SPA-Bench: A Comprehensive Benchmark for
SmartPhone Agent Evaluation

Jingxuan Chen '* Derek Yuen '* Bin Xie? Yuhao Yang! Gongwei Chen 2
Zhihao Wu ! Yixing Li> Xurui Zhou’? WeiwenLiu' Shuai Wang' Rui Shao ?!
Ligiang Nie > Yasheng Wang ! Jianye Hao ! Jun Wang ? Kun Shao '
"Huawei Noah’s Ark Lab 2Harbin Institute of Technology, Shenzhen

3University College London

Abstract

Smartphone agents are increasingly important for helping users control devices
efficiently, with (Multimodal) Large Language Model (MLLM)-based approaches
emerging as key contenders. Fairly comparing these agents is essential but chal-
lenging, requiring a varied task scope, the integration of agents with different im-
plementations, and a generalisable evaluation pipeline to assess their strengths and
weaknesses. In this paper, we present SPA-BENCH, a comprehensive SmartPhone
Agent Benchmark designed to evaluate (M)LLM-based agents in an interactive
environment that simulates real-world conditions. SPA-BENCH offers three key
contributions: (1) A diverse set of tasks covering system and third-party apps in
both English and Chinese, focusing on features commonly used in daily routines;
(2) A plug-and-play framework enabling real-time agent interaction with Android
devices, integrating over ten agents with the flexibility to add more; (3) A novel
evaluation pipeline that automatically assesses agent performance across multiple
dimensions, encompassing seven metrics related to task completion and resource
consumption. Our extensive experiments across tasks and agents reveal challenges
like interpreting mobile user interfaces, action grounding, memory retention, and
execution costs. We propose future research directions to ease these difficulties,
moving closer to real-world smartphone agent applications. The code will be
open-sourced soon at https://ai-agents-2030.github.io/SPA-Bench/.

1 Introduction

The growing capabilities of Large Language Models (LLMs) and Multimodal Large Language Models
(MLLMs) have broadened the application of Al agents across various domains [[1} 2} 3} 4} 15 16]. One
promising area is smartphone control, where agents assist users in tasks like booking hotels or setting
alarms. These agents, often powered by off-the-shelf [[7, 8} 9} (10, 11] or fine-tuned [[12, [13} 14} [15]
(M)LLMs, rely heavily on these models as the “brains” for decision-making. The information
these agents use to interact with smartphones can vary, with common methods involving direct
screen observation [9} 110} 12} 13} 14, [15]], accessing non-visible data via Android View Hierarchy or
Extensible Markup Language (XML) [8]], or a combination of both [7, [11].

*Equal contribution.
fCorresponding authors: shaorui @hit.edu.cn, shaokun2 @huawei.com.

https://ai-agents-2030.github.io/SPA-Bench/

Agent Pool & Task Pool / Evaluation Pipeline 4 \

[EA Off-the-Shelf) Fine-tuned XX Single-App Tasks | | X Cross-App Tasks . 1
(M)LLM-based | | (M)LLM-based [Languages Bl Languages @ Success Signal | | ' § API Cost
Agents Agents [E) Difficulty Levels [Difficulty Levels

f=] Step Ratio | |(?) Time Spent
l (D Select an Agent and a Task { P @ P

@ Agent + —— E'NI:I Termination Reason
Task Description Worker Machine = ® Task Performance

[I Premature Termination Signal}
Multi-worker Overall
Process Performance
@ Screenshots + @ Task Description +

[Overdue Termination Signal}
Execution Information Screenshots +

Execution Information

Agent Framework e

6 (M)LLM-based Agents

E Android Devices

Figure 1: An overview of SPA-BENCH. The worker machine iterates through the task and agent pools,
assigning tasks to agents within the framework for execution, and then passes the execution results to
the evaluation pipeline for measuring task completion and resource consumption performance.

As the number of (M)LLM-based agents grows, fair performance comparison becomes crucial,
leading to an increasing need for benchmarking them [[16, 17,18} [19]. Regarding smartphone agent
benchmarks, existing studies use three main approaches to evaluate agents: actions-based [20], states-
based [[L1} 21} 22} 23]}, or a hybrid of both [23]]. Each method faces specific difficulties: action-based
evaluation may involve multiple correct sequences, while state-based methods struggle to determine
the appropriate post-action state. A hybrid approach could mitigate these limitations, but the challenge
lies in effectively utilising both action and state information.

Despite these efforts, current research [[L1} 20, 21} 22} 23] still has several key limitations: (1) The
focus remains primarily on system and Google suite applications (apps) in English, which are often
free from distractions like ads and pop-ups that could introduce complexity and randomness; (2) The
number of evaluated agents is typically fewer than five, with some studies including only similar
variants of the same agent; (3) Automated success detection methods frequently require human
intervention (e.g., handcrafted validation logic for each task) or rely on data that may be inaccessible
in certain cases (e.g., Android View Hierarchy data, which is unavailable in WebView apps [20]).

In this paper, we introduce SPA-BENCH, a SmartPhone Agent Benchmark designed to evaluate more
than 10 smartphone control agents in daily tasks. As illustrated in Figure[I] SPA-BENCH comprises
340 tasks, including 150 single-app tasks and 20 cross-app tasks, in both English and Chinese apps, as
well as third-party ones. It integrates 11 agents into a unified framework, connected to an automated
evaluation pipeline that measures agent performance, with the ability to automatically expand to addi-
tional tasks beyond this benchmark. Our experiments show that agents using proprietary (M)LLMs
outperform those using fine-tuned or open-source (M)LLMs, though they remain impractical for
real-world deployment due to time and cost constraints. We also provide a detailed discussion on the
challenges and future directions for smartphone agents, covering topics such as building perceptive
mobile interfaces, reasoning mechanisms, and user-friendly applications.

In summary, our comprehensive benchmark makes several key contributions: (1) a diverse task
collection of 340 tasks with increasing difficulty, accompanied by human trajectory annotations. It
covers both English and Chinese apps, including single-app and cross-app scenarios, and featuring
58 third-party apps (Section[3); (2) a plug-and-play agent framework supporting 11 agents, which
allows for easy integration of new agents with minimal adaptation and offers features like automatic
Android setup and multi-device emulator support (Section[d); (3) an automated evaluation pipeline
assesses agent performance using task completion and resource consumption metrics. It employs
success detection methods that achieve average F1 scores of 90.5% for single-app tasks and 84.5%
for cross-app tasks compared to human evaluators (Section [3); and (4) extensive experiments
across agents and tasks, providing a detailed analysis of current smartphone agent capabilities and
limitations, while also offering directions for future research (Section [6)).

Table 1: Comparison of SPA-BENCH and other smartphone agent benchmarks. Agents that differ
only in their base models are not counted as separate agents.

Dataset Third-party Cross- Chinese Difficulty Number Number Number Free of hand- Information for
N app? app? app? level? of tasks of agents of metrics ~ crafted validation? success detection
AndroidArena [20 X X X 221 1 X Action only
AndroidWorld [11 X 116 3 1 X State only
LlamaTouch [21] X X 495 4 1 X State only
B-MoCA [22] X X X X 60 3 1 X State only
MobileAgentBench [23] X X X 100 5 6 X Action and State
SPA-BENCH 340 11 7 Action and State

2 Related Work

Smartphone Agent. Smartphone agents aim to automate tasks on mobile apps in a human-like
way. Early agents, like Siri and Google Assistant, relied on system-level APIs and customisation,
limiting their generality. Recently, (M)LLM-based agents have emerged, using the user interface
(UD) to achieve a more general approach. These agents, with (M)LLMs as their “brains”, also require
“hands” (actions) and “eyes” (observations) to interact with smartphones. They are based on either
off-the-shelf or fine-tuned models and perform human-like actions (e.g., tapping, typing, and swiping).
According to how they observe the UlI, recent works are categorised into text-based, vision-based,
and combined approaches. Text-based methods [8} [11] rely on UI document data (e.g., XML) or
convert visual information into text, vision-based methods [9, 110, 112} [13} |14} [15]] use screenshots
to capture the complete visual context, while combined approaches [7, [11]] integrate both text and
vision inputs for greater informativeness. SPA-BENCH evaluates all three types of agents to provide
a comprehensive comparison of their capabilities.

Smartphone Agent Evaluation. Effective evaluation of smartphone agents is crucial for identifying
limitations and guiding improvements. Success rate, which measures task completion, is the most
commonly used metric, with some studies also considering efficiency. Success detection methods
are generally classified into two types: human detection [[7, 9} [10], which is accurate but resource-
intensive, and automated detection, which is less costly but varies in accuracy. Current automated
methods primarily rely on hand-crafted validation logic, making them unscalable without human
intervention. They are restricted to evaluating tasks involving apps that are limited to English-only
and simpler apps (e.g., system, Google Suite, and open-source apps), with minimal coverage of other
third-party ones. These automated methods can be further divided into action-based, state-based, and
hybrid approaches. Action-based methods [20] compare agents’ actions to human demonstrations but
struggle with the non-unique nature of correct action sequences. State-based methods [[11} 21} [22]]
assess whether essential states are reached but may miss minor actions. Hybrid approaches [23]]
combine state and action data for more accurate success detection. SPA-BENCH introduces two
hybrid approaches for evaluating single-app and cross-app tasks. Compared to other automated
methods, our approaches support a wider range of apps and tasks. They do not rely on hand-crafted
validation logic, making them adaptable without human intervention. Table[I] presents a comparison
between our work and other automated evaluation-based smartphone agent benchmarks, highlighting
our comprehensive evaluation of various agents in diverse tasks across multiple dimensions.

3 SPA-BENCH Task

3.1 Overview

SPA-BENCH builds a collection of smartphone agent tasks across both English and Chinese apps,
featuring 39 English and 29 Chinese apps divided into eight categories based on core features (see
Appendix [B.T). The collection includes 150 single-app tasks and 20 cross-app tasks for each language.
These tasks focus on core app functions that reflect everyday use, providing a realistic assessment of
smartphone agents’ performance. The inclusion of diverse Chinese and third-party apps increases
complexity, primarily due to the difficulties agents encounter in understanding Chinese and navigating
more intricate Uls. A complete list of tasks is provided in Appendix

The single-app tasks are grouped into three difficulty levels. In general, Level 1 requires fewer than
five actions, Level 2 under ten actions, and Level 3 typically fewer than fifteen. Each set of tasks
contains three tasks at varying difficulty levels, often sharing similar instructions but using different

Level 1
Level 2
Level 3

3 [Get the search results for McDonald's.]
Enter a McDonald's restaurant.
Search for fries there.
Add a small fries to the basket. Add
two medium fries to the basket. View
the basket for confirmation.

Level 3 Task Done Level 2 Task Done

Figure 2: A sample set of tasks within the Deliveroo app, annotated by human. In this example,
simpler tasks form the foundation for more complex ones, resulting in shared trajectories in the initial
stages. The final screenshots for tasks of all three difficulty levels are highlighted in corresponding
colours. Each final screenshot highlights the key components used in coarse detection (explained
further in Section[5.2), with the zoomed-in versions available in Appendix[B.3]

entities to prevent influence from earlier tasks (e.g., creating folders with different names). Examples
of single-app tasks are shown in Figure 2]

For cross-app tasks, we refer to the recent work GUI Odyssey [[13], which defines six task types:
General Tool, Information Management, Web Shopping, Media Entertainment, Social Sharing, and
Multi-Apps. Our cross-app tasks include three Level 1 tasks for each of the first five types (requiring
two apps) and five Level 2 tasks for the Multi-Apps type (requiring three apps). Appendix [B-4]
provides examples.

3.2 Task Construction

Our tasks were primarily constructed by human annotators. For single-app tasks, we selected
commonly used apps and supplemented them with apps from related works [[7, 9]. Based on each
app’s core features, tasks were created following an annotation guideline specifying: (1) A clear
task description that reflects the task’s goal and difficulty level. For descriptions inspired by prior
works, we standardised and assigned difficulty levels accordingly. (2) A human-executed trajectory,
presented as a series of screenshots that avoid shortcuts and irrelevant actions. Between any two
adjacent screenshots, only one action (e.g., tap, swipe, type) is allowed. The total number of actions
in the human execution serves as the “golden steps” in our experiments. (3) Key components of the
final state, which are pieces of text that must appear in the final screenshot if the task is successfully
completed. We focus only on the final state because there may be multiple correct paths to complete
the task, but they typically converge to the same final state [23]]. These key components are designed
for future use, as detailed in Section[5.2]

For cross-app tasks, annotations include only task descriptions and human-executed trajectories due
to the flexibility of final states. Most cross-app English tasks were drawn from GUI Odyssey [13]],
and we reformatted descriptions and recollected trajectories where necessary.

To ensure task quality, a validation process followed task annotation. Annotators cross-checked
all tasks for clarity, trajectory accuracy, and key component quality. The tasks were also tested

~
‘:I @ Task + Configuration 4

~8 Processes

Worker Machine

® Execution Trajectory

Worker Process Per Machine
\ @+Aft|on @ Assign Agent
Auto @ Screenshot og

Snapshol @3 Observation
Emulator
Manual Reset ® Translated Action

v

J-i Multi-modal Input /yj;\

N
Decision + Reason Model

Figure 3: An overview of the agent framework using a multi-processing architecture. Each worker
process connects an agent to an Android emulator, and they interact multiple times throughout the
task (i.e., step 3 is repeated) until completion. The emulators are reset after the agent has executed all
assigned tasks.

across different Android devices, Android versions, and app versions to verify feasibility. The same
validation was repeated before experiments.

In total, SPA-BENCH includes 300 single-app and 40 cross-app tasks, evenly split between English
and Chinese. Each task may consist of multiple subtasks (e.g., adding, modifying, deleting, searching).
The distribution of steps performed by humans for these tasks, categorised by task type, is illustrated

in Appendix

4 Agent Framework

4.1 A Unified Plug-and-play Framework

Our framework facilitates the execution of autonomous smartphone agents and tasks. As shown in
Figure 3| the worker machine manages communication, providing task descriptions and receiving
outcomes (trajectories and logs). It hosts multiple worker processes, each connecting an Android
emulatoﬂ and an agent. Each agent interacts with the Android device by performing actions based
on observations, such as taking screenshots and generating actions like taps, swipes, or long presses.
The snapshot state is restored at the start of each experimental cycle.

The framework is highly scalable. Unlike existing research [11} 20, 21} 22} [23]], which integrates a
limited number of agents tightly into the framework, ours allows easy addition of new agents with
minimal integration, ensuring each agent operates independently within an isolated environment.
Details about the agents integrated into our framework are provided in Appendix[C]

4.2 Snapshot-Based Emulator for Consistent Testing

The framework integrates Android emulator as a scalable alternative to physical devices, replicating
most Android functions for parallel testing and rapid experiment deployment. For instance, a 24-
core CPU with 64GB RAM can support up to eight emulators or worker processes simultaneously,
depending on the agents’ resource needs.

To ensure consistency, emulators can be quickly loaded from snapshots, which capture and restore
system states (e.g., installed apps, login credentials, and local settings). This eliminates repetitive
setup processes by preserving pre-configured settings (e.g., a pre-existing contact for messaging

*https://developer.android.com/studio/run/emulator

*Certain English tasks involving WhatsApp and OneNote, and most Chinese tasks, were run only on physical
Android devices instead of emulators due to strict app control measures. While the emulator can be replaced
with physical Android devices, this would remove the snapshot feature mentioned here.

https://developer.android.com/studio/run/emulator

N
Task: Go to notification settings. Turn on Notification Histow.J

Settings

(Executed Action Fine Detection
??????????????????

i Concatenated |
|__extracted text__!

OCR -

Coarse Detection

Execution Screenshots

[Task Failed } [Task SuccessJ

Figure 4: An example of our single-app success detection pipeline. It features coarse detection
through key component matching on execution screenshots and pre-annotated key components,
followed by fine detection using MLLM evaluation given action information.

tasks). However, since some app data is stored externally, manual intervention is required after each
experiment cycle, such as unsubscribing from channels post-task completion.

