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Abstract
Via an overparameterized linear model with Gaussian features, we provide con-
ditions for good generalization for multiclass classification of minimum-norm
interpolating solutions in an asymptotic setting where both the number of under-
lying features and the number of classes scale with the number of training points.
The survival/contamination analysis framework for understanding the behavior
of overparameterized learning problems is adapted to this setting, revealing that
multiclass classification qualitatively behaves like binary classification in that, as
long as there are not too many classes (made precise in the paper), it is possible
to generalize well even in some settings where the corresponding regression tasks
would not generalize. Besides various technical challenges, it turns out that the key
difference from the binary classification setting is that there are relatively fewer
positive training examples of each class in the multiclass setting as the number of
classes increases, making the multiclass problem “harder” than the binary one.

1 Introduction
Multiclass classification on standardized datasets is where the current deep-learning revolution really
made the community take notice with previously unattainable levels of performance. Contemporary
systems have demonstrated tremendous success at these tasks, typically using gigantic models with
parameters that vastly exceed the (also large) number of data points used to train these models. In
defiance of traditional statistical wisdom regarding overfitting, these big models can be trained to
achieve zero training error even with noisy labels, but still generalize well in practice [84, 28].

To better understand this empirical phenomenon, one line of work uses appropriate high-dimensional
linear models for regression problems to show how benign fitting of noise in training data is possible
[31, 52, 4, 9, 55]. Essentially, the model must have enough "non-preferred" degrees of freedom to be
able to absorb the training noise without contaminating predictions by too much. Simultaneously,
there has to be enough of a preference for degrees of freedom that can capture the true pattern to
enable it to survive the learning procedure and be well represented in the final learned model.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



A subsequent line of work studies binary classification [56, 13, 76] and shows that binary classification
can generalize well beyond what can be proved by classical margin-based bounds [3] and there exist
regimes where binary classification can even succeed in generalizing where regression fails — less
preference is required for the degrees of freedom that capture the true pattern [56]. Very recently, the
generalization of multiclass classification in similar models was studied in Wang et al. [77] but the
analysis was limited to a fixed finite number of classes. In practice, we see that larger datasets often
come with more classes and are tackled with even bigger models and so it is important to see what
happens to generalization when everything scales together. To have a crisply understandable approach
that allows everything to scale, this paper also adopts the bi-level covariance model with Gaussian
features that is used in Muthukumar et al. [55, 56], Wang et al. [75], Wang et al. [77].

To understand classification, we must understand the role of training loss functions in determining
what is learned. Empirical evidence shows that least-squares can yield classification performance
competitive to cross-entropy minimization [64, 35, 11]. Muthukumar et al. [56], Hsu et al. [33]
show that indeed with sufficient overparameterization, the support vector machine (SVM) solution,
which also arises from minimizing the logistic loss using gradient descent [68, 36], is identical to
that obtained by the minimum-norm interpolation (MNI) of binary labels — what would be obtained
by gradient descent while minimizing the squared loss. A similar equivalence1 holds for different
variations of multiclass SVMs and the MNI of one-hot-encoded labels [77]. Consequently, this paper
focuses on the MNI approach to overparameterized learning for multiclass classification.

2 Our contributions
Our study provides an asymptotic analysis of the error of the minimum-norm interpolating clas-
sifier for the multiclass classification problem with weighted Gaussian features. We consider an
overparameterized setting using a bi-level feature weighting model where the number of features,
classes, favored features, and the feature weights themselves all scale with the number of training
points. Under this model, Theorem 5.1 provides sufficient conditions for good generalization in the
form of a region in which as the number of training points increase, the number of classes grows
slowly enough, the total number of features (i.e. level of overparameterization) grows fast enough,
the number of favored features grows slowly enough, and the amount of favoring of those favored
features is sufficient to allow for asymptotic generalization. We assume that our labels are generated
noiselessly based on which of the first k features is the largest.2

