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Abstract
Bloom filters (BF) are space-efficient probabilis-
tic data structures for approximate membership
testing. Boosted by the proliferation of machine
learning, learned Bloom filters (LBF) were re-
cently proposed by augmenting the canonical BFs
with a learned oracle as a pre-filter, the size of
which is crucial to the compactness of the overall
system. In this paper, inspired by ensemble learn-
ing, we depart from the state-of-the-art single-
oracle LBF structure by demonstrating that, by
leveraging multiple learning oracles of smaller
size and carefully optimizing the accompanied
backup filters, we can significantly boost the per-
formance of LBF under the same space budget.
We then design and optimize ensemble learned
Bloom filters for mutually independent and corre-
lated learning oracles respectively. We also empir-
ically demonstrate the performance improvement
of our propositions under three practical data anal-
ysis tasks.

1. Introduction
Originally proposed by and named after Bloom in the sem-
inal paper (Bloom, 1970), Bloom filters (BF) are space-
efficient data structures for solving the membership lookup
problem by compactly recording a given set I of data items
in a bit array and outputting a binary answer when queried.
As a structural property, the space compactness of BFs is
achieved at the price of limited false positives but no false
negative. Due to the neat structure with profound theoretic
and practical implications, BFs have received significant
research attention, leading to a palette of extensions and
variants including Bloomier filters (Chazelle et al., 2004),
counting BF (Bonomi et al., 2006), and invertible Bloom
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lookup tables (Goodrich & Mitzenmacher, 2011) etc.

Boosted by the proliferation of machine learning, learned
Bloom filters (LBF) were recently proposed (Kraska et al.,
2018; Mitzenmacher, 2018), with the design rationale that
we can leverage the specific structure exhibited by data items
to reduce the space of BFs without sacrificing lookup accu-
racy. Technically, a pre-filter is constructed by implement-
ing a learning model, termed as the learned oracle or simply
oracle for brevity, to filter the queried items. The items with
negative responses at the filter are then passed to a backup
BF for final check. As the backup filter only needs to deal
with filtered items, we can reduce its size and come up with
a more compact learning-augmented data structure, even
after taking into account the space overhead brought by the
oracle. Along this direction, Mitzenmacher (Mitzenmacher,
2018) proposed a sandwich structure to further improve the
performance. Under the condition that the score distribution
of the oracle is available, several variants attempted to make
the best use of the oracle to improve the overall lookup per-
formance: Vaidya et al. (Vaidya et al., 2021) segmented the
score space of the oracle into multiple regions by using mul-
tiple thresholds, and uses separate backup Bloom filters for
each region; Sato et al. (Sato & Matsui, 2023) accelerated
the construction while maintaining the same memory effi-
ciency as Vaidya et al. (Vaidya et al., 2021); Dai et al. (Dai
& Shrivastava, 2020) attributed different number of hash
functions in different regions.

In virtually all the state-of-the-art LBF design, the oracle has
crucial impact on the performance of the system as a whole.
A more accurate oracle results in smaller false positive rate
(FPR). However, it has been well-demonstrated (Thompson
et al., 2021) that the accuracy of learning models exhibit
diminishing performance improvement w.r.t. the model size.
Therefore, the size of the learning model may become a
potential bottleneck of the LBF if the overall space bud-
get is limited. To quantitatively demonstrate this point, we
build an LBF for identifying malicious URLs from 200,000
URLs with a backup BF of 500K bits. We tune the size of
the oracle to vary the FPR, as illustrated in Figure 1. We can
observe that the size of the oracle occupies non-negligible
part of the total memory space and that the accuracy im-
provement of the oracle paces down significantly with the
increase of its size.

The above observation resonates with the technical diffi-
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Figure 1. FPR of LBFs with an oracle under different sizes and a
BF of 500Kbits to detect malicious URLs from 200,000 URLs.

culty and the cost of building strong learning models in
the generic machine learning context. One of the most
cost-effective technique to boost the accuracy of learning
models is ensemble learning (Polikar, 2012), which consists
of strategically orchestrating a set of weak models usually
of smaller size to form a much stronger model. Ensemble
learning has demonstrated remarkable improvements in a va-
riety of learning tasks (Gomes et al., 2017; Mendes-Moreira
et al., 2012; Vanerio & Casas, 2017).

Inspired by the ensemble-based learning paradigm, we de-
part from the state-of-the-art single-oracle structure of the
LBF design to investigate the following research question.

Q: How to combine multiple smaller oracles to construct
an ensemble learned BF (ELBF) to optimize the overall
accuracy under given memory budget? More specifically,
given a pool of oracles, which subset of them to choose
and how to orchestrate them with backup filters to mini-
mize the overall FPR?

In this paper, we give affirmative answer the question. We
demonstrate that, by leveraging multiple learning oracles
of smaller size and carefully optimizing the accompanied
backup BFs, we can significantly boost the performance
of the LBF under the same space budget. We technically
achieve this by proposing a new LBF design termed as en-
semble learned BFs (ELBF), as depicted in Figure 2. We
formulate the optimal design of ELBF as a combinatorial
optimization problem: given a pool of oracles and the total
space budget, the problem is to choose a subset of oracles
and compute the sizes of the backup BFs so that the overall
FPR is minimized. We reveal the structural analogy be-
tween our problem to the Knapsack problem and develop a
Knapsack-based approximate algorithm achieving proven
(ϵ, δ)-optimality with tunable parameters ϵ and δ trading off
complexity against optimality. In the case of oracles are cor-
related, we propose a generalized design, ELBF++, letting
multiple correlated oracles share a common backup filter.
We empirically evaluate our approaches against existing

Figure 2. Overview of ELBF.

works under practical data analysis tasks with real-world
datasets. Our experiments demonstrate significant perfor-
mance improvement of ELBFs against the state-of-the-art
LBF and its variants.

2. Technical Preliminaries
In this section, we give brief introduction on the standard
BFs and LBFs, both of which solve the membership lookup
problem, i.e., given a set I, outputting a binary answer
whether a data item e belongs to I. Throughout the paper,
we use calligraphic letters (e.g., X ) to denote sets and bold-
face letters (e.g., x) to denote vectors. Table 1 summarizes
major notations.

2.1. Canonical Bloom Filters

BFs are space-efficient probabilistic data structures repre-
senting a set I. Physically, a BF contains an m-bit array
B and a family of k independent hash functions denoted as
H ≜ {hi}ki=1, where hi(e) maps an item to a random bit in
B. Each bit of B is initialized to 0. When inserting an item
e, we set B[hi(e)] to 1 for 1 ≤ i ≤ k. To check whether
an item e ∈ I, we return true if hi(e) = 1 for 1 ≤ i ≤ k,
otherwise we return false.

It is clear from the construction of BFs that they do not
produce false negatives. However, due to hash collisions, a
BF may wrongly return true for an item e /∈ I, causing a
false positive. Let n denote the number of items recorded
in B, the probability that a specific bit of B is 0 is given
by (1− 1/m)kn ≈ e−kn/m. Thus the probability of a false
positive can be computed as (1− e−kn/m)k.