S Automated Evaluation Pipeline

5.1 Maetrics

We define seven key metrics for comprehensive evaluation:

Completion-related Metrics. (1) Success signal — a binary indicator of task success. For single-app
and cross-app tasks, we develop two different hybrid approaches that leverage both action and state
information, allowing for multiple valid execution paths. These approaches eliminate the need for
human evaluators and handcrafted evaluation logic (details are provided in Section[5.2)). (2) Step
ratio — measures execution efficiency by comparing agent steps with human steps (the “golden steps”
from Section [3.2)). This is considered only when the task is successful (i.e., success signal is “true”).
A higher ratio indicates more unnecessary actions and lower efficiency. (3) Termination reason —
explains why the task was terminated, including reasons like self-reported completion, reaching the
maximum step limit, or execution errors (e.g., invalid actions). (4) Premature termination signal —
a binary indicator applicable only when the termination reason is self-reported completion. It is set
to “true” when the success signal is “false”, indicating that the agent incorrectly believed the task
had been successfully completed, such that it stopped too early. (5) Overdue termination signal — a
binary indicator applicable only when the termination reason is reaching the maximum step limit. It
is set to “true” when the success signal is “true”, meaning the agent mistakenly thought the task was
uncompleted, resulting in unnecessary steps.

Consumption-related Metrics. (6) Time spent — the time taken for task execution, recorded in
seconds. (7) API cost — the monetary cost incurred by API usage, measured in US dollars. However,
these two metrics apply only to agents using proprietary MLLMs, as for locally hosted fine-tuned
models, the time taken heavily depends on computational resources, and there are no monetary costs
from external API calls.

5.2 Success Detection

Single-App Success Detection. We employ a coarse-to-fine success detection pipeline that uses key
component matching followed by MLLM evaluation. As shown in Figure] for each agent-task pair,
the pipeline first applies coarse detection, filtering out trajectories irrelevant to the task. If passed,
fine detection follows, using an MLLM evaluator for final success determination. We compared our
single-app success detection approach with human evaluations and found it achieves an F1 score
of 0.926 for English tasks and 0.884 for Chinese tasks. Further details on the single-app success
detection and its performance can be found in Appendix

Cross-App Success Detection. Unlike single-app success detection which processes the entire task
at once, our cross-app approach splits tasks into subtasks and evaluates them sequentially. This

/" Subtask Generation

Subtask 2

+ (Use the LinkedIn app to search for a customer service Subtask 1 '

1 Irepresentative position. Select a job, open Keep Notes, 3 : APP

i | create a new note, record the company's name, and MLLM split Search for a customer service Create a new note, record {company's name}, and set |

f set the note's title to 'customer service representative’.) Human reviewed (representative position and select a job. the note's title to 'customer service representative'. 5 D Memory

LinkedIn, Keep Notes LinkedIn Keep Notes ; D History

Task
Failed

L Subtask 1 N Subtask 2
i Valid 1| Success Detect Troe Success Detect

i
1 ions 2
|]

o e
Subtask 1
Screenshots
and Actions

Subtask 2
Screenshots |
and Actions)

Execution Screenshots
and Actions

Figure 5: An example of our cross-app success detection pipeline that is based on subtasks instead of
the entire task. The first stage involves splitting the full trajectory into segments, while the second
stage checks the subtasks sequentially.

is because cross-app tasks are usually longer than single-app tasks and require switching between
multiple apps, increasing the complexity of success detection. As illustrated in Figure[5] a MLLM
first generates subtasks based on the involved apps, followed by a human review. During evaluation,
another MLLM splits the trajectory into multiple segments based solely on each app in the ordered
list. If the segmentation is valid, each subtask is then evaluated sequentially until either the final
subtask is checked or an earlier subtask fails. Our cross-app success detection method closely aligns
with human evaluations, achieving an F1 score of 0.845. More details on the cross-app success
detection and its performance are provided in Appendix

6 Experiments

Since some agents have multiple variants, we provided detailed agent configurations in Appendix [F1]

6.1 Overview of Success Rate

In this paper, the success rate results were generated using the automated success detection methods
described in Section[5.2] with GPT-4o serving as the MLLM.

Comparison in Single-App Tasks. Table
shows the overall success rates. For single-app
English tasks, M3A, T3A, and MobileAgentV2
performed the best, with success rates rang-
ing from 0.640 to 0.433. These agents are
equipped with reflection modules that help pre-

Table 2: Success rates across all tasks and agents
in this benchmark, categorised by task type. The
first seven agents are based on GPT-40, while the
last four use fine-tuned MLLMs.

vent them from stalling. AppAgent and Auto- Agent Single-App Cross-App
Droid performed less well, though they would English _ Chinese English Chinese
likely had performed better with access to exter- Off-the-Shelf Model (GPT-40)
nal knowledge documents, as in their original AppAgent 0.340 0.247 0 0
implementations. For single-app Chinese tasks, AutoDroid 0.327 0.187 0 0
MobileAgentV2 outperformed T3A, while its ﬁﬁﬁﬂiﬁiﬁﬁivz PR O g:}gg
performance was more comparable to M3A. A M3A 0.640 0.447 0.200 0.100
potential reason is that the accessibility tree lay- T34 0487 0380 0100 0.100
. X SeeAct 0393 0327 0100 0.050
out documents used in AndroidWorld are overly
complex for GPT-40 to process, compared to e L,
the OCR information used by MobileAgentV2 Auto-Ul 0.013 0.007 0 0
in Chinese apps. Generally, a decrease in suc- g‘i’ggiARgLem 8:8% 0'%27 8 8
cess rates for Chinese tasks was observed due to OdysseyAgent 0053 0.020 0 0

the limited capabilities of (M)LLMs in Chinese.

This decline was further influenced by the increased complexity of Chinese apps, which often feature
more intricate layouts, frequent animations, and distracting elements like ads and pop-ups.

Table 3: Task performance on single-app English tasks. SRC and MSR refer to Self-Reported
Completion and Maximum Steps Reached, respectively. The execution time and token costs of the
last four agents are omitted because they use locally hosted open-source models.

Mean Step Termination Reason Termination Inaccuracy Mean Exec Mean Token
Agent Success (%) Ratio on Time per Cost per
Success SRC (%) MSR (%) Error (%) Premature (%) Overdue (%) Step (sec) Step (USD)

Off-the-Shelf Model (GPT-40)

AppAgent 0.340 1.33 0.327 0.507 0.166 0.347 0.197 26.5 0.014
AutoDroid 0.327 1.10 0.593 0.340 0.067 0.494 0.078 34.0 0.008
MobileAgent 0.387 1.24 0.367 0.633 0 0.109 0.095 27.1 0.053
MobileAgentV2 0.433 1.05 0.580 0.420 0 0.333 0.111 56.1 0.067
M3A 0.640 0.92 0.847 0.153 0 0.244 0 19.3 0.092
T3A 0.487 1.04 0.707 0.293 0 0.368 0.136 9.6 0.116
SeeAct 0.393 1.60 0.200 0.773 0.027 0.100 0.276 41.2 0.046
Fine-tuned Model
Auto-UI 0.013 1.50 0.060 0.940 0 1.000 0.015
CogAgent 0.020 1.67 0.147 0.820 0.033 1.000 0.024
DigiRL 0.020 1.52 0.227 0.607 0.166 0.971 0.022
OdysseyAgent 0.053 2.00 0 1.000 0 - 0.013

Impact of Core Models and Input Modalities. There was a significant gap in success rates between
agents using proprietary models like GPT-40 and those based on fine-tuned models. Agents based on
GPT-40 consistently outperformed fine-tuned MLLMs, the latter of which often struggled to complete
any tasks. This contrasts with the high action matching scores reported in prior studies [[12}[13}114}[15],
suggesting that fine-tuning typically focuses on generating individual actions or textual plans without
adequately grounding them in real-world contexts. For instance, while certain actions (like dual-point
taps) allow for flexibility in offline environments (e.g., within 14% of the screen distance from a
golden standard [24])), such approximations may lead to inaccuracies during on-device execution.
On the other hand, agents using proprietary models are typically equipped with input from visual
modules, such as mark-up documents and set-of-marks [25]]. These layout documents are sometimes
incomplete, failing to capture all available UI elements on the interface. In other cases, they are
unnecessarily complex for models to handle, as seen in the case of T3A mentioned above. This
highlights a critical gap in grounding capabilities, which are essential for end-to-end task completion
but remain challenging especially for fine-tuned models [26].

Complexity and Memory Retention in Cross-App Task. For cross-app tasks, most agents, except
M3A, completed no more than 4 tasks in total across both English and Chinese apps. Although
M3A performed better, completing 6 out of 40 tasks, overall performance was still low, reflecting
the complexity of cross-app tasks. These tasks require more steps, reasoning, and the ability to
switch between apps while retaining memory of previous actions. In some cases, agents might nearly
complete the task but fail in the end due to minor mistakes or missed requirements, especially in long
sequences or multi-context scenarios. Even OdysseyAgent [[15], specifically designed for cross-app
tasks, faced difficulty completing them end-to-end. It sometimes handled subtasks within a single
app well but faltered when transitioning between apps, illustrating the challenge of maintaining
context and reasoning across environments. These findings suggest that current agents, including
the best-performing ones, struggle with multi-step cross-app tasks, often losing context or forgetting
prior actions. This highlights the need for better memory mechanisms, enhanced inter-app reasoning,
and advanced handling of complex, multi-context environments [27} 28| 29]. These capabilities are
essential for tasks users expect autonomous agents to manage.

6.2 Completion- and Consumption-related Metrics

When comparing completion- and consumption-related metrics across agents, we observed consistent
trends across single-app and cross-app tasks in both English and Chinese. Since the single-app
English results are the most comprehensive, this section focuses primarily on those results, with
additional details available in Appendix [F:2] Table [3] shows full task performance for single-app
English scenarios.

Step Efficiency and Success Rate. As discussed in Section agents based on off-the-shelf
(M)LLMs significantly outperformed fine-tuned MLLMs. Higher success rates correlate with lower
mean step ratios, indicating more efficient task completion with fewer unnecessary actions or errors.
Conversely, agents facing difficult tasks tend to make more errors, even if they ultimately succeed.
M3A exhibited a notably low mean step ratio of 0.92, indicating it used fewer steps than a human.

This efficiency is partly due to combining actions, such as pressing “enter” immediately after typing
in the search box, saving one step. Some agents also exploited shortcuts, like selecting recommended
search options instead of typing keywords and pressing the search button.

Task Termination and Success Rate. Regarding task termination, a higher success rate generally
aligns with a higher Self-Reported Completion (SRC) rate and a lower Maximum Steps Reached
(MSR) rate. Agents terminated tasks either when they believed the task was complete or when they
reached the step limit or encounter errors. However, agents did not always accurately determine
task completion, leading to discrepancies between success rates and SRC rates. This can be further
analysed by examining the premature termination rate (PTR) and overdue termination rate (OTR). As
mentioned in Section @ PTR can affect the success rate, while OTR can influence task efficiency.
Notably, a pattern emerges where agents with a lower PTR tend to have a higher OTR. This compro-
mise likely arises from the agent’s internal decision thresholds. For instance, SeeAct exhibited the
lowest PTR (0.100) but the highest OTR (0.276). This demonstrates a trade-off in the sensitivity of
the agent’s internal success detector, balancing the risk of premature termination with the tendency to
extend task completion unnecessarily. An ideal success detector should minimise both premature and
overdue terminations to optimise both task accuracy and efficiency.

Enhancing Robustness through Error Handling Mechanisms. Error-handling mechanisms are cru-
cial for improving success rates and ensuring reliable performance. Agents lacking these mechanisms
were more vulnerable to failure or premature termination when execution errors occur. Common
issues include parsing errors due to invalid formats or difficulties translating model outputs into valid
actions. Some agents failed when necessary inputs (e.g., XML files), could not be accessed. These
failures highlight the need for better error detection and recovery strategies, allowing agents to correct
mistakes and improve their overall success rates.

Limitations in Cost and Efficiency for Real-World Use. While fine-tuned MLLM-based agents
do not incur token costs and their execution time varies with device power, their low success rates
make them impractical for deployment. Among agents based on GPT-40, AutoDroid is the most
cost-effective, using only $0.008 per step due to its text-based input. However, it has a long execution
time (34 seconds per step) and a success rate of only 0.327. M3A and T3A, though faster (under 20
seconds per step) and more successful, have higher token costs at around $0.10 per step due to the
complexity of inputs generated by UI elements. MobileAgentV2, while more affordable at $0.067 per
step, suffers from a complex visual perception pipeline, resulting in the longest execution time (56.1
seconds per step). These results highlight the trade-off between efficiency and effectiveness. Agents
like T3 A, despite achieving relatively high success rates and faster execution times, still fall short of
human-level usability due to their monetary cost. Such limitations stem from two major factors. One
is the delay between Ul information collection and action execution, which can cause inaccuracies
especially when dynamic content appears. The other is the agents’ slower speeds and higher costs
compared to human users. Users are unlikely to rely on an autonomous agent to complete a task if
they have to wait for extended periods or pay several dollars, especially when they could complete it
in a few steps themselves.

Performance Variation Difficulty Levels and Open-Source Replacements. We also compared
performance across tasks at each difficulty level and replace GPT-4o0 with open-source (M)LLM:s.
As expected, easier tasks were executed more successfully, and agents using open-source models
showed a performance gap compared to their GPT-40 counterparts. More details can be found in

Appendix [F:3]and Appendix [F4]

Case Study. In Appendix [G] three case studies are presented to illustrate representative scenarios
of task execution by agents. These include: (1) an invalid action taken by AppAgent due to
misinterpretation of the Ul structure in the XML file, (2) a dynamically changing screen without any
action execution, repetitive actions due to the lack of reflection, and unrelated behaviours to the task
description in MobileAgent, and (3) the shortcut strategy employed by M3A.

6.3 Key Insights

To enhance the performance of autonomous smartphone agents, future research may need to address
several core dimensions, including UI understanding and action grounding, dataset diversity, memory
retention, reflection and error-handling mechanisms, internal task termination recognition, and
execution efficiency.

First, integrating more advanced visual perception modules is essential for enhancing agents’ under-
standing of complex Ul layouts and precise action grounding across various scenarios. Although
agents using accessibility trees and OCR have shown relatively good performance in English tasks,
their effectiveness is still limited in Chinese tasks, which often feature more visually complex and
dynamic content. Currently, some agents struggle to ground actions in these dynamic environments,
often failing to recognise actionable elements or map generated actions to the correct coordinates.
Future designs should focus on building more robust visual models that can accurately interpret these
environments and perform end-to-end task completion in interactive settings.

Diversifying fine-tuning datasets is also essential for making agents more generalisable. Datasets
should include various task instruction formats, languages, and both single-app and cross-app
scenarios to better simulate real-world conditions. This would ensure that agents are prepared to
handle a broader range of interactions, particularly in multilingual environments where language and
UI complexity vary.

Memory retention mechanisms can be improved as well, especially for handling long, multi-step
tasks that span multiple apps. Current agents often lose context during complex tasks or app
transitions, which leads to incomplete task execution. Memory-augmented networks or episodic
memory architectures could enable agents to retain context across transitions, which is particularly
valuable in cross-app scenarios where agents usually struggle. These scenarios closely resemble
real-world tasks that require continuity and context recall over extended sequences.

Reflection and error-handling capabilities are another critical area for improvement. Many agents fail
to learn from mistakes, repeatedly making the same errors without self-correction. Implementing
robust reflection modules, similar to those found in M3A, would allow agents to better assess
their past actions and adjust their strategies dynamically. Additionally, error-handling mechanisms,
such as error identification, recovery loops, self-correction, and fallback strategies, are vital for
maintaining performance in unpredictable, dynamic environments. Agents need to be able to detect
and resolve issues such as invalid model outputs, unactionable Ul elements, or parsing errors, rather
than terminating prematurely or getting stuck in unproductive actions.

