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ABSTRACT

The conditional average treatment effect (CATE) is pivotal for personalized
decision-making across numerous domains. While observational studies (OBS)
are a primary data source for estimating CATE, they are susceptible to bias from
unmeasured confounding. The marginal sensitivity model (MSM) addresses this
by quantifying the robustness of causal conclusions to such confounding via a
sensitivity parameter, Γ. However, a significant limitation of MSM is the need for
researchers to subjectively specify Γ, which lacks a data-driven basis and under-
mines the reliability of inferences. Recent methods that use randomized controlled
trial (RCT) data to calibrate Γ are promising but critically depend on having a large
RCT sample, which is often unavailable in practice. To overcome this limitation,
we propose the Bayesian Marginal Sensitivity Calibration (BMSC) framework.
BMSC learns the sensitivity parameter Γ directly from fused RCT and OBS data,
shifting the paradigm from subjective specification to data-driven estimation. Our
approach constructs a CATE envelope from OBS, calibrates Γ by assessing the
alignment with RCT estimates, and produces robust CATE intervals with valid
coverage guarantees. Theoretical analysis and extensive experiments show that
BMSC provides sharper, more accurate intervals than methods using subjective Γ
values, and remains effective even when the RCT sample size is very small. This
work provides a practical and robust solution for sensitivity analysis in real-world
settings with limited experimental data.

1 INTRODUCTION

Personalized decision-making increasingly relies on accurate estimation of the conditional average
treatment effect (CATE) across fields such as medicine (Collins & Varmus, 2015; Kent et al., 2010;
2018), economics (Kitagawa & Tetenov, 2018; Athey & Imbens, 2016; Knaus et al., 2021), and
marketing (Radcliffe & Surry, 2011; Ascarza, 2018; Hitsch et al., 2024). Reliable CATE estimation
is thus essential for implementing precise interventions at scale. In practice, observational studies
(OBS) serve as a key data source for estimating CATE due to their cost-effectiveness and ease of data
collection (Oprescu & Kallus, 2024; Gilmartin-Thomas et al., 2018). However, a major limitation
of OBS-based CATE estimation is the potential presence of unmeasured confounding, which can
bias causal conclusions (Gilmartin-Thomas et al., 2018).

The marginal sensitivity model (MSM provides a sensitivity analysis framework for assessing the
impact of unmeasured confounding in observational studies by introducing a sensitivity parameter
Γ that bounds the possible deviation between the true propensity score and an estimated nominal
model. This approach quantifies the strength of unmeasured confounding required to alter causal
conclusions, offering localized, interpretable bias control applicable to both population-level aver-
age treatment effects and individual- or subgroup-level CATEs for partial identification and inter-
val estimation (Rosenbaum, 2002; Imbens, 2003; Kallus & Zhou, 2018; Kallus et al., 2019). The
MSM framework offers the distinct advantage of not requiring instrumental variables, relying in-
stead on observed data and a sensitivity parameter Γ to assess unmeasured confounding. This makes
it broadly applicable in settings where valid instruments are unavailable.

However, A central limitation of the MSM framework is that the sensitivity parameter Γ must be
specified by the researcher in advance rather than being determined empirically from the data. This
requirement introduces subjectivity into the analysis, as there is no universal scale or statistically
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testable basis for choosing an appropriate Γ value. As a result, conclusions can vary substantially
across studies depending on the analyst’s subjective judgment, undermining cross-study comparabil-
ity and reproducibility. Moreover, causal inferences may become sensitive to the chosen Γ, produc-
ing overly narrow intervals that fail to maintain nominal coverage when Γ is set too small, or yielding
wide and uninformative intervals when Γ is overly conservative. Such ambiguity can critically af-
fect decision-making, potentially leading to reversed or misleading policy recommendations (Keele,
2015; Ding & VanderWeele, 2016; Cinelli & Hazlett, 2020). This reliance on pre-specification
represents a major practical barrier to the reliable use of sensitivity analysis in real-world settings.
Recent methods estimate Γ from RCT data but typically need large trials, often infeasible given data
scarcity and high costs (De Bartolomeis et al., 2024). This reliance on subjective pre-specification
or abundant RCTs hinders practical deployment of reliable sensitivity analysis.

To address this open challenge, particularly the critical limitation of limited RCT data, we introduce
Bayesian Marginal Sensitivity Calibration (BMSC), a framework that estimates the sensitivity
parameter Γ from fused data and leverages it to guide CATE estimation. This framework accom-
plishes this through a three-stage method: it first constructs a CATE envelope from observational
data via sensitivity analysis, then calibrates Γ by evaluating how well the RCT estimates fit within
this envelope, and finally uses the estimated Γ to produce robust CATE intervals. This approach
represents a paradigm shift from testing pre-specified values of Γ to actively learning a data-driven
sensitivity parameter, thereby eliminating the dependence on large-scale RCTs for reliable sensi-
tivity calibration. Theoretically, we establish that the proposed estimator provides valid coverage
guarantees while achieving sharper interval widths compared to methods relying on subjective, of-
ten conservative Γ choices. Extensive experiments demonstrate that BMSC delivers reliable and
informative inferences even when the RCT sample size is too small for existing calibration methods
to be effective, thus directly addressing the practical challenge of limited RCT data in sensitivity
analysis. The main contributions of this work are:

• We propose a Bayesian marginal sensitivity calibration (BMSC) that learns Γ from fused
data, propagates its posterior to CATE inference, and yields tighter, coverage-guaranteed
intervals without subjective Γ choices.

• To our knowledge, this is the first framework that relaxes the heavy RCT sample size re-
quirement for estimating Γ, thereby providing a practical solution for stable sensitivity
calibration even with limited trial data.

• On synthetic and real data, BMSC attains more accurate CATE estimates and better RCT
sample efficiency than threshold-testing MSM calibrations and alignment-centric baselines,
especially when RCT samples are scarce.