Algebraically, the false positive rate is minimized when
k equals m

n ln 2. The minimal value can be computed as
αm/n, where α ≈ 0.6185 (Broder & Mitzenmacher, 2004).

2.2. Learned Bloom Filters

LBFs exploit a learned model, termed as a learned oracle
O, briefly denoted as oracle, to perform pre-filtering. If
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Table 1. Major notations.
Section 3: Ensemble Learned Bloom Filters with Independent Oracles

I item set n number of items in I
H set of Hash functions α 0.6185
FP,i false positive rate of oracle i FN,i false negative rate of oracle i
bin number of bits allocated to backup BF i O set of oracles
n0 number of oracles in O Lin size of oracle i in number of bits
A set of chosen oracles yi bi/FN,i

L(·) Lagrangian function λ Lagrange multiplier
c auxiliary variable F (i) false positive rate of branch i
Tn total space budget in number of bits ∆ discretization stepsize of c
θ1, θ2 scaling factors vi value of object i
wi weight of object i v̂i discretized value of vi
ŵi discretized value of wi v̂ sum of v̂i

Section 4: Ensemble Learned Bloom Filters with Correlated Oracles

P(S) a partition of S Π(S) set of all possible partitions of S
g group of oracles Γ auxiliary learned model

the learned oracle replies positively, the queried item is
considered as a member of I. Otherwise, a backup BF is
then used to perform further check as in standard BFs.

Suppose that the oracle takes Ln bits and the backup BF
takes bn bits. Denote FP and FN as the false positive rate
and false negative rate of the oracle. The backup BF only
needs to hold FN · n keys. Hence, the overall false positive
rate for the LBF can be derived as

FP + (1− FP )α
b/FN . (1)

(Mitzenmacher, 2018) also shows an estimation on what
size the learning model is required for an improvement for
performance. Compared with a standard BF of the same to-
tal space, whose false positive rate is αb+L, the LBF makes
an improvement in the following situations

FP + (1− FP )α
b/FN ≤ αb+L,

which translates to the following condition on the size of
the learning model:

L ≤ logα
(
FP + (1− FP )α

b/FN
)
− b. (2)

3. Ensemble Learned Bloom Filters with
Independent Oracles

This section presents our design of Bloom filters augmented
by ensemble learning. Inspired by ensemble learning, our
key idea is to orchestrate multiple learning oracles of small
size to replace the learning oracle in the LBF to obtain
superior overall performance. In what follows, we first
present the ELBF design and then its optimization.

3.1. Design

Our ELBFs mobilize multiple learning oracles. To begin
with, we assume the oracles are mutually independent, e.g.,
by learning mutually independent features. Each oracle is
backed up by a backup BF, which stores the false negatives
produced by the oracle. When an item e is queried, the
ELBF replies positively if all the oracles return positively or
the oracles return negatively but their corresponding backup
BFs return positively, otherwise it replies negatively.

It follows straightforwardly from its construction that our
ELBFs do not have false negative, which is inline with the
standard BFs. We now analyze its false positive rate. Let
FP,i and FN,i denote the false positive and false negative
rate of oracle i. Suppose bim bits are allocated to the backup
BF i. It follows that backup BF i needs to hold FN,i ·n items,
with the corresponding optimal false positive rate αbi/FN,i .
Thus, the false positive rate for the branch i, i.e., the oracle i
plus the backup BF i, is FP,i+(1−FP,i)α

bi/FN,i . Therefore,
let O denotes the set of oracles used in the ELBF, which
are assumed to be mutually independent. We create a dumb
oracle with size 0, FPR → 0 and FNR 1, add it into O
to include the degenerated case where adding an oracle
will have negative impact on the overall performance. The
overall FPR can be computed as follows:∏

i∈O

(
FP,i + (1− FP,i)α

bi/FN,i

)
. (3)

3.2. Optimization

In this subsection, we optimize the design of ELBF by
solving the following minimization problem.
Problem 1. Suppose we dispose a set O of independent
oracles, from which we can choose to build our ELBF. Given
a total space budget T · n bits, the optimal design of ELBF
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computes a subset of oraclesA ⊆ O to choose and the sizes
of their backup BFs b ≜ {bi}i∈A so that the overall false
positive rate is minimized. The problem is mathematically
formalized as follows.

min
A⊆O

min
b

∏
i∈A

(
FP,i + (1− FP,i)α

bi/FN,i

)
subject to:

∑
i∈A

(Li + bi) ≤ T

bi ≥ 0, ∀i ∈ A.

(4)

Consider the inner minimization problem for a givenA. De-
note yi ≜ bi/FN,i. We can rewrite the inner minimization
problem as below.

min
b

∑
i∈A

ln
(
FP,i + (1− FP,i)α

yi

)
subject to

∑
i∈A

(Li + yiFN,i) ≤ T

yi ≥ 0, ∀i ∈ A.

(5)

Using augmented Lagrangian approach, we write the fol-
lowing Lagrangian function for optimization:

L(y1, y2, . . . , yn, λ) =
∑
i∈A

ln
(
FP,i + (1− FP,i)α

yi

)
−λ

(∑
i∈A

(Li + yiFN,i)− T

)
,

(6)
where λ ≤ 0 is the Lagrange multiplier. The partial deriva-
tives with respect to yi and λ can be derived as below.

∂L
∂yi

=
(1− FP,i)α

yi lnα

FP,i + (1− FP,i)αyi
− FN,iλ

∂L
∂λ

=T −
∑
i∈A

(Li + yiFN,i)
(7)

We observe that the partial derivative for yi equals 0 when

(1− FP,i)α
yi(

FP,i + (1− FP,i)αyi

)
FN,i

=
λ

lnα
≜ c,∀i ∈ A. (8)

In the above equation, we define an auxiliary variable c,
which serves as a pivot in our analysis. Armed with c, we
can derive the optimal b∗i for branch i as follows.

b∗i = FN,i logα
cFN,iFP,i

(1− cFN,i)(1− FP,i)
, (9)

from which we further get the minimal false positive rate
for branch i, denoted by F (i), as

F (i) = FP,i + (1− FP,i)α
bi/FN,i =

FP,i

1− cFN,i
(10)

Noticing that bi ≥ 0 and F (i) ∈ (0, 1], we can bound c by
0 < c ≤ 1−FP,i

FN,i
.

Armed with the above analysis, we now proceed to consider
the outer minimization problem. To this end, we define a set
of binary variables {xi}i∈O to indicate whether we choose
oracle i. After some straightforward algebraic operations,
we rewrite the outer minimization problem as follows.

max
x

∑
i∈O

xi · ln
1− cFN,i

FP,i

subject to
∑
i∈O

xi · (Li + b∗i ) ≤ T

xi ∈ {0, 1}, ∀i ∈ O.