In task termination, agents must carefully balance premature and overdue termination. Some agents
still struggle to accurately determine when a task is truly complete. For example, while SeeAct
showed a low premature termination rate, it also exhibited a high overdue termination rate. This
indicates that although SeeAct avoided ending tasks prematurely, it often failed to recognise when
tasks were completed, leading to inefficiencies. A well-designed internal success detector can
minimise both types of termination inaccuracies, thereby improving task accuracy and efficiency.

Finally, execution time and cost need to be optimised for real-world deployment. Agents such as
MobileAgentV2, which rely on multiple modules, need to reduce overhead and streamline execution to
minimise task completion time. MLLM-based agents, in contrast to T3A, may also focus on reducing
input context size to lower token costs while preserving critical information for task completion.
A hybrid model approach that combines the speed and efficiency of lightweight models with the
robustness of more complex ones could provide a promising solution for balancing performance and
cost in real-world applications.

7 Conclusion

In this paper, we introduced SPA-BENCH, a comprehensive benchmark for evaluating smartphone
agents across diverse tasks. The evaluation covers English and Chinese apps, single-app and cross-
app scenarios, and varying difficulty levels. Our experiments reveal that even the best-performing
agents can complete less than 70% of tasks successfully, and there are significant performance gaps
between agents using proprietary (M)LLMs and those relying on open-source or fine-tuned models,
particularly in action grounding and generalisation within complex Chinese apps. While some agents
excel in simpler tasks, their long execution times and high costs limit their practicality for real-world
use. Our findings highlight the need for better memory mechanisms, robust error handling, accurate
self-evaluator, improved integration of reasoning with UI understanding, and optimising execution
time and cost for real-world deployment. Additionally, agents based on fine-tuned models should be
adapted to diverse scenarios and focus on long-sequence decision-making rather than isolated actions.
By developing SPA-BENCH as a fair and scalable benchmark, we aim to accelerate the development
of more efficient, practical, and user-friendly smartphone agents.

10

References

[1] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding, and
program synthesis. arXiv preprint arXiv:2307.12856, 2023.

[2] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving.
arXiv preprint arXiv:2309.17452, 2023.

[3] Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models
as tool makers. arXiv preprint arXiv:2305.17126, 2023.

[4] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for" mind" exploration of large language model society. Advances in
Neural Information Processing Systems, 36:51991-52008, 2023.

[5] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[6] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen 1lm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[7] Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

[8] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang,
Yunhao Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in

android. In Proceedings of the 30th Annual International Conference on Mobile Computing
and Networking, pages 543-557, 2024.

[9] Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and
Jitao Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception.
arXiv preprint arXiv:2401.16158, 2024.

[10] Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei
Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective
navigation via multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024.

[11] Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

[12] Zhuosheng Zhan and Aston Zhang. You only look at screens: Multimodal chain-of-action
agents. arXiv preprint arXiv:2309.11436, 2023.

[13] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14281-14290, 2024.

[14] Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar.
Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning.
arXiv preprint arXiv:2406.11896, 2024.

[15] Quanfeng Lu, Wengqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app
gui navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

[16] Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu,
and Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate.
arXiv preprint arXiv:2308.07201, 2023.

11

[17] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

[18] Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao
Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and
orchestrating llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023.

[19] Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents. arXiv preprint arXiv:2310.01557, 2023.

[20] Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding
the weakness of large language model agents within a complex android environment. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 6061-6072, 2024.

[21] Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li,
and Mengwei Xu. Llamatouch: A faithful and scalable testbed for mobile ui automation task
evaluation. arXiv preprint arXiv:2404.16054, 2024.

[22] Juyong Lee, Taywon Min, Minyong An, Changyeon Kim, and Kimin Lee. Benchmarking
mobile device control agents across diverse configurations. arXiv preprint arXiv:2404.16660,
2024.

[23] Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei
Chen, and Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for
mobile llm agents. arXiv preprint arXiv:2406.08184, 2024.

[24] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36, 2024.

[25] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

[26] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist
web agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

[27] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2(5):9, 2023.

[28] Tao Li, Gang Li, Zhiwei Deng, Bryan Wang, and Yang Li. A zero-shot language agent for
computer control with structured reflection. arXiv preprint arXiv:2310.08740, 2023.

[29] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Au-
tonomous evaluation and refinement of digital agents. In First Conference on Language
Modeling, 2024.

Appendix

A Limitation and Future Work

Given that constructing tasks is both time-consuming and resource-intensive, SPA-BENCH currently
includes 300 single-app tasks and 40 cross-app tasks, evenly split between English and Chinese. We
plan to expand the scope of our task collection and increase the diversity in task presentation (e.g., by
adding vague task descriptions and mimicking different human tones). Since some apps are difficult
to operate using emulators, we also aim to design tasks that can be more easily experimented with.
Additionally, we will execute experiments multiple times to ensure robustness.

In terms of our evaluation method, particularly for single-app success detection, we plan to introduce
a more accurate approach and extend support for cross-app success detection. Furthermore, we will
define a more fine-grained metric to assess how agents complete tasks, moving beyond a simple
binary success signal.

12

unedther

acc! <
. e
@ —F
&
o K/
A
o /
W &

Figure 6: Distribution of apps and their categories.

*Engtish

*Chipese

Nay,

Left: English apps. Right: Chinese apps. The

circle size is proportional to the number of tasks.

B Task Collection

B.1 Task Apps

The distribution and categories of apps for the 300 single-app tasks are presented in Figure 6]

B.2 List of Tasks

The 340 tasks, encompassing single-app English, single-app Chinese, cross-app English, and cross-
app Chinese categories, are detailed in Tables [[5] [6] [7] respectively.

B.2.1 Single-App English Tasks

Table 4: Single-app English tasks.
App Diff Golden Key Components Task Description
Level Step

Airbnb 1 4 1, guest Get the search results for stay for 1 adult anywhere any week.

Airbnb 2 9 1, guest, wembley, Get the search results for stay tonight near ‘wembley stadium’ for 1 adult.

stadium

Airbnb 3 13 1, guest, wembley, Get the search results for stay tonight near ‘wembley stadium’ for 1 adult. Add one

stadium result to wishlist. Confirm that this item is in the wishlist.

Amazon 1 3 sunglasses Get the search results for ‘sunglasses’.

Amazon 2 8 sunglasses, checkout Get the search results for ‘sunglasses’. Filter with ‘kids’. Add one result to cart.
Confirm that this item is in the cart.

Amazon 3 11 goggles, checkout Get the search results for ‘goggles’. Filter with ‘adult’. Add one result to cart.
Confirm that this item is in the cart. Compare with similar items. Add one of the
similar items to cart.

BBC 1 3 save Navigate to ‘Innovation’ section. Select ‘“Technology’ tab. Open any news article.

BBC 2 10 save Go to app settings. Change the Text size to ‘Smaller’. Navigate to ‘Innovation’
section. Select “Technology’ tab. Open any news article.

BBC 3 15 saved, items Go to app settings. Change the Text size to ‘Larger’. Navigate to ‘Business’ block.
Select “Technology of Business’ tab. Open any news article. Save this article. Go to
Saved Items to confirm the article was added.

Bolt 1 3 eiffel, tower, route Select Eiffel Tower as my destination.

Bolt 2 6 eiffel, tower Select Louvre museum Paris as my pick-up location. Select Eiffel Tower as my
destination.

Bolt 3 10 arc, de, triomphe, Select Louvre museum Paris as my pick-up location. Select Eiffel Tower as my

Booking 1 5
Booking 2 11

Booking 3 15

Booking 1 3

bolt, cash

berlin
man, cdg

london, shanghai

settings

destination. Add ‘Arc de Triomphe’ as the final destination and Eiffel Tower as
stopping point.

Get the search results for stays in Berlin. Select any date, rooms and guests.
Navigate to Flights section. Select any date. Choose a flight from Manchester
Airport to CDG Paris. Get the search results for a round trip.

Navigate to Flights section. Select one way flight. Choose the 1st of any month as
the flight date. Get the search results from Shanghai to London.

Navigate to app settings.

13

Booking
Booking
Calculator
Calculator
Calculator
Calendar
Calendar
Calendar

Chrome
Chrome

Chrome
Clock
Clock
Clock

Clock
Clock

Clock

Contacts
Contacts

Contacts
Deliveroo
Deliveroo
Deliveroo
Merriam-
Webster
Merriam-
Webster
Merriam-

Webster

ESPN
ESPN

ESPN
Evernote
Evernote
Evernote
Evernote
Evernote
Evernote
Expedia
Expedia
Expedia

Expedia
Expedia

Expedia
Facebook
Facebook

Facebook

Facebook
Facebook

W = W=

—_

settings, celsius,
metric

notifications
2

5,040

halloween, 31

16, haircut

17, dental, check, 7,
9, pm

taylor, swift

taylor, swift, wiki,
bookmark

taylor, swift, wiki,
reading

8
9
11

clock, london
clock, home, hong,
kong

settings, analog

agent, contact
agent, two, contact,
gmail

three, contact, work,
gmail, huawei

mcdonald

fries

order, fries
definition, dictio-
nary, thesaurus
definition, dictio-

nary, thesaurus
saved, words

klay, thompson
klay, thompson, like

thompson

agent, cookbook
agent, first, note

agent2, first, note,
hello, world, test

literature, review
paper, writing, to-
MOITow

recurring, main, git,
repo

rome, 2

paris, 25, 28, 2
hong, kong, 25, 28,
2

paris, 25, 28
rome, 26, 29

paris, 25, 28, save

hello, world
morning

bonne, nuit, eiffel,
tower, paris
settings
birthday,
tions

notifica-

Navigate to app settings. Change Temperature to ‘Degrees in Celsius’. Change
Units to ‘Metric (km, m)’.

Navigate to app settings. Change Currency to ‘Pound Sterling’. Disable all notifica-
tions.

Get the result for ‘1+1°.

Get the result for ‘log(20)+In(e)’.

Get the result for ‘log(20)+In(e)’. Clear the results. Get the result for factorial 7.
Check the upcoming 31 October. Click on the event for that day.

Set up an all-day event titled “Haircut’ on the 16th of any month.

Set up an event titled ‘Dental Check’ on the 17th of any month. Set the time to from
7pm to 9pm.

Get the search results for Taylor Swift.

Get the search results for Taylor Swift. Go to her Wikipedia page. Add it to
bookmarks. Check the Bookmarks for confirmation.

Get the search results for Taylor Swift. Go to her Wikipedia page. Add it to
bookmarks. Move this bookmark to Reading List. Check the Reading List for
confirmation.

Set an alarm for 8am.

Set an alarm for 9am on weekdays.

Set an alarm for 10am on weekdays. Disable vibration for this alarm. Set another
alarm for 11am on weekends.

Add current time at London (UK) to clock.

Set Home time zone to ‘Hong Kong’.

Add current time at Melbourne (Australia) to clock. Change style to Analog for
clock. Change style to Analog for screen saver.

Create a contact named ‘Agent’. The phone number is +44 1234 567 890.

Create a contact named ‘Agent Two’. The phone number is +44 1234 567 890. The
email is benchmark @ gmail.com

Modify the last name of one of the contacts to “Three’. Update the label for the
contact’s phone number to Work. Set the company to ‘Huawei’. Add an email
agent.benchmark.2024 @gmail.com. Label the email as Work.

Get the search results for McDonald’s.

Get the search results for McDonald’s. Enter a McDonald’s restaurant. Search for
fries there.

Get the search results for McDonald’s. Enter a McDonald’s restaurant. Search for
fries there. Add a small fries to the basket. Add two medium fries to the basket.
View the basket for confirmation.

Look up the definition of the word ‘agent’.

Look up the definition of the word ‘agent’. Switch to Thesaurus tab to find its
synonyms. Click on one of its synonyms. Switch back to Dictionary tab.

Look up the definition of the word ‘agent’. Switch to Thesaurus tab to find its
synonyms. Click on one of its synonyms. Switch back to Dictionary tab. Save this
synonym. Confirm that synonym is in the saved words.

Get the search results for ‘Klay Thompson’.

Get the search results for ‘Klay Thompson’. See all the articles. Open one of the
articles.

Get the search results for ‘Klay Thompson’. See all the articles. Open one of the
articles. Return to the player’s search results. Select the player. Turn on player news
notification. Follow the player.

Create a new notebook ‘Agent Cookbook’.

Create a new notebook ‘Agent’. Create a new note in the notebook with title ‘First
note’. Return to the ‘Agent’ notebook to confirm the note.

Create a new notebook ‘Agent2’. Create a new note in the notebook. Write content
‘Hello World!” and title ‘First note’. Create a new tag ‘test’. Apply the tag ‘test’ to
the note. Save the note. Return to the ‘Agent2’ notebook.

Create a new task ‘Literature Review’.

Create a new task ‘Paper Writing’.Set the due date to tomorrow. Navigate to the
Tasks tab for confirmation.

Create a new task ‘Maintain Git Repo’.Set it to repeat daily. Navigate to the Tasks
tab. Apply the recurring tasks filter. Confirm that task exists.

Check stays in Rome. The dates do not matter. Get the search results for 1 room
and 2 people.

Check stays in Paris. Choose from 25th to 28th any month. Get the search results
for 1 room for 2 people.

Check stays in Hong Kong. Choose from 25th to 28th any month. Get the search
results for 1 room for 2 people. Filter hotels with parking.

Check things to do in Paris. Get the search results for 25th to 28th of any month.
Check things to do in Rome. Get the search results for 26th to 29th of any month.
Save it to my trips.

Check things to do in Paris. Get the search results for 25th to 28th of any month.
Save it to my trips. Confirm that by checking the saved Paris trip.

Create a new post saying ‘Hello World!’. Post it.

Create a new Public post saying ‘Morning!’. Change to black background. Post it.
Create a new Public post saying ‘Bonne Nuit’. Add the location as Eiffel Tower.
Post it.

Navigate to settings.

Navigate to settings. Disallow notifications for Birthdays.

14

Facebook

Files
Files

Files

Gmail

Gmail

Gmail

Gmail
Gmail

Gmail

Google
Maps
Google
Maps
Google
Maps
Google
Maps
Google
Maps
Google
Maps
Google
Play
Google
Play
Google
Play
Google
Play
Google
Play
Google
Play
Google
Tasks
Google
Tasks
Google
Tasks
Instagram
Instagram

Instagram

Instagram
Instagram

Instagram

Keep
Notes
Keep
Notes
Keep
Notes
LinkedIn
LinkedIn

LinkedIn
LinkedIn
LinkedIn

LinkedIn

Microsoft
OneNote

notifications, email,
sms

dcim

dcim, agent, created

agent, created

paper

paper
paper, scheduled
settings

gmail, notification
inbox

hotel

hotel, 4

hotel, 4

gas, station

your, location

your, location, mc-
donald

whatsapp

review

whatsapp, review, re-
cent

settings

settings

notification, settings
work, tasks

tasks, buy, groceries,
weekend

tasks, 12, visa, travel
messi, posts
cristiano, following,
message
minions,
tions, all

edit, profile
it

notifica-

account, privacy, pri-
vate

note, hello, 1

note, agent, hello, 2

agent, python, java

following, openai
join, huawei, groups

huawei,
hkrc

reposted,

engineer, jobs
engineer, jobs, spain
engineer, jobs, spain,
saved

agent, benchmark

Navigate to settings. Disallow notifications for Marketplace from Email and SMS.
Disallow notifications for Memories from Email and SMS.

Go to the ‘DCIM’ folder in the internal storage.

Go to the ‘DCIM” folder in the internal storage. Create a subfolder named ‘Agent
created’.