2 RELATED WORKS

2.1 MARGINAL SENSITIVITY MODELS

The Marginal Sensitivity Model formalizes ignorability violations via a scalar parameter that bounds
the influence of unmeasured confounding, producing interpretable CATE bounds when the parame-
ter is fixed (Tan, 2006; Rosenbaum, 2002). This parameter is typically chosen using domain knowl-
edge or external calibration (Hsu & Small, 2013; Rosenbaum, 2004), and most estimation methods,
including model-assisted approaches (Tan, 2024), condition on a fixed value. While sharp bounds
have been derived under MSM constraints (Zhao et al., 2019; Frauen et al., 2023), data-driven es-
timation of the sensitivity parameter from fused RCT–OBS evidence remains uncommon: current
trial-anchored methods often only yield lower bounds, require large samples, and perform poorly
under weak confounding (De Bartolomeis et al., 2024). Thus, MSM has not been fully integrated
into fusion estimators as a learnable component. To migrate this, we propose to identify the sensi-
tivity level directly from fused data, and propagates this sensitivity to produce valid CATE intervals
even in small RCT samples.

2.2 QUANTIFYING UNMEASURED CONFOUNDING THROUGH FUSING DATA

Incorporating measures of residual unmeasured confounding into data fusion reframes robustness as
a constraint that restricts plausible CATE values and regulates OBS influence. Existing approaches
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fall into three categories: (i) using trials to bound hidden bias, though these often yield only lower
bounds with limited power under weak confounding (De Bartolomeis et al., 2024); (ii) sensitivity-
aware fusion, which embeds bias parameters to narrow effect estimates or shift them toward RCT
results (Jiang et al., 2024; Yu et al., 2024); (iii) trial-referenced benchmarking to pre-evaluate OBS
reliability before fusion (Dahabreh et al., 2022; Forbes & Dahabreh, 2020; Matthews et al., 2022;
Thorlund et al., 2024). While improving transparency, these methods do not treat confounding
strength as an estimable parameter that propagates uncertainty into individual CATE estimates.
A unified framework is needed to quantify unmeasured confounding from fused data and propa-
gate it to CATE uncertainty in a single model, enabling joint robustness–efficiency optimization,
particularly in small trials or under weak confounding.

2.3 DATA FUSION FOR TREATMENT EFFECT ESTIMATION

Data fusion methods for heterogeneous treatment effects fuse RCT and OBS data in three primary
ways: (i) Extrapolation and generalizability weighting, which reweights the RCT sample to match
a target OBS population, enabling effect transportability (Pearl & Bareinboim, 2011; Bareinboim
& Pearl, 2016; Cole & Stuart, 2010; Dahabreh et al., 2024; Stuart et al., 2018; Dahabreh et al.,
2020; Degtiar & Rose, 2023); (ii) Representation or meta-learning two-stage fusion, where effect
heterogeneity is learned from OBS and refined via RCT using X-/R-learners, including pretraining
on biased data followed by calibration with RCT (Hatt et al., 2022; Künzel et al., 2019; Li et al.,
2023a;b); (iii) Controlled borrowing and robust fusion, which jointly model RCT and OBS data
with regularization via partial pooling, power priors, Gaussian processes, or adaptive weighting,
often incorporate instrumental variables (Dimitriou et al., 2024; Ibrahim & Chen, 2000; Cheng &
Cai, 2021; Asiaee et al., 2023; Oprescu & Kallus, 2024; Lin et al., 2025). Recent surveys synthe-
size identification and estimation strategies (Colnet et al., 2024; Degtiar & Rose, 2023; Shi et al.,
2023). However, most methods focus on efficiency or external validity without formal robustness
quantification, which are commonly lack of in-model estimation of unmeasured confounding to
guide data fusion. Our approach addresses this by learning a sensitivity parameter directly from
fused RCT–OBS data and propagating it to MSM-based intervals, embedding robustness within the
fusion process itself.

3 PRELIMINARIES AND PROBLEM SETUP

We consider the problem of fusing two independent data sources:

• An observational study, denoted Dobs = {Xi, Ti, Yi}Nobs
i=1 , in which treatment assignment

T may depend on both observed covariates X and unobserved confounders U .

• A randomized controlled trial, denoted Drct = {Xi, Ti, Yi}Nrct
i=1 , where by design the treat-

ment is randomized and hence satisfies (Y (1), Y (0)) ⊥ T .

Our goal is to estimate CATE, defined as τ(x) = E[Y (1)− Y (0) | X = x], in a way that leverages
the complementary strengths of both datasets. A key challenge is to explicitly quantify and adjust
for bias arising from unmeasured confounding U in the observational data.

Marginal Sensitivity Models. MSMs address unmeasured confounding by introducing a parameter
Γ ≥ 1 that bounds the deviation between the true and estimated propensity scores. This induces a
set of Γ-dependent bounds on the counterfactual means and, consequently, on the CATE, framing
confounding bias as a constrained estimation problem.

Current Data Fusion Methods. Existing approaches combine the internal validity of the RCT with
the broad coverage of the observational data. They typically transport trial estimates, leverage effect
heterogeneity from the observational study, or perform controlled data pooling. Collectively, they
aim to enhance precision and generalizability by using the observational data for efficiency while
relying on the RCT for identification.

Gap in Current Methods. Existing approaches suffer from:

• Classical MSM treats Γ as an exogenously chosen sensitivity parameter rather than learning
it from data, and does not propagate its uncertainty to CATE, which can yield overly wide
or miscalibrated intervals.
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• Most data fusion methods lack in-model quantification of unmeasured confounding, rely-
ing instead on post-hoc sensitivity analyses; when covariate overlap is limited or variable
definitions are not harmonized, they are prone to negative transfer and bias amplification.

Problem Statement. We aim to develop a unified framework that: (i) quantifies the sensitivity
parameter Γ from limited RCT plus OBS, (ii) propagates the uncertainty in Γ to the CATE estimates.

Figure 1: Problem Setup: Data Fusion, MSM, and BMSC.

