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ABSTRACT

In human-AI interaction, one of the cutting-edge research questions is how AI
agents can assist a human to attain their desirable outcomes. Most related work
investigated the paradigm where a human is required to physically interact with
AI agents, which we call direct human-AI interaction. However, this paradigm
would be inapplicable when the scenarios are hazardous to humans, such as mine
rescue and recovery. To alleviate this shortcoming, we consider indirect human-
AI interaction in this paper. More detailed, a human would rely on some AI
agents which we call AI proxies to interact with other AI agents, to attain the
human’s desirable outcomes. We model this interactive process as multi-agent
influence diagrams (MAIDs), an augmentation of Bayesian networks to describe
games, with Nash equilibrium (NE) as a solution. Nonetheless, in a MAID there
may exist multiple NEs, and only one NE is associated with a human’s desirable
outcomes. To reach this optimal NE, we propose pre-strategy intervention which is
an action to provide AI proxies with more information to make decision towards
a human’s desirable outcomes. Furthermore, we demonstrate that a team reward
Markov game can be rendered as a MAID. This connection not only interprets the
successes and failures of prevailing multi-agent reinforcement learning (MARL)
paradigms, but also underpins the implementation of pre-strategy intervention in
MARL. In practice, we incorporate pre-strategy intervention into MARL for the
team reward Markov game to model the scenarios where all agents are required
to achieve a common goal, with partial agents working as AI proxies to attain a
human’s desirable outcomes. During training, these AI proxies receive an additional
reward encoding the human’s desirable outcomes, and its feasibility is justified
in theory. We evaluate the resulting algorithm ProxyAgent in benchmark MARL
environments for teamwork, with additional goals as a human’s desirable outcomes.

1 INTRODUCTION

In human-AI interaction, the research questions are focused on how AI agents can assist a human to
attain their desirable outcomes (Dash et al., 2023; Niszczota & Abbas, 2023; Wang et al., 2023), and
ultimately how AI agents can provide societal benefits in manufacturing, healthcare, and financial
decision-making (Amershi et al., 2019; Wu et al., 2021; Yang et al., 2020). However, most of these
works belong to direct human-AI interaction where a human is required to physically interact with
AI agents, which may not be applicable to scenarios which may be hazardous to humans such as
mine rescue and recovery (Murphy et al., 2009), and humans are not allowed to physically join such
as remote-controlled interventional surgical robots (Wang et al., 2010). In this paper, we consider
indirect human-AI interaction, where a human relies on some AI agents which we call AI proxies to
convey their intentions, and interact with other AI agents (see Definition 1.1).

Definition 1.1. Human-AI interaction can be categorized into two following types:

(1) Direct interaction, where a human and AI agents physically interact in an environment;
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(2) Indirect interaction, where a human would rely on some AI agents which we call AI proxies,
to interact with other AI agents1 in an environment.

One promising approach to address the indirect human-AI interaction is modelling this process as a
game-theoretical model, and it would be particularly interpretable if a Nash Equilibrium (NE) of the
game can be aligned to a human’s desirable outcomes, referred to as the optimal NE. Specifying the
optimal NE is a challenging problem since there almost always exist multiple NEs in a game model.
Related work has been explored under the term Nash equilibrium selection problem (Harsanyi et al.,
1988) and Pareto optimality (Pardalos et al., 2008), to decide on a specific NE. Nonetheless, these
methods encountered significant shortcomings which prevent seeking the optimal NE aligned to a
human’s desirable outcomes: (1) It is infeasible to get comprehensive information from a human to
articulate their intentions; and (2) These AI agents are not specifically designed to assist a human to
attain their desirable outcomes. To address these issues, this paper aims to design an approach which
we call pre-policy intervention, which intervenes AI proxies’ decision making to facilitate seeking
the optimal NE and thus attaining a human’s desirable outcomes.

More specifically, we model the indirect human-AI interaction as a multi-agent influence diagram
(MAID) (Koller & Milch, 2003), an augmentation of Bayesian networks to describe multi-agent
decision making to maximize the total utility. In MAIDs, the multi-agent decision process can be
described as a directed acyclic graph, with variables (nodes) to describe decisions, contexts and
utilities. The pre-strategy intervention is an action that assigns a probability measure called pre-
strategy determined by a pre-policy, to newly added variables as parents of AI proxies’ decision
variable, which provides more information to influence their decisions, referred to as strategies. In
this MAID, in addition to the utility variables indicating a common goal among agents, we introduce
additional utility variables indicating human’s desirable outcomes, which can only be influenced
by AI proxies’ strategies. Our goal is finding the optimal pre-policy, so as to reach the optimal NE
induced by the total utility variables.

Contribution Summary. The contributions of this paper are summarized as follows: (1) We consider
indirect human-AI interaction in this paper, where a human would rely on AI proxies to interact with
other AI agents, to attain their desirable outcomes. We model this interactive process between AI
proxies and other AI agents via MAIDs introduced above, where the goal is to reach the optimal
NE indicating a human’s desirable outcome. (2) To mitigate the issue of multiple Nash equilibria,
we propose a theoretically-guaranteed method called pre-strategy intervention. (3) We propose to
leverage causal effects to measure the performance of pre-strategy intervention, which also serves as
an objective function to optimize the pre-policy. (4) We show that team reward Markov games (which
can simulate multi-agent teamwork) (Littman, 2001) can be rendered as MAIDs. Underpinned by
this evidence, we implement pre-strategy intervention in multi-agent reinforcement learning (MARL)
(a promising solution to solve team reward Markov games), referred to as ProxyAgent, but with
an additional reward function encoding a human’s desirable outcomes. We rigorously prove that
the informed shaping reward can effectively facilitate learning the optimal pre-policy. (5) Based
on the theoretical results from the perspective of MAIDs, we discuss the successes and failures of
two MARL paradigms: independent learning and centralised training. (6) We evaluate ProxyAgent
in Multi-Agent Particle Environment (Lowe et al., 2017) and JAX-based StarCraft Multi-Agent
Challenge (Samvelyan et al., 2019; Rutherford et al., 2023), where only partial agents representing
AI proxies are under pre-strategy intervention. The results confirm the effectiveness of our method.