(11)

By casting each oracle i to an object with value ln
1−cFN,i

FP,i

and weight Li+b∗i , we observe that our problem has elegant
analogy to the famous Knapsack problem, which is known
to be NP-hard (Garey & Johnson, 1979). It then follows
that our problem is also NP-hard. However, being weakly
NP-hard, the Knapsack problem with integer weights can
be solved by dynamic programming in pseudo-polynomial
time. Suppose we can invoke an oracle, termed as KNAP-
SACK, that solves the canonical Knapsack problem with
integer weights and values. We next develop a Knapsack-
based algorithm augmented by the scaling technique to find
an (ϵ, δ)-optimal solution of our problem, as formalized
below. The rationale behind is to allow a small quantity of
overflow on the space budget to achieve near-optimal FPR.

Definition 3.1. The configuration of an ELBF is called
(ϵ, δ)-optimal if its FPR is within ϵ to the optimal and its
space is upper-bounded by (1 + δ)T .

Algorithm 1 ELBF optimization
Input: oracles setO, space budget T , scaling factors θ1, θ2,

stepsize ∆
Output: selected oracle set A, backup BF setting b

1: Initialization: v̂∗ ← 0, A∗ ← ∅, c← 0

2: while 0 ≤ c ≤ max
i∈O

1− FP,i

FN,i
do

3: c← c+∆
4: for each j ∈ O do
5: v̂j ←max

{
0,
⌈
θ1 · ln 1−cFN,j

FP,j

⌉}
6: ŵj ←

⌊
θ2

(
Lj + FN,j logα

cFN,jFP,j

(1−cFN,j)(1−FP,j)

)⌋
7: end for
8: (v̂,A)← KNAPSACK(O, v̂, ŵ, ⌈θ2T ⌉)
9: if v̂ > v̂∗ then

10: v̂∗ ← v̂,A∗ ← A
11: b∗i ← FN,i logα

cFN,iFP,i

(1−cFN,i)(1−FP,i)
,∀i ∈ A

12: end if
13: end while
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The pseudo-code of our algorithm is given in Algorithm 1.
The core part of our algorithm is the while loop, in which
we scan c with stepsize ∆. For each discretized value of
c, i.e., i∆, we scale the values vj and the weights wj for
each oracle j ∈ O. We then invoke the Knapsack algorithm
by regarding each oracle as an object with the total weight
constraint scaled up to θ2T . Our algorithm returns the op-
timal Knapsack solution among all discretized c, which is
also an (ϵ, δ)-optimal ELBF configuration, as presented in
Theorem 3.2 and proved in Appendix A.

Theorem 3.2. Under the condition θ1 ≥ n0

ϵ and θ2 ≥ n0+1
Tδ ,

Algorithm 1 outputs an (ϵ, δ)-optimal ELBF configuration.

We conclude this section by analyzing the time complex-
ity of our algorithm. The complexity to calculate the val-
ues and weights and solve a specific Knapsack problem is
O(n0 + n0⌈θ2T ⌉) = O(n2

0/δ). As the above operations
are performed for each discretized value of c, the overall
time complexity sums up to O

(
maxj∈O

n2
0(1−FP,j)
FN,j∆δ

)
, i.e.,

asymptotically O
(
n2
0/(δ∆)

)
.

4. Ensemble Learned Bloom Filters with
Correlated Oracles

In the previous section, the assumption of mutually indepen-
dent oracles was made. Nevertheless, in real-world scenar-
ios, oracles frequently exhibit correlations. In this section,
we address this correlated case by devising a generalized
version of ELBF called ELBF++.

The design rationale of ELBF++ lies in allowing multiple
correlated oracles to share a common backup filter, as il-
lustrated in Figure 3. This is achieved through carefully
selecting a subset of oracles and optimizing the correspond-
ing backup filter parameters. Specifically, ELBF++ operates
as follows: Each backup filter stores the false negatives
of all the selected oracles connected to it. When an item
is queried, ELBF++ returns a positive response if all the
selected oracles give positive results or, if some of them re-
turn negatively, but their corresponding backup filters return
positively. Otherwise, ELBF++ returns a negative response.

Before delving into the design of ELBF++, we note that
ELBF can be regarded as a degenerated version of ELBF++.
As proved in Appendix, when oracles are mutually indepen-
dent, attributing a separate backup filter to each oracle leads
to strictly lower FPR than letting multiple oracles sharing
a common backup filter, which justifies the ELBF design.
However, when oracles are correlated, the situation is more
complex such that sharing a common backup filter among
correlated oracles helps reduce FPR.

The central research problem in the design of ELBF++ is
to choose the appropriate set of correlated oracles for each
backup filter. To formalize the problem, suppose we dispose

Figure 3. Overview of ELBF++.

a set O of oracles, some of which are correlated. Let S
denote a subset of O and P(S) denote a partition of S . For
each element of g ∈ P(S) representing a subset of oracles,
we consider them sharing the same backup filter, thereby
forming a branch. We define FP,g and FN,g as the FPR
and FNR of branch g, respectively. Assuming bgm bits are
allocated to the backup filter, the FPR of branch g, denoted
by F (g), is given by

F (g) = FP,g + (1− FP,g)α
bg/FN,g . (12)

For a given partition P(S) consisting of m branches, we
denote Xi(P(S),b), concisely denoted by Xi when the
context is clear, as the event that branch i returns false
positively. The overall FPR is then Pr(

⋂m
i=1 Xi). Define

Γ(P(S),b) ≜
Pr (

⋂m
i=1 Xi)∏m

i=1 Pr(Xi)
.

We can express Pr (
⋂m

i=1 Xi) as

Pr

(
m⋂
i=1

Xi

)
= Γ(P(S),b)

m∏
i=1

Pr(Xi)

= Γ(P(S),b)
∏

g∈P(S)

(
FP,g + (1− FP,g)α

bg/FN,g

)
.

(13)

We can observe that computing the optimal value of
Pr (

⋂m
i=1 Xi) requires evaluating Γ(P(S),b) for each par-

tition P(S) and each possible size configuration of the
backup filters b, whose complexity is super-exponential.

To reduce the above complexity, we adopt a learning-based
approach. Specifically, we randomly sample a subset of par-
titions and configurations and then train an auxiliary learned
model that, given any partition P(S) and any size con-
figuration of the backup filters b, estimates Pr (

⋂m
i=1 Xi).

Existing works have demonstrated the feasibility of learning
effective models with small sample size (Loo et al., 2019;
Lu et al., 2023; Sendera et al., 2021). In our work, we
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leverage the random forest model to learn Γ(P(S),b). The
details of our training algorithm are given in Appendix C.