4 BAYESIAN MARGINAL SENSITIVITY CALIBRATION

In this section, we introduce Bayesian Marginal Sensitivity Calibration (BMSC). Our framework
is designed to learn the strength of unmeasured confounding (Γ) from fused data, and then use
this estimate to produce robust, uncertainty-aware CATE intervals. Unlike methods that require
full distributional alignment, BMSC uses a sensitivity model to translate Γ into identifiable CATE
bounds, creating a fusion bridge that is calibrated through a Bayesian pipeline.

4.1 SENSITIVITY MODEL AS A FUSION BRIDGE

The foundation of our approach is a sensitivity model that quantifies the impact of unmeasured
confounders U by constraining how much they can influence treatment assignment. We begin by
formally stating the model.

Definition 1 (Marginal Sensitivity Model (MSM)) (Tan, 2006; Zhao et al., 2019) Let et(x) =
P(T = t | X = x) be the nominal propensity and et(x, y) = P(T = t | X = x, Y (t) = y)
the complete propensity. The MSM posits a global confounding strength Γ ≥ 1 such that, for any
t ∈ {0, 1}, x ∈ X , y ∈ Y ,

1

Γ
≤ (1− et(x)) et(x, y)

et(x) (1− et(x, y))
≤ Γ. (1)

This condition bounds the degree to which unmeasured confounders affect treatment assignment
odds. For a given Γ, this constraint implies that the true CATE τ(x) must lie within an identifiable
interval. This is formalized below.

Theorem 1 (CATE Bounds under MSM) For any Γ ≥ 1, the MSM implies that the true CATE
τ(x) lies within an identifiable interval:

τ(x) ∈ [L(x,Γ), U(x,Γ)]

= [ω(x) + η1(x,Γ)− η0(x,Γ), ω(x) + η1(x,Γ)− η0(x,Γ)],
(2)

where the components are defined as:

ω(x) = µ1(x)− µ0(x) = E(Y | T = 1, X = x)− E(Y | T = 0, X = x),

ηt(x,Γ) = (
1

Γ
− 1)(1− et(x))µt(x), ηt(x,Γ) = (Γ− 1)(1− et(x))µt(x).
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Figure 2: Workflow for Proposed Method (BMSC).

Here, ω(x) is the naive CATE estimate from the observational data, and ηt, ηt are bias correction
terms that depend on the strength of unmeasured confounding Γ. Derivations and sharpness proofs
are provided in Appendices A.1.2 and A.1.3.

These bounds form a fusion bridge: the observational data determine a feasible envelope
[L(x,Γ), U(x,Γ)] for the CATE, while the RCT provides identified but noisy targets that must lie
within this envelope if the true confounding strength is Γ.

4.2 BAYESIAN CALIBRATION OF THE CONFOUNDING STRENGTH Γ

We now describe how to calibrate Γ using the RCT data. The core idea is to find the value of Γ
that makes the observational bounds most compatible with the RCT estimates. We adopt a Bayesian
approach, combining a prior with a likelihood derived from the RCT.

4.2.1 PRIOR ON Γ.

We specify a weakly informative prior π(Γ) on [1,Γmax], treating Γ as an unknown parameter to be
estimated. In practice, the prior may be centered and scaled using empirical benchmarks, such as
observed covariate imbalances (Rosenbaum, 2002; Hsu & Small, 2013).

4.2.2 LIKELIHOOD FROM THE TRIAL.

For a fixed Γ, the model restricts the true CATE τ(x) to the interval [L(x,Γ), U(x,Γ)]. The like-
lihood measures how plausible the observed RCT estimate τ̂rct(x) is, given that the true effect lies
within this bounds. Taking the RCT-based estimator as an unbiased noisy measurement of τ(x) with
variance ŝ2(x), we integrate over the constrained support to obtain a marginal likelihood for each
covariate stratum (assumptions and proof in Appendix A.1.4).

Theorem 2 (Marginal Likelihood for Data Fusion) The marginal likelihood of observing the
RCT estimate τ̂rct(x) given confounding strength Γ has the closed-form expression:

p (τ̂rct(x) | Γ,Dobs) =
Φ
(

U(x,Γ)−τ̂rct(x)
ŝ(x)

)
− Φ

(
L(x,Γ)−τ̂rct(x)

ŝ(x)

)
U(x,Γ)− L(x,Γ)

, (3)

where Φ(·) denotes the standard normal cumulative distribution function.

The overall likelihood is the product over all strata: L(Γ) =
∏

x p (τ̂rct(x) | Γ,Dobs). This function
statistically measures how well a candidate Γ aligns the RCT estimates with the predicted envelope
derived from the observational data.

4.2.3 POSTERIOR FOR Γ.

Combining the likelihood L(Γ) with the prior π(Γ), we obtain the posterior distribution over the
confounding strength:

5
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Algorithm 1 BMSC

Input: Dobs, Drct, prior π(Γ), grid G ⊆ [1,Γmax]
Output: Posterior P (Γ | Dobs,Drct); CATE intervals

1: Observational: For each x, estimate et(x), µt(x), ω(x) = µ1(x)− µ0(x).
2: RCT: For each x, compute τ̂rct(x) and ŝ(x).
3: for γ ∈ G do
4: MSM bounds: Compute L(x, γ), U(x, γ) (Eq. equation 2).
5: Marginal likelihood: ℓx(γ) (Eq. equation 3).
6: Joint likelihood: L(γ) =

∏
x ℓx(γ).

7: end for
8: Posterior for Γ: P (Γ | Dobs,Drct) ∝ L(Γ)π(Γ) (Eq. equation 4); normalize on G.
9: Summaries: Report posterior mean/median for Γ.

10: CATE intervals: Using Γ̂ (mean/median), output [L(x, Γ̂), U(x, Γ̂)] for each x.

Theorem 3 (Posterior Inference for Confounding Strength) Assuming conditional indepen-
dence of the RCT estimation errors across covariate strata x given Γ, the posterior distribution
is:

P (Γ | Drct, Dobs) ∝ L(Γ) · π(Γ) =
∏
x

p (τ̂rct(x) | Γ,Dobs) · π(Γ). (4)

Since Γ is one-dimensional, we evaluate equation 4 on a dense grid over [1,Γmax] and normal-
ize. This posterior quantitatively integrates trial evidence with the observational model, forming a
unified, uncertainty-aware estimate of the confounding strength.