2 RELATED WORK

Environment and Mechanism Design. Environment design involves structuring or modifying
the configurations of an environment to lead agent behaviours towards a specific and desirable
outcome (Zhang et al., 2009; Reda et al., 2020; Gao & Prorok, 2023). In contrast, the aim of our
work is not to configure the environment directly. Rather, it focuses on intervening the agent policy
by pre-strategy intervention. From the perspective of environment design, this not only devises a new

1Note that when we define AI proxies we always stand from the ego view of a human of interest. As a result,
those AI agents to which human cannot convey intentions, are defined as other AI agents (or AI agents in short)
in this paper. Those AI agents here can be extended to more generalized concepts such as humans and other AI
proxies on behalf of other humans, as discussed in Hu & Sadigh (2023). However, to enable the problem setting
as concise as possible, we do not consider these extended concepts in this paper.
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paradigm, but also brings about potential novel approaches for realizing the paradigm. On the other
hand, mechanism design is typically pertaining to designing a game model such that the equilibrium
outcomes align to the game designer’s objectives (Nisan & Ronen, 1999; Cai et al., 2013). In this
paper, we focus on how to design pre-strategy intervention as a mechanism to attain a human’s
desirable outcomes in indirect human-AI interaction.

Human-AI Interaction in Machine Learning. Human-AI interaction models in machine learning
have been developed for several decades. Earlier works solved this problem as by first building
up a human model, such as a rule-based system (Lucas & Van Der Gaag, 1991) and a Bayesian
model (Stuhlmüller & Goodman, 2014). Given the assumption of a known and well-defined human
model (usually as a probabilistic model or a tree-structured model), the following works investigated
how to model the human-AI interactive process, so that AI agent has potential to perceive the
human’s goals and better assist them, relying on the mathematical tools such as partially observable
Markov decision process and dynamic programming (Çelikok et al., 2022; De Peuter & Kaski,
2023). Recently, human-AI interactions have been successfully addressed in solving the game
of Diplomacy, depending on the powerful large language models (LLMs) (Meta Fundamental AI
Research Diplomacy Team et al., 2022). However, these works are belonging to what we call direct
human-AI interaction. In this paper, we propose to employ a MAID to model indirect human-AI
interaction, which is associated with a probabilistic model under specification of a full strategy
profile. In contrast to the analytic models (e.g. probabilistic models), our graphical model is easy
to understand and more intuitive to design any decision rules. More recently, Hu & Sadigh (2023)
proposed to use LLMs as a medium to convey human’s explicit intentions to a controllable agent
during training, to interact with other agents. The application of LLMs here can be treated as one
approach to realize the pre-policy that conveys human’s desirable outcome to AI proxies in our
proposed indirect human-AI interactions, though its application range can be extended to the scenario
where AI proxies interacting with other agents, including both humans and AI agents. The extended
applicable range can be seen as prospect, given the success of indirect human-AI interactions.

3 BACKGROUND: MULTI-AGENT INFLUENCE DIAGRAMS

We now review multi-agent influence diagram (MAID) (Koller & Milch, 2003), which is an aug-
mentation of the Bayesian network to describe multi-agent decision making to maximize their utility.
An MAID is usually described as a tupleM = (I,X ,D,U ,G, P r). I is a set of agents. X is a
set of chance variables indicating decisions of nature. Each chance variable X ∈ X is associated
with a set of parents Pa(X) ⊂ X ∪ D. D :=

⋃
i∈I Di is a set of all agents’ decision variables,

where Di is the set of agent i’s decision variables. For a decision variable D ∈ Di, Pa(D) is the
set of variables whose values is informed to agent i when it selects a value of D. U :=

⋃
i∈I Ui

is a set of utility variables, where Ui is agent i’s utility variable as its utility function. Note that
utility variables cannot be parents of other variables. MAID defines a directed acyclic graph G
with variables V = X ∪ D ∪ U . Pr is a conditional probability distribution (CPD) defined over
chance variables X such as Pr(X|Pa(X)), and utility variables U ∈ U such as Pr(U |pa), for each
pa ∈ dom(Pa(U)). Note that Pr(U |Pa(U)) is a Dirac function (i.e. U is a deterministic function).
In other words, for each instantiation pa ∈ dom(Pa(U)), there is a value of U that is assigned
probability 1, and probability 0 to other values. To simplify the notation, U(pa) is denoted as the
value of U that has probability 1 when Pa(U) = pa. The total utility that an agent i obtained from
an instantiation of V is the sum of the values of Ui, i.e.

∑
U∈Ui

U(pa) where pa ∈ dom(Pa(U)).
An example for MAID is illustrated in Appendix 8.1.

Decision Rule and Strategy. An agent makes decision at variable D depending on its Pa(D), which
is determined by a decision rule δ : dom(D(pa)) → ∆(dom(D)) described in Definition 3.1. ∆
indicates probability distribution space over a set. An assignment σ of decision rules to each decision
D ∈ D is called a strategy profile. A partial strategy profile σE is an assignment of decision rules
to a subset of D, as a restriction of σ to E , and σ−E denotes the restriction of σ to variables in D\E .
The assignment of σE to the MAIDM induces a new MAID denoted byM[σ], and each D ∈ E
would become a chance variable with the CPD σ(D). When σ is assigned to every decision variable
in MAID, the induced MAID would become a Bayesian network with no more decision variables.
This Bayesian network defines a joint probability distribution PM[σ] over all the variables inM.

3
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Definition 3.1 (Koller & Milch (2003)). A decision rule δ for a decision variable D is a function that
maps each instantiation pa of Pa(D) to a probability distribution over dom(D). An assignment of
decision rules to every decision D ∈ Di for an agent i ∈ N is called a strategy.

Expected Utility and Nash Equilibrium. Given a strategy profile assigned to each decision variable,
with the resulting joint probability distribution PM[σ] and the suppose that Ui = {U1, ..., Um}, we
can write the expected utility for an agent i such that

EUi(σ) =
∑

(u1,...,um)∈dom(Ui)

PM[σ](u1, ..., um)

m∑
k=1

uk. (1)

Given Equation 1, we further define that the strategy σ∗
E is optimal for σ, for a subset E ⊂ Di, if

EUi((σ−E , σ
∗
E)) ≥ EUi((σ−E , σ

′
E)), as shown in Definition 3.2. Furthermore, if for all agents i ∈ I ,

σDi
is optimal for the strategy profile σ, then σ is a Nash equilibrium, as shown in Definition 3.3.

