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ABSTRACT

Unobserved confounding is common in many applications, making causal infer-
ence from observational data challenging. As a remedy, causal sensitivity analy-
sis is an important tool to draw causal conclusions under unobserved confounding
with mathematical guarantees. In this paper, we propose NEURALCSA, a neu-
ral framework for generalized causal sensitivity analysis. Unlike previous work,
our framework is compatible with (i) a large class of sensitivity models, including
the marginal sensitivity model, f -sensitivity models, and Rosenbaum’s sensitivity
model; (ii) different treatment types (i.e., binary and continuous); and (iii) differ-
ent causal queries, including (conditional) average treatment effects and simulta-
neous effects on multiple outcomes. The generality of NEURALCSA is achieved
by learning a latent distribution shift corresponding to a treatment intervention
using two conditional normalizing flows. We provide theoretical guarantees that
NEURALCSA can infer valid bounds on the causal query of interest and also
demonstrate this empirically using both simulated and real-world data.

1 INTRODUCTION

Causal inference from observational data is central to many fields such as medicine (Frauen et al.,
2023a; Feuerriegel et al., 2024), economics (Imbens & Angrist, 1994), or marketing (Varian, 2016).
However, the presence of unobserved confounding often renders causal inference challenging (Pearl,
2009). As an example, consider an observational study examining the effect of smoking on lung
cancer risk, where potential confounders, such as genetic factors influencing smoking behavior and
cancer risk (Erzurumluoglu & et al., 2020), are not observed. Then, the causal relationship is not
identifiable, and point identification without additional assumptions is impossible (Pearl, 2009).

Causal sensitivity analysis offers a remedy by moving from point identification to partial identifi-
cation. To do so, approaches for causal sensitivity analysis first impose assumptions on the strength
of unobserved confounding through so-called sensitivity models (Rosenbaum, 1987; Imbens, 2003)
and then obtain bounds on the causal query of interest. Such bounds often provide insights that
the causal quantities can not reasonably be explained away by unobserved confounding, which is
sufficient for consequential decision-making in many applications (Kallus et al., 2019).

Existing works on causal sensitivity analysis can be loosely grouped by problem settings. These
vary across (1) sensitivity models, such as the marginal sensitivity model (MSM) (Tan, 2006), f -
sensitivity model (Jin et al., 2022), and Rosenbaum’s sensitivity model (Rosenbaum, 1987); (2) treat-
ment type (i.e., binary and continuous); and (3) causal query of interest. Causal queries may include
(conditional) average treatment effects (CATE), but also distributional effects or simultaneous effects
on multiple outcomes. Existing works typically focus on a specific sensitivity model, treatment type,
and causal query (Table 1). However, none is applicable to all settings within (1)–(3).
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To fill this gap, we propose NEURALCSA, a neural framework for causal sensitivity analysis that is
applicable to numerous sensitivity models, treatment types, and causal queries, including multiple
outcome settings. For this, we define a large class of sensitivity models, which we call generalized
treatment sensitivity models (GTSMs). GTSMs include common sensitivity models such as the
MSM, f -sensitivity models, and Rosenbaum’s sensitivity model. The intuition behind GTSMs is
as follows: when intervening on the treatment A, the U–A edge is removed in the corresponding
causal graph, which leads to a distribution shift in the latent confounders U (see Fig. 1). GTSMs
then impose restrictions on this latent distribution shift, which corresponds to assumptions on the
“strength” of unobserved confounding.

Figure 1: Idea behind NEURALCSA
to learn the latent distribution shift due
to treatment intervention ( ). Orange
nodes denote observed (random) vari-
ables. Blue nodes denote unobserved
variables pre-intervention. Green nodes
indicate unobserved variables post-
intervention under a GTSM M. Ob-
served confounders X are empty for
simplicity.

NEURALCSA is compatible with any sensitivity model
that can be written as a GTSM. This is crucial in prac-
tical applications, where sensitivity models correspond
to different assumptions on the data-generating process
and may lead to different results (Yin et al., 2022). To
achieve this, NEURALCSA learns the latent distribution
shift in the unobserved confounders from Fig. 1 using two
separately trained conditional normalizing flows (CNFs).
This is different from previous works for causal sensi-
tivity analysis, which do not provide a unified approach
across numerous sensitivity models, treatment types, and
causal queries. We provide theoretical guarantees that
NEURALCSA learns valid bounds on the causal query of
interest and demonstrate this empirically.

Our contributions7 are: (1) We define a general class of
sensitivity models, called GTSMs. (2) We propose NEU-
RALCSA, a neural framework for causal sensitivity anal-
ysis under any GTSMs. NEURALCSA is compatible with

various sensitivity models, treatment types, and causal queries. In particular, NEURALCSA is ap-
plicable in settings for which bounds are not analytically tractable and no solutions exist yet. (3) We
provide theoretical guarantees that NEURALCSA learns valid bounds on the causal query of interest
and demonstrate the effectiveness of our framework empirically.

2 RELATED WORK

In the following, we provide an overview of related literature on partial identification and causal
sensitivity analysis. A more detailed overview, including literature on point identification and esti-
mation, can be found in Appendix A.

Partial identification: The aim of partial identification is to compute bounds on causal
queries whenever point identification is not possible, such as under unobserved confound-
ing (Manski, 1990). There are several literature streams that impose different assumptions
on the data-generating process in order to obtain informative bounds. One stream addresses
partial identification for general causal graphs with discrete variables (Duarte et al., 2023).

Table 1: Overview of key settings for causal sensitivity analyses
and whether covered by existing literature (✓) or not (✗). Treat-
ments are either binary or continuous. Details are in Appendix A.
Our NEURALCSA framework is applicable in all settings.
hhhhhhhhhhhhhhhCausal query

Sensitivity model
MSM f -sensitivity Rosenbaum

Binary Cont.
†

Binary Cont. Binary Cont.

CATE ✓ ✓ ✓ ✗ ✓ ✗
Distributional effects ✓ ✓ ✗ ✗ ✗ ✗
Interventional density ✓ ✓ (✓) ✗ ✗ ✗
Multiple outcomes ✗ ✗ ✗ ✗ ✗ ✗
† The MSM for continuous treatment is also called continuous MSM (CMSM) (Jesson et al., 2022).

Another stream assumes the ex-
istence of valid instrumental
variables (Gunsilius, 2020; Kil-
bertus et al., 2020). Recently,
there has been a growing inter-
est in using neural networks for
partial identification (Xia et al.,
2021; 2023; Padh et al., 2023).
However, none of these methods
allow for incorporating sensitiv-
ity models and sensitivity analy-
sis.

7 Code is available at https://github.com/DennisFrauen/NeuralCSA.
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Causal sensitivity analysis: Causal sensitivity analysis addresses the partial identification of causal
queries by imposing assumptions on the strength of unobserved confounding via sensitivity models.
It dates back to Cornfield et al. (1959), who showed that unobserved confounding could not reason-
ably explain away the observed effect of smoking on lung cancer risk.

Existing works can be grouped along three dimensions: (1) the sensitivity model, (2) the treatment
type, and (3) the causal query of interest (see Table 1; details in Appendix A). Popular sensitivity
models include Rosenbaum’s sensitivity model (Rosenbaum, 1987), the marginal sensitivity model
(MSM) (Tan, 2006), and f -sensitivity models (Jin et al., 2022). Here, most methods have been
proposed for binary treatments and conditional average treatment effects (Kallus et al., 2019; Zhao
et al., 2019; Jesson et al., 2021; Dorn & Guo, 2022; Dorn et al., 2022; Oprescu et al., 2023). Exten-
sions under the MSM have been proposed for continuous treatments (Jesson et al., 2022; Marmarelis
et al., 2023a) and individual treatment effects (Yin et al., 2022; Jin et al., 2023; Marmarelis et al.,
2023b). However, approaches for many settings are still missing (shown by ✗ in Table 1). In an
attempt to generalize causal sensitivity analysis, Frauen et al. (2023b) provided bounds for different
treatment types (i.e., binary, continuous) and causal queries (e.g., CATE, distributional effects but
not multiple outcomes). Yet, the results are limited to MSM-type sensitivity models.

To the best of our knowledge, no previous work proposes a unified solution for obtaining bounds
under various sensitivity models (e.g., MSM, f -sensitivity, Rosenbaum’s), treatment types (i.e., bi-
nary and continuous), and causal queries (e.g., CATE, distributional effects, interventional densities,
and simultaneous effects on multiple outcomes).

3 MATHEMATICAL BACKGROUND

Notation: We denote random variables X as capital letters and their realizations x in lowercase. We
further write P(x) for the probability mass function if X is discrete, and for the probability density
function with respect to the Lebesque measure if X is continuous. Conditional probability mass
functions/ densities P(Y = y | X = x) are written as P(y | x). Finally, we denote the conditional
distribution of Y | X = x as P(Y | x) and its expectation as E[Y | x].

3.1 PROBLEM SETUP

Data generating process: We consider the standard setting for (static) treatment effect estimation
under unobserved confounding (Dorn & Guo, 2022). That is, we have observed confounders X ∈
X ⊆ Rdx , unobserved confounders U ∈ U ⊆ Rdu , treatments A ∈ A ⊆ Rda , and outcomes
Y ∈ Y ⊆ Rdy . Note that we allow for (multiple) discrete or continuous treatments and multiple
outcomes, i.e., da, dy ≥ 1. The underlying causal graph is shown in Fig. 2. We have access
to an observational dataset D = (xi, ai, yi)

n
i=1 sampled i.i.d. from the observational distribution

(X,A, Y ) ∼ Pobs. The full distribution (X,U,A, Y ) ∼ P is unknown.

Figure 2: Causal
graph. Observed
variables are col-
ored orange and
unobserved blue.
We allow for arbi-
trary dependence
between X and U .

We use the potential outcomes framework to formalize the causal inference
problem (Rubin, 1974) and denote Y (a) as the potential outcome when in-
tervening on the treatment and setting it to A = a. We impose the following
standard assumptions (Dorn & Guo, 2022).

Assumption 1. We assume that for all x ∈ X and a ∈ A the following three
conditions hold: (i) A = a implies Y (a) = Y (consistency); (ii) P(a | x) > 0
(positivity); and (iii) Y (a) ⊥⊥ A | X,U (latent unconfoundedness).

Causal queries: We are interested in a wide range of general causal queries.
We formalize them as functionals Q(x, a,P) = F(P(Y (a) | x)), where F is
a functional that maps the potential outcome distribution P(Y (a) | x) to a real
number (Frauen et al., 2023b). Thereby, we cover various queries from the
causal inference literature. For example, by setting F = E[·], we obtain the
conditional expected potential outcomes/ dose-response curves Q(x, a,P) = E[Y (a) | x]. We can
also obtain distributional versions of these queries by setting F to a quantile instead of the expecta-
tion. Furthermore, our methodology will also apply to queries that can be obtained by averaging or
taking differences. For binary treatments A ∈ {0, 1}, the query τ(x) = E[Y (1) | x]− E[Y (0) | x]
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is called the conditional average treatment effect (CATE), and its averaged version
∫
τ(x)P(x) dx

the average treatment effect (ATE).