Remark 1 In summary, we specify a prior for Γ, derive a closed-form marginal likelihood by inte-
grating the trial sampling model over the bounds implied by the observational data, and combine
these components to obtain a tractable posterior. This posterior encapsulates uncertainty about
hidden confounding.

4.3 ESTIMATION FOR Γ AND CATE

The following procedure outlines the estimation of both the confounding strength Γ and the condi-
tional average treatment effect τ(x).

Posterior summary for Γ. From the S posterior samples {Γ(i)}Si=1, we compute summary statis-
tics including: the posterior mean Γ̂mean = mean{Γ(i)}Si=1 and the posterior median: Γ̂median =
median{Γ(i)}Si=1.

CATE interval estimation. We take Γ̂ (either the posterior mean or median) as the point estimate
of the confounding strength, and obtain the corresponding CATE interval estimate:

τ(x) ∈
[
L(x, Γ̂), U(x, Γ̂)

]
,

which provides a confounding-adjusted interval estimate for the conditional average treatment effect
that incorporates the estimated strength of unmeasured confounding.

Remark 2 This approach provides both a quantitative estimate of the confounding strength and a
corresponding interval estimate for the CATE that explicitly accounts for the impact of unmeasured
confounders. The Bayesian framework ensures proper propagation of uncertainty from the estimated
Γ to the final CATE intervals.

4.4 COMPUTATIONAL COMPLEXITY ANALYSIS

The overall complexity of the proposed BMSC is derived as O
(
Nobs+Nrct+GM+SM+G logG

)
,

where Nobs and Nrct are the sample sizes of the observational and trial datasets, M is the number of
covariate strata used for calibration, G = |G| is the grid size for Γ, and S is the number of posterior
draws used to propagate uncertainty to CATE (detailed derivation provided in Appendix A.1.5).
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5 EXPERIMENTS

Benchmarks. We evaluate the performance of BMSC in estimating both the confounding strength
and the conditional average treatment effect (CATE) using synthetic datasets and a real-world dataset
from the ACTG clinical trial (Hammer et al., 1996). Further details on the datasets are provided in
Appendix A.2.1.

Baselines. We compare BMSC with state-of-the-art baselines from two areas:

(i) Marginal Sensitivity Models: fMSM (Kallus et al., 2019), PB-IPW (Zhao et al., 2019).

(ii) Quantifying Unmeasured Confounding through Fusing Data: QCLB (De Bartolomeis et al.,
2024);

(iii) Data Fusion for Treatment Effect Estimation: SF, ST (Gu et al., 2023), Two-step (Kallus et al.,
2018), and CORNets (Hatt et al., 2022). (See details of baselines in Appendix A.2.2).

Evaluation Protocols. We evaluate the proposed BMSC in a variety of scenarios, including:

(i) Marginal Sensitivity Models: Compare the miscoverage rate (proportion of intervals failing to
cover the true CATE) and average interval width (reflecting estimation precision) of BMSC against
traditional MSM approaches with Γ set correctly, overly large, or overly small, in order to assess
robustness and interval efficiency under realistic settings where the true Γ is unknown.

(ii) Quantifying Unmeasured Confounding through Fusing Data: Compare the estimated confound-
ing strength Γ̂ (posterior mean for BMSC; lower bound for QCLB) across varying true confounding
levels Γtrue and RCT sample sizes Nrct;

(iii) Data Fusion for Treatment Effect Estimation: Evaluate the accuracy and calibration of CATE es-
timates by examining whether 95% confidence intervals (for point estimators) and interval estimates
cover the true effect τ(x), and compare their widths across covariate values x.

Questions. The empirical experiments are performed around the following three questions:

(i) How does BMSC perform relative to traditional MSM methods that rely on pre-specified Γ values,
particularly in terms of coverage control and interval width when Γ is misspecified?

(ii) How accurately and with what sample efficiency does BMSC estimate the confounding strength
Γ relative to the QCLB baseline?

(iii) How do the accuracy and sample efficiency of BMSC’s CATE estimates compare with other
data-fusion baselines?

(iv) How do model parameters influence performance and sample efficiency?

5.1 COMPARISON WITH TRADITIONAL MSM APPROACHES

We compare BMSC against traditional MSM methods with Γ set correctly, overly large, or overly
small, using miscoverage rate and average interval width as evaluation metrics. The results demon-
strate that BMSC achieves comparable performance to traditional MSM with the correct Γ: both
maintain a miscoverage rate of 0 and exhibit similar average interval widths. In contrast, traditional
MSM with an underspecified Γ leads to substantial miscoverage and excessively narrow intervals,
indicating undercoverage and inflated type I error. Conversely, traditional MSM with an overspeci-
fied Γ yields valid coverage but produces overly conservative intervals with widths exceeding 20.79,
resulting in inefficient inference. BMSC avoids these pitfalls by automatically learning a data-driven
Γ close to the true value, achieving both valid coverage and interval efficiency without requiring prior
knowledge of the confounding strength.

5.2 EVALUATION OF CONFOUNDING STRENGTH ESTIMATION

We construct a controlled synthetic study with known ground truth, fixing Nobs and varying the RCT
size Nrct and the true confounding strength Γtrue. For each setting, BMSC returns the posterior
mean of Γ, while QCLB reports a lower bound; NA denotes that QCLB yields no informative bound
at the nominal test level. Table 2 shows that BMSC closely recovers Γtrue across all regimes and

7
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Table 1: Comparison of BMSC with traditional MSM methods under different Γ specifications

Method Γ specification Miscoverage rate Avg. width

BMSC learned from data 0.00 11.75

fMSM under (Γ = 1.01) 0.38 0.16
fMSM true (Γ = 2.0) 0.00 11.83
fMSM over (Γ = 2.99) 0.00 20.95

PB-IPW under (Γ = 1.01) 0.04 0.36
PB-IPW true (Γ = 2.0) 0.00 12.13
PB-IPW over (Γ = 2.99) 0.00 21.48

is only weakly sensitive to Nrct. QCLB performs poorly when Nrct is small, failing to produce
informative bounds at low or moderate confounding and returning only a conservative value at high
confounding. Even with Nrct = 5000, QCLB remains conservative. Overall, BMSC is uniformly
more informative and markedly more sample efficient for confounding quantification.