Suppose our random forest model for learning Γ(P(S),b)
takes Un bits. Let Π(S) denote the set of all possible par-
titions of S. We can formulate the problem of optimal
ELBF++ design as follows.

min
S⊆O

min
P(S)∈Π(S)

min
b

Γ(P(S),b)
∏

g∈P(S)

(
FP,g+(1− FP,g)α

bg/FN,g

)
subject to: U +

∑
g∈P(S)

(Lg + bg) ≤ T

bg ≥ 0, ∀g ∈ P(S)
(14)

Considering the inner minimization problem for a given
P(S), we can rewrite it as follows:

min
b

ln Γ(P(S),b) +
∑

g∈P(S)

ln
(
FP,g + (1− FP,g)α

bg/FN,g

)
s. t.: U +

∑
g∈P(S)

(Lg + bg) ≤ T

bg ≥ 0, ∀g ∈ P(S).
(15)

By introducing a multiplier λ ≤ 0, we can write the aug-
mented Lagrangian as

L(b, λ) = lnΓ(P(S),b) +
∑

g∈P(S)

ln
(
FP,g

+(1−FP,g)α
bg/FN,g

)
−λ

 ∑
g∈P(S)

(Lg + bg)− T + U

.
(16)

Denote ϕg ≜ ∂ ln Γ(P(S),b)/∂bg. The partial derivatives
of L w.r.t. bg and λ can be derived as

∂L
∂bg

=ϕg +
(1− FP,g)α

bg/FN,g lnα

FN,g

(
FP,g + (1− FP,g)αbg/FN,g

) − λ

∂L
∂λ

=T − U −
∑

g∈P(S)

(Lg + bg)

(17)

By imposing ∂L/∂bg = 0, we obtain

(1− FP,g)α
bg/FN,g

FN,i

(
FP,g + (1− FP,g)αbg/FN,g

) =
λ

lnα
− ϕg

lnα

≜ c− Φg, ∀g ∈ P(S). (18)

In the above equation, we define an auxiliary variable c as
in the analysis of the previous section, and denote Φg ≜

ϕg/lnα. We can derive the optimal b∗g as

b∗g = FN,g logα
(c− Φ∗

g)FN,gFP,g(
1− (c− Φ∗

g)FN,g

)
(1− FP,g)

. (19)

Here, b∗g can be solved iteratively. Specifically, we define an
auxiliary variable

ug(t) ≜ bg(t)−

FN,g logα

(
c− Φg(t)

)
FN,gFP,g(

1−
(
c− Φg(t)

)
FN,g

)
(1− FP,g)

,

where t denotes the corresponding iteration index. We em-
ploy the secant method (Barnes, 1965) to update bg(t) as
follows:

bg(t+1) = bg(t)−
ug(t)

ug(t)− ug(t− 1)
(bg(t)− bg(t− 1)) .

Noticing that the derivative of ug(t) is non-zero in the vicin-
ity of b∗g, and assuming that Γ(P(S),b) is continuous and
differentiable, we can prove that b(t) converges to b∗g , armed
with which we can derive the overall FPR, denoted by F (S)

as follows:

F (S) = Γ(P(S),b∗)
∏

g∈P(S)

F
(g)
P

= Γ(P(S),b∗)
∏

g∈P(S)

FP,g

1− (c− Φ∗
g)FN,g

.
(20)

By searching c in (0,ming∈P(S)(1− FP,g)/FN,g] and find-
ing the minimal corresponding overall FPR, we can solve
the inner optimization problem. The detailed pseudo-code
is given in Algorithm 3 of Appendix D.

Next, we turn to solve the outer optimization problem by de-
veloping a greedy merging algorithm, described as follows:

• Initialization. We set P as an empty set.
• Augmenting P . We iteratively augment P using the

following three strategies:
– Creating new branch: We pick an oracle not yet

selected and create a new branch.
– Augmenting existing branch: We pick an oracle

not yet selected and merge it with one of existing
branches in P .

– Merging two existing branches: We pick two
branches in P and merge them.

For each of the above augmentation strategy, we invoke our
algorithm to solve the inner optimization problem under the
augmented partition P . We stop the augmentation when the
overall FPR cannot be further improved. At this point, we
output the final partition and the corresponding backup filter
size to set the ELBF++ parameters.
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We conclude this section by analyzing the time complexity
of the greedy algorithm. Given the error bound ϵb on finding
b∗g , the number of iterations to execute the secant-based up-
date is O

(
logξ (log (1/ϵb))

)
, where ξ = (1+

√
5)/2 (Dı́ez,

2003). Hence, for a given P , the complexity of finding
the minimal overall FPR among all discretized values of
c is O

((
logξ (log (1/ϵb))

)
/∆
)
. Given that the inner opti-

mization procedure is invoked for each augmentation of the
partition P , and considering that the augmentation steps
may be executed up to n0 times, the overall time complexity
sums up to O

(
n3
0

(
logξ (log (1/ϵb))

)
/∆
)
.

5. Extensions and Variants
In this section, we discuss several pertinent extensions and
variants of our ELBF to demonstrate that our design is suffi-
ciently generic to be applied in a large spectrum of data pro-
cessing tasks: (1) We formulate and optimize sandwiched
ELBF which is incorporated with initial filters prior to or-
acles; (2) We consider an enhanced scenario where each
oracle can be optimized as well; (3) We propose Ensemble
Learned Bloomier Filter, which is inspired by Bloomier
filters (Chazelle et al., 2004), a variant of BF, to solve key-
value lookup. The details is presented in the Appendix.

6. Experiments
We perform empirical experiments to evaluate the proposed
designs. We conduct our experiments on three practical data
analysis tasks: (1) virus signature scan, (2) malicious URLs
detection, (3) universally unique identifier check. Due to
space limit, we present the first task and defer the rest two
to Appendix, which demonstrate similar results and thus
lead to similar observations and conclusions. We also give
a more detailed evaluation of Algorithm 1 under different
parameters using synthetic data. A aberration study pre-
sented in Appendix compares Algorithm 1 against simpler
approaches, highlighting the advantage of our proposition.
Our experiments are conducted on a standard off-the-shelf
desktop computer with an Intel(R) Core i7-12700F CPU
@2.10 GHz and 16 GB RAM.

6.1. Experiment Setting

BFs are extensively utilized in virus signature scanning task,
involving the verification of whether a suspect file’s sig-
nature exists in the virus signature database when the file
is presented. In our experiments, we apply the proposed
ELBFs to execute the task of virus signature scan and com-
pare them against the state-of-the-art solutions.

We use a real-world dataset EMBER (Anderson & Roth,
2018), an open-source collection of 1M sha256 file hashes.
There are 400K malicious, 400K benign and 200K unla-
beled files, which were scanned by VirusTotal in 2018. We

ignore the unlabeled files. The 2381 features of the files
are included in the dataset, from which we randomly select
238 features. The features are exclusive for mutually inde-
pendent case and somewhat duplicate for correlated case.
Following the literature, we choose the random forest clas-
sifier from sklearn (Pedregosa et al., 2011) as oracles. We
construct a pool of oracles with a large oracle and a set of
small oracles. The large oracle consists 10 decision trees
and at most 20 leaf nodes for each tree; the oracle size is
262Kb. Each small oracle is a single decision tree with at
most 20 leaf nodes; the oracle size is 32Kb. We randomly
sample 30% data for oracle training. The large oracle learns
from all 238 features while each small oracle learns from
23 or 24 features selected randomly.