Our formalization also covers simultaneous effects on multiple outcomes (i.e., dy ≥ 2). Consider
query Q(x, a,P) = P(Y (a) ∈ S | x), which is the probability that the outcome Y (a) is contained
in some set S ⊆ Y after intervening on the treatment. For example, consider two potential outcomes
Y1(a) and Y2(a) denoting blood pressure and heart rate, respectively. We then might be interested
in P(Y1(a) ≤ t1, Y2(a) ≤ t2 | x), where t1 and t2 are critical threshold values (see Sec. 6).

3.2 CAUSAL SENSITIVITY ANALYSIS

Causal sensitivity analysis builds upon sensitivity models that restrict the possible strength of unob-
served confounding (e.g., Rosenbaum & Rubin, 1983a). Formally, we define a sensitivity model as
a family of distributions of (X,U,A, Y ) that induce the observational distribution Pobs.

Definition 1. A sensitivity modelM is a family of probability distributions P defined on X × U ×
A×Y for arbitrary finite-dimensional U so that

∫
U P(x, u, a, y) du = Pobs(x, a, y) for all P ∈M.

Task: Given a sensitivity modelM and an observational distribution Pobs, the aim of causal sensi-
tivity analysis is to solve the partial identification problem

Q+
M(x, a) = sup

P∈M
Q(x, a,P) and Q−

M(x, a) = inf
P∈M

Q(x, a,P). (1)

By its definition, the interval [Q−
M(x, a), Q+

M(x, a)] is the tightest interval that is guaranteed to
contain the ground-truth causal query Q(x, a,P) while satisfying the sensitivity constraints. We
can also obtain bounds for averaged causal queries and differences via

∫
Q+

M(x, a)P(x) dx and
Q+

M(x, a1)−Q−
M(x, a2) (see Appendix D for details).

Sensitivity models from the literature: We now recap three types of prominent sensitivity models
from the literature, namely, the MSM, f -sensitivity models, and Rosenbaum’s sensitivity model.
These are designed for binary treatments A ∈ {0, 1}. To formalize them, we first define the odds
ratio OR(a, b) = a

(1−a)
(1−b)

b , the observed propensity score π(x) = P(A = 1 | x), and the full
propensity score π(x, u) = P(A = 1 | x, u).8 Then, the definitions are:

1. The marginal sensitivity model (MSM) (Tan, 2006) is defined as the family of all P that satisfy
1
Γ ≤ OR(π(x), π(x, u)) ≤ Γ for all x ∈ X and u ∈ U and a sensitivity parameter Γ ≥ 1.

2. f -sensitivity models (Jin et al., 2022) build upon a given a convex function f : R>0 →
R with f(1) = 0 and are defined via max

{ ∫
U f (OR(π(x), π(x, u)))P(u | x,A =

1) du,
∫
U f
(
OR−1(π(x), π(x, u))

)
P(u | x,A = 1) du

}
≤ Γ for all x ∈ X .

3. Rosenbaum’s sensitivity model (Rosenbaum, 1987) is defined via 1
Γ ≤

OR(π(x, u1), π(x, u2)) ≤ Γ for all x ∈ X and u1, u2 ∈ U .

Interpretation and choice of Γ: In the above sensitivity models, the sensitivity parameter Γ controls
the strength of unobserved confounding. Both MSM and Rosenbaum’s sensitivity model bound on
odds-ratio uniformly over all u ∈ U , while the f -sensitivity model bounds an integral over u.
We refer to Appendix C for further differences. Setting Γ = 1 in the above sensitivity models
corresponds to unconfoundedness and thus point identification. For Γ > 1, point identification is
not possible, and we need to solve the partial identification problem from Eq. (1) instead.

In practice, one typically chooses Γ by domain knowledge or data-driven heuristics (Kallus et al.,
2019; Hatt et al., 2022). For example, a common approach in practice is to determine the smallest Γ
so that the partially identified interval [Q−

Γ (x, a), Q
+
Γ (x, a)] includes 0. Then, Γ can be interpreted

as a level of “causal uncertainty”, quantifying the smallest violation of unconfoundedness that would
explain away the causal effect (Jesson et al., 2021; Jin et al., 2023).

8 Corresponding sensitivity models for continuous treatments can be defined by replacing the odds ratio with
the density ratio DR(a, b) = a

b
and the propensity scores with the densities P(a | x) and P(a | x, u) (Bonvini

et al., 2022; Jesson et al., 2022). We refer to Appendix C for details and further examples of sensitivity models.
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4 THE GENERALIZED TREATMENT SENSITIVITY MODEL (GTSM)

We now define our generalized treatment sensitivity model (GTSM). The GTSM subsumes a large
class of sensitivity models and includes MSM, f -sensitivity, and Rosenbaum’s sensitivity model).

Motivation: Intuitively, we define the GTSM so that it includes all sensitivity models that restrict
the latent distribution shift in the confounding space due to the treatment intervention (see Fig. 1).
To formalize this, we can write the observational outcome density under Assumption 1 as

Pobs(y | x, a) =
∫

P(y | x, u, a)P(u | x, a) du. (2)

When intervening on the treatment, we remove the U–A edge in the corresponding causal graph
(Fig. 1) and thus artificially remove dependence between U and A. Formally, we can write the
potential outcome density under Assumption 1 as

P(Y (a) = y | x) =
∫

P(Y (a) = y | x, u)P(u | x) du =

∫
P(y | x, u, a)P(u | x) du. (3)

Eq. (2) and (3) imply that Pobs(y | x, a) and P(Y (a) = y | x) only differ by the densities P(u | x, a)
and P(u | x) under the integrals (colored red and orange). If the distributions P(U | x, a) and
P(U | x) would coincide, it would hold that P(Y (a) = y | x) = Pobs(y | x, a) and the potential
outcome distribution would be identified. This suggests that we should define sensitivity models by
measuring deviations from unconfoundedness via the shift between P(U | x, a) and P(U | x).
Definition 2. A generalized treatment sensitivity model (GTSM) is a sensitivity modelM that con-
tains all probability distributions P that satisfy Dx,a (P(U | x),P(U | x, a)) ≤ Γ for a functional of
distributions Dx,a, a sensitivity parameter Γ ∈ R≥0, and all x ∈ X and a ∈ A.

Lemma 1. The MSM, the f -sensitivity model, and Rosenbaum’s sensitivity model are GTSMs.

The class of all GTSMs is still too large for meaningful sensitivity analysis. This is because the
sensitivity constraint may not be invariant w.r.t. transformations (e.g., scaling) of the latent space U .

Definition 3 (Transformation-invariance). A GTSM M is transformation-invariant if it satisfies
Dx,a(P(U | x),P(U | x, a)) ≥ Dx,a(P(t(U) | x),P(t(U) | x, a)) for any measurable function
t : U → Ũ to another latent space Ũ .

Transformation-invariance is necessary for meaningful sensitivity analysis because it implies that
once we choose a latent space U and a sensitivity parameter Γ, we cannot find a transformation to
another latent space Ũ so that the induced distribution on Ũ violates the sensitivity constraint. All
sensitivity models we consider in this paper are transformation-invariant, as stated below.

Lemma 2. The MSM, f -sensitivity models, and Rosenbaum’s sensitivity model are transformation-
invariant.

5 NEURAL CAUSAL SENSITIVITY ANALYSIS

We now introduce our neural approach to causal sensitivity analysis as follows. First, we simplify
the partial identification problem from Eq. (1) under a GTSM and propose a (model-agnostic) two-
stage procedure (Sec. 5.1). Then, we provide theoretical guarantees for our two-stage procedure
(Sec. 5.2). Finally, we instantiate our neural framework called NEURALCSA (Sec. 5.3).

5.1 SENSITIVITY ANALYSIS UNDER A GTSM

Motivation: Recall that, by definition, a GTSM imposes constraints on the distribution shift in
the latent confounders due to treatment intervention (Fig. 1). Our idea is to propose a two-stage
procedure, where Stage 1 learns the observational distribution (Fig. 1, left), while Stage 2 learns the
shifted distribution of U after intervening on the treatment under a GTSM (Fig. 1, right). In Sec. 5.2,
we will see that, under weak assumptions, learning this distribution shift in separate stages is guar-
anteed to lead to the bounds Q+

M(x, a) and Q−
M(x, a). To formalize this, we start by simplifying

the partial identification problem from Eq. (1) for a GTSMM.
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Simplifying Eq. (1): We begin by rewriting Eq. (1) using the GTSM definition. Without loss of
generality, we consider the upper bound Q+

M(x, a). Recall that Eq. (1) seeks to maximize over all
probability distributions that are compatible both with the observational data and with the sensitivity
model. However, note that any GTSM only restricts the U–A part of the distribution, not the U–Y
part. Hence, we can use Eq. (3) and Eq. (2) to write the upper bound as

Q+
M(x, a) = sup

{P(U |x,a′)}
a′ ̸=a

s.t. Dx,a(P(U |x),P(U |x,a))≤Γ
and P(u|x)=

∫
P(u|x,a)Pobs(a|x) da

sup
P(U |x,a), {P(Y |x,u,a)}u∈U

s.t. Eq. (2) holds

F
(∫

P(Y | x, u, a)P(u | x) du
)
, (4)

where we maximize over (families of) probability distributions {P(U | x, a′)}a′ ̸=a (left supremum),
and P(U | x, a), {P(Y | x, u, a)}u∈U (right supremum). The coloring indicates the components
that appear in the causal query/objective. The constraint in the right supremum ensures that the
respective components of the full distribution P are compatible with the observational data, while
the constraints in the left supremum ensure that the respective components are compatible with both
observational data and the sensitivity model.

Figure 3: Overview of the two-stage procedure.

The partial identification problem from Eq. (4) is
still hard to solve as it involves two nested con-
strained optimization problems. However, we can
further simplify Eq. (4): We will show in Sec. 5.2
that we can replace the right supremum with fixed
distributions P∗(U | x, a) and P∗(Y | x, a, u)
for all u ∈ U ⊆ Rdy so that Eq. (2) holds.
Then, Eq. (4) reduces to a single constrained opti-
mization problem (left supremum). Moreover, we
will show that we can choose P∗(Y | x, a, u) =
δ(Y − f∗

x,a(u)) as a delta-distribution induced by
an invertible function f∗

x,a : U → Y . The con-
straint in Eq. (2) that ensures compatibility with the observational data then reduces to Pobs(Y |
x, a) = P∗(f∗

x,a(U) | x, a). This motivates the following two-stage procedure (see Fig. 3).

Two-stage procedure: In Stage 1, we fix P∗(U | x, a) and fix an invertible function f∗
x,a : U → Y

so that Pobs(Y | x, a) = P∗(f∗
x,a(U) | x, a) holds. That is, the induced push-forward distribution

of P∗(U | x, a) under f∗
x,a must coincide with the observational distribution Pobs(Y | x, a). The

existence of such a function is always guaranteed (Chen & Gopinath, 2000). In Stage 2, we then set
P(U | x, a) = P∗(U | x, a) and P(Y | x, a, u) = P∗(Y | x, a, u) in Eq. (4) and only optimize over
the left supremum. That is, we write stage 2 for discrete treatments as

sup
P(u|x,A̸=a)

s.t. P(u|x)=P∗(u|x,a)Pobs(a|x)+P(u|x,A ̸=a)(1−Pobs(a|x))
and Dx,a(P(U |x),P∗(U |x,a))≤Γ

F
(
P(f∗

x,a(U) | x)
)
, (5)

where we maximize over the distribution P(u | x,A ̸= a) for a fixed treatment intervention a. For
continuous treatments, we can directly take the supremum over P(u | x).