Table 2: Confounding strength estimation across RCT sample sizes. Each cell reports |Γ̂− Γtrue|.

Nrct Method Γtrue = 1.5 Γtrue = 3.0 Γtrue = 6.0

200 QCLB NA NA 3.000
BMSC 0.107 0.001 0.076

5000 QCLB 0.200 0.500 0.500
BMSC 0.053 0.000 0.076

5.3 ASSESSMENT OF TREATMENT EFFECT ESTIMATION

We compare BMSC against data-fusion baselines on both synthetic and ACTG benchmarks, us-
ing mean absolute error (MAE) of CATE across various randomized-trial budgets Nrct. On both
datasets, BMSC consistently and robustly achieves the lowest MAE for a given Nrct, with the great-
est improvements observed at small to moderate trial sizes, demonstrating its superior sample ef-
ficiency. The baselines generally exhibit substantially higher error at low Nrct, which decreases
only gradually as the trial size increases. Among these, Two-step consistently trails BMSC and re-
quires substantially larger trials to match its accuracy; CORNets consistently underperforms. The
SF baseline improves slowly with larger Nrct but remains less accurate than BMSC, while ST shows
unstable performance, occasionally competitive at specific budgets but not robust overall. BMSC
achieves target accuracy with far fewer randomized samples than alternatives and delivers uniformly
better CATE estimation on both benchmarks.
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(a) MAE comparison on the synthetic dataset
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(b) MAE comparison on the ACTG dataset

Figure 3: Comparison of CATE estimation performance across methods.
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5.4 SENSITIVITY ANALYSIS OF MODEL PARAMETERS

We conduct a sensitivity analysis to assess how the RCT sample size Nrct, the prior dispersion on
the confounding strength Γ (log scale σprior), and the choice of posterior point summary (mean vs.
median) affect the accuracy of BMSC. Table 3 and Figure 4 show three consistent patterns. First,
increasing Nrct generally improves accuracy across settings; gains can taper when confounding is
very strong, but the overall trend is monotone. Second, more diffuse priors degrade accuracy due
to posterior skew, whereas mildly informative priors yield the best bias–variance trade-off. Third,
the median is typically more robust under skewed posteriors or small Nrct, while the mean can be
slightly more efficient when the posterior is approximately symmetric or Nrct is large.

Table 3: Sensitivity of confounding-strength estimation to RCT size, prior dispersion, and posterior
summary. Each cell reports |Γ̂− Γtrue| as “mean / median”.

Γtrue Nrct σprior = 0.25 σprior = 0.50 σprior = 1.00

1.5 200 0.107 / 0.038 0.428 / 0.212 1.128 / 0.560
5000 0.053 / 0.010 0.324 / 0.112 0.970 / 0.406

3.0 200 0.001 / 0.094 0.074 / 0.276 0.275 / 0.384
5000 0.000 / 0.095 0.030 / 0.313 0.135 / 0.529

6.0 200 0.076 / 0.214 0.784 / 1.031 1.902 / 2.480
5000 0.076 / 0.214 0.788 / 1.033 2.003 / 2.589
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Figure 4: Posterior over the sensitivity parameter Γ.

6 CONCLUSION

We addressed the fundamental critical challenge of subjective specification of the sensitivity pa-
rameter Γ in marginal sensitivity models. While recent methods use randomized controlled trial
(RCT) data to calibrate Γ, they require large trial samples that are often unavailable in practice. We
introduce the novel Bayesian Marginal Sensitivity Calibration (BMSC), a framework that learns Γ
directly from fused observational and RCT data. BMSC constructs a sensitivity-based CATE en-
velope from observational data, calibrates Γ using trial evidence, and effectively produces robust
CATE intervals with valid coverage guarantees.

Theoretically, BMSC establishes a tractable link between RCT estimates and the observational sen-
sitivity model, turning Γ from a fixed parameter into a data-driven quantity. Empirically, BMSC
achieves tighter, better-calibrated intervals than methods using subjective Γ values and remains ef-
fective with minimal RCT data, where conventional calibration fails. By enabling reliable sensitivity
analysis with limited trial data, BMSC provides a practical solution for credible CATE estimation in
real-world applications. Across synthetic and real-world experiments, BMSC consistently achieves
superior calibration and precision in CATE interval estimation relative to state-of-the-art alterna-
tives. Its robust performance in data-scarce scenarios underscores the practical value of propagating
Γ uncertainty for credible causal inference.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

A.1.1 THEORETICAL ANALYSIS OF SAMPLE EFFICIENCY

Fix a covariate value x and a desired CATE interval half–width ε with coverage at least 1−α. Under
BMSC, the RCT is used only to calibrate the scalar confounding strength Γ, and the resulting CATE
interval width at x equals Wx(Γ) = U(x,Γ)−L(x,Γ). If the posterior standard error of Γ̂ scales as
SE(Γ̂) = κ/

√
Nrct, a first–order delta method yields the incremental half–width due to estimating

Γ,

∆x ≈ z1−α/2

∣∣∣∂ΓWx(Γ
⋆)
∣∣∣ SE(Γ̂) = z1−α/2

∣∣∣∂ΓWx(Γ
⋆)
∣∣∣ κ√

Nrct

.

Requiring ∆x ≤ ε gives the parametric-rate requirement

NCal
rct ≳

z 2
1−α/2 κ

2
(
∂ΓWx(Γ

⋆)
)2

ε2
= O

(
ε−2
)
.