Go to the ‘DCIM’ folder in the internal storage. Create a subfolder named ‘Agent
created 2. Create another subfolder named ‘Agent created 3’. Then move the folder
‘Agent created 2 into the ‘Documents’ folder in the internal storage.

Draft an email to agent.benchmark.2024 @ gmail.com asking them about their new
paper.

Send an email to agent.benchmark.2024 @ gmail.com asking them about their new
paper. Navigate to the Sent tab. Check the email details for confirmation after
sending.

Draft an email to agent.benchmark.2024 @ gmail.com asking them about their new
paper. Schedule it to be sent tomorrow morning. Navigate to the Scheduled tab.
Check the email details for confirmation for confirmation after scheduling.
Navigate to settings.

Navigate to settings. Check current setting for notifications. Turn off notification
for Attachments.

Navigate to settings. Check current setting for notifications. Turn off notification
for Miscellaneous. Disable ‘notification dot’. Return to Inbox.

Get the search results for nearby hotel rooms.

Get the search results for nearby hotel rooms. Filter the results to show only those
that can accommodate 4 adults.

Get the search results for nearby hotel rooms. Filter the results to show only those
that can accommodate 4 adults. Further filter the results with ratings higher than 4.
Get the search results for nearby gas stations.

Get the search results for a nearby gas station that is open now. Get a driving route
to it.

Get the search results for a nearby gas station that is open now. Get a driving route
with the gas station as the first stop. Set McDonald’s as the final destination.

Get the search results for WhatsApp.

Get the search results for Facebook. Leave a 5-star review on its app store page.

Get the search results for WhatsApp. Leave a 5-star review on its app store page.
Sort the reviews by most recent.
Check the details of General settings.

Check the details of General settings. Switch to dark theme.

Check the details of General settings. Turn off all notifications. Confirm that all
notification settings for this device are off.
Create a new list “Work’.

Create a new list “‘Weekend’. Add new task ‘Buy groceries’.
Create a new list “Travel’. Add new task ‘Visa’. Set date to the 12th of any month.

Get the search results for ‘Messi’.
Get the search results for ‘Cristiano Ronaldo’. Follow one account.

Get the search results for ‘Minions’. Follow one account. Set to get all notifications
when they goes live. Turn on notifications for their posts.

Navigate to the page to edit my profile.

Navigate to the page to edit my profile. Add bio ‘Hello World!”. Change pronouns
to “it’.

Navigate to the page to edit my profile. Add link ‘https://github.com’. Change
gender to Custom “Them’. Switch to private account.

Create a new note. Write ‘Hello this is a notel” in the content.

Create a new note. Write ‘Hello this is a note2’ in the content. Write ‘Written by
Agent2’ as the note title.

Create a new checklist. Add two items ‘Learn Python’ and ‘Learn Java’. Write
‘Goal of agent’ as the checklist title. Label this checklist as ‘Agent’.

Get the search results for ‘OpenAl’. Follow their page.

Get the search results for ‘Huawei’. Follow their page. Filter the search results to
Groups. Join one of the Huawei groups.

Get the search results for ‘Huawei HKRC’. Follow their page. Leave a ‘Cheers!”
comment on one of its posts. Like the post. Repost the post instantly. View the
repost to confirm.

Get the search results for ‘Engineer’ job.

Get the search results for ‘Engineer’ job in Spain.

Get the search results for ‘Engineer’ jobs in Spain. Save one of the jobs. Confirm it
is saved in My Jobs.

Create a new page with title ‘Benchmark’ and content “Test Agent’.

15

Microsoft
OneNote
Microsoft
OneNote
Quora
Quora
Quora

Quora
Quora
Quora
Reddit
Reddit
Reddit

Settings
Settings
Settings
Settings
Settings
Settings

Spotify
Spotify

Spotify
Temu
Temu
Temu

TikTok
TikTok

TikTok

WhatsApp
‘WhatsApp
‘WhatsApp

X
X

X

X
X

X

Yelp
Yelp

Yelp
YouTube
YouTube
YouTube
YouTube
YouTube
YouTube
Zoom

Zoom

N =

W = W

—_

[SS]

N — —_

=

10
14

benchmark?2, appa-
gent, mobile, agent
prompts, test, pages

search, openai
search, openai
worth, thinking

following
questions,
answer

following, ask

follow,

worldnews, joined
premierleague, liver-
pool
blackmythwukong

screen, timeout
screen, timeout, 5,
min

dark, theme
notification, history
store, notifications
instagram, storage

taylor, swift
taylor, swift

agent, playlist, love,
story, the, scientist

gaming, headset
gaming, headset,
checkout

checkout

cat
cute, cat

cat

hi, you, message
mark, bench, contact
smart, agent, hi,
message

agent, post, 1

agent, post, 2, reply

agent, post, 3, reply,
amazing

mayday, following
nintendo, super,
mario

animal, crossing,
timmy, tommy, post
restaurants
restaurants, chinese

review

tesla, subscribed
subscribed

all, subscriptions,
microsoft, google

lebron
lebron, views
comment

smartphone, agent,
benchmark
smartphone, agent,
benchmark

Create a new page with title ‘Benchmark2’ and content TODO ‘AppAgent’ and
‘Mobile Agent’.

Create a new notebook ‘test’. Create a new section ‘prompts’ in ‘test’ notebook.
Enter section ‘prompts’ for confirmation.

Get the search results for ‘OpenAl’.

Get the search results for ‘OpenAl’. Filter to show only questions.

Get the search results for ‘OpenAl’. Filter to show only questions. Select one
question or answer from the results to see more details. Add a comment ‘Worth
thinking" to the answer.

Discover any Space. Follow that space.

Discover any Space. Follow that space. Go to questions in the space. Filter
unanswered questions. Follow one question.

Discover any Technology Spaces. Follow that space. Also follow one of the
suggested spaces. Turn off notification for the suggested space. Follow one of the
contributors of the suggested space.

Get the search results for ‘r/worldnews’. Join the group.

Get the search results for ‘r/PremierLeague’. Filter posts for Liverpool. Join the
group. Click on one of the posts.

Get the search results for ‘r/BlackMythWukong’. Join the group. Set community
alerts to frequent. Click on one of the posts.

Check the current screen timeout.

Check the current screen timeout. Set it to 5 minutes.

Check the current screen timeout. Set it to 10 minutes. Then turn the dark theme on.
Go to notification settings. Turn on Notification History.

Go to notification settings. Turn off the notification from Google Play Store.

Go to notification settings. Turn off the ‘Alerts’ and ‘Likes’ notification from
Instagram. Clear the cache from storage.

Get the search results for the artist Taylor Swift.

Get the search results for the artist Taylor Swift. Enter her artist page. Shuffle play
her playlist.

Get the search results for the song ‘Love Story’ by Taylor Swift. Add this song to
the new playlist namely ‘Agent Playlist’. Then add another song ‘“The Scientist’ by
Coldplay to the same playlist. Check the playlist for confirmation.

Get the search results for gaming headset.

Get the search results for gaming headset. Sort the result by the lowest price to
highest. Add one to my shopping cart. Confirm that this item is in the cart.

Get the search results for gaming mouse. Filter items priced above 10. Add one to
cart. Confirm that this item is in the cart.

Get the search results for videos about pet cats.

Get the search results for videos about pet cats. Comment on a video with ‘Such a
cute cat.

Get the search results for videos about pet cats. Comment on a video with ‘Such a
cute cat.” Swipe through another two videos and like them.

Send a message ‘Hi’ to myself.

Add new contact with the name ‘Mark Bench’ and (+44)7437321230.

Add new contact with the name ‘Smart Agent’ and (+44)7746953749. Send a
message ‘Hi’ to ‘Smart Agent’.

Draft a post with the content “Written by Agent1’.

Create a post with the content ‘Written by Agent2’. Tag ‘#animalcrossing’. Post it.
Check it from the profile.

Create a post with the content “Written by Agent3’. Tag ‘“#animalcrossing’. Post it.
Check it from the profile. Then Like it. Reply to it with ‘Amazing post’.

Search for the account @Mayday EN. Follow it.

Search for the account @Nintendo. Follow it. Search its post about ‘Super Mario’.

Search for the account @animalcrossing. Follow it. Search its post about “Timmy
and Tommy’. Repost one result. Check it from the profile for confirmation.

Get the search results for nearby restaurants.

Get the search results for nearby restaurants. Filter to include only Chinese restau-
rants that offer takeout. Sort them by distance.

Get the search results for nearby restaurants. Filter to include only Chinese restau-
rants that offer takeout. Sort them by distance. Select one result. Filter for 5-star
reviews.

Get the search results for the channel ‘@Tesla’. Subscribe to the channel.

Get the search results for the channel ‘@BMW’. Subscribe to the channel. Get the
search results for the channel ‘@Mercedes’. Subscribe to the channel.

Get the search results for the channel ‘@Google’. Subscribe to the channel. Get the
search results for the channel ‘@Microsoft’. Subscribe to the channel. Navigate to
the Subscriptions tab. Show all subscriptions. Sort the subscriptions from A to Z.
Get the search results for videos about LeBron James.

Get the search results for videos about LeBron James. Filter videos under 4 minutes.
Get the search results for videos about LeBron James. Filter videos under 4 minutes.
Select any one of the results. Leave a comment ‘great performance!’.

Schedule a meeting titled ‘Smartphone Agent Benchmark’. Use personal meeting
1D.

Schedule a meeting titled ‘Smartphone Agent Benchmark’. Use personal meeting
ID. Change the timezone to Hawaii. Repeat the meeting every day.

16

Zoom

smartphone, agent,
benchmark

Schedule a meeting titled ‘Smartphone Agent Benchmark’. Use personal meeting
ID. Change the timezone to Hawaii. Repeat the meeting every day. Disable waiting
room. Turn on host and participant video.

B.2.2 Single-App Chinese Tasks

Single-app Chinese tasks.

Task Description

Table 5:
App Diff Golden Key Components
Level Step

BN E 1 3 THIRE

AT E 2 9 W, BT

TATE 3 13 # i, KT, 100

MEEMEREERE] 3 TR, 1R

MEEREREERE 2 7 TR, WHie

BEMERENE 3 12 REIG, & AR

BERERENE] 3 AT, SRR

EMERENE 2 6 NI, ERHAE,
W %

MERERENE 3 10 TFIFIE, KT

BENERENE] 1 HE, BRI #

BENERENE 2 5 I

BENERENE 3 9 g, rERG

HGEE | 2 Mok

KHEE 2 7 W BE AL, WA,

HEEE 3 13 AL, 3=, N
eI

Vik:a)i) 1 2 #Jj, 157

Vik:a) 2 5 HHAT

Vik:ai) 3 9 HAT, B#A, B
L1V

i 1 4 #H,—

A Bh 2 7 Il B, — 17 B

s 3 11 Il 5, ML

HIE 1 3 BHE B &
5

EERE 2 6 %ﬁﬁﬁ;ﬁui

H{E 3 9 E RAE, SLEI
i

BE 1 2 FeHy, MK E R

HE 2 5 5GHR, BRI

HIE 3 9 BAERT)

Pl 1 3 FRE 5, FE

PhE 2 6 FKE

P 3 13 %E%,D%Eﬁ%

s T B

B 2 8 PR, WA — 4
s

P 3 11 S, s

T 4 1 2 %ﬁﬁbi, ThE @

T4 2 5 o3

T4 3 10 TG, S

T4 1 2 R

BT A 2 6

EMPEERR, R, 5
=

BERLRDH -
LB PNET, ERED ARITILE .
FENCRBEMET, ERET ARILLE . IE100/ER 7T LULHRZE DIk

J.

S Sanilyiosd il

MRS B UL, SHERE R EHT , S -

R SCSA WA, S RE R HARBEHT, &R, e
B OB, SRS TERE .

BEATFRSRK, BR¥RERE BN -

BEATFRS X, BRERHEREM HONZ, BE X R T,
FHeri RIS CHE T -

BEANFRSX, BRFERHRRERE HIAZ, BB XCERHE R IT,
H i FRISORACHE Y, 2RO R e s U R T8 6 PRI i i . (S
L &£ T)

WA NI S A -

WIS NE B, Phik— IR, EET KNS -

WA AE BB, PhE— AR, BEFKHE, RBFKN—%3)
B, GRS IERET

AEF A DU P& B Y B ik

TR TR R B, SRR I R ek, REAKE, FILS
HiI 123456789

FER R TR R B B bt , SRR I B ek, EREATKE, FILS
@ﬁjgfﬁf”' VEAH TS, HRGER MK, REREX
| 5 °

BESRKNED, REEESRIEE.

BESRMNED, REEELSRMZERE . REETE TUEFTFEE
H”, SREBEEHITEA -

BESRMNED, REEESRMERE . REE-TE TUHFTFRE
g%}ézi}ﬁﬁ%“&ﬁ"ﬂﬁﬁa, REHFEBIRERNT A, HAEEER
M, REESTEN—ES, REFIERE

HEmE, REEGIER-EE, BEURE (1) smEhg AN
B SRS IEIRAE

R, REESNEH -8, BEur%E (&) smbha he—Am
B, ER AR TR, (R

HAEHNE, EEACHES, RASHE (Ra%E)

HEABNNE, BFEHCHRY, RASHE (No%RE) WMEEEA
CUIE BRI 9T FEE10TCHUE (a3 A 77 =05

HEATNNE, BFEHCKRy, RASHE (N0%E) | WEEEH
CUHTEBRIK R F SEEI0TTHUE (BRSO =05 E) | s
BT RSO R B, AR

FEAF P AOHA ANE BT -

HEARPAHROKNAERIH, SEEFEESNSGITE, BREINE -
HEARA PO ANEERE (MRFEERMBERKS) | REBEE
BASGH IS, BRI, B MAHAEIERE —IKE T ZE R D AKE -
BRI LKE

BRELRES, BEFEETOFEEEP—FIR, %M
BREERES, EEMETTOFEREHF —ZIH, S8ZUER—
FPIE, FFREERE

HAREFRE, BFREHENERT

FEAREFE, BEREBEENET, WERIEOEER AR L&
B R T — A

PEAREFE, BFREBEENET, WERENEER AR L&
PR T — A, WOBOZ TSI 5B ROk

PEAFRINE, SRR EY

MAREONE, ERRERES, BREPRENT, ERE—ZEWEE

&

HNFEEINE, ERREMY, HRIFEReHF, SR —-FEREET
Fz DAY, BERXREEIRENE, BESE, SRTEEEEE
VERE

HENE IR ARER, AR AW

HENEH SRR, AR A, MRWEYIME, EREENEHEE
G, RS

17

T4

R
B
fe e

AUARINEE
RUBRNE

A

AhRE
AR

RUBRINE
FARR
TFRRK
HFRK

HFRF
FARR

TFRK

e B
&
by
&
L8 B
L2 B
L2 BB
L8 B
R
R

TR

SR
TR

R

ezl
eS|
kM

M
ezl
eS|

eS|
kM
eS|

QQEHR
QQEH R
QQEH R
QQER

BRIATT

ER

IS

T, (B, i
TEAET
TAE, BE,IF
TSI

FARIOLE, ik,

BE, RS
FEHRK, B
B, T

KEHE X
FRATIT 8

Je5, R
RN, &
P, K%

TRYN, g, RS
B, I, i
%

Eajii)

ITHFI, 2HE
SR

ey

KR, A
e, e, =B

1N

BT

TERE 5 (5 k

R, R
i
T gL, e, R
298, 7

Kt

o

RJe, WH
EJE, WH
EJE, WH, 455

Hi B
Maw %, g

k7

WY
R
SRR, T 8

fit 5
HREN
T8, AT

BN, 7
i
A

JAZE
JENE, TR
JANE, PR
N

BEAFH AR CROR, s AR IE, R EYIMNE, B AEREE
T, MRS, K, ESMIEEREOA, A £
EEEE, TNERZTH

BERUHERRT -

BRILEMRT, HEFPIRET, Hadid R BN —RET .
BRELDEWRIT, WEETERT, FAGMEERN—XERT, B5F
PP G IR e et B e AR A SN 4 Wil (L B BITRR R T OB 2 -
EH ML AT -

EHRMTRORBT, ST — T, SRR -

EHRMTRORBT, AR — BT, AhEeRkG, REEE
?%Eﬁbﬂ?ﬁiﬁﬁ, WA AIE RIS N B0 SRR R R

.
AL A, SdiRl, EAFLRXAE

HEAMHE R, SEikEE, FAELRXRE, VR RIE. B
RIS, AP B KR X

HANMHE R, SR, FAERRXRE, UG RIE. B
RIS, EEAHSNRK . SHXHAEREEMKRHE, WX
RBH B2 FEM B A S A 5E, 3ETT U

BEREA A (165 EIRYI AL

HREA A 165 ERRYIMNLE, FHk WE B 12:00-18:00HMLE i
BRI EFHE

HREA A 165 ENRYIMNLE, TRk WE B 12:00-18:003 - HLE i
REAGZEHE, WHERE—IE WL, FEERMEIFEER
HENBEFRSE, SEEEA H 16 H-18 BIRIIBEIE T E
PENTE G (F B, EFEEA A M 16H-18 HIRYIAEETE, 075k 5
N EEEGHHEIE, I NI

PENTE G (F B, EFEEA A0 16H-18 HIRYIAEETE, 075k 5
FFIRAGTENE", IR A, SO ELENLIS MR A — KIS
BENAETRITH

BEMANWETITE . MBETEL R 2T ERMEIRIE RIEE
BENAMETAT R . BRI ETELT RIS PERMEIIRE RMELE,
WA B IRSH LS, I AEREE -

PENFIRAE, SRR RARET, BEENE-

ﬁéigiﬂﬁﬁ, BEFERIRIET, BENE . R HEFEER, HihX it
mAeH .