To prove our main result, Theorem 5.1, we present a novel typicality-style argument featuring
the feature margin (gap between the largest and second-largest feature) for computing sufficient
conditions for correct classification utilizing the signal-processing inspired concepts of survival
and contamination from Muthukumar et al. [55, 56] and leveraging the random-matrix analysis
tools sharpened in Bartlett et al. [4]. The survival concept relates to the shrinkage induced by the
regularizing effect of having lots of features in the context of min-norm interpolation — survival
captures what is left of the true pattern after shrinkage. Contamination reflects the consequence
of overparameterization when training via optimization: in addition to the true pattern, there is an
infinite family of other3 false patterns (aliases) that also happen to explain the limited training data,
and the optimizer ends up hedging its bet across the true pattern and these other competing false
explanations. The learned false patterns contaminate the predictions on test points, and this can be
quantified by the relevant standard deviation.

The key is analyzing what happens with multiclass training data where there are relatively fewer
positive examples of each class, and where the training data for a particular class is not independent
of the features corresponding to other classes. The analysis shows that as a result of having fewer
positive exemplars for a class relative to the total size of the training data, the survival drops by a
factor of k (the number of classes), while the contamination only drops by a factor of

p
k. As in

binary classification, the ratio of the relevant survival to contamination terms plays the role of the
effective signal-to-noise ratio and shows up as a key quantity in our error analysis (Equation (22) from

1For an interesting alternative perspective on this equivalence as an indication of a potential bug instead of as
a promising feature, see Shamir [67].

2This assumption is without loss of generality for the bi-level model as long as the classes are defined by
orthogonal directions as in Wang et al. [77].

3This is related to what is called the challenge of “underspecification” in ML [19], and this in turn is also one
aspect of the challenge of covariate shifts [73].
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Section 5.1). When this ratio grows asymptotically to 1, multiclass classification generalizes well. To
the best of our knowledge, this is the first work that quantifies this effect of fewer informative samples
per class and in what sense that makes multiclass classification harder than binary classification. The
closest related work ([77]) only considers multiclass classification in the fixed finite class setting and
consequently, doesn’t compute exact dependencies on the number of classes k. We provide a more
detailed comparison of our work with Wang et al. [77] and Muthukumar et al. [56] in Appendix H of
the Supplemental material.

3 Related Work
The present work is situated within a larger stream of theoretical research trying to understand why
overparameterized learning works and its limits. The limited page budget here forces brevity, but we
recommend the recent surveys Bartlett et al. [5], Belkin [6], Dar et al. [20] for further context.

Classically, by either operating in the underparameterized regime or by performing explicit regular-
ization, we can force the training procedure to average out the harmful effects of training noise and
thereby hope to obtain good generalization. The present cycle of seeking a deeper understanding
began after it was observed that modern deep networks were overparameterized, capable of memoriz-
ing noise, and yet still generalized well, even when they were trained without explicit regularization
[59, 84]. Experiments in Geiger et al. [28], Belkin et al. [8] observed a double-descent behavior of
the generalization error where in addition to the traditional U-shaped curve in the underparameterized
regime, the error decreases in the overparameterized regime as we increase the number of model pa-
rameters. This double descent phenomenon is not unique to deep learning models and was replicated
for kernel learning [7]. Further, the good generalization performance in the overparameterized regime
cannot be explained by traditional worst-case generalization bounds based on Rademacher complexity
or VC-dimension since the models have the capacity to fit purely random labels. Overparameterized
models must therefore have some fortuitous combination of the model architecture with the training
algorithm that leads us to a particular solution that generalizes well.

To understand the phenomenon better, several works study the simpler setting of overparameterized
linear regression.The minimum-`2 norm4 interpolator is of particular interest since gradient descent
on the squared loss has an implicit5 bias towards this solution in the overparameterized regime
[24] and has been studied extensively. (An incomplete list is Hastie et al. [31], Mei and Montanari
[52], Bartlett et al. [4], Belkin et al. [9], Muthukumar et al. [55], Bibas et al. [10], Kobak et al.
[41], Wu and Xu [81], Richards et al. [63].) To generalize well, the underlying feature family must
satisfy a balance between having a few important directions that sufficiently favor the true pattern,
and a large number of unimportant directions that can absorb the noise in a harmless manner.