5.2 THEORETICAL GUARANTEES

We now provide a formal result that our two-stage procedure returns valid solutions to the partial
identification problem from Eq. (4). The following theorem states that Stage 2 of our procedure is
able to attain the optimal upper bound Q+

M(x, a) from Eq. (4), even after fixing the distributions
P∗(U | x, a) and P∗(Y | x, a, u) as done in Stage 1. A proof is provided in Appendix B.

Theorem 1 (Sufficiency of two-stage procedure). LetM be a transformation-invariant GTSM. For
fixed x ∈ X and a ∈ A, let P∗(U | x, a) be a fixed distribution on U = Rdy and f∗

x,a : U → Y a
fixed invertible function so that Pobs(Y | x, a) = P∗(f∗

x,a(U) | x, a). Let P∗ denote the space of all
full probability distributions P∗ that induce P∗(U | x, a) and P∗(Y | x, u, a) = δ(Y − f∗

x,a(u)) and
that satisfy P∗ ∈ M. Then, under Assumption 1, it holds that Q+

M(x, a) = supP∗∈P∗ Q(x, a,P∗)

and Q−
M(x, a) = infP∗∈P∗ Q(x, a,P∗).
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Intuition: Theorem 1 has two major implications: (i) It is sufficient to fix the distributions P∗(U |
x, a) and P∗(Y | x, u, a), i.e., the components in the right supremum of Eq. (4) and only optimize
over the left supremum; and (ii) it is sufficient to choose P∗(Y | x, u, a) = δ(Y −f∗

x,a(u)) as a delta-
distribution induced by an invertible function f∗

x,a : U → Y , which satisfies the data-compatibility
constraint Pobs(Y | x, a) = P∗(f∗

x,a(U) | x, a). Intuition for (i): In Eq. (4), we optimize jointly
over all components of the full distribution. This suggests that there are multiple solutions that
differ only in the components of unobserved parts of P (i.e., in U) but lead to the same potential
outcome distribution and causal query. Theorem 1 states that we may restrict the space of possible
solutions by fixing the components P∗(U | x, a) and P∗(Y | x, a, u), without loosing the ability
to attain the optimal upper bound Q+

M(x, a) from Eq. (4). Intuition for (ii): We cannot pick any
P∗(Y | x, a, u) that satisfies Eq. (2). For example, any distribution that induces Y ⊥⊥ U | X,A
would satisfy Eq. (2), but implies unconfoundedness and would thus not lead to a valid upper bound
Q+

M(x, a). Intuitively, we have to choose a P(Y | x, a, u) that induces “maximal dependence”
(mutual information) between U and Y (conditioned on X and A), because the GTSM does not
restrict this part of the full probability distribution P. The maximal mutual information is achieved
if we choose P(Y | x, a, u) = δ(Y − f∗

x,a(u)).

5.3 NEURAL INSTANTIATION: NEURALCSA

We now provide a neural instantiation called NEURALCSA for the above two-stage procedure
using conditional normalizing flows (CNFs) (Winkler et al., 2019). The architecture of NEU-
RALCSA is shown in Fig. 4. NEURALCSA instantiates the two-step procedure as follows:

CNF CNF

NN NN

Stage 1Stage 2

Legend

Latent variable

NN

Observed variable

Feed-forward neural
network

Cond. Normalizing
flow, parameters
are output of NN

CNF

Figure 4: Architecture of NEURALCSA.

Stage 1: We fix P∗(U | x, a) to the standard
normal distribution on U = Rdy . Our task is
then to learn an invertible function f∗

x,a : U →
Y that maps the standard Gaussian distribution
on U to Pobs(Y | x, a). We model f∗

x,a as a
CNF f∗

g∗
θ (x,a)

, where f∗ is a normalizing flow
(Rezende & Mohamed, 2015), for which the
parameters are the output of a fully connected
neural network g∗θ , which itself is parametrized by θ (Winkler et al., 2019). We obtain θ by maximiz-
ing the empirical Stage 1 loss L1(θ) =

∑n
i=1 logP(f∗

g∗
θ (xi,ai)

(U) = yi), where U ∼ N (0dy , Idy )

is standard normally distributed. The stage 1 loss can be computed analytically via the change-of-
variable formula (see Appendix F).

Stage 2: In Stage 2, we need to maximize over distributions on U in the latent space U that maximize
the causal query F(P(f∗

g∗
θopt

(x,a)(U) | x)), where θopt is a solution from maximizing L1(θ) in

stage 1. We can do this by learning a second CNF f̃g̃η(x,a), where f̃ : Ũ → U is a normalizing
flow that maps a standard normally distributed auxiliary Ũ ∼ N (0dy , Idy ) to the latent space U , and
whose parameters are the output of a fully connected neural network g̃η parametrized by η. The CNF
f̃g̃η(x,a) from Stage 2 induces a new distribution on U , which mimics the shift due to unobserved
confounding when intervening instead of conditioning (i.e., going from Eq. (2) to Eq. (3)). We can
compute the query under the shifted distribution by concatenating the Stage 2 CNF with the Stage 1
CNF and applying F to the shifted outcome distribution (see Fig. 4). More precisely, we optimize η
by maximizing or minimizing the empirical Stage 2 loss

L2(η) =
∑n

i=1 F
(
P
(
f∗
g∗
θopt

(xi,ai)

(
(1− ξxi,ai

)f̃g̃η(xi,ai)(Ũ) + ξxi,ai
Ũ
)))

, (6)

where ξxi,ai = Pobs(ai | xi)), if A is discrete, and ξxi,ai = 0, if A is continuous.
Learning algorithm for stage 2: There are two remaining challenges we need to address in Stage 2:
(i) optimizing Eq. (6) does not ensure that the sensitivity constraints imposed by the GTSM M
hold; and (ii) computing the Stage 2 loss from Eq. (6) may not be analytically tractable. For (i),
we propose to incorporate the sensitivity constraints by using the augmented Lagrangian method
(Nocedal & Wright, 2006), which has already been successfully applied in the context of partial
identification with neural networks (Padh et al., 2023; Schröder et al., 2024). For (ii), we propose
to obtain samples ũ = (ũ

(j)
x,a)kj=1

i.i.d.∼ N (0dy , Idy ) and ξ = (ξ
(j)
x,a)kj=1

i.i.d.∼ Bernoulli(Pobs(a | x))
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together with Monte Carlo estimators L̂2(η, ũ, ξ) of the Stage 2 loss L2(η) and D̂x,a(η, ũ) of the
sensitivity constraint Dx,a(P(U | x),P(U | x, a)). We refer to Appendix E for details, including
instantiations of our framework for numerous sensitivity models and causal queries.

Implementation: We use autoregressive neural spline flows (Durkan et al., 2019; Dolatabadi et al.,
2020). For estimating propensity scores Pobs(a | x), we use fully connected neural networks with
softmax activation. We perform training using the Adam optimizer (Kingma & Ba, 2015). We
choose the number of epochs such that NEURALCSA satisfies the sensitivity constraint for a given
sensitivity parameter. Details are in Appendix F.

6 EXPERIMENTS
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Figure 5: Validating the correctness of NEURALCSA (ours)
by comparing with optimal closed-form solutions (CF) for
the MSM on simulated data. Left: Dataset 1, binary treat-
ment. Right: Dataset 2, continuous treatment. Reported:
mean ± standard deviation over 5 runs.

We now demonstrate the effective-
ness of NEURALCSA for causal sen-
sitivity analysis empirically. As
is common in the causal infer-
ence literature, we use synthetic
and semi-synthetic data with known
causal ground truth to evaluate NEU-
RALCSA (Kallus et al., 2019; Jes-
son et al., 2022). We proceed as
follows: (i) We use synthetic data
to show the validity of bounds from
NEURALCSA under multiple sensitivity models, treatment types, and causal queries. We also show
that for the MSM, the NEURALCSA bounds coincide with known optimal solutions. (ii) We show
the validity of the NEURALCSA bounds using a semi-synthetic dataset. (iii) We show the appli-
cability of NEURALCSA in a case study using a real-world dataset with multiple outcomes, which
cannot be handled by previous approaches. We refer to Appendix D for details regarding datasets
and experimental evaluation, and to Appendix H for additional experiments.
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Figure 6: Confirming the validity of our NEURALCSA
bounds for various sensitivity models. Left: Dataset 1, bi-
nary treatment. Right: Dataset 2, continuous treatment. Re-
ported: mean ± standard deviation over 5 runs.

(i) Synthetic data: We consider two
synthetic datasets of sample size n =
10000 inspired from previous work
on sensitivity analysis: Dataset 1 is
adapted from Kallus et al. (2019) and
has a binary treatment A ∈ {0, 1}.
The data-generating process follows
an MSM with oracle sensitivity pa-
rameter Γ∗ = 2. We are interested in
the CATE τ(x) = E[Y (1) − Y (0) |
x]. Dataset 2 is adapted from Jes-
son et al. (2022) and has a continuous
treatment A ∈ [0, 1]. Here, we are in-

terested in the dose-response function µ(x, a) = E[Y (a) | x], where we choose a = 0.5. We report
results for further treatment values in Appendix H.

We first compare our NEURALCSA bounds with existing results closed-form bounds (CF) for the
MSM (Dorn & Guo, 2022; Frauen et al., 2023b), which have been proven to be optimal. We plot
both NEURALCSA and the CF for both datasets and three choices of sensitivity parameter Γ ∈
{2, 4, 10} (Fig. 5). Our bounds almost coincide with the optimal CF solutions, which confirms that
NEURALCSA learns optimal bounds under the MSM.

We also show the validity of our NEURALCSA bounds for Rosenbaum’s sensitivity model and
the following f -sensitivity models: Kullbach-Leibler (KL, f(x) = x log(x)), Total Variation (TV,
f(x) = 0.5|x−1|), Hellinger (HE, f(x) = (

√
x−1)2), and Chi-squared (χ2, f(x) = (x−1)2). To

do so, we choose the ground-truth sensitivity parameter Γ∗ for each sensitivity model that satisfies
the respective sensitivity constraint (see Appendix G for details). The results are in Fig. 6. We make
the following observations: (i) all bounds cover the causal query on both datasets, thus confirming
the validity of NEURALCSA. (ii) For Dataset 1, the MSM returns the tightest bounds because our
simulation follows an MSM.
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(ii) Semi-synthetic data: We create a semi-synthetic dataset using MIMIC-III (Johnson et al.,
2016), which includes electronic health records from patients admitted to intensive care units. We
extract 8 confounders and a binary treatment (mechanical ventilation). Then, we augment the data
with a synthetic unobserved confounder and outcome. We obtain n = 14719 patients and split the
data into train (80%), val (10%), and test (10%). For details, see Appendix G.

We verify the validity of our NEURALCSA bounds for CATE in the following way: For each sen-
sitivity model, we obtain the smallest oracle sensitivity parameter Γ∗ that guarantees coverage (i.e.,
satisfies the respective sensitivity constraint) for 50% of the test samples. Then, we plot the coverage
and median interval length of the NEURALCSA bounds over the test set. The results are in Table 2.

1.0 0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0 Stage 1
MSM = 5.48
KL = 0.25

Figure 7: Analytic stage
2 densities for MSM and
KL-sensitivity model
(upper bounds).