BEANGNRSA, EFERIRET, BENE. SHEREER, EiohX hik
HAER . mHHTE - NERFERE R REEMAEE, HuHEmN
HEEETAEE -

& bilibili.com.

R bilibili.com, TEFMEHEREIES BRI H#ANUPETIR

& bilibili.com, 7EM%E AR VBIESHHHHFEAUPESIER, AN TR
FHE, HNEPEEEPFEZRE
T 55 B 7 9 ¥ taobao.com

T L7 R 3 taobao.com, R 42 Hymate60pro

T L 7S M vitaobao.com, R fymate60pro, IEIFEEHEF, AHEE

T GBI

HZRZEJE WH-1000XM4 Lt EHL -

HREE WH-1000XM4 LB EHL, 0735 H N8I T 2000 T IS5 5 -

HRRE WH-1000XM4 Sk HAFAHL, 5% BN IET2000TTHE R, &F

T, WAWYE, EEWY)E I -

HR—FHEE -

%§~%ﬂ%,ﬁﬁ%ﬁ%%m%%,ﬁ%ﬁ%ﬁ%,mﬁﬁ*Wﬁmw
7 o

MR P, MEHERE MR, TREB AP, 5 AR

W, HPEEREE, AEEERS, RERERN, IAWYE

TR — KT IR 1 -

R —FHHE B E, FHEBIENITS « TR -

R —FMHE IR S, HEFIENIES - TR IEER, RE TR

1y UEMTRG (55 S A8 T YT A 5T -

BT —RIESE -

BERMEN—RESE, BE L5 TNOESBSENE-

BHIEN—FRESIE, BF &0 NNESHENEHEWTLE.
(= LETT S AT

EE W T AR R

SR A T B T R 9 B S 18 “Hello world”

S ST R RS KR B R “Hello world”, EE|IANAETR, &F HONI

NI 2 A e

HRERRF AR -

BWRIF ARG, TN — 1 EEREEE TR ITL -

BRRFANG, BEEMHEERELFITL hello world"E[FFILX -

BE N AGE

18

QQEHR
QQH R
QQE R
QQER
QQEHR
EHRIL

KHRIL

EWRIL

KHRIL
KHRIL
£HRIL

e
wE
B
e
ES
UES
e
ES
ES
e
ES
E
PR

B CRS
e

BRI
B2
B2
A H kA&
A H kg%
4 H kg
A H kA%

A H kA&
A H kS

s
s
il
e
s
Bl
e
e
ik
NI A
NI A

A

W N = W N

e
=

i, P
A, BE
WiEE R, 5

M, #5h, A,

B, R

5N, AR B S,

6H,19H

R, BR 2N

2R, 1FE

LR, BfE, iR,

FAHLA

DL L

g
FII, B, 9K, &
&, R
TR, 55, 77
MAF &, /N

A &,
R

1£1P50
ey

WREH
WHREE
RKZI), 524
R

kK
PIPNEE7ES
ERTE, TR,
NI %, K IE AL
b

HH AR, E R
ANIEX

PR, REF

AR, bR

€2 W, ANaH
2]

SKER
SUEE

R E

S

5, WO

RE, WETUR, Ik
FEEZE

[5, Gl Rk
THE, FAE, iFig

BRI
5 RKS I,
R
AR KB,

/;f)ll%? e B
;Aﬂﬂﬁ%iﬂ%T

ZFETIR

ZET IR, EHUE
H% DR B, 3% A
he

VAL £, 420, A
2, s
VRAE £, 420,
S, i
Kk, RE AL B

£

B

BEDABE, REEE B CARIHTS
HEREDABR, REEFR B LRI,
DT E RHEATS -
(X'Jmax?ﬁﬁﬂ% AR B TR - BT = AR R

DISEH RAEATHRY, HBHER BT RO, AT R E RV L
@67‘5—2;.?"511:.15‘7;1 (FEAESFHH)
FEETUEFRG #ik, SN, MitERm

FEEHTURFERG B0, RIS, WA, ANMEREEEREDA
W6 F , BEREERE A A B EII9H

FEETORFERAG ZH, R, WA, ANMENEEE R LA
BEeH , BIER EEEEN A A G EI19E, AERMSFEABUER2A,
AR R, EEREFE

FEETURFEILE, SRR

FEE TR, SEFER A, AR AERRRY, HRIA i f

FEHTUEFENE, SHEARAW, HAMMEERI, HAmLEE
W, WEABERFEDAGT, REAPEAED AT, AEER.
RE RS ER, HENFF R BRI

RERGEEH, HAFFRERT, AHNE, FFETERIREEEL
A RLF BT

RARGGEH, HEATFREE, HENE, FRIBBEIREEE
%Afﬁﬂ’mﬁﬁ‘ﬁl% IR I N EL A A L AT {3 P R T 4 Y

FEEEFFE-E HORE

1&@% £ HP50”
WRAEHPS0”, AEH—HEGEREE, THEETN.
HRALNPS0”, M REEEE, TRNEEWN, SO, 3

NS, TR -

AR (FKEE) Al

BR (FKER) Y, SEFEFE—FHE, mAEYE.

BER (RKZ7]) hig@FED, BEIFEFE—HTM, MAMEYE, WOER
i, HFES AR (GRS TR AT AT LL)

HRA LRI -

BRALUIOK, BEMMFERE, REMAEYZE .

BRBLEK, BEHGEGFIGH, REMAMYIE, HKHE KGR
NIESRET I -

B — A0

BE— A, WERE R,
?ﬁk*"* FSCH, BRI AR,
Ja iR E 2= E T

FE—PEMZ, FFEALED

TE—PEAR, TFRASEBFRAREEEER N EHEARE

PR IEIONIREF
WEIEIOA® M\ZZ% HE R

S K EN R
TE— MW, FRASEEHFFASTEEE 111117, FREEW
TKENfG FERGR -

R BEHE -

R BEORE", TR 240 .
BRKCBERRHONE, ERFAHE, SR
fTFEE -

TUTEE, HEEF I EER RIER.

TUTRE, WEGAAX, BEM RIS A= el 28
F, WRIGDUSIHBAAE -

HEN A Pl U -

RE-MALE, WA EEE—KE, HESCSRETL” .
ZE-NARE, WEMPEEE—KE, HECSRRSET . A85X
FIARE, TR HERK AR

R FAREW LB

BRUINER", REFRDLMEAS .

R FAREILBC, RER DL GEAT 2R R Hrh— 5, B B
WX T BRI (FF B R A A%)

BREAP AR ET IR

BRAPANETIRNAS, RIEZHT, WS E R 2 A — 45
BRAP A AR, REZAP, PR R—&ME, I
TEXZBUE FHATITIE: “hello world” (O HRIEH %)

R AR e L .

RN R R R, R
BRI, ST, BRI AR

Zil, ABZEID, MORZEID. WRmMETERA, B Tﬁ
WRETEATEL . -

19

NP 1
/N A 2

NI 3
WRIERE 1
WFIERE 2
WFIERE 3

MMERE 1
MAERE 2

WAERE 3
HiEimE 1

HiEiRg 2
s 3

HIF 1
HIF- 2
HIF- 3
HIF- 1
1T 2
HIF 3

2 FUE, YA A

5 IR

10 BRI, WOBRT)
3 e, B, 12
7 FARIMRL

10 BEEFET, &l

3 BRI

6 R eRg A, fai
9 il

4 m=, B

7 Wb, KA

10 hello, world

3 RIS, SRR

7 TR, RUE

13 JRIENE, TR

4 ANTHERE, T
10 Wik

13 B

TEE TP EMSRR, WE—FREEHIIEL .

EE Y EMIR R, WE—FMEFRREIL S BZI, REN

KATE, HEEMITTILX .

EETE —FEFMIREID, SPHZIMA, REMMATE, HEE

MFTFIEX, FEEEIZHFREAMZELD, HFUORE P HREELD -

TR EES S H

BEATIANEES S, T REGEXIEE 1127, BEEAIMIEELTIR

HATNEES R, T RBRKER 112", BEERIIRIEETIER, &

B EE, BREEENMBEIUEAHHINE R

EHERRS T R EERER

E%EHE%W&%?@P&Z%, PEREETATT R, S EEEE A

1A T

ERRARS T R di T RIRN, EFRMSHATR, A IR R S B %N

BNEREERNE, EF AN EREERFETUE A S HE G LI

i), MRE=

R3], BRE=, #ARXSEAT—REX, BEITL

A, #BREZ, #ARXS AL REX, BFITRELRIT

12 “hello world”

BRI

ﬁiﬁiﬁ%?ﬁ”, WRAF, FHEAGERB— MR, R RN
NE

RPN, MRAP, HFHEAGERT AP ER, EFEEEHAN

HISCE, SPRZCE, SEHU0E, HETIR X K KT8 hello worl

BRANTER T

BRANTERE R, B —RTEPINIEIFITFIL hello world”

%?;ﬁ{\lﬁﬁﬁ”?ﬁ, BE—REREHAISCEHIER hello world”, HKiZ%
FWGE

a

B.2.3 Cross-App English Tasks

Cross-app English tasks.

Category

Table 6:
App Diff Golden
Level Step

Task Description

General Tool

General Tool

General Tool

Information
Management
Information
Management
Information
Management
Media Entertain-
ment

Media Entertain-
ment

Media Entertain-
ment

Multi Apps

Multi Apps

Multi Apps

Multi Apps

Multi Apps

Social Sharing
Social Sharing
Social Sharing

‘Web Shopping

Google Play 1 15
Store, Setting

Keep Notes, 1 12
LinkedIn

Clock, Setting 1 12

Facebook, Set- 1 17
ting

Calendar, 1 16
Chrome

Spotify, 1 13
Chrome

Google 1 12
Play Store,

Youtube

Google Play 1 10
Store, Chrome

Clock, 1 11
Youtube

Quora, eBay, 2 20
Chrome

Clock, 2 20
Chrome,

Instagram

Triller, Set- 2 15
ting, Google

Play Store

Clock, What- 2 23
sApp, Zoom

AccuWeather, 2 25
Evernote,

Expedia

X, Facebook 1 20

BBC News, 1 10
Gmail
Spotify, Face- 1 19
book
eBay, Face- 1 15
book

Open Google Play Store, uninstall the Alibaba.com app, then go to Settings and
verify if the app is still listed under app resources.

Use the LinkedIn app to search for a customer service representative position. Select
a job, open Keep Notes, create a new note, record the company’s name, and set the
note’s title to ‘customer service representative’.

In the Settings app, enable ‘Data Saver’ mode. Open the Clock app and set an alarm
for 6:00 AM.

Open Facebook, search for tropical pictures, save one picture to your phone, go to
the Wallpaper section in the Settings app, and set the saved picture as your wallpaper.
Using Chrome, search for the date of the next Winter Olympics opening ceremony
and then set a reminder for that date in your Calendar.

Open Chrome, search for the top Country songs of 2023, identify a song from the
search results, then switch to Spotify and add that song to your playlist.

Watch a YouTube video about fitness tracking app recommendations, check the
video’s description for the suggested apps, then use Google Play Store to download
one of the suggested apps.

Utilize Chrome to research different Recipe Organizer apps, and then proceed to
Google Play Store, download one of your choice.

Search for a relaxing soundscape video on YouTube, use the Clock app to set a timer
for 3 hours, then go back to YouTube and play the video.

Utilize Chrome to search for a biography book, then use Quora to read reviews
about the book, and finally add the book to watchlist on eBay.

Organize a movie night by choosing a horror film using Chrome, sending an invita-
tion to one of your friends via Instagram, and setting a reminder in the Clock app
for 8:35 PM on Sunday.

First, install the Triller app from the Google Play Store. After the installation, open
the Triller app, navigate to the Setting app to check current battery status, reopen
the Triller app.

Arrange a business meeting using Zoom, copy the sharing text, go to WhatsApp,
send the copied text to a contact, set an alarm using the Clock app at the meeting
time.

Utilize Expedia to search for Things to do in Beijing on 18-20th, choose one and
record the sharing text using Evernote, open AccuWeather to check daily weather in
Beijing.

Use the social media platform X to post a photo, copy the link to your post, then
open Facebook and send the link to a friend

Use the BBC News app to search for Artificial Intelligence news, read an article,
share it via Gmail, send to agent.benchmark.2024 @ gmail.com.

Listen to a Reggaeton album on Spotify, then share the albuma€"™s name with a
friend on Facebook.

Search for ‘Circe by Madeline Miller’ on Facebook, read one of the posts, head over
to eBay, search the book, add it to watchlist.

20

‘Web Shopping Amazon, 1 15 Investigate the prices for Catan board game across Amazon and Temu, then proceed

Temu to add the cheaper option into your cart.
‘Web Shopping Airbnb, Insta- 1 19 Use Instagram to search for an itinerary for Venice, Italy, and then proceed Airbnb,
gram book accommodations at Venice, Italy.

B.2.4 Cross-App Chinese Tasks
Table 7: Cross-app Chinese tasks.