Definition 3.2 (Koller & Milch (2003)). Let E be a subset of Di, and let σ be a strategy profile. σ∗
E

is optimal for the strategy profile σ if, in the induced MAIDM[σ−E ], where the only remaining
decisions are those in E , the strategy σ∗

E is optimal, for all strategies σ′
E , such that

EUi((σ−E , σ
∗
E)) ≥ EUi((σ−E , σ

′
E)).

Definition 3.3 (Koller & Milch (2003)). A strategy profile σ is a Nash equilibrium for a MAIDM if
for all agents i ∈ N , σDi is optimal for the strategy profile σ.

For each MAID there can be multiple NEs (corresponding to multiple strategy profiles), we denote the
random variable describing a possible NE over a set of NEs, {σ̂1, . . . , σ̂k} as σ̂. For any σ̂ ∈ dom(σ̂),
we define the probability for an arbitrary NE as Pσ(σ̂) := Pr(σ̂D1

, . . . , σ̂Di
, . . . , σ̂Dn

), where
n := |N | is the number of agents in the MAID. The probability of a strategy profile is defined as the
joint probability that each agent i plays some strategy on the agent’s decision variable Di.

3.1 RELEVANCE GRAPH

A relevance graph as shown in Definition 3.4 defines a directed graph describing the binary relation
between two decision variables. If there exists an edge D′ → D, it implies that the decision variable
D is strategically relies on another decision variable D′. In other words, the decision rules for D′

is required to evaluate the decision rules for D. If there exist both D′ → D and D → D′, then the
relevance graph is cyclic. Furthermore, if D and D′ belong to two agents respectively, their payoffs
depend on the decisions at both D and D′. In this situation, the optimality of one agent’s decision
rule is coupled with another agent’s decision rule, and the only way is to make these two agents’
decision rules matched (Koller & Milch, 2003), such as choosing both agents’ decision rules together,
analogous to centralised training in multi-agent reinforcement learning (Oliehoek et al., 2008).

Definition 3.4 (Koller & Milch (2003)). A node D′ is s-reachable from a node D in a MAIDM if
there is some utility node U ∈ UD such that if a new parent D̂′ were added to D′, there would be
an active path (Appendix 8.2) inM from D̂′ to U given Pa(D) ∪ {D}, where a path is active in
a MAID if it is active in the same graph, viewed as a Bayesian network. The relevance graph for a
MAIDM is a directed graph whose nodes are the decision nodes ofM, and which contains an edge
D′ → D if and only if D′ is s-reachable from D.

4 ATTAINING HUMAN’S DESIRABLE OUTCOMES VIA MAIDS

In this section, we outline our approach to address the core challenge of reaching the optimal NE
that describes human’s desirable outcomes in human-AI interaction. The overall idea centers on
modelling the whole process as a game expressed in MAIDs and identifying the optimal decision
rule which we refer to as pre-strategy intervention. We begin with an example that demonstrates why
an agent representing a human may not always reach their desirable outcomes when interacting with
other AI agents. Owing to the fact that an induced MAIDMσ is a causal Bayesian network, we
formally define the causal effect of pre-strategy intervention, and introduce a systematic method to
identify the optimal pre-strategy.

4
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Db Dr

UhUc

(a) Original IHAD.

Db Dr Dpre

UhUc

(b) IHAD with pre-strategy intervention.

Db Dr

UhUc

(c) Induced IHAD.

Figure 1: (a) Original IHAD, where squares indicate decision variables, diamonds indicate utility
variables. The variables in red are associated with an AI proxy, while in blue associated with an AI
agent. The variables in yellow (Uc) are associated with variables shared between agents. (b) IHAD
where the AI proxy is under pre-policy intervention. (c) Induced IHAD when all decision variables
are specified with strategies (possibly under pre-policy intervention), and all variables (neglecting
pre-decision variables) become chance variables. Thus, the IHAD is reduced to a Bayesian network.

4.1 PRE-STRATEGY INTERVENTION IN INDIRECT HUMAN-AI DIAGRAMS

Indirect Human-AI Diagram. We first define the indirect human-AI diagram (IHAD), as shown in
Definition 4.1, to formalize the description in Definition 1.1. To ease the understanding, we give an
example in Figure 1(a), where one agent representing a human interacts with another AI agent, to not
only achieve a common goal Uc, but also accomplish the human’s desirable outcomes denoted by Uh.
Note that only the agents representing a human agrees to maximize Uh. Intuitively, the additional
utility variables can change the total utility as defined in Equation 1, so as to shape the optimal Nash
equilibrium corresponding to the human’s desirable outcomes.

Definition 4.1. An indirect human-AI diagram can be specified as a MAID, with specific utility
variables. In details, in addition to the common utility variables Uc ∈ Uc ⊂ U that all agents in the
environment agree to maximize, utility variables Uh indicating a human’s desirable outcomes are
added. Note that Uh ∈ Uh ⊂

⋃
i∈H Ui, whereH ⊂ N is a set of AI proxies.

Pre-Strategy Intervention. To regulate the AI proxies to additionally maximize the utility variables
Uh indicating the human’s desirable outcomes, we propose to add a pre-decision variable Dpre as a
new parent to a decision variable D of a proxy agent, as shown in Figure 1(b). In analogy to decision
variables in MAIDs, we need to give assignment σpre which we refer to as pre-strategy, and this
action is called pre-strategy intervention. This definition refers to the stochastic intervention defined
in causal Bayesian networks (Pearl, 2009)[Chap. 4], underpinned by the fact that an induced IHAD
can be treated as a causal Bayesian network, as shown in Figure 1(c). Similar to decision rules, a
pre-strategy is determined by a pre-policy denoted by δpre, as shown in Definition 4.2.

Definition 4.2. For a decision variable D ∈ D in a MAID, a pre-strategy intervention is an action to
assign a pre-strategy σpre to a new parent Dpre added to D, referred to as pre-decision variable. The
pre-strategy σpre is determined by a pre-policy δpre.