We observe that (i) all bounds achieve at least 50% coverage, thus con-
firming the validity of the bounds, and (ii) some sensitivity models (e.g.,
the MSM) are conservative, i.e., achieve much higher coverage and in-
terval length than needed. This is because the sensitivity constraints of
these models do not adapt well to the data-generating process, thus the
need for choosing a large Γ∗ to guarantee coverage. This highlights
the importance of choosing a sensitivity model that captures the data-
generating process well. For further details, we refer to (Jin et al., 2022).
We also provide further insights into the difference between two exem-
plary sensitivity models: the MSM and the KL-sensitivity model. To do
so, we plot the observational distribution from stage 1 together with the
shifted distributions from stage 2 that lead to the respective upper bound

for a fixed test patient (Fig. 7). The distribution shift corresponding to the MSM is a step function,
which is consistent with results from established literature (Jin et al., 2023). This is in contrast to the
smooth distribution shift obtained by the KL-sensitivity model. In addition, this example illustrates
the possibility of using NEURALCSA for sensitivity analysis on the entire interventional density.

Table 2: Results for semi-synthetic data
Sensitivity model Coverage Interval length

MSM Γ∗ = 5.48 0.91± 0.03 0.77± 0.03
KL Γ∗ = 0.25 0.54± 0.07 0.31± 0.01
TV Γ∗ = 0.38 0.86± 0.09 0.83± 0.14
HE Γ∗ = 0.18 0.83± 0.06 0.63± 0.03
χ2 Γ∗ = 0.68 0.67± 0.07 0.41± 0.01
RB Γ∗ = 14.42 0.79± 0.07 0.56± 0.03

Reported: mean ± standard deviation (5 runs).

(iii) Case study using real-world data: We now demon-
strate an application of NEURALCSA to perform causal
sensitivity analysis for an interventional distribution on
multiple outcomes. To do so, we use the same MIMIC-
III data from our semi-synthetic experiments but add two
outcomes: heart rate (Y1) and blood pressure (Y2). We
consider the causal query P(Y1(1) ≥ 115, Y2(1) ≥ 90 |
X = x), i.e., the joint probability of achieving a heart
rate higher than 115 and a blood pressure higher than 90
under treatment intervention (“danger area”). We consider an MSM and train NEURALCSA with
sensitivity parameters Γ ∈ {2, 4}. Then, we plot the stage 1 distribution together with both stage 2
distributions for a fixed, untreated patient from the test set in Fig. 8.
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Figure 8: Contour plots of 2D densities obtained by NEU-
RALCSA under an MSM. Here, we aim to learn an upper
bound of the causal query P(Y1(1) ≥ 115, Y2(1) ≥ 90 | X =
x0) for a test patient x0. Left: Stage 1/ observational distribu-
tion. Middle: Stage 2, Γ = 2. Right: Stage 2, Γ = 4.

As expected, increasing Γ leads to
a distribution shift in the direction
of the “danger area”, i.e., high heart
rate and high blood pressure. For
Γ = 2, there is only a moderate
fraction of probability mass inside
the danger area, while, for Γ =
4, this fraction is much larger. A
practitioner may potentially decide
against treatment if there are other
unknown factors (e.g., undetected
comorbidity) that could result in a confounding strength of Γ = 4.

Conclusion. From a methodological perspective, NEURALCSA offers new ideas to causal sensi-
tivity analysis and partial identification: In contrast to previous methods, NEURALCSA explicitly
learns a latent distribution shift due to treatment intervention. We refer to Appendix I for a discussion
on limitations and future work. From an applied perspective, NEURALCSA enables practitioners to
perform causal sensitivity analysis in numerous settings, including multiple outcomes. Furthermore,
it allows for choosing from a wide variety of sensitivity models, which may be crucial to effectively
incorporate domain knowledge about the data-generating process.
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A EXTENDED RELATED WORK

In the following, we provide an extended related work. Specifically, we elaborate on (1) a systematic
overview of causal sensitivity analysis, (2) its application in settings beyond partial identification of
interventional causal queries, and (3) point identification and estimation of causal queries.

A.1 A SYSTEMATIC OVERVIEW ON CAUSAL SENSITIVITY ANALYSIS

In Table 3, we provide a systematic overview of existing works for causal sensitivity analysis, which
we group by the underlying sensitivity model, the treatment type, and the causal query. As such,
Table 3 extends Table 1 in that we follow the same categorization but now point to the references
from the literature.

Table 3: Overview of key works for causal sensitivity analyses under the MSM, f -sensitivity models,
or Rosenbaum’s sensitivity model. Settings with no existing literature are indicated with a red
cross (✗). Treatments are either binary or continuous. NEURALCSA framework is applicable in all
settings.
hhhhhhhhhhhhhhhCausal query

Sensitivity model
MSM f -sensitivity Rosenbaum

Binary Cont.(
†) Binary Cont. Binary Cont.

CATE Tan (2006) Bonvini et al. (2022) Jin et al. (2022) ✗ Rosenbaum & Rubin (1983b) ✗
Kallus et al. (2019) Jesson et al. (2022) Rosenbaum (1987)
Zhao et al. (2019) Frauen et al. (2023b) Heng & Small (2021)
Jesson et al. (2021)
Dorn & Guo (2022)
Dorn et al. (2022)
Oprescu et al. (2023)
Soriano et al. (2023)

Distributional effects Frauen et al. (2023b) (Frauen et al., 2023b) ✗ ✗ ✗ ✗

Interventional density Jin et al. (2023) Frauen et al. (2023b) Jin et al. (2022) ✗ ✗ ✗
Yin et al. (2022)
Marmarelis et al. (2023b)
Frauen et al. (2023b)

Multiple outcomes ✗ ✗ ✗ ✗ ✗ ✗

(†) The MSM for continuous treatment is also called continuous MSM (CMSM) (Jesson et al., 2022).

Evidently, many works have focused on sensitivity analysis for CATE in binary treatment settings.
For many settings, such as f -sensitiivity and Rosenbaum’s sensitivity model with continuous treat-
ments or multiple outcomes, no previous work exists. Here, NEURALCSA is the first work that
allows for computing bounds in these settings.

A.2 SENSITIVITY ANALYSIS IN OTHER CAUSAL SETTINGS

Causal sensitivity analysis has found applicability not only in addressing the partial identification
problem, as discussed in Eq. (1), but also in various domains of machine learning and causal infer-
ence. We briefly highlight some notable instances where ideas from causal sensitivity analysis have
made substantial contributions.

One such stream of literature is off-policy learning, where sensitivity models have been leveraged to
account for unobserved confounding or distribution shifts (Kallus & Zhou, 2018; Hatt et al., 2022).
Here, sensitivity analysis enables robust policy learning. Another example is algorithmic fairness,
where sensitivity analysis has been used to study causal fairness notions (e.g., counterfactual fair-
ness) under unobserved confounding (Kilbertus et al., 2019). Finally have been used to study the
partial identification of counterfactual queries (Melnychuk et al., 2023b)

A.3 POINT IDENTIFICATION AND ESTIMATION

If we replace the latent unconfoundedness assumption in Assumtion 1 with (non-latent) unconfound-
edness, that is,

Y (a) ⊥⊥ A | X for all a ∈ A, (7)

we can point-identify the distribution of the potential outcomes via

P(Y (a) = y | x) = P(Y (a) = y | x, a) = Pobs(y | x, a). (8)
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Hence, inferring the causal query Q(x, a,P) reduces to a purely statistical inference problem, i.e.,
estimating F(Pobs(Y | x, a)) from finite data.

Various methods for estimating point-identified causal effects under unconfoundedness have been
proposed. In recent years, a particular emphasis has been on methods for estimating (conditional)
average treatment effects (CATEs) that make use of machine learning to model flexible non-linear
relationships within the data. Examples include forest-based methods (Wager & Athey, 2018) and
deep learning (Johansson et al., 2016; Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019). An-
other stream of literature incorporates theory from semi-parametric statistics and provides robustness
and efficiency guarantees (van der Laan & Rubin, 2006; Chernozhukov et al., 2018; Künzel et al.,
2019; Curth & van der Schaar, 2021; Kennedy, 2023). Beyond CATE, methods have also been
proposed for estimating distributional effects or potential outcome densities (Chernozhukov et al.,
2013; Muandet et al., 2021; Kennedy et al., 2023). In particular, Melnychuk et al. (2023a) proposed
normalizing flows for potential outcome densities. Finally, Schweisthal et al. (2023) leveraged nor-
malizing flows for estimating the generalized propensity score in a setting with continuous treatment.
We emphasize that all these methods focus on estimation of point-identified causal queries, while
we are interested in causal sensitivity analysis and thus partial identification under violations of the
unconfoundedness assumption.
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B PROOFS

B.1 PROOF OF LEMMA 1

We provide a proof for the following more detailed version of Lemma 1.
Lemma 3. The MSM, the f -sensitivity model, and Rosenbaum’s sensitivity model are GTSMs with
sensitivity parameter Γ. Let ρ(x, u, a) = 1

1−P(a|x)

(
P(u|x)
P(u|x,a) − P(a | x)

)
and ρ(x, u1, u2, a) =

P(u1|x,a)P(u2|x)−P(u1|x,a)P(u2|x,a)P(a|x)
P(u2|x,a)P(u1|x)−P(u1|x,a)P(u2|x,a)P(a|x) . For the MSM, we have

Dx,a(P(U | x),P(U | x, a)) = max

{
sup
u∈U

ρ(x, u, a), sup
u∈U

ρ(x, u, a)−1

}
. (9)

For f -sensitivity models, we have

Dx,a(P(U | x),P(U | x, a)) = max

{∫
U
f(ρ(x, u, a))P(u | x, a) du,

∫
U
f(ρ(x, u, a)−1)P(u | x, a) du

}
.

(10)
For Rosenbaum’s sensitivity model, we have

Dx,a(P(U | x),P(U | x, a)) = max

{
sup

u1,u2∈U
ρ(x, u1, u2, a), sup

u1,u2∈U
ρ(x, u1, u2, a)

−1

}
. (11)

Proof. We show that all three sensitivity models (MSM, f -sensitivity models, and Rosenbaum’s
sensitivity model) are GTSMs. Recall that the odds ratio is defined as OR(a, b) = a

(1−a)
(1−b)

b .