Category App Diff Golden Task Description
Level Step
General Tool T 4,kE 1 10 FIAET 2, BRDER, R NKEAPP, (LR T IREk | &, %
G G TTHR
General Tool WE, B 1 6 TR EAPPH A BENEAR, REITHEE
General Tool WiE, & 1 12 HANRE, VHRENRER, WEITIFRIE, FREREURE N IREE RS
Information R A, 1 9 TELEA I BT B8 I R Bk E B ARBNE", RETEbilibili 8 R X FEY
Management bilibili HIRLAT i R LA R 5 R
Information R A, 1 11 TER R W BT AE R IR 2024F A TTIRAT A, EE-EHME, D%
Management QQE R FQQHE R B LA AN B BB S &
Information NI B 18 NI, BREHER, RE-KER, REERETHREVE R
Management TR RELR
Media Entertain- £ R B3, 1 12 TR PRI C B FNEE 2, RETEQQE FTHRIX%
ment QQE 'R WF, HEARFET, BEUEE— T AGZI A FETT
Media Entertain- £}, fi{# 1 16 FIFH £ # RBLACKPINK”, MEBEEE — MM, K5 HMHEE
ment EBLACKPINKIK S I 1%
Media Entertain- ~ QQ# /K, bili- 1 10 ITAQQE R, MRANM, BEMMWET, X FT—aHll,
ment bili TEbilibili #4821 AR 5% AT
Multi Apps ERWEE, 2 14 TELE I T 2 R < DA SR D RITERGR fT 24, SRJE TEbilibilif R T
bilibili, QQ B—ERZIRAR, B 5 EHIQQZEH
Multi Apps WHE, RER 2 18 43 7 1 AN R A8 R L I Mate60Pro”, SR 5 7E S TR B i — dg
R TR SCRY FIMate60Pro" & SRS, HEVE E R RIERBIMMARIDT TR
Multi Apps A, % 2 18 HEEFAMR—FIGEMET, AmEEnEERE £, BEEs =3/
7, 15 FIN AR
Multi Apps ZRIL, AR 2 21 FTHEUR) LAPPHE RIFYINE LG, PIHBIRUR IS FR AL AR
N, S MU, HFEP K ESZARMETF A
Multi Apps RPN, 2 16 HEREN PR EHAFR LI E R, AEEFRRLTERHE
=, ElE EmmiEE, REMTEREE, RETERESEXKER
Social Sharing bilibili, QQ 1 9 Hgbijlibili*j%iz%?“ Bl F HANGEZ R, SHHENERE— ST, 5%
HiElqq = A
Social Sharing h j%[‘ B, 10 TEQQE R LRM—HE FMNMEHE, RERERSZINNILP, RAEIL
QQER
Social Sharing HF, G 1 11 ERTEEREE, #AMEE— R, REHEEL BRI
Web Shopping HIF, AR 1 14 TERITF R 100070 A N EFEERE", HERRERE PRI —K S,
HEFE— NI ZE
Web Shopping NI EE 1 14 E%%;J:&@J#%—’momm&ﬁE’Jii:i)ﬁﬁm, SRIGRTTEE T, Kz m fon
N
Web Shopping R EE, 1 14 BN P25 IR BT I mate RINFHLI M4, HEBT PHERIL
HE 5 FHEHE A IGY) F

B.3 Example of Key Components

Figure[7]shows an example of key components.

B.4 Cross-app Example Task Demo

Figure [8]illustrates two examples of English cross-app tasks, each with a different difficulty level.
B.5 Steps of Tasks

Refer to Figure[9]for a box plot illustrating the distribution of steps across tasks.

C Integrated Agents

The benchmark includes 11 state-of-the-art autonomous agents, shown in Table [§] These agents
differ in core models, input modalities, action spaces, and additional training or prompting modules.
They fall into two categories: those leveraging off-the-shelf MLLLMs (e.g., GPT, Qwen), and those

21

*si0 8:45 © *i0

o voulrae] &

McDonald's - Harringay

844 ® *i0 8:45 ©®

Delivery

o Deliver in 15 - 30 min

Picvonaids :
5 4.4 (5004) - 15 - 30 min Basket

Medium Fries [VE] 1x smallries]ve) £159

’ ";.,' 337 keal
w : u £219 2x Medium|Fries|[VE] £4.38
,,,m-'-.f
S p

iy Bt
p:-) S Poamammhukeyaurs
small[Fries JVE]
e 237 keal Ketchup Dip
rn.*_:ommm s Large McSpicy® Mayo Chicken v
Chicken Sharebox® Meal < m £1.59 = é;l;;al + =
o o N
£1149 799 €179
Ketchup Dip
27 keal Basket subtotal £5.97
= ww
6 (500+) - 20 - 30 min
[deliveroo_2 Add disposable cutlery
Fees ®
alsle|ilgla]i]k]! smallforder]fee £2.00
Service fee £0.99
cvbnmag@
Rider tip © ® £0.00
prdertotal £9.75

English

(a) Level 1: “mcdonald” (b) Level 2: “fries” (c) Level 3: “order” and “fries”

Figure 7: A visualised example of key components across three difficulty levels, with subcaptions
indicating the key components for each level and highlighted key components in the corresponding

screenshots.

Level 1 Task: Using Chrome, search for the date of the next Winter Olympics opening ceremony and then
set a reminder for that date in your Calendar.

E Calendar

JsE
ElE s —

Level 2 Task: Arrange a business meeting using Zoom, copy the sharing text, go to WhatsApp, send the
copied text to a contact, set an alarm using the Clock app at the meeting time.
Zoom 18] WhatsApp

Figure 8: Example cross-app tasks with trajectories collected by human annotators.

Task difficulty i
Level 1 |
Level 2 1

'
'
'
'
'
'
)

®

using fine-tuned models with parameter counts ranging from 1.3 billion to 18 billion. Fine-tuned
models, trained primarily on the offline AITW [24] dataset, focus on action prediction, with DigiRL
additionally employing online RL training. In our benchmarks, unlike their offline training settings,
all agents are tested in real-world scenarios that require precise action grounding and long-sequence
task execution.

22

Single-App Tasks Cross-App Tasks

254

-
7
o

.
S
[e3Ne}

Number of Steps

0 %] | 1

=

-
L (—

04 T T T T T T
enG Diff o Diff 1 oy Diff 2 i Diff 2 oy Diff 3 i Diff 3

ENG piff 1 CHN piff 1 ENG piff 2 crN piff 2

Figure 9: Distribution of steps taken by humans to execute tasks, categorised by difficulty level and
task type.

Table 8: Comparison of agents integrated into SPA-BENCH framework across key dimensions.

Agent Core Model UI Representation Touch Point Localisation
AppAgent [7] GPT-40 Screenshot + XML Coordinates from XML
AutoDroid [8] GPT-40 HTML Coordinates from HTML
MobileAgent [9] GPT-40 Screenshot OCR + Icon Recognition
MobileAgentV2 [10] GPT-40 Screenshot OCR + Icon Recognition
- Screenshot + Coordinates from
M3A [GPT-4o Accessibility Tree Accessibility Tree
- - Coordinates from
T3A [11] GPT-40 Accessibility Tree Accessibility Tree
. Screenshot + Coordinates from
SccAct [1L/126, GPT-40 Accessibility Tree Accessibility Tree
. Fine-tuned FLAN-Alpaca-Base) Normalized coordinates
Auto-UL [12] (200M) + BLIP-2-T5-Instruct (1.1B) ~ Screenshot from Model
. Normalized coordinates
CogAgent [13] CogAgent-18B Screenshot from Model
.. ; Fine-tuned FLAN-Alpaca-Base Normalized coordinates
DigiRL [14] (200M) + BLIP-2-TS-Instruct (1.1B) Screenshot from Model
OdysseyAgent [15] Fine-tuned Qwen-VL (9.6B) Screenshot Normalized coordinates

from Model

C.1 Agent Input

Modalities

Input modalities and action spaces define an agent’s ability to interact with mobile user interfaces.
Screenshot input is intuitive, capturing everything a human would see, but MLLMs often struggle to
identify actionable UI elements and link them with screen coordinates [26]]. To address this, some
agents enhance input with XML files, accessibility trees, or information obtained through Optical
Character Recognition (OCR). For instance, AppAgent [7] and AutoDroid [§] use element IDs and
coordinates, M3A [11] annotates screenshots with key UI elements, while MobileAgent [9] first
identifies interaction elements and then uses OCR or icon recognition to locate them.

C.2 Adoption of Agents into Framework

Integrating agents into the framework required several adaptations. We used their original open-
source implementations, with the exception of SeeAct [26], for which we adopted AndroidWorld’s
action grounding module. For agents using fine-tuned models (i.e., Auto—U]ﬂ DigiRL, OdysseyAgent,

3Auto-UI has been renamed to Auto-GUI, but in this paper, we use Auto-UI as it is more commonly
referenced in previous works.

23

Table 9: The proportion of reduction in MLLM evaluation times through key component matching,
and the F1 score performance of our MLLM evaluator (without key component matching) across
reasoning and action modes. Bold values indicate the best performance for each task and language
pair.

. No Action Text Action Image Action
Task Language Reduction Rate
Result-only Reason-and-Result ~ Result-only Reason-and-Result ~ Result-only Reason-and-Result
Sinele-a English 0.313 0.911 (-0.003) 0.922 (-0.033) 0.919 (-0.016) 0.903 (-0.040) 0.926 (-0.006) 0.915 (-0.050)
81¢4PP Chinese 0.670 0.879 (-0.076) 0.857 (-0.102) 0.883 (-0.092) 0.884 (-0.113) 0.872 (-0.093) 0.864 (-0.129)

CogAgent), which lacked direct Android interaction capabilities, we used UIAutomatorQE] for end-to-
end task execution.

C.3 Logs and Errors

While task descriptions and screenshot trajectories remain the primary inputs/outputs, we also
logged executed actions, performance metrics (steps, time, API costs), and errors. Errors were
categorised as expected (e.g., invalid responses) or unexpected (e.g., network failures). Expected
errors arise from the agent’s limitations, such as failing to generate valid actions or when certain
functionalities are restricted. Unexpected errors refer to unforeseeable issues like network failures,
Android malfunctions, or CAPTCHA challenges. The framework automatically re-runs such tasks
to avoid penalising agents for unexpected errors, ensuring a fair and accurate assessment of their
capabilities and limitations.

D Single-App Success Detection

D.1 Coarse Detection: Key Component Matching

Given a single screenshot, PaddleOCRE] is used to extract text, which is then lowercased and con-
catenated to minimise inaccuracies. This text is matched against key components of the final state
(defined by human annotators in Section [3.2). Matching starts from the last screenshot and moves
backward until a match is found or the first screenshot is reached. If no match is found, the task is
marked as failed, skipping fine detection.

D.2 Fine Detection: MLLM Evaluation

If coarse detection is successful, fine detection is performed using a MLLM evaluator (based on
GPT-40). The evaluator receives task descriptions, screenshots, and executed actions to assess task
success. Action information can be presented as either text or concatenated screenshots. Prompts
used for the MLLM evaluator are detailed in Appendix

D.3 Approach Evaluation and Results

To validate the single-app success detection pipeline, we compared its detection against human
evaluations for AppAgent and M3A (English tasks), and CogAgent and MobileAgentV2 (Chinese
tasks). Two reasoning and three action modes were tested to prompt the MLLM, and an ablation
study was conducted to assess the impact of coarse detection.

Table 0] presents the proportion of fine detection time reduced before and after applying coarse
detection, along with the F1 scores for each reasoning and action mode across English and Chinese
tasks, both with and without coarse detection. The results demonstrate that coarse detection effectively
enhances performance by reducing the frequency of fine detection calls and improving the success
detection F1 score, particularly in Chinese tasks where MLLM evaluation struggles. While no
significant differences were found between reasoning modes, incorporating action data improved
decision-making but also increased token length, which sometimes led to hallucinations.

Overall, in the best-performing evaluation modes, our pipeline achieved F1 scores of 0.926 for
English tasks and 0.884 for Chinese tasks, demonstrating its effectiveness in aligning with human

https://github.com/openatx/uiautomator?
"https://github.com/PaddlePaddle/Padd1e0CR

24

https://github.com/openatx/uiautomator2
https://github.com/PaddlePaddle/PaddleOCR

evaluations. For further task evaluations, we use these modes to detect success: result-only reasoning
with image action for English tasks, and reason-and-result with text action for Chinese tasks.

D.4 Prompting Templates

D.4.1 System Prompt

You are an expert in evaluating smartphone operation tasks. Your primary role is to determine
whether a task has been successfully completed based on a series of screenshots (provided in order
of execution) and the corresponding task description.

Guidelines:

1. **No Assumptions**: Evaluate solely based on the provided screenshots. Do not infer or assume
details that aren’t explicitly shown.

2. **Subtask Completion**: A task is successful only when all its subtasks are successfully
completed. For example, for the task "Go to the website github.com. Add this website to the
reading list,", it is successful only if the screenshots show github.com has been navigated to and
then added to the reading list.

3. *xCommon Reasons for Subtask Failurexx:

- *xIncomplete**: A subtask is not successful if it is not performed or achieved. Same task
example above, visiting the website but not adding it to the reading list results in task failure.
- *xIncorrect Execution**: A subtask fails if the screenshots do not align with any part of the

instruction.

- **Wrong Noun/Entity**: If the subtask is "Go to the website github.com." but the screenshots
show google.com, the subtask fails. Similar entities (e.g., ’iPhone 11’ vs. ’iPhone 12’ or
’driving directions’ vs. ’walking directions’) are considered different, leading to task failure

if not correctly executed.

- **Wrong Verb/Action**: If the subtask is "Like a post," but the screenshots show the post was
reposted instead, the subtask fails due to incorrect action.

4. xxAdditional Actions#**: If intermediate screenshots show all subtasks are successful, consider
the task a success, even if additional actions are shown afterward. This applies as long as these
actions do not impact task completion or cause the original task to fail.

5. **Filtering Subtask**: If a subtask involves filtering based on specific criteria, ensure the
filter has been applied (i.e., a specific app feature). If the filter is treated as an additional
search condition, the subtask fails.

6. *x0rder of Subtasks**: Subtasks can be completed in any order unless they are explicitly
dependent on each other.

7. *xSubtasks Completed Midway**: Subtasks completed in the middle of the process may not be
reflected in the final screenshot; these should still be considered successful if they align with
the task requirements.

8. =*xCorrective Actions**: Subtasks that initially appear to fail but are corrected by subsequent
actions should be considered successful only when the correction fully aligns with the original
task.

9. #*xIntermediate Steps**: It’s acceptable if a subtask isn’t completed in one go, as long as the
final result meets the task requirements; consider this a success.

10. **xFocus on Overview**: Pay attention to the overall objective and avoid letting minor,
irrelevant details distract from the main evaluation.

11. **xUI Differences**: Be mindful of subtle UI differences (e.g., different font styles or
colors indicating selected tabs).

action_sys_prompt_template(action_mode)

**xThese guidelines serve as a general framework. Apply them thoughtfully and avoid overfitting

to edge cases not covered. Be strict and cautious when determining whether a task has been
successfully completed or not. Use 1 to indicate success and O to indicate failure.**

D.4.2 System Prompt with Action

12. #**Use of Action Information**: Some quick pop-ups may not be captured by screenshots provided.
If needed, consider the action information when evaluating the task.

13. =#**Single Action for Multiple Subtasks**: Some subtasks can be completed with a single action,
such as clicking an icon that shuffles a playlist.

Common Actions: - Click/Tap: The user selects or activates a specific point on the screen,
triggering an event or interaction.

- Long Press: The user presses and holds a point to trigger a secondary action or menu.

- Swipe/Scroll: The user drags their finger across the screen to scroll or navigate; the content
or screen position changes according to the direction.

- Type/Input Text: The user types or inputs text into a field.

- Back: The user presses the back button to return to the previous screen.

25

D.4.3 Base Prompt

Now, here is a smartphone operation task description:

task_description history_info

Please carefully determine whether the task has been correctly and completely executed according to
the provided screenshots. Use 1 to indicate success and O to indicate failure.

action_prompt [0]

reasoning_prompt

Remember :

- Do not make assumptions based on information not presented in the screenshots. Only evaluate
what is explicitly shown.

- Ensure that every entity and action in the task description is precisely matched and fulfilled.

- Consider additional actions taken after a task is successfully completed as part of the success,
as long as those actions don’t impact the task’s completion or cause failure.

- A filtering subtask is only correct when a specific filter is applied as a feature of the app.
Using the criteria as a keyword search will cause the subtask to fail.

- Subtasks can be completed in any order unless they are explicitly dependent on each other.

- Subtasks completed correctly mid-process, even if not reflected in the final screenshot, should
be considered successful.