4.2 NAVIGATING RATIONAL OUTCOMES THROUGH PRE-POLICY

Motivated by the example above, a question arises: how a pre-strategy is identified to encode
a specific human’s desirable outcome. First, we introduce the total utility variable, denoted as
Utot := Uh

tot + U c
tot, where Uh

tot :=
∑

U∈Uh
U and U c

tot :=
∑

U∈Uc
U . The optimal NE is defined

as Utot = u∗. We realize this by first defining the causal effect of pre-strategy interventions on the
optimal NE, and then the pre-strategy attaining the human’s desirable outcomes can be identified by
maximizing the causal effect.

4.2.1 DEFINITION OF CAUSAL EFFECT OF PRE-STRATEGY INTERVENTION

Definition 4.3. Consider a pre-strategy intervention (Section 4.1) is applied to AI proxies, on its
strategy profile, to influence the Utot = u∗ induced by the optimal NE σ̂∗, which is induced by a
pre-strategy intervention σpre on new AI proxies’ decision rules. The set of NEs before pre-strategy

5
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intervention is denoted by σ̂. The causal effect is defined as the following equation:

∆σpre

CE (Utot = u∗) = PM[σ̂](Utot = u∗)Pσ(σ̂
∗)︸ ︷︷ ︸

PI(Utot=u∗)

−
∫
σ̂∈σ̂

PM[σ̂](Utot = u∗)Pσ(σ̂) dσ̂︸ ︷︷ ︸
P (Utot=u∗)

(2)

In Equation 2, PM[σ̂](Utot = u∗) represents the likelihood of desired outcome Utot = u∗ under
the specific NE σ̂. The terms Pσ(σ̂

∗) and Pσ(σ̂) denote the probability distributions of the optimal
NE and an arbitrary NE, respectively (See Definition 3.3). The causal effect quantifies the total
probabilities of Utot = u∗ under pre-strategy intervened and original IHADs. However, it may be
difficult to find the optimal pre-strategy intervention that induces the optimal NE. We prove that in
this case, there exists a pre-strategy intervention maximizing the causal effect, even if the pre-strategy
intervention induces a set of NEs including the optimal NE (as a weaker result), as delineated in
Proposition 4.4.

Proposition 4.4. Given a MAIDM, assume that the function PI , representing the probability of
observing Utot = u∗ under a pre-strategy intervention, is upper semicontinuous and defined on a
compact domain dom(σpre) ⊆ Rm. Under these conditions, there exists at least one pre-strategy of
agent i that does not decrease the probability of Utot = u∗. Furthermore, there exists a pre-strategy
that maximizes the causal effect.

About the condition for Proposition 4.4 to hold, we only assume semi-continuity for the function
of the probability measure PI since it is usually not everywhere continuous. An intuitive example
is the game paper, rock, scissors, where the best response is conducting each action uniformly. If
we consider a pre-policy that shifts one player towards slightly less likely playing rock, then the
probability of the opponent playing paper would experience a “jump” to 0, which can be seen as a
discontinuity in the function. An example of pre-strategy intervention can be found in Appendix 9.

4.2.2 ATTAINING HUMAN’S DESIRABLE OUTCOMES BY PRE-STRATEGY INTERVENTION

Having formalized the causal effect of a pre-strategy intervention and established the existence of
an optimal pre-strategy intervention that maximizes the causal effect above, a pertinent question
now arises: how a pre-strategy is evaluated. Maximizing the causal effect, as defined in Equation 2,
essentially involves maximizing the likelihood of Utot = u∗ within the intervened distribution of
different strategy profiles, as the second term in the equation remains constant across interventions.

To practically evaluate a generic pre-policy that generates pre-strategies, we propose the following
expression:

P (Utot = u∗ | do(σpre)) =
∑
σ∈σ

P (Utot = u∗ | σ)Pσ(σ | do(σpre)). (3)

where the (full) strategy profile σ incorporates the pre-strategy do(σpre) as a condition.

In Equation 3, the first term on the RHS is the conditional probability of an outcome Utot = u∗ under
the strategy profiles, and the second term is the distribution of agents’ strategies under pre-strategy
intervention. This formulation implies that we first allow agents to learn their best response strategies
to each other given pre-strategies. Then, it is eligible to evaluate the likelihood of the outcome
Utot = u∗ based on the full set of strategy profiles and updating the pre-strategy accordingly.

4.3 RENDERING MARKOV GAMES AS MAIDS

Markov game (Littman, 1994) is a popular mathematical model to describe the multi-agent decision
process across various real-world applications (Qiu et al., 2021; Wang et al., 2021; Zhang et al.,
2024). The success to associate Markov games with MAIDs, can enable implementing pre-policy
intervention in multi-agent reinforcement learning (MARL), a common paradigm to solve Markov
games. Furthermore, the theoretical results behind MAIDs can reversely facilitate understanding
centralised training and independent learning in MARL. For succinct description, we only consider
the team reward Markov game with a finite episode length, as shown in Definition 4.5.

6
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(a) MAID rendering a team reward Markov game.
(b) Relevance graph indicat-
ing independent learning.

(c) Component graph indi-
cating centralised training.

Figure 2: Illustrations of rendering team reward Markov games as MAIDs, and relevance graphs
associated with MARL paradigms. The red and blue squares indicate two agents’ decision variables,
respectively. The yellow utility variables indicate common utility variables shared between agents.
The white squares with a bold Ct indicate a maximal SCC.

Definition 4.5 (Littman (2001)). A team reward Markov game can be described as a tuple
⟨N ,S,A, T,R, L⟩. N is a set of agents; S is a set of states; A = ×i∈NAi is a set of joint ac-
tions and Ai is agent i’s action set; T : S × A → S describes the transition function that maps a
state st ∈ S at timestep t to st+1 ∈ S at timestep t+ 1; R : S ×A → R is a team reward function
that evaluate the immediate joint action at ∈ A at some state st ∈ S. In a team reward Markov
game with an episode length of L timesteps, agents aim to learn a joint policy π = (πi)i∈N where
πi : S → Ai is agent i’s stationary policy, to solve the following optimization problem such that
maxπ Eπ,T [

∑L
t=0 R(st, at)].