MSM: Using Bayes’ theorem, we obtain P(u | x, a) = P(a|x,u)P(u|x)
P(a|x) and therefore

ρ(x, u, a) =
1

1− P(a | x)

(
P(u | x)
P(u | x, a)

− P(a | x)
)

(12)

=
1

1− P(a | x)

(
P(a | x)

P(a | x, u)
− P(a | x)

)
(13)

=
P(a | x)

1− P(a | x)

(
1− P(a | x, u)
P(a | x, u)

)
(14)

= OR(P(a | x),P(a | x, u)) . (15)

Hence, max
{
supu∈U ρ(x, u, a), supu∈U ρ(x, u, a)−1

}
≤ Γ is equivalent to

1

Γ
≤ OR(P(a | x),P(a | x, u)) ≤ Γ (16)

for all u ∈ U , which reduces to the original MSM defintion for a = 1.

f -sensitivity models: Follows immediately from ρ(x, u, a) = OR (P(a | x),P(a | x, u)).
Rosenbaum’s sensitivity model: We can write

ρ(x, u1, u2, a) =
P(u1 | x, a)P(u2 | x, a)P(a | x)− P(u1 | x, a)P(u2 | x)
P(u1 | x, a)P(u2 | x, a)P(a | x)− P(u2 | x, a)P(u1 | x)

(17)

=
P(a | x, u1)P(u1 | x)
P(a | x, u2)P(u2 | x)

(
P(a | x, u2)P(u2 | x)− P(u2 | x)
P(a | x, u1)P(u1 | x)− P(u1 | x)

)
(18)

=
P(a | x, u1)

P(a | x, u2)

(
P(a | x, u2)− 1

P(a | x, u1)− 1

)
(19)

= OR(P(a | x, u1),P(a | x, u2)) . (20)

Hence, max
{
supu1,u2∈U ρ(x, u1, u2, a), supu1,u2∈U ρ(x, u1, u2, a)

−1
}
≤ Γ is equivalent to

1

Γ
≤ OR(P(a | x, u1),P(a | x, u2)) ≤ Γ (21)

for all u1, u2 ∈ U , which reduces to the original definition of Rosenbaum’s sensitivity model for
a = 1.
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B.2 PROOF OF LEMMA 2

Proof. We show transformation-invariance separately for all three sensitivity models (MSM, f -
sensitivity models, and Rosenbaum’s sensitivity model).

MSM: Let Dx,a(P(U | x),P(U | x, a)) = Γ, which implies that implies 1
Γ ≤ ρ(x, u, a) ≤ Γ for all

u ∈ U . By rearranging terms, we obtain

P(u | x) ≤ (Γ(1− P(a | x)) + P(a | x)) P(u | x, a) (22)

and

P(u | x) ≥
(
1

Γ
(1− P(a | x)) + P(a | x)

)
P(u | x, a). (23)

Let t : U → Ũ be a transformation of the unobserved confounder. By using Eq. (22), we can write

ρ(x, t(u), a) =
1

1− P(a | x)

(
P(t(u) | x)
P(t(u) | x, a)

− P(a | x)
)

(24)

=
1

1− P(a | x)

( ∫
δ(t(u)− t(u′))P(u′ | x) du′∫
δ(t(u)− t(u′))P(u′ | x, a) du′ − P(a | x)

)
(25)

≤ 1

1− P(a | x)

(∫
δ(t(u)− t(u′))P(u′ | x, a) du′∫
δ(t(u)− t(u′))P(u′ | x, a) du′

)
Γ (26)

= Γ (27)

for all u ∈ U . Similarly, we can use Eq. (23) to obtain

ρ(x, t(u), a) =
1

1− P(a | x)

( ∫
δ(t(u)− t(u′))P(u′ | x) du′∫
δ(t(u)− t(u′))P(u′ | x, a) du′ − P(a | x)

)
(28)

≥ 1

1− P(a | x)

(∫
δ(t(u)− t(u′))P(u′ | x, a) du′∫
δ(t(u)− t(u′))P(u′ | x, a) du′

)
1

Γ
(29)

=
1

Γ
(30)

for all u ∈ U . Hence,

Dx,a(P(t(U) | x),P(t(U) | x, a)) = max

{
sup
u∈U

ρ(x, t(u), a), sup
u∈U

ρ(x, t(u), a)−1

}
≤ Γ. (31)

f -sensitivity models: This follows from the data compression theorem for f -divergences. We refer
to Polyanskiy & Wu (2022) for details.

Rosenbaum’s sensitivity model: We begin by rewriting

ρ(x, u1, u2, a) =
P(u1 | x, a)P(u2 | x, a)P(a | x)− P(u1 | x, a)P(u2 | x)
P(u1 | x, a)P(u2 | x, a)P(a | x)− P(u2 | x, a)P(u1 | x)

(32)

=

 1
P(u1|x)
P(u1|x,a) − P(a | x)

( P(u2 | x)
P(u2 | x, a)

− P(a | x)
)

(33)

as a function of density ratios on U . Let now Dx,a(P(U | x),P(U | x, a)) = Γ. This implies

P(u1 | x) ≤
(
Γ

(
P(u2 | x)
P(u2 | x, a)

− P(a | x)
)
+ P(a | x)

)
P(u1 | x, a) (34)

and

P(u1 | x) ≥
(
1

Γ

(
P(u2 | x)
P(u2 | x, a)

− P(a | x)
)
+ P(a | x)

)
P(u1 | x, a) (35)
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for all u1, u2 ∈ U . Let t : U → Ũ be a transformation. By using Eq. (34) and Eq. (35), we obtain

ρ(x, t(u1), t(u1), a) =

 1∫
δ(t(u1)−t(u′

1))P(u′
1|x) du′

1∫
δ(t(u1)−t(u′

1))P(u′
1|x,a) du′

1
− P(a | x)

 (36)

( ∫
δ(t(u2)− t(u′

2))P(u′
2 | x) du′

2∫
δ(t(u2)− t(u′

2))P(u′
2 | x, a) du′

2

− P(a | x)
)

(37)

≤

 1

1
Γ

(
P(u2|x)
P(u2|x,a) − P(a | x)

)
Γ

(
P(u1 | x)
P(u1 | x, a)

− P(a | x)
)

(38)

=
Γ2

ρ(x, u1, u1, a)
(39)

for all u1, u2 ∈ U . Hence,
inf

u1,u2

ρ(x, t(u1), t(u1), a) ≤ Γ. (40)

By using analogous arguments, we can also show that
sup
u1,u2

ρ(x, t(u1), t(u1), a) ≤ Γ, (41)

which implies
Dx,a(P(t(U) | x),P(t(U) | x, a)) ≤ Γ. (42)

B.3 PROOF OF THEOREM 1

Before stating the formal proof for Theorem 1, we provide a sketch to give an overview of the main
ideas and intuition.

Why is it sufficient to only consider invertible functions f∗
x,a : U → Y , i.e., model P∗(Y | x, a, u) =

δ(Y − f∗
x,a(u)) as a Dirac delta distribution? Here, it is helpful to have a closer look at Fig. 1:

Intervening on the treatment A causes a shift in the latent distribution of U , which then leads to
a shifted interventional distribution P(Y (a) = y | x). The question is now: How can we obtain
an interventional distribution that results in a maximal causal query (for the upper bound)? Let
us consider a structural equation of the form Y = g∗x,a(U, ϵ), where ϵ is some independent noise.
Hence, the “randomness” (entropy) in Y comes from both U and ϵ, however, the distribution shift
only arises through U . Intuitively, the interventional distribution should be maximally shifted if
Y only depends on the unobserved confounder and not on independent noise, i.e., g∗x,a(U, ϵ) =
f∗
x,a(U) for some invertible function f∗

x,a. One may also think about this as achieving the maximal
“dependence” (mutual information) between the random variables U and Y . Note that any GTSM
only restricts the dependence between U and A, but not between U and Y .

Why can we fix P∗(U | x, a) and f∗
x,a without losing the ability to achieve the optimum in Eq. (4).

The basic idea is as follows: Let P̃(Ũ | x, a) and f̃x, a be optimal solutions to Eq. (4) for a po-
tentially different latent variable Ũ . Then, we can define a mapping t = f∗

x,a
−1 ◦ f̃x,a : Ũ → U

between latent spaces that transforms P̃(Ũ | x, a) into our fixed P∗(U | x, a) (because both f̃x,a
and f∗

x,a respect the observational distribution). Furthermore, we can use t to push the optimal
shifted distribution P̃(Ũ | x) (under treatment intervention) to the latent variable U (see Eq. (46)).
We will show that this is sufficient to obtain a distribution P∗ that induces P∗(U | x, a) and
P∗(Y | x, u, a) = δ(Y − f∗

x,a(u)) and which satisfies the sensitivity constraints. For the latter
property, we require the sensitivity model to be “invariant” with respect to the transformation t, for
which we require our transformation-invariance assumption (Definition 3).

We proceed now with our formal proof of Theorem 1.

Proof. Without loss of generality, we provide a proof for the upper bound Q+
M(x, a). Our arguments

work analogously for the lower bound Q−
M(x, a). Furthermore, we only show the inequality

Q+
M(x, a) ≤ sup

P∗∈P∗
Q(x, a,P∗), (43)
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because the other direction (“≥”) holds by definition of Q+
M(x, a). Hence, it is enough to show

the existence of a sequence of full distributions (P∗
ℓ )ℓ∈N with P∗

ℓ ∈ P∗ for all ℓ ∈ N that satisfies
limℓ→∞ Q(x, a,P∗

ℓ ) = Q+
M(x, a).

To do so, we proceed in three steps: In step 1, we construct a sequence (P∗
ℓ )ℓ∈N of full distributions

that induce P∗
ℓ (U | x, a) = P∗(U | x, a) and P∗

ℓ (Y | x, u, a) = P∗(Y | x, u, a) = δ(Y − f∗
x,a(u))

for every ℓ ∈ N. In step 2, we show compatibility with the sensitivity model, i.e., P∗
ℓ ∈ M for all

ℓ ∈ N. Finally, in step 3, we show that limℓ→∞ Q(x, a,P∗
ℓ ) = Q+

M(x, a).

Step 1: Let P̃ be a full distribution on X × Ũ × A × Y for some latent space Ũ that is the solution
to Eq. (1). By definition, there exists a sequence (P̃ℓ)ℓ∈N with P̃ℓ ∈ M and limℓ→∞ Q(x, a, P̃ℓ) =

Q+
M(x, a). Let P̃ℓ(Ũ | x) and P̃ℓ(Y | x, u, a) be corresponding induced distributions (for fixed x,

a). Without loss of generality, we can assume that P̃ℓ is induced by a structural causal model (Pearl,
2009), so that we can write the conditional outcome distribution with a (not necessarily invertible)
functional assignment Y = f̃X,A,ℓ(U) as a point distribution P̃ℓ(Y | x, u, a) = δ(Y − f̃x,a,l(u)).
Note that we do not explicitly consider exogenous noise because we can always consider this part of
the latent space Ũ . By Eq. (3) and Eq. (2) we can write the observed conditional outcome distribution
as

Pobs(Y | x, a) = P̃ℓ(f̃x,a,ℓ(Ũ) | x, a), (44)
and the potential outcome distribution conditioned on x as

P̃ℓ(Y (a) | x) = P̃ℓ(f̃x,a,ℓ(Ũ) | x). (45)

We now define the sequence (P∗
ℓ )ℓ∈N. First we define a distribution on U ⊆ Rdy via

P∗
ℓ (U | x) = P̃ℓ(f

∗
x,a

−1 (Y (a)) | x) = P̃ℓ(f
∗
x,a

−1
(
f̃x,a,ℓ(Ũ)

)
| x). (46)

We then define full probability distribution P∗
ℓ for the fixed x and a and all u ∈ U , y ∈ Y as

P∗
ℓ (x, u, a, y) = δ

(
f∗
x,a(u)− y

)
P∗(u | x, a)Pobs(x, a). (47)

Finally, we can choose a family of distributions (P∗
ℓ (U | x, a′))a′ ̸=a so that P∗

ℓ (U | x) =
∫
P∗
ℓ (U |

x, a)Pobs(a | x) da and define

P∗
ℓ (x, u, a

′, y) = δ
(
f∗
x,a′(u)− y

)
P∗
ℓ (u | x, a′)Pobs(x, a

′). (48)

By definition, P∗
ℓ induces the fixed components P∗(U | x, a) and P∗(Y | x, u, a) = δ(Y − f∗

x,a(u)),
as well as P∗

ℓ (U | x) from Eq. (46) and the observational data distribution Pobs(X,A, Y ).