6.2. Experiment Results

We compare ELBFs against major state-of-the-art proposi-
tions, i.e., the canonical BF (Bloom, 1970), LBF (Kraska
et al., 2018), Ada-BF (Dai & Shrivastava, 2020),
PLBF (Vaidya et al., 2021) and Fast PLBF++ (Sato & Mat-
sui, 2023). As we have a pool of oracles, we let LBF, Ada-
BF, PLBF and Fast PLBF++ operate on the oracle achieving
the lowest FPR. To put Ada-BF, PLBF and Fast PLBF++
along the same line of comparison with ELBF, we let Ada-
BF, PLBF and Fast PLBF++ operate on two regions rep-
resenting positive and negative responses from the oracle
and optimize the corresponding backup BFs. Ada-BF exe-
cutes under its hyper-parameter c = 1− 3 with 40 intervals
and PLBF and Fast PLBF++ execute under its number of
intervals N = 100. ELBF chooses the oracles by running
Algorithm 1 under the parameter setting ∆ = 0.1, ϵ = 0.01,
δ = 0.01. We straightforwardly set theta θ1 = ⌈no

ϵ ⌉ and
θ2 = ⌈no+1

Tδ ⌉, which satisfies the condition in Theorem 3.2.
ELBF++ operates the greedy merging algorithm under the
parameter setting ∆ = 0.1, ϵb = 0.01.

6.2.1. MEMORY BUDGET AND FPR

We first compare the central performance metric, FPR, of the
evaluated solutions in Figure 4(a) and Figure 4(c) under dif-
ferent memory budget. We make the following observations
from the results. (1) Under stringent memory budget, the
canonical BF has much higher FPR compared to its learning-
augmented peers. This performance gap shrinks with the
increase of the memory budget to the extent that, with abun-
dant memory space, there is no advantage to augment the BF
with oracles. This can be explained as follows. The FPR of
the canonical BF decreases exponentially in the memory al-
located to it. In the LBF, Ada-LBF, PLBF and Fast PLBF++,
the FPR depends not only on the size of the backup BF, but
also on the FPR of the oracles. When the memory budget is
not stringent, the FPR of the oracles dominates the global
FPR, leading to the result that the canonical BF outperforms
its learning-augmented peers, except our solution ELBFs,
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Figure 4. Performance comparison: mutually independent case (left), correlated case (right).
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Figure 5. Performance of Algorithm 1 under different parameter settings.

as integrating multiple different oracles eliminate the dimin-
ishing effect of a single oracle and we have included a dumb
oracle allowing to cover the case where adding an oracle has
negative impact on the final FPR; (2) ELBFs outperform the
other solutions for all the memory budget, confirming our
finding that orchestrating multiple small oracles instead of
relying on a single large oracle holistically can effectively
reduce the FPR. The performance gain is more pronounced
with large memory budget because this allows more space
to optimize the orchestration of different oracles, leading to
better performance. (3) The performance of Ada-BF, PLBF,
and Fast PLBF++ is unrelated to the correlation of oracles,
as they only use a single oracle. ELBF performs better than
ELBF++ in their respective situations, as ELBF achieves
guaranteed optimality while ELBF++ relies on heuristics.

6.2.2. TIME OVERHEAD

We then compare the time overhead of different solutions,
by time overhead we mean the time to compute the op-
timal configuration of the entire data structure including
the backup filter size, the oracles to use, etc, excluding the
times to train models and insert all the items into the BF
and backup BFs. In our experiments, we report that the time
overhead for BF and LBF is negligible and hence have not
included them in the figure. This is because BF does not
need to choose any oracle and LBF chooses the best oracle
with minimal overall FPR, both with almost no computation
overhead. Therefore, we concentrate on the comparison
among ELBFs, Ada-BF, PLBF and Fast PLBF++, as de-
picted in Figure 4(b) and Figure 4(d). We observe that both
Ada-BF and PLBF incur significantly higher overhead than

ELBF, because both of them require multiple-dimensional
search for the parameters, outweighing the Knapsack-based
search in ELBF. Though Fast PLBF++ diminishes the con-
struction time of PLBF, its time overhead remains higher
than that of ELBF. ELBF++ is more time-consuming than
ELBF due to the heuristics.

6.2.3. ABLATION STUDY W.R.T. ALGORITHM 1

We conclude our experiment analysis by evaluating Algo-
rithm 1 under different parameter settings regarding c, ϵ and
δ. The results, depicted in Figure 5, lead to the following
observations. The FPR increases in ∆ and ϵ, demonstrating
the trade-off between the optimality and complexity of our
algorithm. Our experiments indicate that setting ∆ to 0.1
seems sufficient to achieve near-optimal FPR. On the other
hand, the FPR decreases in δ, as larger δ indicates larger
memory budget and hence better performance. The impact
of δ decreases as the memory budget increases, to the ex-
tent that, when the memory budget reaches 3000 Kb, δ has
virtually no impact on the FPR.

7. Conclusion
In this paper, we have presented a new design of LBFs based
on ensemble learning, termed as ELBFs. We demonstrate
that by orchestrating multiple oracles of smaller size, the
ELBFs outperform the existing LBFs. The main technicality
to build the optimal ELBFs in our designs is a Knapsack-
based algorithm solving a combinatorial optimization prob-
lem for mutually independent learning oracles and a greedy
approach solving a more complex combinatorial optimiza-
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tion problem for correlated learning oracles. The empirical
experiments in real-world datasets demonstrate the perfor-
mance gain of our approaches.
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A. Proof of Theorem 3.2
Proof. Let (A∗,b∗) and (AOPT ,bOPT) denote the output of Algorithm 1 and the optimal solution of P1, respectively.
Let c∗ and cOPT denote the associated values of c correspondingly.

We consider the discretized Knapsack formulation of P denoted by P̂, in which v̂ and ŵ are computed using scaling factors
θ1 and θ2 as shown in Algorithm 1. Recall the scaling of wj , we can check that (AOPT ,b′) is a feasible solution of P̂,
where b′ is as follows

b′i =FN,i logα
ĉOPTFN,iFP,i

(1− ĉOPTFN,i)(1− FP,i)

≥FN,i logα
cOPTFN,iFP,i

(1− cOPTFN,i)(1− FP,i)
,

where ĉOPT =
⌊
cOPT

∆

⌋
·∆ ≤ cOPT .

Hence, we have

∑
i∈A∗

⌈
θ1 · ln

1− c∗FN,i

FP,i

⌉
≥
∑
i∈A∗

⌈
θ1 · ln

1− ĉOPTFN,i

FP,i

⌉

≥
∑
i∈A∗

⌈
θ1 · ln

1− cOPTFN,i

FP,i

⌉
.

The second inequality follows from ĉOPT ≤ cOPT . It then follows that∑
i∈A∗

(
1 + θ1 · ln

1− c∗FN,i

FP,i

)
≥
∑
i∈A∗

θ1 · ln
1− cOPTFN,i

FP,i
.

Let n0 denote the number of oracles. We have∑
i∈A∗

ln
1− c∗FN,i

FP,i
≥
∑
i∈A∗

ln
1− cOPTFN,i

FP,i
− n0

θ1
.