3.1 High dimensional binary classification
Both concurrently with and subsequent to the wave of analyses on overparameterized regression,
researchers turned their attention to binary classification. A line of work poses the overparameterized
binary classification problem as an optimization problem and analyzes it directly to obtain precise
asymptotic behaviours of the generalization error [22, 66, 37, 69, 54, 38, 70]. The key technical
tool employed in these works is the Convex Gaussian Min-max Theorem and the resultant error
formulas involve solutions to a system of non-linear equations that typically do not admit closed-form
expressions. The generalization error of the max-margin SVM has also been analyzed directly by
studying the iterates of gradient descent in [13] and leveraging the implicit regularization perspective
of optimization algorithms.

However, although the above works did significantly enhance our understanding of binary classifica-
tion in the overparameterized regime, a fundamental question was not answered: “Is classification
easier than regression?" While the classification task is easier than the regression task at test time
(regression requires us to correctly predict a real value while binary classification requires us to only
predict its sign correctly), the training data for classification is less informative than that for regression

4The minimum-`1 norm interpolator has also been studied in Muthukumar et al. [55], Mitra [53], Li and
Wei [50], Wang et al. [75] and while sparsity-seeking behavior helps preserve the true signal (if the true pattern
indeed depends only on a few features), it poses a challenge for the harmless absorption of noise since the
desired averaging behaviour is not achieved fully [55].

5In fact, there is an important complementary literature that brings out the implicit regularization performed
by training methods, especially variants of gradient descent and stochastic gradient descent, and how the
underlying architecture of the model shapes this implicit regularization [30, 68, 36, 80, 57, 2, 82].
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since the labels are also binary. As described earlier, this question was answered in Muthukumar
et al. [56], by exhibiting an asymptotic regime where binary classification error goes to zero, but the
regression error does not. This was shown using Gaussian features with a bi-level covariance model.
It turns out that the level of anisotropy (favoring of true features) required to perform regression
correctly is significantly higher than that required for binary classification.

The key to the result in Muthukumar et al. [56] was the signal-processing inspired survival/contami-
nation framework introduced in Muthukumar et al. [55] as a reconceptualization of the “effective
ranks” perspective of Bartlett et al. [4]. For binary classification to succeed, what matters is that the
survival exceed the contamination so that the sign of the prediction remains correct. Meanwhile,
regression is harder since for regression to succeed, the survival must also tend to 1.

3.2 Multiclass classification and the role of training loss function
There is a large classical body of work on multiclass classification algorithms [79, 12, 23, 18, 46],
with further works giving computationally efficient algorithms for extreme multiclass problems
with a huge number of classes [15, 83, 62]. Numerous theoretical works investigate the consistency
of classifiers [85, 60, 61, 71, 14]. Finite-sample analysis of the generalization error in multiclass
classification problems in the underparameterized regime has been studied in Koltchinskii and
Panchenko [42], Guermeur [29], Allwein et al. [1], Li et al. [49], Cortes et al. [16], Lei et al.
[47], Maurer [51], Lei et al. [48], Kuznetsov et al. [44, 45] and includes both data dependent
bounds using Rademacher complexity, Gaussian complexity and covering numbers as well as data-
independent bounds using the VC dimension. Recent work [72] leverages the Convex Gaussian
Min-max Theorem to precisely characterize the asymptotic behaviour of the least-squares classifier
in underparameterized multiclass classification.

So, how different is multiclass classification from binary classification? The test time task is
more difficult and for the same total number of training points, we have fewer positive training
examples from each class. Several empirical studies comparing the performances of multiclass
classification via learning multiple binary classifiers have been undertaken [64, 25, 1]. The effects
of the loss function while using deep nets to perform classification has also been investigated
[32, 26, 43, 11, 21, 40, 35, 39]. Empirical evidence of least-squares minimization yielding competitive
test classification performance to cross-entropy minimization has been presented in Rifkin and Klautau
[64], Hui and Belkin [35], Bosman et al. [11].