A team reward Markov game can be described as a directed acyclic graph. It can be rendered as
a MAID as Figure 2(a) shows, because we can match variables between these two models. In
details, both models’ agent sets are N ; S is associated with chance variables X ; A is associated with
decision variables D; T is associated with conditional probability distributions Pr; π is associated
with decision rules δ; and Eπ,Pr[

∑T
t=0 R(st, at)] is associated with the expected utility as shown in

Equation 1. The objective of a team reward Markov game maxπ Eπ,Pr[
∑L

t=0 R(st, at)] is equivalent
to reaching a Nash equilibrium (see Definition 3.3), given that each agent is equipped with common
utility variables, as defined in indirect human-AI diagrams, a specification of MAIDs for modelling
indirect human-AI interactions (see Definition 4.1).

4.3.1 KEY INSIGHTS INTO MARL PARADIGMS

Having rendered a team reward Markov game as a MAID, we now give some insights into the popular
MARL paradigms such as independent learning (Claus & Boutilier, 1998) and centralised training
(Oliehoek et al., 2008), through the lens of MAIDs.

Independent Learning. It is not difficult to observe that the team reward Markov game is a
simultaneous move game. If each agent learns independently, it would lead to an issue called non-
stationarity dilemma (Hernandez-Leal et al., 2019). Literally, this is caused by the situation that each
agent is not informed with others’ decisions and independently updates its policy, with regarding
other agents as part of the environment. If we express the team reward Markov game as a s-relevance
graph as shown in Figure 2(b), a cycle would appear between decision variables at each timestep.
As per the discussion in Section 3.1, it is not guaranteed to reach a Nash equilibrium by solely
determining each agent’s decision variables, with a generalized backward induction algorithm. This
is in principle aligned with the temporal-difference (TD) learning (Sutton, 2018)[Chap. 6] and the
actor-critic algorithms (Konda & Tsitsiklis, 1999), which underpin the modern on-policy and online
algorithms for single-agent reinforcement learning. In turn, this association can well explain the
failure of independent learning, as a single-agent reinforcement learning algorithm.

Centralised Training. Recall that the non-stationarity dilemma above can be well solved by
centralised training (Oliehoek et al., 2008), which treats a team of agents as a whole executing joint
actions. Thereby, Markov game is reduced to a Markov decision process as a single-agent case. This
paradigm can be interpreted from the perspective of MAID, as transforming a cyclic s-relevance
graph to a component graph with the maximal strongly connected components (SCCs) as nodes, as
shown in Figure 2(c). More specifically, a maximal SCC includes the decision variables forming a
cyclic s-relevance graph at each timestep. Koller & Milch (2003) showed that solving the acyclic
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component graph 2 via the generalized backward induction algorithm can reach a Nash equilibrium.
This is associated with centralised training employed to reach the maximum cumulative team rewards,
as a Nash equilibrium in a team reward Markov game (Littman, 2001; Oliehoek et al., 2008).

4.3.2 PRE-POLICY LEARNING

Algorithm 1 ProxyAgent

1: Initialize πθpre (pre-policy) and πθagent (agents’ policies)
2: Define environments Epre (with shaping rewards) and Enorm (with extrinsic rewards)
3: while Pre-policy and agents’ policies have not converged do
4: for a fixed number of updates do ▷ Stage 1: Updating the pre-policy
5: Update πθpre given πθagent in Epre
6: end for
7: for a fixed number of updates do ▷ Stage 2: Updating agents’ policies
8: Update πθagent given πθpre in Enorm
9: end for

10: end while
11: Return: πθpre , πθagent

Based on the equivalence between team reward Markov games and MAIDs, it is natural to imple-
ment pre-policy intervention in MARL. In Equation 3, we formulated the evaluation of pre-policy
intervention from the perspective of causal effects, which will be the objective function in our algo-
rithm. Before detailing our algorithm, we first justify that observing utility variables and pre-strategy
intervention are instrumental in reaching the optimal NE as a human’s desirable outcome. As shown
in Equation 4, the summand with respect to the optimal NE of the RHS in Equation 3 is proportional
to P (σ̂∗ | Utot = u∗,do(σpre)), the posterior probability of the optimal NE σ̂∗. Consequently,
maximizing causal effects shown in Equation 3 is equivalent to maximum a posterior with respect
to the optimal NE σ̂∗. The observations of the posterior probability illuminates the necessity of
observing utility variables and pre-strategy intervention to maximize the probability of reaching the
optimal NE.

P (σ̂∗ | Utot = u∗,do(σpre)) ∝ PM[σ](Utot = u∗ | σ̂∗)Pσ(σ̂
∗ | do(σpre)). (4)

In the context of MARL, common utility variables and the utility variables measuring a human’s
desirable outcomes are implemented as extrinsic rewards and intrinsic rewards (Mguni et al., 2022),
respectively. As Algorithm 1 shows, Stage 1 aims at maximizing Pσ(σ | do(σpre)) given fixed
PM[σ](Utot = u∗ | σ): the pre-policy is optimized with shaping rewards as the sum of intrinsic
rewards encoding a human’s desirable outcomes and extrinsic rewards emitted from the environment,
with fixing agents’ policies (decision rules δ). Thus, actions (strategies σ) generated would be
determined by pre-strategies σpre generated by the pre-policy (pre-decision rules δpre). Stage 2
is focused on maximizing PM[σ](Utot = u∗ | σ) given fixed Pσ(σ | do(σpre)): agents’ policies
are optimized with shaping rewards, with fixing the pre-policy and thus fixing pre-strategies σpre.
Iterating between Stage 1 and Stage 2 is expected to result in that σ → σ̂∗, and P (σ̂∗ | Utot =
u∗,do(σpre)) is maximized, i.e., the human’s desirable outcomes have been attained.

5 EXPERIMENTS

The above sections show how the optimal NE associated with a human’s desirable outcomes is
attained using pre-policy intervention. The evaluation of Algorithm 1 is focused on answering the
following two research questions: (1) Is the pre-policy able to attain a human’s desirable outcomes
(measured by intrinsic rewards)? (2) Would a human’s desirable outcomes affect the goal of the
original task (measured by extrinsic rewards)?

5.1 EXPERIMENTS SETUP

In experiments, we intervene some agents as AI proxies in the environment and these agents are
fed with intrinsic rewards. All experiments are conducted with ten random seeds, and the results

2A component graph is always acyclic (Cormen et al., 2022).
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(a) Extrinsic returns for MPE. (b) Win rate for 3s2z in SMAX.