Step 2: We now show that P∗
ℓ respects the sensitivity constraints, i.e., satisfies P∗

ℓ ∈ M. It holds
that

P∗
ℓ (U | x, a) = P∗

ℓ (f
∗
x,a

−1 (f∗
x,a(U)

)
| x, a) (49)

(1)
= Pobs(f

∗
x,a

−1 (Y ) | x, a) (50)
(2)
= P̃ℓ(f

∗
x,a

−1
(
f̃x,a,ℓ(Ũ)

)
| x, a), (51)

where (1) holds due to the data-compatibility assumption on f∗
x,a and (2) holds due to Eq. (44).

We now define a transformation t : Ũ → U via t = f∗
x,a

−1 ◦ f̃x,a,ℓ. We obtain

Dx,a(P∗
ℓ (U | x),P∗

ℓ (U | x, a))
(1)
= Dx,a(P̃ℓ(t(Ũ) | x), P̃∗

ℓ (t(Ũ) | x, a)) (52)
(2)

≤ Dx,a(P̃ℓ(Ũ | x), P̃∗
ℓ (Ũ | x, a)) (53)

(3)

≤ Γ, (54)

where (1) holds due to Eq. (46) and Eq. (49), (2) holds due to the tranformation-invariance property
ofM, and (3) holds because P̃ℓ ∈M. Hence, P∗

ℓ ∈M.
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Step 3: We show now that limℓ→∞ Q(x, a,P∗
ℓ ) = Q+

M(x, a), which completes our proof. By
Eq. (46), it holds that

P∗
ℓ (Y (a) | x) = P∗

ℓ (f
∗
x,a(U) | x) = P̃ℓ(Y (a) | x), (55)

which means that potential outcome distributions conditioned on x coincide for P∗
ℓ and P̃ℓ. It follows

that
Q(x, a,P∗

ℓ ) = F (P∗
ℓ (Y (a) | x)) = F

(
P̃ℓ(Y (a) | x)

)
−−−→
ℓ→∞

Q+
M(x, a). (56)
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C FURTHER SENSITIVITY MODELS

In the following, we list additional sensitivity models that can be written as GTSMs and thus can be
used with NEURALCSA.

Continuous marginal sensitivity model (CMSM): The CMSM has been proposed by Jesson et al.
(2022) and Bonvini et al. (2022). It is defined via

1

Γ
≤ P(a | x)

P(a | x, u)
≤ Γ (57)

for all x ∈ X , u ∈ U , and a ∈ A. The CMSM can be written as a CMSM with sensitivity parameter
Γ by defining

Dx,a(P(u | x),P(u | x, a)) = max

{
sup
u∈U

P(u | x)
P(u | x, a)

, sup
u∈U

P(u | x, a)
P(u | x)

}
. (58)

This directly follows by applying Bayes’ theorem to P(u | x, a) = P(a|x,u)P(u|x)
P(a|x) .

Continuous f -sensitivity models: Motivated by the CMSM, we can define f -sensitivity models for
continuous treatments via

max

{∫
U
f

(
P(a | x)

P(a | x, u)

)
P(u | x, a) du,

∫
U
f

(
P(a | x, u)
P(a | x)

)
P(u | x, a) du

}
≤ Γ (59)

for all x ∈ X and a ∈ A. By using Bayes’ theorem, we can write any continuous f -sensitivity
model as a GTSM by defining

Dx,a(P(u | x),P(u | x, a)) = max

{∫
U
f

(
P(u | x)
P(u | x, a)

)
P(u | x, a) du, (60)∫

U
f

(
P(u | x, a)
P(u | x)

)
P(u | x, a) du

}
. (61)

Weighted marginal sensitivity models: Frauen et al. (2023b) proposed a weighted version of the
MSM, defined via

1

(1− Γ)q(x, a) + Γ
≤ P(u | x, a)

P(u | x)
≤ 1

(1− Γ−1)q(x, a) + Γ−1
, (62)

where q(x, a) is a weighting function that incorporates domain knowledge about the strength of
unobserved confounding. By using similar arguments as in the proof of Lemma 1, we can write the
weighted MSM as a GTSM by defining

Dx,a(P(U | x),P(U | x, a)) = max

{
sup
u∈U

ρ(x, u, a), sup
u∈U

ρ(x, u, a)−1

}
, (63)

where

ρ(x, u, a) =
1

1− q(x, a)

(
P(u | x)
P(u | x, a)

− q(x, a)

)
. (64)
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D QUERY AVERAGES AND DIFFERENCES

Here, we show that we can use our bounds Q+
M(x, a) and Q−

M(x, a) to obtain sharp bounds for
averages and differences of causal queries. We follow established literature on causal sensitivity
analysis (Dorn & Guo, 2022; Dorn et al., 2022; Frauen et al., 2023b).

Averages: We are interested in the sharp upper bound for the average causal query

Q̄M(a,P) =
∫
X
Q(x, a,P)Pobs(x) dx. (65)

An example is the average potential outcome E[Y (a)], which can be obtained by averaging condi-
tional potential outcomes via E[Y (a)] =

∫
E(Y (a) | x)Pobs(x) dx. We can obtain upper bounds

via
Q̄+

M(a) = sup
P∈M

∫
X
Q(x, a,P)Pobs(x) dx =

∫
X
Q+

M(x, a)Pobs(x) dx, (66)

and lower bounds via

Q̄−
M(a) = inf

P∈M

∫
X
Q(x, a,P)Pobs(x) dx =

∫
X
Q−

M(x, a)Pobs(x) dx, (67)

whenever we can interchange the supremum/ infimum and the integral. That is, bounding the aver-
aged causal query Q̄M(a,P) reduces to averaging the bounds Q+

M(x, a) and Q−
M(x, a).

Differences: For two different treatment values a1, a2 ∈ A, we are interested in the difference of
causal queries

Q(x, a1,P)−Q(x, a2,P). (68)
An example is the conditional average treatment effect E[Y (1) | x] − E[Y (0) | x]. We can obtain
an upper bound via

Q+
M(x, a1, a2) = sup

P∈M
(Q(x, a1,P)−Q(x, a2,P)) (69)

≤ sup
P∈M

Q(x, a1,P)− inf
P∈M

Q(x, a2,P) (70)

= Q+
M(x, a1)−Q−

M(x, a2). (71)

Similarly, a lower bound is given by

Q−
M(x, a1, a2) ≥ Q−

M(x, a1)−Q+
M(x, a2). (72)

It has been shown that these bounds are even sharp for some sensitivity models such as the MSM,
i.e., attain equality (Dorn & Guo, 2022).
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E TRAINING DETAILS FOR NEURALCSA

In this section, we provide details regarding the training of NEURALCSA, in particular, the Monte
Carlo estimates for Stage 2 and the full learning algorithm.

E.1 MONTE CARLO ESTIMATES OF STAGE 2 LOSSES AND SENSITIVITY CONSTRAINTS

In the following, we assume that we obtained samples ũ = (ũ
(j)
x,a)kj=1

i.i.d.∼ N (0dy
, Idy

) and ξ =

(ξ
(j)
x,a)kj=1

i.i.d.∼ Bernoulli(Pobs(a | x)).

E.1.1 STAGE 2 LOSSES

Here, we provide our estimators L̂2(η, ũ, ξ) of the Stage 2 loss L2(η). We consider three different
causal queries: (i) expectations, (ii) set probabilities, and (iii) quantiles.

Expectations: Expectations correspond to settingF(P) = E[X]. Then, we can estimate our Stage 2
loss via the empirical mean, i.e.,

L̂2(η, ũ, ξ) =
1

k

n∑
i=1

k∑
j=1

f∗
g∗
θopt

(xi,ai)

(
(1− ξ(j)xi,ai

)f̃g̃η(xi,ai)(ũ
(j)
xi,ai

) + ξ(j)xi,ai
ũ(j)
xi,ai

)
. (73)

Set probabilities: Here we consider queries of the form F(P) = P(X ∈ S) for some set S ⊆ Y .
We first define the log-likelihood

ℓ
(
η, ũ(j)

xi,ai
, ξ(j)xi,ai

)
= P

(
f∗
g∗
θopt

(xi,ai)

(
(1− ξxi,ai

)f̃g̃η(xi,ai)(Ũ) + ξxi,ai
Ũ
)
=

f∗
g∗
θopt

(xi,ai)

(
(1− ξ(j)xi,ai

)f̃g̃η(xi,ai)(ũ
(j)
xi,ai

) + ξ(j)xi,ai
ũ(j)
xi,ai

))
,

(74)

which corresponds to the log-likelihood of the shifted distribution (under Stage 2) at the point that is
obtained from plugging the Monte Carlo samples ũ(j)

xi,ai and ξ
(j)
xi,ai into the CNFs. We then optimize

Stage 2 by maximizing this log-likelihood only at points in S. That is, the corresponding Monte
Carlo estimator of the Stage 2 loss is

L̂2(η, ũ, ξ) =

n∑
i=1

k∑
j=1

ℓ
(
η, ũ(j)

xi,ai
, ξ(j)xi,ai

)
1

{
f∗
g∗
θopt

(xi,ai)

(
(1− ξ(j)xi,ai

)f̃g̃η(xi,ai)(ũ
(j)
xi,ai

) + ξ(j)xi,ai
ũ(j)
xi,ai

)
∈ S

}
.

(75)

Here, we only backpropagate through the log-likelihood to obtain informative (non-zero) gradients.

Quantiles: We consider quantiles of the form F(P) = F−1
X (q), where FX is the c.d.f. corre-

sponding to P and q ∈ (0, 1). For this, we can use the same Stage 2 loss as in Eq. (75) by
defining the set S =

{
y ∈ Y | y ≤ F̂−1

ij (q)
}

where F̂−1
ij is empirical c.d.f. corresponding to{

f∗
g∗
θopt

(xi,ai)

(
(1− ξ

(j)
xi,ai)f̃g̃η(xi,ai)(ũ

(j)
xi,ai) + ξ

(j)
xi,ai ũ

(j)
xi,ai

)}k

j=1

.

E.1.2 SENSITIVITY CONSTRAINTS

Here, we provide our estimators D̂x,a(η, ũ) of the sensitivity constraintDx,a(P(U | x),P(U | x, a)).
We consider the three sensitivity models from the main paper: (i) MSM, (ii) f -sensitivity models,
and (iii) Rosenbaum’s sensitivity model.