More recently, Wang et al. [77] makes progress towards bridging the gap between empirical ob-
servations and theoretical understanding by proving that in certain overparameterized regimes the
solution to a multiclass SVM problem is identical to the one obtained by minimum-norm interpolation
of one-hot encoded labels (equivalently, that gradient descent on squared loss leads to the same
solution as gradient descent on cross-entropy loss as a result of implicit bias of these algorithms
[24, 36, 68]). In addition, Wang et al. [77] extends the analysis presented in Muthukumar et al. [56]
for the binary classification problem to the multiclass problem with finitely many classes via an
interesting reduction to analyzing a finite set of pairwise competitions, all of which must be won for
multiclass classification to succeed. (We give further comments on the relationship of the present
paper with Wang et al. [77] in Appendix H of the Supplemental material.)

4 Problem setup
We consider the multiclass classification problem with k classes. The training data consists of n pairs
{xi, `i}ni=1 where xi 2 Rd are i.i.d Gaussian vectors drawn from distribution,

xi ⇠ N (0, Id). (1)

We make the following assumption on how the labels `i 2 [k] are generated.

Assumption 4.1. Orthogonal classes noiseless model
6

The class labels `i are generated based on

which of the first k dimensions of a point xi has the largest value,

`i = argmax
m2[k]

xi[m]. (2)

6A more generic model is `i = argmaxm2[k] µ
>
mxi where the µm are unit norm orthogonal vectors. If we

further assume the bi-level model(Definition 4.2) and that the vectors µm have no support outside of the favored
features then it suffices to consider the simplified setting where µm are 1-sparse unit vectors like we do here,
due to the indifference of minimum norm interpolation to orthogonal transformations.
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We use the notation xi[m] to refer to the mth element of vector xi. For clarity of exposition, we
make explicit a feature weighting that transforms the training points as follows:

xw
i [j] =

p
�jxi[j] 8j 2 [d]. (3)

Here � 2 Rd contains the squared feature weights. The feature weighting serves the role of favoring
the true pattern, something that is essential for good generalization.7

The weighted feature matrix Xw 2 Rn⇥d is given by,

Xw =
⇥
xw
1 . . . xw

j . . . xw
n

⇤>
=
⇥p

�1z1 . . .
p

�jzj . . .
p
�dzd

⇤
, (4)

where zj 2 Rn contains the jth features from the n training points. Note that zj ⇠ N (0, In) are i.i.d
Gaussians. We use a one-hot encoding for representing the labels as the matrix Yoh 2 Rn⇥k,

Yoh =
⇥
yoh
1 . . . yoh

m . . . yoh
k

⇤
, (5)

where,

yohm [i] =

⇢
1, if `i = m
0, otherwise

. (6)

A zero-mean variant of the encoding where we subtract the mean 1
k from each entry is denoted:

ym = yoh
m � 1

k
1. (7)

Our classifier consists of k coefficient vectors f̂m for m 2 [k] that are learned by minimum-norm
interpolation of the zero-mean one-hot variants using the weighted features.8

f̂m = argmin
f

kfk2 (8)

s.t. Xwf = yoh
m � 1

k
1. (9)

We can express these coefficients in closed form as,

f̂m = (Xw)>
�
Xw(Xw)>

��1
ym. (10)

On a test point xtest ⇠ N (0, Id) we predict a label as follows: First, we transform the test point
into the weighted feature space to obtain xw

test where xw
test[j] =

p
�jxtest[j] for j 2 [d]. Then we

compute k scalar “scores” and assign the class based on the largest score as follows:

ˆ̀= argmax
1mk

f̂>mxw
test. (11)

The true label of the test point is `test = argmax1mk xtest[m]. A misclassification event Eerr
occurs iff

argmax
1mk

xtest[m] 6= argmax
1mk

f̂>mxw
test. (12)

In our work we determine sufficient conditions under which the probability of misclassification
(computed over the randomness in both the training data and test point) goes to zero in an asymptotic
regime where the number of training points, number of features, number of classes and feature
weights scale according to the bi-level ensemble model.

7Our weighted feature model is equivalent to the one used in other works (e.g. [56]) that assume that the
covariates come from an anisotropic Gaussian with a covariance matrix that favors the truly important directions.