Figure 3: Comparison between our method ProxyAgent and the baseline. Outcome 1 and Outcome 2
in (b) stands for two different human’s desirable outcomes for 3s2z in SMAX.

are presented as the mean performance with a 95% confidence bar. For each test timestep, 128
episodes are evaluated. In implementation, using graph-neural networks (GNNs) (Wu et al., 2020) as
a graph-based feature extraction approach is investigated, as outlined in Algorithm 2 in Appendix 12.2.
The motivation is to verify the effectiveness of graph-based representation of an environment, thanks
to multi-agent influence diagrams (MAIDs) we discussed in this paper.

Multi-Agent Particle Environment (MPE). MPE Simple Spread is a multi-agent environment
where agents must cooperatively navigate to different landmarks in a 2D continuous space while
avoiding collisions (Lowe et al., 2017; Rutherford et al., 2023). In our experimental setup, there
exist 3 agents and 3 landmarks. There is only one AI proxy in this environment, receives intrinsic
rewards to measure how far the AI proxy is to the leftmost landmark, the smaller the distance the
larger intrinsic rewards.

JAX-based StarCraft Multi-Agent Challenge (SMAX). SMAX is a JAX-based implementation of
the StarCraft Multi-Agent Challenge (SMAC), a benchmark designed for testing MARL algorithms
using simplified StarCraft II combat scenarios (Samvelyan et al., 2019; Rutherford et al., 2023). We
first evaluate our method in the scenario 3s2z. We design two specific cases: (1) the two Stalkers
and one Zealot serve as AI proxies denoted by Outcome 1, and (2) the three Stalkers serve as AI
proxies denoted by Outcome 2. In either case, AI proxies are required to form a line in attacking. We
additionally evaluate our method in 3s2h and 5m_vs_6m. The AI proxies in these two scenarios are 3
Stalkers and 5 Marines, respectively. The relevant intrinsic rewards evaluate if all AI proxies stand in
a line, without gathering together.

Baseline and Ablation Variants. All baselines share the same architecture and training setups
as ProxyAgent, except for GNNs as feature extraction in ProxyAgent. For both MPE and SMAX
environments, we compare the performance of our method against a baseline using standard train-
ing paradigms, such as DQN (Mnih et al., 2015) for MPE, and VDN (Sunehag et al., 2017) and
PPO (Schulman et al., 2017) for SMAX. Due to page limits, we show the results of PPO in Ap-
pendix 13.1. All implementation details are provided in Appendix 12 and Appendix 14.

5.2 MAIN RESULTS

Figure 3 shows that our method demonstrates general faster convergence compared with the baseline.
More specifically, our method can achieve high returns in MPE, while a 100% win rate in SMAX. The
faster convergence implies that pre-strategy intervention actually changes the landscape of utilities
and thus influences learning process. Furthermore, the difference between final returns obtained by
our method and the baseline verifies that human’s desirable outcomes could affect the task goal.

5.3 ATTAINING HUMAN’S DESIRABLE OUTCOMES

Figure 4(a) visualizes the process of the AI proxy to reach the leftmost landmark in MPE during
learning. As seen from Figure 4(b), the trend of intrinsic return agrees to the changes of the AI
proxy’s motions. To give a more intuitive understanding about results of MPE, we conduct a case
study to analyze the complexity of multiple NEs and the optimal NE in Appendix 11. Similarly, we
verify the effect of pre-strategy intervention on SMAX. As shown in Figure 5(a), in all scenarios the
average intrinsic reward of one episode in test demonstrates the necessity of introduce an intrinsic
reward to guide reaching the optimal NE. We have noticed that it is still possible to reach the optimal
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(a) Visualization for evaluation. (b) Intrinsic reward per step in (a).

Method Intrinsic Reward
Ours −1.12± 0.70
Baseline −1.92± 0.63

(c) Average last-step intrinsic re-
wards evaluated by 10 episodes.

Figure 4: Visualization and evaluation curve to demonstrate the intrinsic rewards across timesteps
in MPE during training. The numbers from small to large in (a) indicate the sequence of subfigures
visualizing the change of agents’ behaviors. Furthermore, the agent in red is the AI proxy.

Scenario Baseline Our Method
3s2z −2.0± 0.42 −0.7± 0.11
3s2h −0.81± 0.30 −0.62± 0.26

5m_vs_6m −0.56± 0.30 −0.50± 0.10

(a) Average intrinsic rewards evaluated
by 10 episodes, across three scenarios.
All rewards have been scaled by a factor
of 100 for ease to demonstrate.

(b) Visualized Outcome 1 in 3s2z.
(c) Visualization of intrinsic rewards for Outcome 2 in 3s2z across
timesteps. The agents in yellow are the AI proxies.

Figure 5: Visualization and numeric results of variant scenarios in SMAX for demonstrating intrinsic
rewards across timesteps during training.

NE but the result is not controllable (only appearing once in three scenarios for baselines). The
sub-optimality for Outcome 1 of 3s2z in SMAX is visualized in Figure 5(b), which we will discuss
in details in Section 6. Similar to MPE, we also demonstrate a progressive visualization of how the
instantaneous intrinsic reward changes for Outcome 2 of 3s2z in Figure 5(c). It can be seen that the
intrinsic reward changes with the corresponding formation of AI proxies. The good performances
cross different agent types and scenarios verify that our method is generally effective.

6 CONCLUSION, DISCUSSION AND LIMITATION

In this paper, we contributed a novel method for indirect human-AI interaction, building on the
concept of pre-strategy intervention within multi-agent influence diagrams (MAIDs). Our method
allows AI proxies to represent a human to interact with other AI agents, to attain their desirable
outcomes but still attempt to complete the task as much as possible. The pre-strategy intervention
aims to provide more information to attain the human’s desirable outcomes. Based on the theory we
established, we can implement pre-policy intervention in multi-agent reinforcement learning with
theoretical guarantees and interpretation. We evaluate our proposed method called ProxyAgent in
two benchmarks: Multi-Agent Particle Environment (Lowe et al., 2017) and JAX-based StarCraft
Multi-Agent Challenge (Samvelyan et al., 2019; Rutherford et al., 2023), where only partial agents
representing AI proxies are under pre-strategy intervention. The experimental results verify the
effectiveness of our method and validity of our theory established on MAIDs.