Recall that the false positive rates corresponding to (A∗,b∗) and (AOPT ,bOPT) are
∏

i∈A∗
FP,i

1−c∗FN,i
and∏

i∈A∗
FP,i

1−cOPTFN,i
, respectively. With some straightforward algebraic operations, we can prove that, under the con-

dition θ1 ≥ n0/ϵ, it holds that ∏
i∈A∗

FP,i

1− c∗FN,i
≤ (1 + ϵ)

∏
i∈A∗

FP,i

1− cOPTFN,i
.

We have now proved the false positive rate of the solution output by our algorithm is within ϵ to the optimal solution. We
then prove that the total space of our solution is upper-bounded by (1 + δ)T .

It follows from our algorithm that ∑
i∈A∗

⌊θ2 (Li + b∗i )⌋ ≤ ⌈θ2T ⌉.

Therefore, we have ∑
i∈A∗

θ2 (Li + b∗i )− n0 ≤ θ2T + 1.

The space overhead of our algorithm can then be bounded as follows.∑
i∈A∗

(Li + b∗i ) ≤ T +
n0 + 1

θ2
.

Therefore, if θ2 ≥ n0+1
Tδ , the total space of our solution is upper-bounded by (1 + δ)T .
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B. Optimality of ELBF with Non-correlated Oracles
Theorem B.1. Given any set of independent oracles and any space budget, allocating a separate backup filter for each
oracle leads to strictly lower FPR than letting multiple oracles sharing a common backup filter.

We consider the oracles are divided into a set G of ng ≜ |G| groups, with the oracles belonging to the same group sharing a
single backup filter, i.e., the filter of group g ∈ G stores the false negatives of all the oracles in this group.

We now derive the FPR by first deriving the FPR of each group and then deriving the overall FPR. For each group g ∈ G,
once at least one of the oracles in the group returns negatively, the backup filter will store the corresponding item. Hence,
the FNR of group g oracles as a whole, denoted by F

(g)
N , can be computed as

F
(g)
N = 1−

∏
i∈Og

(1− FN,i), (21)

where Og denotes the set of oracles in group g. The number of keys the backup filter of group g needs to hold is F (g)
N n. To

derive the FPR for group g, we first give the FPR for the oracles in the group, denoted by F
(g)
P as follows.

F
(g)
P =

∏
i∈Og

FP,i (22)

We then can derive the FPR for the whole branch including the backup filter as

F
(g)
P + (1− F

(g)
P )αb(g)/F

(g)
N .

Since the groups are independent to each other, we can conclude the FPR for this group-based design as∏
g∈G

(
F

(g)
P + (1− F

(g)
P )αb(g)/F

(g)
N

)
(23)

We next prove that for any configuration of this group-based design, there always exists a corresponding ELBF configuration
achieving lower FPR with the same space budget.

Suppose we have in total n oracles, with FP,i and FN,i denoting the FPR and the FNR of oracle i and Li denoting its size.
The space budget is T . We start from the case n = 2. The FPR of the group containing both oracles can be computed as

FG = FP,1FP,2 + (1− FP,1FP,2)α
b/(FN,1+FN,2−FN,1FN,2),

where b ≜ T − L1 − L2. The FPR of the corresponding ELBF is F1 · F2 that given by(
FP,1 + (1− FP,1)α

b1/FN,1

)(
FP,2 + (1− FP,2)α

b2/FN,2

)
,

where b1 + b2 = b.

Now, we need to prove F1 · F2 < FG . Imposing b1
FN,1

= b2
FN,2

yields b1 =
FN,1b

FN,1+FN,2
, b2 =

FN,2b
FN,1+FN,2

. The inequality can
be rewrite as below.(
FP,1 + (1− FP,1)α

b
FN,1+FN,2

)
·
(
FP,2 + (1− FP,2)α

b
FN,1+FN,2

)
< FP,1FP,2 + (1− FP,1FP,2)α

b
FN,1+FN,2−FN,1FN,2

⇐⇒ (FP,1 + FP,2 − 2FP,1FP,2)α
b

FN,1+FN,2 + (1− FP,1)(1− FP,2)α
2b

FN,1+FN,2 < (1− FP,1FP,2)α
b

FN,1+FN,2−FN,1FN,2

⇐⇒ (FP,1 + FP,2 − 2FP,1FP,2)α
1−

FN,1FN,2
FN,1+FN,2 + (1− FP,1)(1− FP,2)α

2(1−
FN,1FN,2

FN,1+FN,2
)
< 1− FP,1FP,2.

Since 1− FN,1FN,2

FN,1+FN,2
∈ (0, 1), we have α

1−
FN,1FN,2

FN,1+FN,2 < 1. The LHS of the above inequality is strictly smaller than

FP,1 + FP,2 − 2FP,1FP,2 + (1− FP,1)(1− FP,2) = 1− FP,1FP,2.
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The inequality is thus proven. We carry on the proof by mathematical induction.

Suppose n = k, ∃bi, where
∑k

i=1 bi = T −
∑k

i=1 Li, s.t.
∏k

i=1 Fi < FGk
.

For n = k + 1, the false positive rate of group Gk+1 is

FP,Gk+1
=

k+1∏
i=1

FP,i =

k∏
i=1

FP,i · FP,k+1 = FP,Gk
· FP,k+1 (24)

and the false negative rate of that is

FN,Gk+1
= 1−

k+1∏
i=1

(1− FN,i)

= 1−
(
1−

(
1−

k∏
i=1

(1− FN,i)
))
· (1− FN,k+1)

= 1− (1− FN,Gk
)(1− FN,k+1)

= FN,Gk
+ FN,k+1 − FN,Gk

FN,k+1.

(25)

from which we can write the FPR of groups consisting k + 1 oracles as

FP,GkFP,k+1 + (1− FP,GkFP,k+1)α
T

FN,Gk
+FN,k+1−FN,Gk

FN,k+1 (26)

That is, the ahead k oracles that compose the group can be treated as an alternative oracle. We need to prove there exists an
allocation of BFs for multiple oracles which behaves better than the group case.

Recall b = T −
∑k+1

i=1 Li. Imposing bGk

FN,Gk
= bk+1

FN,k+1
yields bGk

=
FN,Gk

b

FN,Gk
+FN,k+1

, bk+1 =
FN,k+1b

FN,Gk
+FN,k+1

. Taking the
assumption for n = k, we know that there exists an allocation for BFs for the ahead k oracles under budget bGk

satisfies the
following inequality.

k+1∏
i=1

Fi =

k∏
i=1

Fi · Fk+1 < FGk
· Fk+1

=
(
FP,Gk

+ (1− FP,Gk
)αbGk

/FN,Gk

)
·
(
FP,k+1 + (1− FP,k+1)α

bk+1/FN,k+1

)
=
(
FP,Gk

+ (1− FP,Gk
)α

b
FN,Gk

+FN,k+1

)
·
(
FP,k+1 + (1− FP,k+1)α

b
FN,Gk

+FN,k+1

) (27)

This inequality is smaller than (26) by similar analysis for the case n = 2. Then, we have FGk
· Fk+1 < FGk+1

, which leads
to

k+1∏
i=1

Fi < FGk+1

Thus, given mutually independent oracles, for any configuration of the group-based design, there always exists a correspond-
ing ELBF configuration achieving lower FPR with the same space budget.