8The classifier learned via this method is equivalent to those obtained by other natural training methods under
sufficient overparameterization [77].
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Definition 4.2. (Bi-level ensemble): The bi-level ensemble is parameterized by p, q, r and t where

p > 1, 0  r < 1, 0 < q < (p � r) and 0  t < r. Here, parameter p controls the extent of

overparameterization, r determines the number of favored features, q controls the weights on favored

features and t controls the number of classes. The number of features (d), number of favored features

(s), number of classes (k) and feature weights (
p
�j) all scale with the number of training points (n)

as follows:

d = bnpc, s = bnrc, a = n�q, k = ckbntc, (13)

where ck is a positive integer. The feature weights are given by,

p
�j =

8
<

:

q
ad
s , 1  j  sq
(1�a)d
d�s , otherwise

. (14)

We provide a visualization of the bi-level model in Figure 1.

Figure 1: Bi-level feature weighting model. The first s features have a higher weight and are favored
during minimum-norm interpolation. These can be thought of as the square-roots of the eigenvalues
of the feature covariance matrix in a Gaussian model for the covariates as in Bartlett et al. [4].

5 Main result
Theorem 5.1. (Asymptotic classification region in the bi-level model): Under the bi-level ensemble

model 4.2, when the true data generating process is 1-sparse (Assumption 4.1), the probability of

misclassification P (Eerr) ! 0 as n ! 1 if the following conditions hold:

t < min (r, 1� r, p+ 1� 2(q + r), p� 2, 2q + r � 2) (15)
q + r > 1. (16)

Note that from Muthukumar et al. [56], the condition q + r > 1 corresponds to the regime where
the corresponding regression does not generalize well and thus our result shows that multiclass
classification can generalize in regimes where the corresponding regression problem does not. In
this challenging regime, the empirical eigenstructure does not reveal the true nature of underlying
features as illustrated in Appendix J.

Figure 2 visualizes the regimes by considering slices of the four dimensional scaling parameter
space of p, q, r and t. (1a) and (2a) fix the value of q to 0.75 and 0.95 respectively and contrast
the multiclass problem with a fixed finite number of classes (t = 0) to the binary classification and
regression problems. From these plots we observe that if we fix p, q, t and increase r, i.e. increasing
how many features are favored (and thereby favoring each of them less), we transition from the regime
where both regression and binary classification work, into the regime where binary classification
works but regression does not, then the regime where this paper can prove multiclass classification
works and finally to the regime where neither regression nor binary classification works.

In Figure 2, subplots (1b),(1c),(2b) and (2c) each visualize a slice along the r and t (class scaling)
dimensions with fixed p and q. The x axis itself in these plots corresponds to a fixed finite classes
setting. From (1b) we observe that the right-hand boundary of the region where multiclass classifica-
tion generalizes well contains two slopes. These slopes arise from the two conditions t < 1� r and
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Figure 2: Visualization of the bi-level regimes in four dimensions p, q, r, t. (1a) and (2a) contrast
multiclass classification with finite classes to binary classification and regression. The horizontal lines
p = 2.3 and p = 3.7 correspond to the slices visualized in (1b), (1c), (2b) and (2c). The conjectured
regimes are visualized in (1d), (1e), (1f), (2d), (2e) and (2f).

t < p+ 1� 2(q + r) in Theorem 5.1 and are a result of either contamination from favored (but not
true) features dominating or contamination from the unfavored features dominating. In (1c) we are
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in the regime where binary classification works for all values of r < 1. However, as we increase t,
eventually multiclass classification stops working.9

When we go from the binary problem to a multiclass problem with k classes, the survival drops
by a factor of k as a consequence of having only 1

k fraction of positive training examples per class.
This is because the one-hot labels we interpolate while training have fewer large values close to 1
that are able to positively correlate with the true feature vector. Having fewer positive exemplars
also reduces the total energy in the training vector by a factor of k, and because of the square-root
relationship of the standard deviation to the energy, the contamination only shrinks by a factor ofp
k. The overall survival/contamination ratio decreases by a factor of

p
k making the multiclass

classification task more difficult.10 An interesting observation here is the amount of favoring required
for good generalization is linked to the number of positive training examples per class. Indeed, if
we consider a setting where the binary classification problem generalizes well, and we switch to
the k class multiclass problem, then by increasing the number of training samples k fold (and thus
matching the number of positive training examples per class in the multiclass case to the binary
case) and keeping the number of features and feature weights constant we can generalize well for
multiclass classification. (Appendix G of the Supplemental material elaborates on this phenomenon,
as well as why it is somewhat surprising.)