Discussion and Limitation. As seen from Figure 3(b) and 5(b), there exists some outcome specified
by intrinsic rewards which cannot be attained under some task goal specified by team rewards. This
is highly dependent on the consistency between the design of intrinsic rewards and the definition
of team rewards. In the future, it is a valuable research avenue to study the relation amongst the
function class of intrinsic rewards, team rewards and the existence of the optimal NE to complement
the framework of MAIDs. On the other hand, as Figure 3(a) shows, the effectiveness of encoding
observations into graphs with pre-process by GNNs is limited, though in theory it should be more
effective. The main reason could be that the graph structures we formed could deviate from the
optimal structure. To remedy this issue, some research about causal discovery (Glymour et al., 2019)
could be incorporated in the future.
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7 NOTATION

Table 1: Summary of Notation

Notation Description
M Multi-Agent Influence Diagram (MAID),
I Set of agents in the MAID.
X Set of chance variables (representing decisions of nature).
D Set of decision variables for all agents.
Di Decision variables for agent i.

Pa(D) Parent set of decision variable D.
U Set of utility variables.
Ui Utility variables for agent i.
G Directed acyclic graph (DAG) of the MAID.
Pr Conditional probability distribution (CPD)
Dpre Pre-strategy decision variable
σ Strategy profile (assignment of decision rules).

σpre Pre-strategy assigned to decision variable Dpre.
σE Partial strategy profile on subset E ⊆ D.
σ−E Strategy profile restricted to decisions outside E .
δpre Pre-policy, which determines a pre-strategy σpre.
σI Set of strategy profiles after pre-policy intervention.
U Utility variable, representing human’s desirable outcome.
Uh Utility variable indicating human’s desirable outcomes.
Uc Common utility variable representing shared goals.

PM[σ] Joint probability distribution induced by strategy profile σ.
∆CE(σI , U = u) Causal effect of pre-strategy intervention σI on outcome U = u.
PM[σ](U = u) Likelihood of outcome U = u under strategy profile σ.

Pσ(σ) Probability distribution over strategy profiles.
EUi(σ) Expected utility for agent i under strategy profile σ.

Pr(σ̂D1
, . . . , σ̂Dn

) Joint probability of an arbitrary strategy profile σ̂.
N Set of agents in Markov Game.
S Set of states in a Markov Game.
A Set of joint actions in a Markov Game.
T Transition function mapping a state and action to a new state.
R Team reward function evaluating joint actions in a Markov Game.
π Joint policy of agents in a Markov Game.
Epre Environment with shaping rewards for training pre-policy.
Enorm Environment with extrinsic rewards for training agent policies.

8 EXTENDED BACKGROUND

8.1 MAID EXAMPLE

We introduce MAIDs through a two-agent scenario adapted from Koller & Milch (2003).

Example: Alice is considering building a patio behind her house, which would be more valuable if
she could have a clear view of the ocean. However, a tree in her neighbor Bob’s yard blocks her view.
Alice, being somewhat unscrupulous, contemplates poisoning Bob’s tree, which would cost her some
effort but might cause the tree to become sick. Bob is unaware of Alice’s actions but can observe if
the tree starts to deteriorate, and he has the option of hiring a tree doctor (at a cost). The tree doctor’s
attention reduces the chance that the tree will die during the winter. Meanwhile, Alice must decide
whether to build her patio before the weather turns cold. At the time of her decision, Alice knows
whether a tree doctor has been hired but cannot directly observe the tree’s health. A MAID for this
scenario is shown in Figure 6.
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Poison Tree Tree Doctor Build Patio

Tree Sick Cost

Effort Tree Dead

Tree

View

Figure 6: A MAID for the Tree Killer example; Alice’s decision and utility variables are in red, and
Bob’s are in blue. Decision nodes are rectangular, chance nodes are squircular, and utility nodes are
hexagonal.

8.2 MORE RELATED DEFINITIONS

Definition 8.1 (Pearl (2014)). Let G be a Bayesian Network (BN) structure, and let X1−X2−· · ·−Xn

represent an undirected path in G. Let E be a subset of nodes in G (the evidence set). The path
X1 − · · · −Xn is active given evidence E if:

• Whenever there is a collider on the path, i.e., a structure Xi−1 → Xi ← Xi+1, then either
Xi or one of its descendants is in E.

• No other node along the path is in E.

9 PRE-STRATEGY INTERVENTION EXAMPLE

Background Two logistics companies, Company A and Company B, share a warehouse and use
robots to manage inventory. Each company has two options:

• Optimize space usage: Focus on efficient organization.

• Prioritize speed: Focus on moving items quickly.

Both companies’ choices affect each other’s performance, and they aim to achieve the best outcome
for their operations.

Utility Table

Company A\Company B Optimize Space Usage (B) Prioritize Speed (B)
Optimize Space Usage (A) (9, 9) (3, 6)

Prioritize Speed (A) (6, 3) (5, 5)

An AI proxy intervenes before Company A’s decision-making process, guiding it toward an optimal
outcome. By introducing incentives that prioritize efficient space usage, the proxy ensures Company
A chooses the best option, aligning with Company B at the (9, 9) point. This strategy prevents
suboptimal decisions and fosters cooperation between the companies, maximizing efficiency for both.
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9.1 PRE-STRATEGY INTERVENTION

An AI proxy steps in before the decision-making process, guiding the robots toward an optimal
outcome by introducing rewards that favor optimizing space usage. This ensures both companies
choose the (9, 9) outcome, where efficiency is maximized for both, avoiding the less efficient options.

By using this pre-strategy intervention, the AI proxy ensures that both companies cooperate to achieve
the best results.

10 PROOF

∆CE(σ
pre, Utot = u∗) =

∫
σ̂∈σ̂I

PM[σ̂](Utot = u∗)Pσ(σ̂) dσ̂︸ ︷︷ ︸
PI(Utot=u∗)

−
∫
σ̂∈σ̂

PM[σ̂](Utot = u∗)Pσ(σ̂) dσ̂︸ ︷︷ ︸
P (Utot=u∗)

(5)

Proposition 10.1. Given a MAIDM, assume that the function PI , representing the probability of
observing Utot = u∗ under a pre-strategy intervention, is upper semicontinuous and defined on a
compact domain dom(σpre

E ) ⊆ Rm. Under these conditions, there exists at least one pre-strategy of
agent i that does not decrease the probability of Utot = u∗. Furthermore, there exists a pre-strategy
that maximizes the causal effect as defined in Equation 5.