C. Algorithm 2: Training Auxiliary Learned Model

D. Algorithm 3: Inner Optimization of ELBF++

E. Algorithm 4: Greedy Merging Algorithm for Outer Optimization of ELBF++
The pseudo-code of our greedy merging algorithm for the outer optimization of ELBF++ is given in Algorithm 4. Our three
augmentation strategies correspond to three for loops, respectively. The procedure INNER defined in Algorithm 3 solves the
inner optimization problem. For conciseness, an internal procedure UPDATE updates the current optimal configuration.
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Algorithm 2 Training auxiliary learned model
Input: oracles set O, space budget T , data scaler M
Output: auxiliary model Γ

1: Initialization: i← 1
2: while 1 ≤ i ≤M do
3: j ← 1
4: while 1 ≤ j ≤ n0 do
5: s← randomInt(j, n0)
6: Randomly divide O into a partition P(O) containing s groups
7: P(S)← Randomly select a subset containing j groups of P(O)
8: b ≜ (b1, b2, · · · , bn0

)← 0
9: Randomly allocate T to b1, b2, · · · , bj

10: R← Pr(X1, X2, · · · , Xj)∏j
i=1 Pr(Xi)

11: x← Extract features from P(S)
12: Add ((x,b) , R) to dataset
13: end while
14: end while
15: Γ← Train a Random Forest on dataset

Algorithm 3 Inner Optimization of ELBF++
1: procedure INNER(oracle partition P , stepsize ∆, space budget T , auxiliary model Γ, iteration threshold N )
2: F

(P)
P ← 1, c← 0, U ← size of Γ

3: while 0 ≤ c ≤ min
g∈P(S)

1− FP,g

FN,g
do

4: c← c+∆
5: for g ∈ P do
6: Initialize b randomly
7: Compute Φg(0),∀g ∈ P
8: t← 0
9: while convergence not reached and t < N do

10: ug(t)← bg(t)− FN,g logα
(c− Φg(t))FN,gFP,g

(1− (c− Φg(t))FN,g) (1− FP,g)
11: if t > 0 then
12: bg(t+ 1)← bg(t)−

ug(t)

ug(t)− ug(t− 1)
(bg(t)− bg(t− 1))

13: end if
14: t← t+ 1
15: end while
16: b∗g ← bg(t), Φ

∗
g ← Φg(t)

17: end for
18: F

(P)
P ← Γ(P,b∗)

∏
g∈P

FP,g

1− (c− Φ∗
g)FN,g

, w ←
∑
g∈P

b∗g

19: if F (P)
P < F

(P)∗
P and w ≤ T − U then

20: F
(P)∗
P ← F

(P)
P

21: end if
22: end while
23: return b∗, F

(P)∗
P

24: end procedure
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Algorithm 4 Greedy Merging Algorithm for Outer Optimization of ELBF++
Require: Oracles set O, space budget T , stepsize ∆, iteration threshold N
Ensure: Optimal partition P∗ and corresponding b∗

1: Initialization: F ∗
P ← 1, P ← ∅

2: procedure UPDATE(Pnew,b
∗
new, F

∗
P,new)

3: P∗ ← Pnew
4: b∗ ← b∗

new
5: F ∗

P ← F ∗
P,new

6: return True, P∗, b∗, F ∗
P

7: end procedure
8: while True do
9: imp← False

10: for each oracle o not in P do
11: Pnew ← P ∪ {o}
12: b∗

new, F
∗
P,new ← INNER(Pnew,∆, T,Γ, N)

13: if F ∗
P,new < F ∗

P then
14: (imp,P∗,b∗, F ∗

P )← UPDATE(Pnew,b
∗
new, F

∗
P,new)

15: end if
16: end for
17: for each branch g ∈ P do
18: for each oracle o not in P do
19: Pnew ← P \ {g} ∪ {g ∪ {o}}
20: (b∗

new, F
∗
P,new)← INNER(Pnew,∆, T,Γ, N)

21: if F ∗
P,new < F ∗

P then
22: (imp,P∗,b∗, F ∗

P )←UPDATE(Pnew,b
∗
new, F

∗
P,new)

23: end if
24: end for
25: end for
26: for each pair of branches (g1, g2) ∈ P do
27: Pnew ← P \ {g1, g2} ∪ {g1 ∪ g2}
28: (b∗

new, F
∗
P,new)← INNER(Pnew,∆, T,Γ, N)

29: if F ∗
P,new < F ∗

P then
30: (imp, P∗, b∗, F ∗

P )← UPDATE(Pnew,b
∗
new, F

∗
P,new)

31: end if
32: end for
33: if not imp then
34: Break
35: end if
36: P ← P∗

37: end while
38: return P∗, b∗, F ∗

P
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F. Details of Extensions and Variants
F.1. Optimizing Learned Oracles

Referring to Problem 1, we consider an enhanced scenario where each oracle possesses variable size and performance
characteristics. For instance, a decision tree oracle might incorporate additional leaf nodes to reduce its false positives and
false negatives, albeit at the expense of increased memory consumption. In this context, the objective is to select an optimal
configuration for each oracle such that the resultant ELBF achieves the minimal FPR.

Assume that each oracle i ∈ O has a set Ji of potential configurations. Each configuration j ∈ Ji is associated with specific
parameters: Lij denotes the memory size, FP,ij represents the false positive rate, and FN,ij represents the false negative
rate of the oracle under configuration j. The challenge is to determine the most appropriate configuration for each oracle to
optimize the overall FPR of the ELBF.

Problem 1 has evolved in complexity, now encompassing the optimization of individual configurations for each oracle i
within the chosen subset A. Reflecting on Algorithm 1, it is capable of addressing this intricate optimization challenge.
Given that the values of FP,i and FN,i fluctuate with the configuration j ∈ Ji of oracle i, the variables b∗i in (9) and F

(i)
P in

(10) are redefined as b∗ij and F
(ij)
P , respectively.

In the context of the Knapsack Problem formulation (11), each oracle’s value now ranges over the set {ln 1−cFN,ij

FP,ij
|j ∈ Ji},

and its weight is recalculated over the set {Lij + b∗ij |j ∈ Ji}. This reformulation suggests that the problem can be cast
as a Grouped Knapsack Problem, a derivative of the classic Knapsack Problem, solvable in pseudo-polynomial time via
dynamic programming. In this framework, each oracle is no longer a single object but a group of objects, with each object
corresponding to a specific configuration. We aim to select at most one object from each group to maximize the value of the
objective function.

Within the for loop of Algorithm 1, we iterate over each configuration j of oracle i, refining the KNAPSACK oracle to address
the Grouped Knapsack Problem and thus arriving at the optimal solution for the optimization problem. The time complexity
of the adapted algorithm is asymptotically O

(
n2
0l/(δ∆)

)
, where l denotes the number of configurations accessible per

oracle.