Next, we present a brief overview of our proof that utilizes the survival/contamination analysis
framework from Muthukumar et al. [56] along with a typicality-inspired argument where the feature
margin (difference between largest and second largest feature) on the test point plays a key role. The
complete proof is provided in Appendices B, C, D, and E of the Supplemental material.

5.1 Proof sketch
Assume without loss of generality that for the test point xtest ⇠ N (0, Id), the true class is ↵ for some
↵ 2 [k]. Let xw

test be the weighted version of this test point. A necessary and sufficient condition for
classification error is that for some � 6= ↵,� 2 [k],

bf↵[↵]xw
test[↵] + bf↵[�]xw

test[�] +
X

j /2{↵,�}

bf↵[j]xw
test[j] < bf� [↵]xw

test[↵]

+ bf� [�]xw
test[�] +

X

j /2{↵,�}

bf� [j]xw
test[j].

(17)

By converting into the unweighted feature space we obtain

�↵
bh↵,� [↵]xtest[↵]� ��

bh�,↵[�]xtest[�] <
X

j /2{↵,�}

�j
bh�,↵[j]xtest[j], (18)

where

bh↵,� [j] = ��1/2
j (f̂↵[j]� f̂� [j]). (19)

Performing some algebraic manipulations and because �↵ = �� = � since both ↵ and � are favored
features, we can rewrite this as

�bh↵,� [↵]

CN↵,�

 
(xtest[↵]� xtest[�]) + xtest[�]

bh↵,� [↵]� bh�,↵[�]
bh↵,� [↵]

!

<
1

CN↵,�

X

j /2{↵,�}

�j
bh�,↵[j]xtest[j], (20)

9To be precise, what the region actually illustrates is that our proof approach stops being able to show that
multiclass classification works. In the Conclusion section, we conjecture where we believe that multiclass
classification actually stops working. The conjectured regions are illustrated in (1e),(1f),(2e) and (2f).

10This is also responsible for contamination due to favored features being able to cause errors. For binary
classification, because the true feature survival is constant (depending only on the level of label noise), the
survival can always asymptotically overcome any contamination from other favored features [56].

8



where

CN↵,� =

vuuut

0

@
X

j /2{↵,�}

�2
j (
bh�,↵[j])2

1

A. (21)

We divide by CN↵,� to normalize the RHS above to have a standard normal distribution. Next, by
removing the dependency on �, we obtain a sufficient condition for correct classification:

min� �bh↵,� [↵]

max� CN↵,�| {z }
SU/CN ratio

0

BBB@
min
�

(xtest[↵]� xtest[�])
| {z }

closest feature margin

� max
�

|xtest[�]|
| {z }

largest competing feature

·max
�

�����
bh↵,� [↵]� bh�,↵[�]

bh↵,� [↵]

�����
| {z }

survival variation

1

CCCA

> max
�

1

CN↵,�

0

@
X

j /2{↵,�}

�j
bh�,↵[j]xtest[j]

1

A

| {z }
normalized contamination

.

(22)

Here the min and max are over all competing features: 1  �  k,� 6= ↵ and the sum is over
all d feature indices except ↵ and �, but we simplify the notation for convenience. We show via
intermediate lemmas introduced in Appendix B of the Supplemental material that under the conditions
specified in Theorem 5.1, with sufficiently high probability11, the relevant survival to contamination
SU/CN ratio grows at a polynomial rate nv for some v > 0, the closest feature margin shrinks at a
less-than-polynomial rate 1/

p
lnnk, the survival variation decays at a polynomial rate n�u for some

u > 0. Further, the magnitudes of the largest competing feature and the normalized contamination
are no more than

p
ln(nk).