MSM: We define

ρ̂(x, u, a, η) =
1

1− P(a | x)

P
(
(1− ξx,a)f̃g̃η(x,a)(Ũ) + ξx,aP(Ũ = u)

)
P(Ũ = u)

− P(a | x)

 . (76)
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Then, our estimator for the MSM constraint is

D̂x,a(η, ũ) = max

{
max
u∈ũ

ρ̂(x, u, a, η), max
u∈ũ

ρ̂(x, u, a, η)−1

}
. (77)

f -sensitivity models: Our estimator for the f -sensitivity constraint is

D̂x,a(η, ũ) = max

1

k

k∑
j=1

f(ρ̂(x, ũ(j)
x,a, a, η)),

1

k

k∑
j=1

f(ρ̂(x, ũ(j)
x,a, a, η)

−1)

 . (78)

Rosenbaum’s sensitivity model: We define

ρ̂(x, u1, u2, a, η) =
P(Ũ = u1)

P(Ũ = u2)

P(Ũ = u2)P(a | x)− P
(
(1− ξx,a)f̃g̃η(x,a)(Ũ) + ξx,aP(Ũ = u2)

)
P(Ũ = u1)P(a | x)− P

(
(1− ξx,a)f̃g̃η(x,a)(Ũ) + ξx,aP(Ũ = u1)

)
 .

(79)

Then, our estimator is

D̂x,a(η, ũ) = max

{
max

u1,u2∈ũ
ρ̂(x, u1, u2, a, η), max

u1,u2∈ũ
ρ̂(x, u1, u2, a, η)

−1

}
. (80)

E.2 FULL LEARNING ALGORITHM

Our full learning algorithm for Stage 1 and Stage 2 is shown in Algorithm 1. For Stage 2, we use
our Monte-Carlo estimators described in the previous section in combination with the augmented
lagrangian method to incorporate the sensitivity constraints. For details regarding the augmented
lagrangian method, we refer to Nocedal & Wright (2006), chapter 17.

Reusability: Using CNFs instead of unconditional normalizing flows allows us to compute bounds
Q+

M(x, a) and Q−
M(x, a) without the need to retrain our model for different x ∈ X and a ∈ A.

In particular, we can simultaneously compute bounds for averaged queries or differences without
retraining (see Appendix D). Furthermore, Stage 1 is independent of the sensitivity model, which
means that we can reuse our fitted Stage 1 CNF for different sensitivity models and sensitivity
parameters Γ, and only need to retrain the Stage 2 CNF.

Analytical potential outcome density: Once our model is trained, we can not only compute the
bounds via sampling but also the analytical form (by using the density transformation formula) of
the potential outcome density that gives rise to that bound. Fig. 8, shows an example. This makes
it possible to perform sensitivity analysis for the potential outcome density itself, i.e., analyzing the
“distribution shift due to intervention”.
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Algorithm 1: Full learning algorithm for NEURALCSA
Input : causal query Q(x, a), GTSMM, and obs. dataset D Pobs

epoch numbers n0, n1, n2; batch size nb; learning rates γ0, γ1, and α > 1
Output: learned parameters θopt and ηopt of Stage 1 and Stage 2
// Stage 1
P∗(U | x, a)← fixed probability distribution on U ⊆ Rdu=dy

Initialize θ(1) and U ∼ N (0dy , Idy )
for i ∈ {1, . . . , n0} do

(x, a, y)← batch of size nb

L1(θ)←
∑

(x,a,y) logP(f∗
g∗
θ (x,a)

(U) = y)

θ(i+1) ← optimization step of L1(θ
(i)) w.r.t. θ(i) with learning rate γ0

end
θopt ← θ(n0)

// Stage 2

Initialize η(1), λ(1), and µ(1)

for i ∈ {1, . . . , n1} do
for ℓ ∈ {1, . . . , n2} do

η
(i)
1 ← η(i)

(x, a)← batch of size nb

ũ← (ũ
(j)
x,a)kj=1

i.i.d.∼ N (0dy
, Idy

)

ξ ← (ξ
(j)
x,a)kj=1

i.i.d.∼ Bernoulli(Pobs(a | x))
sx,a(η)← Γ− D̂x,a(η, ũ)

L(η, λ, µ)← L̂2(η, ũ, ξ)−
∑

(x,a) λx,asx,a(η) +
µ
2 s

2
x,a(η)

η
(i)
ℓ+1 ← optimization step of L(η(i)ℓ , λ(i), µ(i)) w.r.t. η(i)ℓ with learning rate γ1

end
η(i+1) ← η

(i)
n2

λ
(i+1)
x,a ← max

{
0, λ

(i)
x,a − µ(i)sx,a(η

(i+1))
}

µ(i+1) ← αµ(i)

end
ηopt ← η(n1)

E.3 FURTHER DISCUSSION OF OUR LEARNING ALGORITHM

Non-neural alternatives: Note that our two-stage procedure is agnostic to the estimators used,
which, in principle, allows for non-neural instantiations. However, we believe that our neural in-
stantiation (NEURALCSA) offers several advantages over possible non-neural alternatives:

1. Solving Stage 1: Conditional normalizing flows (CNFs) are a natural choice for Stage 1
because they are designed to learn an invertible function f∗

x,a : U → Y that satisfies
Pobs(Y | x, a) = P∗(f∗

x,a(U) | x, a). In particular, CNFs allow for inverting f∗
x,a ana-

lytically, which enables tractable optimization of the log-likelihood (see Appendix F). In
principle, f∗

x,a could also be obtained by estimating the conditional c.d.f. F̂ (y | x, a) us-
ing some arbitrary estimator and then leveraging the inverse transform sampling theorem,
which states that we can choose f∗

x,a = F̂−1(· |, x, a) whenever we fix P∗(U | x, a) to be
uniform. However, this approach only works for one-dimensional Y and requires inverting
the estimated F̂ (y | x, a) numerically.

2. Solving Stage 2: Stage 2 requires to optimize the causal query F
(
P(f∗

x,a(U) | x)
)

over a
latent distribution P(U | x), where f∗

x,a is learned in Stage 1. In NEURALCSA, we achieve
this by fitting a second CNF in the latent space U , which we then concatenate with the
CNF from Stage 1 to backpropagate through both CNFs. Standard density estimators are
not applicable in Stage 2 because we fit a density in the latent space to optimize a causal
query that is dependent on Stage 1, and not a standard log-likelihood. While there may exist
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non-neural alternatives to solve the optimization in Stage 2, this goes beyond the scope of
our paper, and we leave this for future work.

3. Analytical interventional density: Using NFs in both Stages 1 and 2 enables us to obtain
an analytical interventional once NeuralCSA is fitted. Hence, we can perform sensitivity
analysis for the whole interventional density (see Fig. 7 and 8), without the need for Monte
Carlo approximations through sampling.

4. Universal density approximation: CNFs are universal density approximators, which means
that we can account for complex (e.g., multi-modal, skewed) observational distributions.

Complexity of NEURALCSA compared to closed-form solutions: Stage 1 requires fitting a CNF
to estimate the observational distribution Pobs(Y | x, a). This step is also necessary for closed-
form bounds (e.g., for the MSM), where such closed-form bounds depend on the observational
distribution (Frauen et al., 2023b). This renders the complexity in terms of implementation choices
equivalent to Stage 1.

In Stage 2, closed-form solutions under the MSM allow for computing bounds directly using the
observational distribution, NEURALCSA fits an additional NF that is training using Algorithm 1.
Hence, additional hyperparameters are the hyperparameters of the second NF as well as the learning
rates of the augmented Lagrangian method (used to incorporate the sensitivity constraint). Hence,
we recommend using NEURALCSA as a method for causal sensitivity analysis whenever bounds
are not analytically tractable. In our experiments, we observed that the training of NeuralCSA was
very stable, as indicated by a low variance over different runs (see, e.g., Fig. 5).

Existence of a global optimum: A sufficient condition for the existence of a global solution in
Eq. (4) is the continuity of the objective/causal query as well as the compactness of the constraint
set. Continuity holds for many common causal queries such as the expectation. The compactness of
the constraint set depends on the properties functional Dx,a, i.e., the choice of the sensitivity model.
The existence of global solutions has been shown for many sensitivity models from the literature,
e.g., MSM (Dorn et al., 2022) and f -sensitivity models (Jin et al., 2022). Note that, in Theorem 1,
we do not assume the existence of a global solution. In principle, our two-stage procedure is valid
even if a global solution to Eq. (5) does not exist. In this case, we can apply our Stage 2 learning
algorithm (Algorithm 1) until convergence and obtain an approximation of the desired bound, even
if it is not contained in the constraint set.
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F DETAILS ON IMPLEMENTATION AND HYPERPARAMETER TUNING

Stage 1 CNF: We use a conditional normalizing flows (CNF) (Winkler et al., 2019) for stage 1
of NEURALCSA. Normalizing flows (NFs) model a distribution P(Y ) of a target variable Y by
transforming a simple base distribution P(U) (e.g., standard normal) of a latent variable U through
an invertible transformation Y = fθ̂(U), where θ̂ denotes parameters (Rezende & Mohamed, 2015).
In order to estimate the conditional distributions P(Y | x, a), CNFs define the parameters θ̂ as an
output of a hyper network θ̂ = gθ(x, a) with learnable parameters θ. The conditional log-likelihood
can be written analytically as

log
(
P(fgθ(x,a)(U) = y)

) (∗)
= log

(
P
(
U = f−1

gθ(x,a)
(y)
))

+ log

(
det

(
d

dy
f−1
gθ(x,a)

(y)

))
, (81)

where (∗) follows from the change-of-variables theorem for invertible transformations.

Stage 2 CNF: As in Stage 1, we use a CNF that transforms U = f̃η̂(Ũ), where η̂ = g̃η(x, a) with
learnable parameters η. The conditional log-likelihood can be expressed analytically via

log
(
P(f̃g̃θ(x,a)(Ũ) = u)

)
= log

(
P
(
Ũ = f̃−1

g̃θ(x,a)
(u)
))

+ log

(
det

(
d

du
f̃−1
g̃θ(x,a)

(u)

))
. (82)

In our implementation, we use autoregressive neural spline flows. That is, we model the invertible
transformation fθ via a spline flow as described in Dolatabadi et al. (2020). We use an autoregressive
neural network for the hypernetwork gη(x,m,a) with 2 hidden layers, ReLU activation functions,
and linear output. For training, we use the Adam optimizer (Kingma & Ba, 2015).

Propensity scores: The estimation of the propensity scores P(a | x) is a standard binary clas-
sification problem. We use feed-forward neural networks with 3 hidden layers, ReLU activation
functions, and softmax output. For training, we minimize the standard cross-entropy loss by using
the Adam optimizer (Kingma & Ba, 2015).

Hyperparameter tuning: We perform hyperparameter tuning for our propensity score models and
Stage 1 CNFs. The tunable parameters and search ranges are shown in Table 4. Then, we use the
same optimally trained propensity score models and Stage 1 CNFs networks for all Stage 2 models
and closed-form solutions (in Fig. 5). For the Stage 2 CNFs, we choose hyperparameters that lead
to a stable convergence of Alg. 1, while ensuring that the sensitivity constraints are satisfied. For
reproducibility purposes, we report the selected hyperparameters as .yaml files.9

Table 4: Hyperparameter tuning details.

MODEL TUNABLE PARAMETERS SEARCH RANGE

Stage 1 CNF Epochs 50
Batch size 32, 64, 128
Learning rate 0.0005, 0.001, 0.005
Hidden layer size (hyper network) 5, 10, 20, 30
Number of spline bins 2, 4, 8

Propensity network Epochs 30
Batch size 32, 64, 128
Learning rate 0.0005, 0.001, 0.005
Hidden layer size 5, 10, 20, 30
Dropout probability 0, 0.1

9 Code is available at https://github.com/DennisFrauen/NeuralCSA.
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G DETAILS REGARDING DATASETS AND EXPERIMENTS

We provide details regarding the datasets we use in our experimental evaluation in Sec. 6.

