasks. On the
task of video action recognition, image-text models lag behind SotA video-text model by 14.6% for
UCF-101 and 5.9% for HMDB-51 dataset. Note that, MAXI [35] is pretrained on significantly larger
video datasets compared to image-text models and is explicitly modelled to learn actions in them.

For the task of video retrieval, image-text models achieves comparable results to SotA video-text
model. In fact, image-text models trail only by 2.8% and 0.1% for MSRVTT and MSVD respectively.
In-case of DiDeMo, the difference in performance (9.2%) is quite significant. Observe that, MSRVTT
and MSVD are shorter length video datasets whereas DiDeMo is a paragraph to video retrieval
dataset.

In the case of video MC, we see that image-text models under perform by just 2.5% and 4.6% in case
of TGIF-transition and TGIF-action datasets respectively. TGIF is a GIF dataset and are typically
easier compared to videos and in addition the number of choices to select from in these datasets
are limited to just 5. Hence, the image-text models were able to achieve similar performance to
SotA video-text models on these relatively easier datasets. In contrast even though TGIF-frame is a
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MSRVTT MSVD

Model Type #PT B-4 METEOR CIDER B-4 METEOR CIDER

BLIP2 [25] Image-text 129M 35 18 19 35.6 22.2 27.4
InstructBLIP [10] Image-text 129.5M 26.2 12.9 11.8 27.1 16.2 17.8

OFA [44] Image-text 36.27M 18.7 10.5 4.8 17.3 11.8 -
Pix2Struct [22] Image-text 80M 23.3 14.4 - 19.3 15.3 -

Vid2Seq [47] Video-text 1B + FT - 30.8 64.6 - 45.3 146.2

∆ - - - -12.8 -45.6 - -23.2 -118.8

Table 5: Results of zero-shot evaluation on video captioning. Note that Vid2Seq model is pretrained
on YT-Temporal-1B [53] and then fine-tuned on MSRVTT and MSVD datasets respectively. ∆ is
the difference between the highest performance of image-text models and state-of-the-art video-text
model.

(a) Video Action Recognition (b) Video Retrieval

Figure 2: Figure shows the effect of number of video frames on the zero-shot performance of CLIP
for video action recognition and video retrieval. Figures for the additional tasks and image-text
models are included in the appendix.

GIF dataset, the frequency of choices is 1000 which are significantly higher. Therefore, we spot a
notable difference (13.8%) in performance between image-text and video-text models. We would
like to add that the video-text models also perform considerably worse on TGIF-frame compared
to TGIF-transition and TGIF-action. On MSRVTT-MC despite the limited multiple choices (i.e. 4),
SotA video-text models evidently outperforms image-text models by 12.8%.

5.2 Zero shot image-text models perform reasonably on video captioning.

In Table 5, we provide a comparison between zero-shot image-text models and fine-tuned video-text
models on the task of video captioning. As seen in the table, it is clear that zero-shot image-text
models (BLIP-2) perform reasonably to video-text models despite pre-training on just 13% data and
not fine-tuning on respective datasets.

5.3 Image-text and video-text models perform worse on video QA in a zero-shot setting

Table 3 illustrates the zero-shot results of image-text and video-text models on the video QA task.
From the table, it is clear that video-text models marginally outperform image-text models in zero-
shot video QA. It is worth noting that both image-text and video-text perform poorly on QA datasets.
Video QA is a complex task which requires modelling of object and attribute relationships in the
videos. This could be the reason zero-shot models show subpar performance.

5.4 Size of pre-training data matters for image-text models

We analyze the effect of the size of the pre-training data on the zero-shot performance of image-text
models on the various video tasks. We compare image-text models like ALIP and SLIP pretrained
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(a) Video Action Recognition (b) Video Retrieval

Figure 3: Figure shows the effect of number of video frames on the zero-shot performance of LaCLIP
for video action recognition and video retrieval.

on 15M image-text pairs, CLIP and LaCLIP pretrained on 400M and OpenCLIP pretrained on 2B
image-text pairs. On video AR and video MC as summarized in the Tables 3 and 4 respectively,
we observe models trained with 400M data consistently significantly outperform the models trained
with 15M data across all three evaluation datasets. These models also slightly outperform OpenCLIP
trained on 400% more training data. On the task of video retrieval, we note that larger pre-training
data does have more impact on the zero-shot performance gains on the MSVD dataset. In case of
MSRVTT and DiDeMo, the models pretrained on 400M and 2B are comparable in performance. In
all the evaluations, we observe that models trained on 15M image-text pairs performs 50% worse
than that of the models pretrained on 400M. On video QA, we observe that OpenCLIP performs
remarkably well on MSRVTT compared to its counterparts which are trained on comparatively less
data. However, on MSVD we see comparable performance between OpenCLIP, ALIP and SLIP
trained on much lesser image-text pairs. When analyzing the performance on video captioning tasks
in 5, we see BLIP2 trained with 129M image-text pairs outperforms OFA and Pix2Struct trained with
lesser data (36.27M and 80M respectively). Overall we do observe a correlation between the amount
of data used during pre-training and the zero-shot performance. However, the few outliers that we
note do invite further analysis.

5.5 Impact of frame count on zero-shot performance of image-text models

In this section, we study the impact of video frame count on the zero-shot performance of image-text
models. Figure 2 demonstrates the results of this study for CLIP model on video action recognition
and video retrieval tasks. Our results indicate that the zero-shot performance increases with higher
frame frequency and reaches an optimal point without further increase. We observe this effect for all
the datasets of video action recognition and video retrieval. These results illustrate that frame count
ranging from 12 to 20 offer the optimal zero-shot performance for most of the video tasks.

6 Conclusion

In this work, we presented a comprehensive analysis on the generalization capabilities of foundational
image-text models on a broad range of video understanding tasks in a zero-shot setting. We evaluate
nine foundational image-text models on five video tasks namely video action recognition, video
retrieval, video question answering, video multiple choice and video captioning and also benchmark
them against the state-of-the-art video-text models on these tasks. Our experiments demonstrate that
image-text models accomplish competitive results to video-text models on video action recognition,
video retrieval and video multiple choice. Moreover, the results also show that image-text models
show reasonable performance on video captioning and perform worse on video question answering.
We think that the future works can benefit from these findings in designing models for video
understanding tasks.
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(a) CLIP (b) LaCLIP

Figure 4: Figure shows the effect of number of video frames on the zero-shot video multiple choice
performance of CLIP and LaCLIP.
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