This implies that the left-hand side of Equation (22) grows at a polynomial rate nv (ignoring
logarithmic terms) and dominates the right-hand side which grows at the much slower rate

p
lnnk. A

survival/contamination ratio also plays a key role in the analysis of the binary classification problem in
Muthukumar et al. [56] but in the multiclass setting, we additionally have the survival variation term
and feature margin playing important roles since we are comparing different scores while predicting
the class label. For correct classification, the survival/contamination ratio must be sufficiently large,
the survival variation must be small enough and the feature margin must be sufficiently large.

6 Conclusion
In this work we compute sufficient conditions for good generalization of multiclass classification
in a bi-level overparameterized linear model with Gaussian features. We observed that multiclass
classification can generalize even when the regression problem does not generalize (for q + r > 1).
Further, the multiclass problem is “harder” than the binary problem because we have fewer positive
training examples per class. The nature of the training data complicates our analysis in the multiclass
setting since the true class labels are generated by comparing k features and thus we no longer have
independence of the encoded class label y with any of these features. This becomes relevant when we
compute bounds on the survival and contamination quantities since the Hanson-Wright inequality [65]
is no longer applicable directly on the quantities of interest as was the case for the binary classification
problem in prior work [56]. As a consequence of working around this non-independence we believe
that our sufficient conditions for good generalization in the regime q + r > 1 are loose.

Even though in our work we focus on the regime where regression does not work, q + r > 1, we can
extend the analysis to the regime where q + r < 1 by grinding through the expressions for survival
and contamination in this regime. Even in this regime, for multiclass training data, survival is of the
order 1

k while contamination scales similarly to the regime q + r > 1. Thus, while it is true that for

11This is where we leverage the idea of typicality-style proofs in information theory [17] to avoid unnecessarily
loose union bounds that end up being dominated by the atypical behavior of quantities. In our case, by pulling
the feature margin out explicitly, we can just deal with its typical behavior. Similarly, the typical behavior of the
largest competing feature and the true feature is all that matters.
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binary classification or a fixed number of classes, the regime where regression works is a regime
where classification also works, this need not be true if there are too many classes.

We conjecture that the following is a set of necessary and sufficient conditions for asymptotically
good generalization (We elaborate on this in Appendix F in the Supplemental material):

Conjecture 6.1. (Conjectured bi-level regions): Under the bi-level ensemble model 4.2, when

the true data generating process is 1-sparse (Assumption 4.1), as n ! 1, the probability of

misclassification event P (Eerr) behaves as follows:

P (Eerr) !
⇢
0, if t < min (r, 1� r, p+ 1� 2 ·max(1, q + r))
1, if t > min (r, 1� r, p+ 1� 2 ·max(1, q + r))

. (23)

The conjectured regions are visualized in (1d),(1e),(1f),(2d),(2e) and (2f) in Figure 2. Subfigures (1d)
and (2d) illustrate that we believe multiclass classification with finitely many classes works if binary
classification works. Further, comparing (1e) to (2e) when we increase q, the conjectured parameter
region where multiclass classification works shrinks since we decrease the amount of favoring of true
features. Interestingly, the nature of the looseness in our approach is such that our proof technique is
able to recover a larger fraction of the conjectured region for larger q which intuitively is a result of
less favoring leading to stronger concentration of certain random quantities. Tightening the potential
looseness in our analysis and proving the converse result by computing sufficient conditions for poor
generalization of multiclass classification are interesting avenues of future work.

Further, although the present analysis focuses on solutions that exactly interpolate the training data,
we can extend our results to account for additional ridge regularization by viewing ridge regularization
as minimum-norm interpolation using augmented contamination-free features as in the Appendix
of Muthukumar et al. [55] and computing bounds leveraging tools from Tsigler and Bartlett [74].
Our assumption of the strict bi-level weighting model is largely to simplify the calculations and
by substituting terms appropriately in our lemmas from Appendix B in the Supplemental material,
it should be possible to compute results for other weighting models. Finally, exploring the new
phenomena that can be encountered as we go beyond the 1-sparse noiseless model is an exciting
direction for future work.
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