F.2. Sandwiched Ensemble Learned Bloom Filters

In sandwiched ELBF, we allocate a BF before each oracle to filter data items before injecting them into the oracle. Suppose
we allocate pin bits for each pre-filter i, whose FPR is then αpi , we can compute the overall FPR as follows:∏

i∈O
αpi

(
FP,i + (1− FP,i)α

(bi−pi)/FN,i

)
(28)

Thus, the sandwiched ELBF can be optimized by solving the following minimization problem.

min
A⊆O

min
b,p

∏
i∈A

αpi

(
FP,i + (1− FP,i)α

(bi−pi)/FN,i

)
subject to:

∑
i∈A

(Li + bi) ≤ T

bi ≥ pi ≥ 0, ∀i ∈ A.

(29)

For each branch i, we compute the derivatives with respect to pi as below:

FP,iα
pi lnα− (1− FP,i)(

1

FN,i
− 1)αbi/FN,iα

(1− 1
FN,i

)pi
lnα. (30)

The above derivative equals 0 when

pi = bi − FN,i logα
FP,iFN,i

(1− FP,i)(1− FN,i)
, (31)
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where we require FP,i + FN,i < 1 to ensure bi − pi > 0 so that the backup BF is not empty.

Thus, the minimum FPR of branch i can be derived as

(
FP,i

1− FN,i
)1−FN,i(

1− FP,i

FN,i
)FN,iαbi ≜ Ωi · αbi . (32)

Consider the inner minimization problem for a given A. We can rewrite the inner minimization problem as below:

min
b

∑
i∈A

(
lnΩi + bi lnα

)
subject to

∑
i∈A

(Li + bi) ≤ T

bi ≥ FN,i logα
FP,iFN,i

(1− FP,i)(1− FN,i)
, ∀i ∈ A

FP,i + FN,i < 1, ∀i ∈ A

(33)

By following the same analysis as in Section 3, we can rewrite the outer minimization problem as the following Knapsack
problem.

max
x

∑
i∈O

xi ·
(
ln

1

Ωi
+Li lnα

)
− T lnα

subject to
∑
i∈O

xi ·(Li+FN,i logα
FP,iFN,i

(1− FP,i)(1− FN,i)
)≤T

FP,i + FN,i < 1, ∀i ∈ O
xi ∈ {0, 1}, ∀i ∈ O

(34)

The above problem can be solved by adapting Algorithm 1 after removing oracles with FP,i + FN,i ≥ 1.

F.3. Ensemble Learned Bloomier Filter

Bloomier filters (Chazelle et al., 2004) are a variant of BF to solve key-value lookup: each item in S has an associated
value; given an queried item e, the corresponding Bloomier filter outputs the value associated with e, or ⊥ if e /∈ S. We now
extend our ELBF to the ensemble learned Bloomier filters by taking the following steps. First, each oracle is trained by
regression to output a value or ⊥ once queried by an input item. If all the oracles output the same value, this value is the
final output. Second, we replace the each backup BF in ELBFs by a Bloomier filter to resolve the case where the oracles
output inconsistent values. It suffices to record all the items with inconsistent oracle outputs with the corresponding values
in the backup Bloomier filters. In this way, our ELBF design can be extended to support key-value lookup.

G. Additional Experiments
G.1. Malicious URLs Detection

The main technical challenge in malicious URLs detection (MUD) is to quickly check whether a URL belongs to those
flagged as malicious with limited memory overhead, to which BFs offer an efficient probabilistic solution.

In our experiments on the MUD task, we downloaded the dataset from Kaggle, including 1,682,213 URLs, 21.5% of which
are malicious, others are benign. 56 numerical features are extracted from these URLs, from which we use 26 features such
as URL length, URL unique character ratio, path’s length and so on.

In our experiments, we use the same settings for oracles as in the first task of virus signature scan. The size of the large and
small oracles are 268Kb and 30-34Kb, respectively. Each small oracles learns from 2 or 3 features.

The experiment results are shown in Figure 6. As in task 1, armed with mutually independent oracles, our proposition
ELBF outperforms the state-of-the-art solutions traced in the experiments in terms of the FPR and time overhead. For the
correlated case, our ELFF++ has the lowest FPR with less time overhead than Ada-BF and PLBF.
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Figure 6. Performance comparison: mutually independent case (left), correlated case (right).

G.2. Universally Unique Identifier Check

In the third task of our experiments, we consider a scenario where the features are independent with each other, by generating
100K Universally Unique Identifiers (UUID). A UUID is a 128-bit number used to uniquely identify an entity. UUIDs
are widely used in software systems to avoid maintaining a central naming system. BFs can be used to efficiently check
the existence of UUIDs, when dealing with a large volume of identifiers and when a small number of false positives is
acceptable.

In our experiments, we build a synthetic dataset with 20 extracted features such as sum of digits, sum of characters, etc., and
include the UUIDs whose number and sum of digits are greater than the overall average into the existence. Again, the setting
of learning models we use is same as before. The size of the large and small oracles are 267Kb and 34Kb, respectively.
Each small oracle learns from 2 features.

The experiment results are shown in Figure 7. Again, our proposition ELBF outperforms the state-of-the-art solutions traced
in the experiments in terms of the FPR and time overhead, while ELBF++ outperforms the others in terms of the FPR with a
smaller time overhead than Ada-BF and PLBF.
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Figure 7. Performance comparison: mutually independent case (left), correlated case (right).

G.3. Time Overhead for Different Sizes of Oracles Pool

We compare the time overhead given a pool of different number of oracles under the space budget of 2000Kb. Again, by
time overhead we mean the time to compute the optimal configuration of the entire data structure including the backup filter
size, the oracles to use, etc. The experiment results, depicted in Figure 8, show that the time overhead of ELBF is lower than
Ada-BF, PLBF and Fast PLBF++ whenever the size of the pool, while that of ELBF++ is lower than Ada-BF and PLBF.
We observe that the time overhead of ELBF++ does not increases significantly, as its heuristic search does not traverse all
situations practically.

G.4. Aberration Study w.r.t. Algorithm 1

Given a set of oracles, Algorithm 1 selects the optimal subset. In this subsection, we take a aberration study that compares
Algorithm 1 against simpler approaches: (1) RS: random selection, (2) HA: selecting the oracles with the highest accuracy,
(3) SM: selecting the oracles with the smallest memory consumption, and (4) HP: selecting the oracles with the highest
product of the ratio of accuracy to memory and a factor γ. Without loss of generality, we default γ to 1. For each
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compared approach, we optimize the size of backup BF which ensures that each approach fully use the memory budget. The
experimental results is shown in Table 2, where we can see that our proposed approach yields the minimal FPR under each
budget as expected.
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Figure 8. Time overhead for different sizes of oracles pool.

Table 2. FPR comparison with simpler approaches.

Budget RS HA SM HP Algorithm 1

1000Kb 0.1316 0.1326 0.1251 0.1248 0.1053
1500Kb 0.0706 0.0626 0.0657 0.0655 0.0596
2000Kb 0.0663 0.0352 0.0353 0.0354 0.0333
2500Kb 0.0305 0.0260 0.0258 0.0261 0.0251
3000Kb 0.0202 0.0181 0.0182 0.0179 0.0173
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