By contrast, Two-step debiasing fits a function δ(x) using RCT data, and the RCT sample size must
control the estimation error of this function class. For common classes (omitting constants and
benign logarithmic factors), the required Nrct to achieve the same half–width ε satisfies

NTwo-step
rct ≳

{
s log p ε−2, (sparse linear classes),
ε−2d/r, (nonparametric classes in d dimensions with smoothness r).

Here, r denotes a Hölder smoothness level of the target function to be learned from the RCT (e.g.,
the bias function δ(·)): write r = k + α with integer k ≥ 0 and α ∈ (0, 1], and say a function f
lies in the Hölder(r, CH) class if all mixed partial derivatives up to order k are bounded and the kth
derivatives are α–Hölder continuous, i.e., ∥∇kf(x)−∇kf(x′)∥ ≤ CH∥x− x′∥α. Larger r means
a smoother function and hence faster nonparametric rates.

Combining the displays, to attain the same target half–width ε one typically has

NCal
rct = O(ε−2), NTwo-step

rct ≳ max
{
s log p ε−2, ε−2d/r

}
.

Thus, whenever the function class is nontrivial (e.g., s log p is not negligible or d is moderate/large
for a given r), BMSC attains the target interval with fewer RCT observations, reflecting strictly
better sample efficiency.

A.1.2 CONSTRUCTION OF THE CATE BOUNDS

This appendix provides the detailed derivation of the bounds L(x,Γ) and U(x,Γ) for CATE under
the Marginal Sensitivity Model (MSM), as stated in Theorem 1.

We begin by defining the naive CATE estimate from the observational data, which does not account
for unmeasured confounding:

ω(x) = E(Y | T = 1, X = x)− E(Y | T = 0, X = x).

The true CATE is given by:

τ(x) = E(Y (1) | X = x)− E(Y (0) | X = x).
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The bias due to unmeasured confounding can be expressed as the difference:

τ(x)− ω(x) = η(x) = η1(x)− η0(x),

where for t ∈ {0, 1}, the term ηt(x) captures the bias in the expected outcome under treatment t:

ηt(x) = E(Y (t) | X = x)− E(Y | T = t,X = x)

=

∫
yP (Y (t) = y | X = x)dy −

∫
yP (Y = y | T = t,X = x)dy. (5)

Let et(x) = P (T = t | X = x) be the nominal propensity score and et(x, y) = P (T = t | X =
x, Y (t) = y) be the full propensity score that accounts for all confounders. We can reformulate the
conditional densities in equation 5 using Bayes’ rule:

P (Y (t) = y | X = x) =
P (Y (t) = y, T = t | X = x)

P (T = t | Y (t) = y,X = x)
=

P (Y = y, T = t | X = x)

et(x, y)
,

P (Y = y | T = t,X = x) =
P (Y = y, T = t | X = x)

et(x)
.

Substituting these into equation 5 yields:

ηt(x) =

∫
yP (Y = y, T = t | X = x)

[
1

et(x, y)
− 1

et(x)

]
dy. (6)

The MSM posits a bound on the odds ratio between the full and nominal propensities for a fixed
confounding strength Γ ≥ 1:

1

Γ
≤ (1− et(x))et(x, y)

et(x)(1− et(x, y))
≤ Γ. (7)

From inequality 7, we can derive constraints on the quantity
[

1
et(x,y)

− 1
et(x)

]
appearing in equation

6. Specifically, it can be shown that:(
1

Γ
− 1

)
(1− et(x)) ≤

1

et(x, y)
− 1

et(x)
≤ (Γ− 1)(1− et(x)).

Applying these bounds to the integral in equation 6, and noting that
∫
yP (Y = y, T = t | X =

x)dy = E(Y | T = t,X = x) = µt(x), we obtain the lower and upper bounds for ηt(x):

ηt(x,Γ) =

(
1

Γ
− 1

)
(1− et(x))µt(x), (8)

ηt(x,Γ) = (Γ− 1)(1− et(x))µt(x). (9)

Recall that the overall bias is η(x) = η1(x)− η0(x). To bound the true CATE τ(x) = ω(x) + η(x),
we combine the bounds on the individual ηt(x) terms. The most conservative (i.e., worst-case)
bounds are achieved by considering the extreme combinations of η1(x) and η0(x):

L(x,Γ) = ω(x) + η1(x,Γ)− η0(x,Γ),

U(x,Γ) = ω(x) + η1(x,Γ)− η0(x,Γ),

which completes the construction of the bounds as stated in Theorem 1.

A.1.3 SHARPNESS OF THE CATE BOUNDS

This appendix establishes that the interval in Theorem 1,[
L(x,Γ), U(x,Γ)

]
=
[
ω(x) + η1(x,Γ)− η0(x,Γ), ω(x) + η1(x,Γ)− η0(x,Γ)

]
,

is sharp under the Marginal Sensitivity Model (MSM) with parameter Γ ≥ 1. Throughout, notation
and definitions follow Appendix A.1.2; in particular

mt(x) = µt(x) + δt(x), δt(x) ∈
[
ηt(x,Γ), ηt(x,Γ)

]
, t ∈ {0, 1}.
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Coverage. By Appendix A.1.2, equation 8–9 imply

mt(x) ∈
[
µt(x) + ηt(x,Γ), µt(x) + ηt(x,Γ)

]
.

Taking τ(x) = m1(x) − m0(x) and combining the individual envelopes by the usual Minkowski
argument yields τ(x) ∈ [L(x,Γ), U(x,Γ)]. Hence coverage holds for any data-generating process
that satisfies the MSM and matches the observed conditionals {µt(x), et(x)}.

Tightness. It remains to show that the endpoints L(x,Γ) and U(x,Γ) are attainable. We give a
constructive proof.