G.1 SYNTHETIC DATA

Binary treatment: We simulate an observed confounder X ∼ Uniform[−1, 1] and define the
observed propensity score as π(x) = Pobs(A = 1 | x) = 0.25 + 0.5σ(3x), where σ(·) denotes the
sigmoid function. Then, we simulate an unobserved confounder

U | X = x ∼ Bernoulli
(
p =

(Γ− 1)π(x) + 1

Γ + 1

)
(83)

and a binary treatment

A = 1 | X = x, U = u ∼ Bernoulli
(
p = uπ(x)s+(x, a) + (1− u)π(x)s−(x, a)

)
, (84)

where s+(x, a) = 1
(1−Γ−1)π(x)+Γ−1 and s−(x, a) = 1

(1−Γ)π(x)+Γ .

Finally, we simulate a continuous outcome

Y = (2A− 1)X + (2A− 1)− 2 sin(2(2A− 1)X)− 2(2U − 1)(1 + 0.5X) + ε, (85)

where ε ∼ N (0, 1).

The data-generating process is constructed so that P(A=1|x,u)
π(x) = us+(x, a) + (1 − u)s−(x, a) or,

equivalently, that OR(x, u) = uΓ+ (1− u)Γ−1. Hence, the full distribution follows an MSM with
sensitivity parameter Γ. Furthermore, by Eq. (83), we have

P(A = 1 | x, 1)P(U = 1 | x) + P(A = 1 | x, 0)P(U = 0 | x) = π(x) = Pobs(A = 1 | x) (86)

so that P induces Pobs(A = 1 | x).
Continuous treatment: We simulate an observed confounder X ∼ Uniform[−1, 1] and indepen-
dently a binary unobserved confounder U ∼ Bernoulli(p = 0.5). Then, we simulate a continuous
treatment via

A | X = x, U = u ∼ Beta(α, β) with α = β = 2 + x+ γ(u− 0.5), (87)

where γ is a parameter that controls the strength of unobserved confounding. In our experiments,
we chose γ = 2. Finally, we simulate an outcome via

Y = A+X exp(−XA)− 0.5(U − 0.5)X + (0.5X + 1) + ε, (88)

where ε ∼ N (0, 1). Note that the data-generating process does not follow a (continuous) MSM.

Oracle sensitivity parameters Γ∗: We can obtain Oracle sensitivity parameters Γ∗(x, a) for each
sample with X = x and A = a by simulating from our previously defined data-generating process
to estimate the densities P(u | x, a) and P(u | x) and subsequently solve for Γ∗(x, a) in the GTSM
equations from Lemma 3. By definition, Γ∗(x, a) is the smallest sensitivity parameter such that the
corresponding sensitivity model is guaranteed to produce bounds that cover the ground-truth causal
query. For binary treatments, it holds Γ∗(x, a) = Γ∗, i.e., the oracle sensitivity parameter does not
depend on x and a. For continuous treatments, we choose Γ∗ = Γ∗(a) =

∫
Γ∗(x, a)P(x) dx in

Fig. 6.

G.2 SEMI-SYNTHETIC DATA

We obtain covariates X and treatments A from MIMIC-III (Johnson et al., 2016) as described in the
paragraph regarding real-world data below. Then we learn the observed propensity score π̂(x) =

P̂(A = 1 | x) using a feed-forward neural network with three hidden layers and ReLU activation
function. We simulate a uniform unobserved confounder U ∼ U [0, 1]. Then, we define a weight

w(X,U) = 1

{
γ ≥ 2− 1

π̂(X)

}
(γ + 2U(1− γ))+ (89)

1

{
γ < 2− 1

π̂(X)

}(
2− 1

π̂(X)
+ 2U

(
1

π̂(X)
− 1

))
(90)
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and simulate synthetic binary treatments via

A = 1 | X = x, U = u ∼ Bernoulli (p = w(x, u)π̂(x)) . (91)

Here, γ is a parameter controlling the strength of unobserved confounding, which we set to 0.25.
The data-generating process is constructed in a way such that the full propensity P(A = 1 | X =
x, U = u) induces the (estimated) observed propensity π̂ from the real-world data. We then simulate
synthetic outcomes via

Y = (2A− 1)

(
1

dx + 1

((
dx∑
i=1

Xi

)
+ U

))
+ ε, (92)

where ε ∼ N (0, 0.1). In our experiments, we use 90% of the data for training and validation,
and 10% of the data for evaluating test performance. From our test set, we filter out all samples
that satisfy either P(A = 1 | x) < 0.3 or P(A = 1 | x) > 0.7. This is because these samples
are associated with large empirical uncertainty (low sample sizes). In our experiments, we only
demonstrate the validity of our NEURALCSA bounds in settings with low empirical uncertainty.

Oracle sensitivity parameters Γ∗: Similar to our fully synthetic experiments, we first obtain the
Oracle sensitivity parameters Γ∗(x, a) for each test sample with confounders x and treatment a. We
then take the median overall Γ∗(x, a) of the test sample. By definition, NEURALCSA should then
cover at least 50% of all test query values (see Table 2).

G.3 REAL-WORLD DATA

We use the MIMIC-III dataset Johnson et al. (2016), which includes electronic health records from
patients admitted to intensive care units. We use a preprocessing pipeline (Wang et al., 2020) to
extract patient trajectories with 8 hourly recorded patient characteristics (heart rate, sodium blood
pressure, glucose, hematocrit, respiratory rate, age, gender) and a binary treatment indicator (me-
chanical ventilation). We then sample random time points for each patient trajectory and define the
covariates X ∈ R8 as the past patient characteristics averaged over the previous 10 hours. Our
treatment A ∈ {0, 1} is an indicator of whether mechanical ventilation was done in the subsequent
10-hour time. Finally, we consider the final heart rate and blood pressure averaged over 5 hours
as outcomes. After removing patients with missing values and outliers (defined by covariate values
smaller than the corresponding 0.1th percentile or larger than the corresponding 99.9th percentile),
we obtain a dataset of size n = 14719 patients. We split the data into train (80%), val (10%), and
test (10%).
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H ADDITIONAL EXPERIMENTS

H.1 ADDITIONAL TREATMENT COMBINATIONS FOR SYNTHETIC DATA

Here, we provide results for additional treatment values a ∈ {0.1, 0.9} for the synthetic experiments
with continuous treatment in Sec. 6. Fig. 9 shows the results for our experiment where we compare
the NEURALCSA bounds under the MSM with (optimal) closed-form solutions. Fig. 10 shows
the results of our experiment where we compare the bounds of different sensitivity models. The
results are consistent with our observations from the main paper and show the validity of the bounds
obtained by NEURALCSA,
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Figure 9: Validating the correctness of NEURALCSA (ours) by comparing with optimal closed-form
solutions (CF) for the MSM in the synthetic continuous treatment setting. Left: a = 0.1. Right:
a = 0.9. Reported: mean ± standard deviation over 5 runs.
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Figure 10: Confirming the validity of NEURALCSA bounds for various sensitivity models in the
synthetic continuous treatment setting. Left: a = 0.1. Right: a = 0.9. Reported: mean ± standard
deviation over 5 runs.

H.2 DENSITIES FOR LOWER BOUNDS ON REAL-WORLD DATA

Here, we provide the distribution shifts for our real-world case study (Sec. 6), but for the lower
bounds instead of the upper. The results are shown in Fig. 11. In contrast to the shifts for the upper
bounds, increasing Γ leads to a distribution shift away from the direction of the danger area, i.e.,
high heart rate and blood pressure.

H.3 ADDITIONAL SEMI-SYNTHETIC EXPERIMENT

We provide additional experimental results using a semi-synthetic dataset based on the IHPD data
Hill (2011). IHDP is a randomized dataset with information on premature infants. It was originally
designed to estimate the effect of home visits from specialist doctors on cognitive test scores. For
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Figure 11: Contour plots of 2D densities obtained by NEURALCSA under an MSM. Here, we aim
to learn a lower bound of the causal query P(Y1(1) ≥ 115, Y2(1) ≥ 90 | X = x0) for a test patient
x0. Left: Stage 1/ observational distribution. Center: Stage 2, Γ = 2. Right: Stage 2, Γ = 4.

our experiment, we extract dx = 7 covariates X (birthweight, child’s head circumference, number
of weeks pre-term that the child was born, birth order, neo-natal health index, the mother’s age, and
the sex of the child) of n = 985 infants. Then, and define an observational propensity score as
π(x) = Pobs(A = 1 | x) = 0.25 + 0.5σ( 3

dx

∑dx

i=1 Xi). Then, similar as in Appendix G.2, we
introduce unobserved confounding by generating synthetic treatments via

A = 1 | X = x, U = u ∼ Bernoulli (p = w(x, u)π(x)) , (93)

where w(x, u) is defined in Eq. (89) and U ∼ U [0, 1]. We then generate synthetic outcomes via

Y = (2A− 1)

(
1

dx + 1

((
dx∑
i=1

Xi

)
+ U

))
+ ε, (94)

where ε ∼ N (0, 1).

In our experiments, we split the data into train (80%) and test set (20%). We verify the validity
of our NEURALCSA bounds for CATE analogous to our experiments using the MIMIC (Sec. 6):
For each sensitivity model (MSM, TV, HE, RB), we obtain the smallest oracle sensitivity parameter
Γ∗ that guarantees coverage (i.e., satisfies the respective sensitivity constraint) for 50% of the test
samples. Then, we plot the coverage and median interval length of the NEURALCSA bounds over
the test set. The results are in Table 5. The results confirm the validity of NEURALCSA.

Table 5: Results for IHDP-based semi-synthetic data.

Sensitivity model Coverage Interval length

MSM Γ∗ = 3.25 0.92± 0.03 1.63± 0.05
TV Γ∗ = 0.31 0.71± 0.28 1.23± 0.54
HE Γ∗ = 0.11 0.70± 0.14 1.10± 0.21
RB Γ∗ = 9.62 0.56± 0.15 0.95± 0.29

Reported: mean ± standard deviation (5 runs).
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I DISCUSSION ON LIMITATIONS AND FUTURE WORK

Limitations: NEURALCSA is a versatile framework that can approximate the bounds of causal
effects in various settings. However, there are a few settings where (optimal) closed-form bounds
exist (e.g., CATE for binary treatments under the MSM), which should be preferred when available.
Instead, NEURALCSA offers a unified framework for causal sensitivity analysis under various sensi-
tivity models, treatment types, and causal queries, and can be applied in settings where closed-form
solutions have not been derived or do not exist (Table 1).

Future work: Our research hints at the broad applicability of NEURALCSA beyond the three sensi-
tivity models that we discussed above (see also Appendix C). For future work, it would be interesting
to conduct a comprehensive comparison of sensitivity models and provide practical recommenda-
tions for their usage. Future work may further consider incorporating techniques from semiparamet-
ric statistical theory to obtain estimation guarantees, robustness properties, and confidence intervals.
Finally, we only provided identifiability results that hold in the limit of infinite data. It would be
interesting to provide rigorous empirical uncertainty quantification for NEURALCSA, e.g., via a
Bayesian approach. While in principle the bootstrapping approach from (Jesson et al., 2022) could
be applied in our setting, this could be computationally infeasible for large datasets.
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