- Subtasks that initially appear to fail but are corrected by subsequent actions should be
considered successful.

- A task can be considered successful even if some subtasks are not completed in one go, as long as
the final result meets the task requirements.

- Focus on the overall objective of the task without being distracted by minor, irrelevant details.
- Pay attention to subtle UI differences that might indicate task completion or failure, such as
highlighted tabs or changes in font.

action_prompt[1]

D.4.4 Base Prompt with Text Action

To assist you in determining whether the task was successful, action information is provided. Use
this information only when you cannot determine success purely based on the screenshots. The i-th
screenshot may contain details that change the screenshot from the i-th to the i+1-th, while the
last screenshot contains no action information as the task ends afterward. In some screenshots, a
red dot may indicate where a specific action occurred (e.g., clicked or long-pressed), triggering
an event or interaction. If there isn’t a red dot, the action is more complex than a single
position operation (e.g., a swipe or text input). You can find the details of these actions below,
if applicable.

extra_action

- Consider the action information only when necessary.

- Pop-ups that appear immediately after an action may not be captured in the screenshots; do not
consider this a failure.

- Some subtasks can be completed with a single action, such as clicking an icon that shuffles a

playlist.

D.4.5 Base Prompt with Image Action

To assist you in determining whether the task was successful, action information is provided. Use
this information only when you cannot determine success purely based on the screenshots. The
action information on the i-th screenshot describes the changes from the i-th screenshot to the
i+1-th screenshot, while the last screenshot contains no action information as the task ends
afterward. This information is presented as a white strip attached to the original screenshot,
separated by a blue line. In some screenshots, a red dot may indicate where a specific action
occurred (e.g., clicked or long-pressed), triggering an event or interaction.

- Consider the action information only when necessary.
- Pop-ups that appear immediately after an action may not be captured in the screenshots; do not

consider this a failure.
- Some subtasks can be completed with a single action, such as clicking an icon that shuffles a

playlist.