Step 1: Extremal tilts. Fix x and t ∈ {0, 1}. The MSM constraint equation 7 restricts the full
propensity et(x, y) to an interval determined by et(x) and Γ. For any fixed fY |T=t,X(· | t, x), the

functional mt(x) =
∫
y

fY |T=t,X(y|t,x) et(x)
et(x,y)

dy is linear in the inverse tilt 1/et(x, y) subject to an
affine normalization constraint and box constraints induced by the MSM. By standard convexity and
rearrangement arguments, the extrema of mt(x) are attained by placing et(x, y) at its boundary val-
ues almost everywhere, with a single threshold in y used to satisfy the normalization. Consequently,
the attainable range of mt(x) equals[

µt(x) + ηt(x,Γ), µt(x) + ηt(x,Γ)
]
,

that is, the envelopes in equation 8 and equation 9 are tight.

Step 2: Attaining the CATE endpoints. Choose the lower envelope for m1(x) and the upper envelope
for m0(x) simultaneously. This yields

τ(x) = m1(x)−m0(x) =
(
µ1 + η1

)
−
(
µ0 + η0

)
= L(x,Γ).

Similarly, pairing the upper envelope for m1(x) with the lower envelope for m0(x) attains

τ(x) =
(
µ1 + η1

)
−
(
µ0 + η0

)
= U(x,Γ).

Both constructions satisfy the MSM because each arm’s tilt uses only boundary-admissible values
and the threshold is chosen to enforce the required normalization for that arm.

Step 3: Explicit binary construction (optional). For a concrete realization, let Y ∈ {0, 1}. Write
e1(x) = q and e0(x) = 1− q, and let µt(x) = P(Y = 1 | T = t,X = x) = pt. Define

r = P(Y (1) = 1 | T = 0, X = x) , s = P(Y (0) = 1 | T = 1, X = x) .

Under the MSM with parameter Γ, the feasible sets for r and s are intervals whose endpoints are
obtained by pushing the full propensities to their MSM bounds. Setting r to its minimum and s
to its maximum yields τ(x) = L(x,Γ); setting r to its maximum and s to its minimum yields
τ(x) = U(x,Γ). Details follow the same algebra as in Appendix A.1.2 after replacing integrals by
Bernoulli expectations.

Conclusion. For any fixed x and Γ ≥ 1, the interval [L(x,Γ), U(x,Γ)] contains all admissible
values of τ(x) under the MSM, and both endpoints are achievable by data-generating processes
consistent with the observed {µt(x), et(x)} and the MSM constraints. The bounds in Theorem 1
are therefore sharp.

A.1.4 MARGINAL LIKELIHOOD FOR DATA FUSION

Model Assumptions. The derivation of the marginal likelihood in Theorem 2 relies on the follow-
ing key assumptions:

Assumption 1 (RCT Estimation Uncertainty) The RCT-based estimate τ̂rct(x) is an unbiased but
noisy measurement of the true CATE τ(x): τ̂rct(x) | τ(x) ∼ N (τ(x), ŝ2(x)), where ŝ2(x) repre-
sents the estimation variance from the finite RCT sample.

Example 1 The normality holds asymptotically for most standard estimators (e.g., difference-in-
means, inverse probability weighted, or doubly robust estimators) under mild regularity conditions,
and ŝ2(x) can be obtained via standard error estimation or bootstrap.
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Assumption 2 (MSM-Constrained Prior) Under the Marginal Sensitivity Model with strength Γ,
the true CATE is constrained to lie within the identifiable bounds derived from the observational
data: τ(x) | Γ,Dobs ∼ Uniform(L(x,Γ), U(x,Γ)).

Example 2 The uniform prior is a conservative and non-informative choice that does not impose
any additional structure beyond the MSM constraints. It represents a state of minimal prior knowl-
edge about the location of τ(x) within the bounds [L(x,Γ), U(x,Γ)].

These assumptions allow us to derive the statistical relationship between the observed RCT estimates
and the confounding strength parameter Γ.

Proof. Fix x and Γ; the expression follows by integrating the sampling distribution of τ̂rct(x) over
the MSM-induced feasible set for τ(x) with a flat working density, which yields the stated closed
form.

p (τ̂rct(x) | Γ,Dobs) =

∫ U(x,Γ)

L(x,Γ)

p(τ̂rct(x) | τ(x)) · p(τ(x) | Γ,Dobs)dτ(x)

=

∫ U(x,Γ)

L(x,Γ)

1√
2πŝ2(x)

exp

(
− (τ̂rct(x)− τ(x))

2

2ŝ2(x)

)
1

U(x,Γ)− L(x,Γ)
dτ(x)

=
Φ
(

U(x,Γ)−τ̂rct(x)
ŝ(x)

)
− Φ

(
L(x,Γ)−τ̂rct(x)

ŝ(x)

)
U(x,Γ)− L(x,Γ)

.

A.1.5 COMPUTATIONAL COMPLEXITY DETAILS

Step 1: Empirical summaries on Dobs and Drct. We compute per–stratum observational quantities
e1(x), µ1(x), µ0(x), ω(x) and trial-based τ̂rct(x), ŝ(x). With standard grouping/aggregation, this
requires a single pass over the data: O

(
Nobs +Nrct

)
.

Step 2: Posterior on a Γ grid. For each γ ∈ G, we evaluate the MSM-based marginal likelihood
by vectorized computations across the M strata, thus O(M) per grid point: O(GM). Posterior
normalization is O(G), while HPD or equal-tail summaries include an O(G logG) sorting step for
the grid.

Step 3: Uncertainty propagation to CATE intervals. We draw S samples of Γ from the discrete
posterior and map each draw to the MSM bounds [L(x,Γ), U(x,Γ)] across M strata. Each draw
costs O(M), giving O(SM), plus an O(G) setup to form the categorical sampling distribution on
the grid.

Overall Complexity. Summing the three steps yields the overall complexity: O
(
Nobs + Nrct +

GM+SM+G logG
)
. In typical settings where M is moderate, the GM term (likelihood evaluation

over the grid and strata) dominates the posterior computation.