26

Where to? ar a
i e When's your trip?
- your trip?
~~~ (Chie ~ Dotes. Morths. Fextie.
€, K RS~o ~.
r": Nt TN o RS
Se . S Avgust2024
e Ut St A et !
WAIT[ ===~ .
4y
- °onouwos e om
&
w el g monom
Add guests. Ss
= B e e ¢ 8 ® & e ¢ BoeomomoEme
oot X X . N
QWERTY U I'OP QWERTY U I'OF September 202 N
N
ASDFGHUJKL ASDFGHUJKL e N
BTSN
+ ZXCVBNMG@ + ZXCVBNM@ \
ski A
o . o D - 8 B =
- N
« . - v . - v . - « . - A
\
Action Acton N
e Detil \
The rd dot wasacted upon. \
A}
\
ow - o B o ———
. B Ston s \

Coarse Detection

Extracted Text
e

Matched {8.png}

When's your trip?

Who's coming? Who's coming?

Avgust 2024

Fine Detection SEELEEEE
Mrsoas o6 0
@ Result: 1 ;

Figure 10: Evaluation of the “airbnb_1"task executed by M3A. All four annotated key components
were successfully matched in the OCR-extracted text from the final screenshot, allowing the task to
pass both coarse and fine detection.

D.4.6 Result-only Prompt

Please provide your decision using the following template without any reasoning:
Result: <1 OR 0>

D.4.7 Reason-and-result Prompt

Use the following format for your response:

Reason: <Brief description of why you believe the task was successful or failed, including the
alignment or misalignment between the task description and screenshots, starting with "I believe
this task is successful/failed">

Result: <1 OR 0>

D.5 Example of Success Detection
Figure illustrates a coarse-to-fine evaluation of the “airbnb_1" task executed by M3A, which
corresponds to the Airbnb Level 2 task listed in Table [4).

E Cross-App Success Detection

E.1 Subtask Generation

For a cross-app task, each subtask is tied to a single app, and any adjacent subtasks must use different
apps. However, the same app can appear multiple times as long as there is at least one different app
between occurrences. Beyond “app” and “task description”, each subtask also includes the fields

27



Table 10: The F1 score performance of our cross-app success detection pipeline.

Cross-app
English  Chinese
F1 Score 0.833 0.857

“history” and “memory”. The “history” field is a boolean value indicating whether the subtask requires
information from previous tasks, highlighted as phrases in the task description. This information,
referred to as “memory”, consists of phrases that will be matched with the highlighted “history”
phrases. Such subtasks are generated by a MLLM and then reviewed by humans to ensure quality.
Examples of subtasks are provided below, and detailed prompts can be found in the Appendix.

E.2 Stage 1: Trajectory Split

Stage 1 splits the entire trajectory into segments based solely on app transitions as preparation for
detecting subtask success. The previous subtask generation step provides an ordered list of apps for
each task, indicating the sequence in which they should be operated for successful completion. A
MLLM processes this app list along with the complete series of execution screenshots, segmenting
the trajectory so that each part includes only screenshots related to the corresponding app’s operations.
If the segmentation is invalid, such as when an app is missing or the sequence is incorrect, the task is
marked as unsuccessful due to errors in one or more apps.

E.3 Stage 2: Sequential Subtask Success Detection

Stage 2 is activated when the segmentation is valid, meaning each app in the ordered list has a unique
series of screenshots. Subtasks are checked sequentially, with each subtask evaluated only if its
predecessor is marked as successful. If a subtask is marked as successful, the phrases in its “memory”
field (unless the field is empty), will be required as historical references for subsequent subtasks.
This memory is generated by another MLLM, which summarises the current screenshots based on
the required phrases and appends the relevant information to the memory set for future use. If a
subsequent subtask’s “history” field is marked as true, the necessary phrases are then extracted and
matched with the stored information to assist in evaluating success. Such historical data, combined
with partial task screenshots and action details, is used to determine the subtask’s success. Since each
subtask involves only a single app, it uses the same MLLM evaluation method applied in single-app
success detection. The entire task is considered successful only if all subtasks pass. Otherwise, it
fails as soon as any subtask is marked unsuccessful.

E.4 Approach Evaluation and Results

To validate the cross-app success detection pipeline, we compared its results against human evalua-
tions using four different agents per language. For English tasks, the agents were M3A, T3A, Auto-UlI,
and OdysseyAgent, while for Chinese tasks, we used AppAgent, MobileAgent, MobileAgentV2, and
CogAgent.

Table [T0] presents the F1 scores of our cross-app success detection pipeline for both English and
Chinese tasks. The performance is lower compared to single-app success detection due to the
increased complexity of cross-app tasks. With over 90% of tasks being true negatives, even a small
number of errors significantly impacts the overall performance. Additionally, we observed that for
each agent, false positives and false negatives occurred at a similar rate. Thus, despite a relatively
modest F1 score, the pipeline’s success detection still reflects each agent’s performance.

28



E.5 Prompting Templates

E.5.1 System Prompt of Stage 1

You are provided with a sequence of screenshots representing an agent performing tasks across
multiple apps on a smartphone. Each screenshot corresponds to a specific action. You are also
given a list of apps that should be used in the task.

**xYour task is to:** 1. Split the screenshots into segments based on transitions between apps in
the given list. Do not change the order of apps, even if they do not match the screenshot order.
Output the results based on the provided app list order. 2. For each app, identify where the
agent opens and operates within the app. Each app interaction requires at least two screenshots:
one for opening the app and one for quitting or switching to another, except for the final app,
which may not require a quit action. 3. #**Ensure that the start and end indices you provide are
within the range of screenshots sent to you.** You will receive a certain number of screenshots,
and you must repeat how many screenshots you received before processing. Any indices provided
should not exceed the total number of screenshots. 4. If an app from the list is missing in the
screenshots, return ‘-1¢ for both the start and end screenshot indices for that app. 5. Ignore
screenshots that show irrelevant actions (e.g., the home screen or unrelated apps). You may
mention them in the analysis but do not include them in the final result. 6. An app may appear
more than once in the list (e.g., ‘["AppA", "AppB", "AppA"]l¢), but there must be another app
between repeated instances of the same app. 7. There might be distractors (e.g., advertisements
and popups) in the screenshots; you should not interpret them as transitions between apps.

### Example Input:

**xApp list:*x ¢["AppA", "AppB", "AppA"]‘¢

**Screenshots:** A sequence of numbered screenshots.

### Example Reasoning: 1. =**Screenshots 1-3:** The agent opens AppA, and operates within it. 2.
*xScreenshots 4-5:%x The agent opens AppB and operates within it. 3. =**Screenshot 6:** The agent
interacts with the home screen, which is irrelevant. 4. **Screenshots 7-9:** The agent opens AppA
again and operates within it.

### Final Output: { "AppA_1": { "start screen": 1, "end screen": 3 }, "AppB": { "start
screen": 4, "end screen": 5 }, "AppA_2": { "start screen": 7, "end screen": 9 } }
**task_description**

E.5.2 User Prompt of Stage 1

Here is the app list: task_app Ensure the order of apps in your final output is exactly the same
as the order provided in my app list.

E.5.3 System Prompt of Stage 2 Memory

You are an MLLM tasked with analyzing screenshots and summarizing the relevant information based on
a description provided by the user. Only summarize information from screenshots that relate to the
description, ignoring any that are unrelated. If the screenshots show a list of results (e.g., a
search page), summarize or list all the relevant results. The summary should be clear and concise,
without bullet points, step-by-step details, or line breaks.

E.5.4 User Prompt of Stage 2 Memory

Here is the description: memory_text

29



E.5.5 Subtask Generation

You are tasked with splitting a smartphone control instruction into a series of subtasks, each
corresponding to specific app interactions. For each subtask, you should define:

1. *app**: The name of the app being used in the subtask.

2. x*task**: A string describing the action to be performed. Do not include the app name in
the task description unless necessary (e.g., if the task is to only open the app). Use ’{PREVIOUS
MEMORY}’> if the task depends on information from a previous subtask. This should be exactly the
same phrase as the previous subtask’s memory (i.e., if history is True).

3. *xhistory**: A boolean value (‘True‘ or ‘False‘) indicating whether this subtask relies on
data from a previous subtask.

4. *xmemory**x: If applicable, specify a piece of information that the current subtask generates
or retrieves, which will be passed to the next subtask. If no memory is needed, set this to
‘None*¢.

**Guidelinesx**:

- Use the same language for the split task as the task description.

- If there are several consecutive subtasks for the same app, combine them into a single subtask
(i.e., adjacent subtasks should not have the same app). Subtasks for the same app are acceptable
if there is at least one subtask for a different app in between.

- By default, each subtask should be independent unless explicitly needing data from a prior
subtask (in which case, set ‘"history": True‘).

- Flexibly determine whether any information should be stored as **memory** and passed to
subsequent tasks, based on the task’s natural requirements.

- Output the subtasks in a structured format like the following:

{ "subtask_1":{ "app":"APP", "task":"TASK", "history":"BOOL", "memory":"MEMORY" },

"subtask_2":{ "app":"APP", "task":"TASK", "history":"BOOL", "memory":"MEMORY" }, ... 1}
###Example 1

*xTask**: Adjust the notification settings for the YouTube app on your phone using Settings, then
proceed to open YouTube.

**Result*x*:

{ "subtask_1":{ "app":"Settings", "task":"Adjust the notification settings for the YouTube app
on your phone", "history":false, "memory":"None" }, "subtask_2":{ "app":"YouTube", "task":"Open
YouTube", "history":false, "memory":"None" } }

### Example 2
**xTask**: Utilize the X app to research and identify a highly recommended robotic vacuum cleaner,
and then go to Amazon to purchase one.

**Result*x*:

{ "subtask_1":{ "app":"X", "task":"Research and identify a highly recommended robotic vacuum
cleaner", "history":false, "memory":"robotic vacuum cleaner" }, "subtask_2":{ "app":"Amazon",
"task":"Go to Amazon to purchase {robotic vacuum cleaner}", "history":true, "memory":"None" } }
Now, for any smartphone control instruction, decompose the task into subtasks using the format
above.

F Experiment Details

F.1 Agent Configuration

The agents in this benchmark include variations in core models and optional modules. Of the 11
agents, 7 originally used off-the-shelf (M)LLMs such as GPT-4V and Qwen-VL-Max. For consistency,
these agents were upgraded to GPT-4o, including replacing MobileAgentV2’s Qwen-VL-Chat with
GPT-40-mini for icon recognition. For Auto-UI and DigiRL (fine-tuned), the Auto-UI-Base core
model was selected.

Agent-specific configurations include:
* AppAgent, SeeAct, M3A, and T3A: Added Adeeyboar for Chinese character input,
following the MobileAgent setup.
* Auto-UI: Enabled “action history” and “chain of actions” features.
* OdysseyAgent: Enabled action and screenshot history.
* AppAgent and AutoDroid: No additional knowledge or exploration was allowed before

experiments.

For all other settings, the default configurations provided by the developers were used. Agents were
allowed to execute up to twice the number of “golden steps” for a task, after which execution was
halted.

$https://github.com/senzhk/ADBKeyBoard

30


https://github.com/senzhk/ADBKeyBoard

Table 11: Task performance on single-app Chinese tasks. SRC and MSR refer to Self-Reported
Completion and Maximum Steps Reached, respectively. The token costs of four agents are omitted
because they use locally hosted open-source models.

Mean Step Termination Reason Termination Inaccuracy Mean Exec  Mean Token
Agent Success (%)  Ratio on Time per Cost per
Success SRC (%) MSR (%) Error (%) Premature (%) Overdue (%)  Step (sec) Step (USD)

Off-the-Shelf Model (GPT-40)

AppAgent 0.247 1.66 0.100 0.393 0.507 0.600 0.407 25.6 0.013
AutoDroid 0.187 1.25 0.567 0.360 0.073 0.729 0.111 48.8 0.011
MobileAgent 0.240 1.39 0.273 0.653 0.074 0.439 0.133 35.6 0.037
MobileAgentV2 0.440 1.28 0.460 0.487 0.053 0.333 0.274 104.5 0.075
M3A 0.447 1.08 0.640 0.360 0 0.323 0.037 20.8 0.097
T3A 0.380 1.31 0.507 0.493 0 0.408 0.162 12.6 0.128
SeeAct 0.327 1.91 0.067 0.927 0.006 0.300 0.302 23.0 0.050
Fine-tuned Model
Auto-UI 0.007 0.50 0.893 0.107 0 0.993 0 - -
CogAgent 0.027 1.79 0.060 0.893 0.047 1.000 0.030 - -
DigiRL 0 - 0.387 0.520 0.093 1.000 0 - -
OdysseyAgent 0.007 2.00 0 1.000 0 - 0.007 - -

Table 12: Task performance on cross-app English tasks. SRC and MSR refer to Self-Reported
Completion and Maximum Steps Reached, respectively. The token costs of four agents are omitted
because they use locally hosted open-source models.

Mean Step Termination Reason Termination Inaccuracy Mean Exec  Mean Token
Agent Success (%)  Ratio on Time per Cost per
Success SRC (%) MSR (%) Error (%) Premature (%) Overdue (%) Step (sec)  Step (USD)

Off-the-Shelf Model (GPT-40)

AppAgent 0 - 0.200 0.550 0.250 1.000 0 229 0.014
MobileAgent 0.050 2.00 0.100 0.900 0 1.000 0.056 25.3 0.089
MobileAgentV2 0.100 2.00 0.250 0.750 0 1.000 0.133 58.8 0.071
M3A 0.200 1.16 0.700 0.300 0 0.714 0 17.3 0.082
T3A 0.100 1.43 0.600 0.400 0 0.833 0 12.1 0.091
SeeAct 0.100 1.52 0.150 0.850 0 0.333 0 19.9 0.043
Fine-tuned Model
Auto-UI 0 - 0.100 0.800 0.100 1.000 0 - -
CogAgent 0 - 0.050 0.950 0 1.000 0 - -
DigiRL 0 - 0.050 0.550 0.400 1.000 0 - -
OdysseyAgent 0 - 0 0.650 0.350 - 0.007 - -

Table 13: Task performance on cross-app Chinese tasks. SRC and MSR refer to Self-Reported
Completion and Maximum Steps Reached, respectively. The token costs of four agents are omitted
because they use locally hosted open-source models.

Mean Step Termination Reason Termination Inaccuracy Mean Exec  Mean Token
Agent Success (%)  Ratio on Time per Cost per
Success SRC (%) MSR (%) Error (%) Premature (%) Overdue (%)  Step (sec) Step (USD)

Off-the-Shelf Model (GPT-40)

AppAgent 0 - 0 0.550 0.450 - 0 23.5 0.014
MobileAgent 0.100 1.62 0.150 0.750 0.100 0.667 0.067 53.4 0.064
MobileAgentV2 0.100 1.89 0.200 0.750 0.050 1.000 0.133 104.1 0.075
M3A 0.100 1.32 0.500 0.500 0 0.800 0 17.8 0.091
T3A 0.100 1.08 0.750 0.250 0 0.867 0 134 0.110
SeeAct 0.050 2.00 0.100 0.900 0 1.000 0.056 17.3 0.045
Fine-tuned Model
AutoUI 0 - 1.00 0 0 1.000 0 - -
CogAgent 0 - 0.050 0.850 0.100 1.000 0 - -
DigirlAgent 0 - 0.800 0.050 0.150 1.000 0 - -
GUI_Odyssey 0 - 0 0.500 0.500 - 0 - -

F.2 Experimental Results

See Tables [T} [I2} [I3] for the detailed experiment results of single-app Chinese, cross-app English,
and cross-app Chinese tasks respectively.

F.3 Performance Across Task Difficulty Levels

Table [T4] shows agent performance across different difficulty levels. As expected, agents perform
better on easier tasks, confirming that our tasks are designed with increasing difficulty, where lower-
level tasks serve as subtasks for higher-level ones. The overall trend in performance across difficulty
levels aligns with each agent’s general success rate discussed in Section[6.1}

31



Table 14: Success rates on single-app English, single-app Chinese, cross-app English and cross-app
Chinese tasks, categorised by difficulty level.

Agent Single-app English Tasks Single-app Chinese Tasks Cross-app English Tasks ~ Cross-app Chinese Tasks
Level 1 Level2  Level3  Level 1 Level2  Level3  Levell Level 2 Level 1 Level 2
Off-the-Shelf Model (GPT-40)
AppAgent 0.540 0.340 0.140 0.400 0.180 0.160 0 0 0 0
AutoDroid 0.560 0.300 0.120 0.360 0.120 0.080 - - - -
MobileAgent 0.620 0.380 0.160 0.300 0.240 0.180 0.067 0 0.067 0.200
MobileAgentV2 0.700 0.400 0.200 0.580 0.420 0.320 0.133 0 0.133 0
M3A 0.800 0.700 0.420 0.500 0.520 0.320 0.267 0 0.133 0
T3A 0.720 0.480 0.260 0.480 0.460 0.200 0.133 0 0.133 0
SeeAct 0.600 0.460 0.120 0.500 0.340 0.140 0.133 0 0.067 0
Fine-tuned Model

Auto-UI 0.040 0 0 0.020 0 0 0 0 0 0
CogAgent 0.060 0 0 0.040 0.040 0 0 0 0 0
DigiRL 0.020 0.040 0 0 0 0 0 0 0 0
OdysseyAgent 0.140 0.020 0 0.004 0.020 0 0 0 0 0

Table 15: Comparison of success and error rates across four agents based on GPT-40 and open-source
models for Level 1 single-app English and Chinese tasks. Open-source model choices are determined
by input modality.

Agent Model English Tasks Chinese Tasks
Success Rate Error Rate Success Rate Error Rate
AutoDroid GPT-40 0.560 0.060 0.360 0.020
Llama-3.1-8B-Instruct 0.220 0.040 0.020 0
AppAgent GPT-40 0.540 0.100 0.400 0.440
PPAS GLM-4V-9B 0.180 0.440 0.100 0.500
. GPT-40 0.700 0 0.580 0.020
MobileAgentV2 - \rinicPM-v-2.6-8B 0 0.820 0.020 0.660
M3A GPT-40 0.800 0 0.500 0
MiniCPM-V-2.6-8B 0.040 0.060 0.100 0

F.4 Performance Loss Using Open-source Model

We explored how agents relying on proprietary (M)LLMs perform when replaced with advanced
open-source models. Four agents (AutoDroid, AppAgent, MobileAgentV2, and M3A) were tested on
Level 1 single-app tasks using open-source (M)LLMs based on their input modalities: Llama-3.1-8B-
Instruct (no image), GLM-4V-9B (single image), and MiniCPM-V-2.6-8B (multiple images).

Table|15|compares performance with proprietary models (GPT-40). M3A, which achieved a success
rate of 0.800 with GPT-4o in level 1 single-app English tasks, dropped to 0.040 when using MiniCPM-
V-2.6-8B. Similarly, MobileAgentV2’s success rate fell from 0.7 to 0. These results show that
MiniCPM-V-2.6-8B performs poorly in smartphone control tasks, where long-sequence decision-
making is critical. The error rate for MobileAgentV2 with MiniCPM-V-2.6-8B in English tasks
reached 0.820 due to its occasional failure to follow instructions. In contrast, M3A’s error rate is
only 0.060, as it converts invalid actions into a “wait” command, taking no action for that step, while
MobileAgentV2 terminates upon encountering errors.

AutoDroid and AppAgent also showed similar trends, where proprietary models outperformed their
open-source counterparts. However, since AutoDroid and AppAgent handle simpler input modalities,
they performed relatively better and more stable with open-source models. Similar patterns were
observed in Chinese tasks.

32



G Case Study

G.1 AppAgent on contact_2 task

10:40 & @

X Create new contact

Mobile

Work

Home

G Main
rk.2024.1@gmail.com

2 Worki'x o

Home Fax

Pager
.

Other

Custom |
88 Three There 5 DR
1 2 3 4 5 6 7 .8 9 0
gwer tyuil op

asdf gh j kI
& zx cvbnm@
2123 (@) |

’

v ° L

(a) Annotated screenshot (b) Parsed XML file

Figure 11: The screenshot and XML file before the last action for AppAgent executing task contact_2.
The model generated invalid action tap(2). Task description: “Modify the last name of one of the
contacts to “Three’. Update the label for the contact’s phone number to Work. Set the company to
‘Huawei’. Add an email agent.benchmark.2024 @ gmail.com. Label the email as Work”.

As shown in Figure[TT] in the final step of task contact_2, AppAgent encountered a critical error
due to a misinterpretation of the UI structure. The model incorrectly parsed the XML, treating the
entire pop-up menu as a single element instead of recognizing each individual operable component,
which reduced the number of widgets the agent could interact with. In addition, the agent executed
an invalid action, tap(2), targeting a non-clickable element. This issue highlights that an imperfect
operable action detection mechanism may limit the agent’s ability to navigate complex Ul hierarchies
and execute fine-grained interactions.

G.2 MobileAgent on expedia_3 task

As shown in Figure[12) and Figure [I3] MobileAgent’s execution of task expedia_3 reveals several
noteworthy points: (1) Although the transition between the second and third screenshots (highlighted
with a red border) lacks valid actions, the interface still changes, indicating that content is loading
during a waiting period (i.e., a dynamically changing screen). (2) The agent generates repetitive
actions despite no changes in the interface, but after several iterations, a correction occurs (highlighted
with a blue border). (3) Interestingly, at the beginning of task execution, the agent initially attempted

33



300 @ ow4n

2 Expedia 3010 @ ow4n

e e Svat

Hi, Smart ("< o | « - X -

15.00in OnkeyCadn
5 . If you can dream it

B R & =0F If you can dream it, Ex);Jedia can help p’Ian
Expedia can help plan it

Planning anew escape? Let's chat. it. *

© Explor ripdoas with ChatcPT >

Your recent searches

Before you leave, your
opinion matters

Stays in Rome
B Ao Sat Aug3 ]

2travelers-1room

-d

el suggestions”

Iy to use this chat

i Yes & fio

Explore your destinations

Type a message

ThaveLcuoe ™
Rome Pa
Vatcan opulsnce, Ancent marvels, Hitoricwalks || Ror ——
Crestoa -y tnoaryforarip to Now York >
Pl a weskend famly beach gateway >
What ae some budget frendly htelsnPars >
. Action: _
click icon (black ticket stub, Action Action
top) Action back click text "No"
Detai Detail Detail ctai
The red dot was acted upon. No action matched. Back to the previous page The red dot was acted upon.

Figure 12: Trajectory of MobileAgent on expedia_3 (Part 1). Task description: “Check things to do
in Paris. Get the search results for 25th to 28th of any month.”

to chat with ChatGPT, which was unrelated to the task description. By the time the agent attempted to
execute something relevant, several steps had already been wasted, leaving insufficient opportunities
to complete the task properly.

34



Before you leave, your
opinion matters

Are you kely to use this chat
experience again?

wves @B

How can we make this experience
better for you?

Type your message

Submit

Action:
click ext ™No"
ctai
The red dot was acted upon.

Before you leave, your
opinion matters

Are you kely to use this chat
experience again?

wves @B

How can we make this experience
better for you?

Type your message

Submit

ction
click text "No"
ctail
The red dot was acted upon.

Before you leave, your
opinion matters

Are you kely to use this chat
experience again?

wves @0

How can we make this experience
better for you?

Type your message

Submit

 Action:
click text "No"
ctai
The red dot was acted upon.

Before you leave, your
opinion matters

Are you kely to use this chat
experience agair’

W Yes & No

How can we make this experience
better for you?

Type your message

Action:
Detail
No action matched.

Before you leave, your
opinion matters

Are youlkely to use this chat
experience again?

i Yes & flo

How can we make this experience
better for you?

Type your message

Submit

Action
click text "No"
etai
The red dot was acted upon.

Before you leave, your
opinion matters

Are youlikely to use this chat
experience again?

" Yes L0

How can we make this experience
better for you?

Type your message

Submit

Action;
click icon (blue X, top left)
Detail

tai
The red dot was acted upon.

3050 @ 271
< Detegmininglocstin..

Searching things ta do.

Action:
click text "Aug 1 - Aug 15"

Detai
The red dot was acted upon.

306 0 @ EE2T)
Mountain View, Califérnia, United States...
<« A Q

Aug - Aug

32things to do near you

How our sort order works ©

o
st
%% $1500in OnokeyCash appled

Q6n
9 74mi
44/5-Excallent
8 reviews) ©

“Get s lower pice by slecting multipl travelars

‘-Ii

3040 6@ ow4n
2 Expedia

Hi, Smart

$15.00 in OneKeyCash

B X & & = @

Planning a new escape? Let's chat.

© Explor ripdoas with ChatPT >

Your recent searches
Stays in Rome

B - sat Aug3 ]

2travelers 1 room

Explore your destinations

TRAVEL GUIDE e
Rome Pa
Vatican opulence, Anclent marvels, Historic walks Ror

® &
h Tips Inbox  Account

X Action:
click icon (magnifying glass,
bottom)

Detail
The red dot was acted upon.

3060 @ ow4n
& Mountain View, California, United States... Q

32things to do near you
How our sort order works ©

$500 monekercanoppiod @D

Computer History Museum: Run your own
Treasure Hunt

o 0+5$60

9 74mi for i

“Getslower price

slecting multipls travelrs Computer History Museur
Treasure Hunt

[<E
9 74mi

Action:
click text "Mountain View,
California, United States..."

Detail
The red dot was acted upon.

Search

[aa) o
- =8

P

Recent searches

Mendocino County, United States of
America

Mandocino County
Aug1- Aug s
Rome, Italy

Rome
B

Aug1- Aug 32 guests +1rom

Paris, France

B

Paris

Sep 25 - Sep 282 guests -1 room

paris

Aug1a - Aug14

paris

@ ® &
Home oarch Tips Inbox  Account

Action:
click text "Things to do"

eta
The red dot was acted upon.

Figure 13: Trajectory of MobileAgent on expedia_3 (Part 2). Task description: “Check things to do
in Paris. Get the search results for 25th to 28th of any month.”

35



G.3 MB3A vs Human on google_tasks_0 task

PO OO0 MO WD woo  Pmop oEpEE
e X Create new list

Tasks

Enter lst title PO GO0 @O0 xeo  wao  Pmop
MyTasks -+ NGwlist U oW ) -
y

Tasks e

K MyTasks  Work  + Newlist
@) e
o /F‘_/! o —
L
J L)
No tasks yet % ® o @ 0
Add your to-dos and keep track of them FE
across Google Workspace QAWERTY U I'OP
No tasks yet
ASDFGHUJKL Add your to-os and keep track of them
across Google Workspace
4 ZXCVBNMG®
73, O e
B +
v . ]
< . [ ]
Action
Action input_text B - g

clicl Detail
ail The text "Work" has been

Deta
The red dot was acted upon. < . n

(a) Trajectory of M3A on google_tasks_0

vz @ owan w0 @ vir 1o & it & owuan
Tasks &) X Create new list X Create new list Done Tasks 0
o e e o o= ren
¢

@ e @ e
J/\/F‘T J/\/F‘T
</ \/ X =/ \/ X

No tasks yet No tasks yet
Add your to-dos and keep track of the > Thanks | We ) N Work Working Works & Add your to-dos and keep track of the
across Google Workspace s s across Google Workspace
QWERTYUIOP qwer tyuioop
ASDFGHUJKL asdfghjk.I
4+ ZXCVBNMGU® ¢ zxcvbnma@®
B8 % - + 73, © . QO 723, © . ® a8 % - i

(b) Trajectory of Human on google_tasks_0

Figure 14: Trajectory of M3A vs human on google_tasks_0. Task description: “Create a new list
‘Work’.”

By comparing Figure[T4a and Figure [T4b} it is evident that M3A employed a shortcut strategy by
combining text input and pressing the enter key into a single-step operation. This approach resulted
in a more concise execution, with one fewer step compared to the human’s.

36



	Introduction
	Related Work
	SPA-Bench Task
	Overview
	Task Construction

	Agent Framework
	A Unified Plug-and-play Framework
	Snapshot-Based Emulator for Consistent Testing

	Automated Evaluation Pipeline
	Metrics
	Success Detection

	Experiments
	Overview of Success Rate
	Completion- and Consumption-related Metrics
	Key Insights

	Conclusion
	Limitation and Future Work
	Task Collection
	Task Apps
	List of Tasks
	Single-App English Tasks
	Single-App Chinese Tasks
	Cross-App English Tasks
	Cross-App Chinese Tasks

	Example of Key Components
	Cross-app Example Task Demo
	Steps of Tasks

	Integrated Agents
	Agent Input Modalities
	Adoption of Agents into Framework
	Logs and Errors

	Single-App Success Detection
	Coarse Detection: Key Component Matching
	Fine Detection: MLLM Evaluation
	Approach Evaluation and Results
	Prompting Templates
	System Prompt
	System Prompt with Action
	Base Prompt
	Base Prompt with Text Action
	Base Prompt with Image Action
	Result-only Prompt
	Reason-and-result Prompt

	Example of Success Detection

	Cross-App Success Detection
	Subtask Generation
	Stage 1: Trajectory Split
	Stage 2: Sequential Subtask Success Detection
	Approach Evaluation and Results
	Prompting Templates
	System Prompt of Stage 1
	User Prompt of Stage 1
	System Prompt of Stage 2 Memory
	User Prompt of Stage 2 Memory
	Subtask Generation


	Experiment Details
	Agent Configuration
	Experimental Results
	Performance Across Task Difficulty Levels
	Performance Loss Using Open-source Model

	Case Study
	AppAgent on contact_2 task
	MobileAgent on expedia_3 task
	M3A vs Human on google_tasks_0 task