A.2 EXPERIMENTAL DETAILS

A.2.1 BENCHMARK DETAILS

Synthetic Dataset. We designed a fully synthetic dataset that replicates the structural properties of
the semi-synthetic benchmark in a controlled simulation environment, providing full control over
all data-generating parameters. The covariate X is sampled uniformly from {0, 1, ...,K − 1}, while
the unmeasured confounder U follows a uniform distribution U(0, 1). Treatment assignment and
outcomes are generated using identical functional forms to the semi-synthetic experiment, ensuring
direct comparability:

• Treatment Assignment (T ):

logit(P (T = 1|X,U)) = log

(
0.3 + 0.4 ·X/K

1− (0.3 + 0.4 ·X/K)

)
+ log(Γ) · U
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• Outcome (Y ):

Y (0) = 5.0 + 2.0 · sin(X/2) + 0.5 · U + ϵ, ϵ ∼ N (0, 1)

Y (1) = Y (0) + τ(X), where τ(X) = 2.0 + 0.8 ·X
Y = T · Y (1) + (1− T ) · Y (0)

ACTG Dataset. ACTG 175 is a randomized controlled trial that evaluated treatment regimens for
HIV–1 infected patients with baseline CD4 counts between 200-500 cells/mm3 (Hammer et al.,
1996). The dataset includes baseline characteristics, treatment assignments, and CD4 count changes
measured over 20 ± 5 weeks. In our semi-synthetic experiment, we utilize age (discretized into K
bins as covariate X) and wtkg (min-max scaled to [0, 1] as unmeasured confounder U ) from this
dataset. We then synthetically generate treatment T and outcome Y using a Γ-confounded model to
establish known ground truth:

• Treatment Assignment (T ):

logit(P (T = 1|X,U)) = log

(
0.3 + 0.4 ·X/K

1− (0.3 + 0.4 ·X/K)

)
+ log(Γ) · U

• Outcome (Y ):

Y (0) = 5.0 + 2.0 · sin(X/2) + 0.5 · U + ϵ, ϵ ∼ N (0, σ2
obs)

Y (1) = Y (0) + τ(X), where τ(X) = 2.0 + 0.8 ·X
Y = T · Y (1) + (1− T ) · Y (0)

A.2.2 BASELINE DETAILS

Functional MSM (fMSM). Functional MSM integrates a smooth, regularized MSM-based sensi-
tivity model to estimate CATE intervals. By smoothing the propensity scores and treatment effects
across covariate strata, fMSM provides a more flexible estimate of the CATE bounds than the stan-
dard MSM. This method is particularly useful when estimating heterogeneous treatment effects in
settings with unmeasured confounding, where the sensitivity parameter Γ is estimated directly from
the data, but uncertainty is propagated through the smoothing function. Unlike traditional MSM,
fMSM ensures more robust intervals that account for potential biases arising from unmeasured con-
founders in a functional way (Kallus et al., 2019). The method, however, requires careful selection
of the smoothing bandwidth to avoid overfitting and underfitting.

Percentile-Bootstrap IPW (PB-IPW). PB-IPW combines inverse probability weighting (IPW)
with bootstrap resampling to construct sensitivity intervals under unmeasured confounding. The
method first computes the CATE using IPW and then generates bootstrap samples from the observa-
tional data to estimate the variability of the CATE bounds. It applies a percentile bootstrap procedure
to estimate the 90% confidence interval for each stratum, accounting for unobserved confounding
by deriving the interval bounds over a range of Γ values. While PB-IPW provides more robust
and uncertainty-aware intervals than the traditional MSM, it does not incorporate a likelihood-based
estimation of Γ and instead relies on bootstrap resampling for variability estimation (Zhao et al.,
2019).

Quantifiable Confounding Lower Bound (QCLB). QCLB integrates RCT ATEs with MSM-based
sensitivity bounds derived from OBS to test compatibility across a grid of Γ values. The method
returns an asymptotically valid lower bound on the confounding strength by identifying the smallest
Γ that is not rejected by the compatibility test (De Bartolomeis et al., 2024). QCLB targets the
magnitude of hidden bias directly, but it neither fits an MSM-constrained likelihood nor propagates
uncertainty in Γ to individual-level CATE intervals.

Simple Fusion (SF). SF pools the RCT and OBS samples and trains a single model, treating both
sources as exchangeable apart from standard regularization (Gu et al., 2023). It estimates CATE
from treatment–covariate interactions but does not explicitly correct for unmeasured confounding or
provide a structural gate for when to trust observational information. We use a pooled linear ridge
implementation, reading CATE from the interaction coefficients.

Shrinkage Tree (ST). This family performs local fusion by combining an unbiased trial-based effect
with a potentially biased but lower-variance observational estimate (Gu et al., 2023). Concretely, it
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forms leaf- or stratum-level treatment effects from the RCT and from the OBS, and then applies data-
driven shrinkage toward the RCT when evidence suggests larger bias in the OBS, while exploiting
OBS to reduce variance where the two agree. Identification is anchored by the RCT; there is no
attempt to globally align domains or to learn a single cross-domain bias function.

Two-step. This paradigm first learns effect heterogeneity from large observational data and then
uses the smaller but internally valid RCT to secure identification and debiasing. In practice it is
instantiated with meta-learners (e.g., X- and R-learners) that estimate conditional treatment effects
using flexible prediction on OBS, followed by an RCT-based correction step that anchors identi-
fication and reduces bias (Kallus et al., 2018). Two-step leverages the efficiency and coverage of
OBS while reserving the RCT signal for calibration, but it does not quantify residual unmeasured
confounding as a model parameter. In this paper, we adopt a unified linear ridge implementation
called Two-step ridge.

CORNets. CORNets implement a representation-learning version of data fusion: they learn bal-
anced, low-dimensional representations to reduce covariate-distribution mismatch between the RCT
and the target population, while introducing an explicit bias component that is regularized to control
complexity. The RCT provides identification and is used to calibrate the OBS-informed structure.
This yields transportable CATE estimates that combine observational scale with trial validity (Hatt
et al., 2022).

A.3 LARGE LANGUAGE MODEL USAGE

In this paper, we clarify that large language models (LLMs) are employed solely to support and
refine the writing process. Specifically, we use LLMs to provide sentence-level suggestions and to
enhance the overall fluency of the text.
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