Proof. A trivial case exists where a pre-policy that equals the marginal conditional probability of
U = u can be achieved by doing empty intervention.

To prove that there exists a pre-strategy maximizing the causal effect, we observe that the second term
on the right-hand side of Equation (5) is constant. Therefore, maximizing the first term is equivalent
to maximizing the causal effect.

The conditional probability PM[(σ)](U = u), under the assumption of the Markov property of the
bayesian network Koller & Milch (2003), is expressed by integrating out intermediate variables. This
simplifies the expression, focusing on the effect of π:

PM[(σ)](U = u) =

∫
paD∈dom(Pa(D))

PM[(σ)](paD) dpaD

×
∫
d∈dom(D)

PM[(σ)](d | paD) dd

× PM[(σ)](U = u | d,paD) (6)

The function f(σpre
E ), representing the expected probability of U = u under the pre-policy, is defined

as:

f(σpre
E ) := PI(U = u) =

∫
σ̂∈σI

PM[σ̂](U = u)Pσ(σ̂) dσ̂

Assuming f is an upper semicontinuous function defined on a compact domain dom(σpre
E ) ⊆ RN ,

we aim to demonstrate that f has a maximum on this domain. This follows from the Extreme Value
Theorem. We replaced the notation σpre

E with σ for simplicity, with a slight abuse of notation.

Boundedness Above: Suppose, for contradiction, that f is unbounded above. For each k ∈ N, there
exists σk ∈ dom(σ) such that f(σk) > k. Since dom(σ) is compact, the sequence {σk} contains a
convergent subsequence {σkl

} converging to some σ0 ∈ dom(σ).

The property of upper semicontinuity implies lim supl→∞ f(σkl
) ≤ f(σ0), which contradicts the

assumption because it suggests lim supl→∞ f(σkl
) =∞. This shows f is bounded above. Then we

can define:

γ = sup{f(σ) : σ ∈ dom(σ)}
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Since the set {f(σ) : σ ∈ dom(σ)} is nonempty and bounded above, γ ∈ R.

Existence of Maximum: Let {xk} be a sequence in dom(σ such that {f (xk)} converges to γ.
By the compactness of the domain, the sequence {xk} has a convergent subsequence {xkℓ

} that
converges to some σ̄ ∈ dom(σ). Then

γ = lim
ℓ→∞

f (xkℓ
) = lim sup

ℓ→∞
f (xkℓ

) ≤ f(σ̄) ≤ γ

Conclusion: The equality γ = f(σ̄) establishes that γ is the maximum value of f on dom(σ), and
thus f(σ) ≤ f(σ̄) for all σ in the domain dom(σ).

11 ANALYSIS OF AGENTS’ BEHAVIOURS IN MPE

We consider a multi-agent particle environment with:

• N = 3 agents labeled A1, A2, and A3, with positions at time t given by coordinates
(xA1

(t), yA1
(t)), (xA2

(t), yA2
(t)), and (xA3

(t), yA3
(t)).

• L = 3 landmarks labeled L1, L2, and L3, with fixed positions given by coordinates
(xL1 , yL1), (xL2 , yL2), and (xL3 , yL3).

The positions of agents A1, A2, and A3 vary over time, while the landmarks L1, L2, and L3 remain
fixed.

11.1 ASSUMPTIONS

1. Ignore the Effect of Moving Toward One Landmark on Others: When agent Ai moves
toward a landmark Lj , we assume that the movement does not significantly affect the
distances of other agents to other landmarks.

2. Fixed Agent Behavior: Agent A1 (as AI proxy) always goes to the leftmost landmark L1.

3. Unique Assignment of Agents to Landmarks: No agent is closer to more than one
landmark than other agents. Intuitively, each agent is uniquely assigned to one landmark
such that no two agents are equally or more suited for the same landmark based on initial
positions.

4. Objective: Maximize the team’s cumulative reward over time.

5. Movement Constraints: Agents have a maximum speed vmax.

6. Team Reward: At each timestep t, the reward is the negative sum of distances from each
landmark to its closest agent:

R(t) = −
3∑

j=1

Dj(t), (7)

where
Dj(t) = min

i

√
(xAi(t)− xLj )

2 + (yAi(t)− yLj )
2. (8)

7. Total Cumulative Reward:

Rtotal =

T−1∑
t=0

R(t). (9)

We aim to determine, based solely on initial positions, under what theoretical conditions it is the best
response for agents A2 and A3 to go to landmarks L2 and L3, given that agent A1 always goes to L1.

11.2 CASE ANALYSIS BASED ON INITIAL POSITIONS

We divide the analysis into cases based on the initial positions of agents relative to the landmarks.
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11.2.1 CASE 1: AGENT A1 IS CLOSER TO L1 THAN A2 AND A3

Condition. The initial Euclidean distance of agent A1 to the landmark L1 is less than the distances
of both agents A2 and A3 to L1:√

(xA1(0)− xL1)
2 + (yA1(0)− yL1)

2 ≤ min
(√

(xA2(0)− xL1)
2 + (yA2(0)− yL1)

2,√
(xA3(0)− xL1)

2 + (yA3(0)− yL1)
2
)
.

(10)

Analysis. Given these initial positions:

• Agent A1 is closest to landmark L1, making it the best agent to go to L1.
• Agents A2 and A3 should go directly to L2 and L3 (or L3 and L2), minimizing their

cumulative distances to their assigned landmarks.
• Any deviation by agents A2 or A3 towards L1 would result in a longer travel distance for

the deviating agent, increasing their cumulative distance without reducing the overall team
reward.

Conclusion. Under this condition, it is the best response for agent A1 to go to L1 while agents
A2 and A3 proceed to their assigned landmarks L2 and L3. This ensures the optimal distribution of
agents across landmarks based on their initial positions.

11.2.2 CASE 2: AGENT A2 OR A3 IS CLOSER TO L1 THAN A1

Condition. Let the initial Euclidean distances of agents A1, A2, and A3 to the leftmost landmark
L1 be given as follows:

dA1,L1
=

√
(xA1

(0)− xL1
)2 + (yA1

(0)− yL1
)2,

dA2,L1 =
√
(xA2(0)− xL1)

2 + (yA2(0)− yL1)
2,

dA3,L1 =
√
(xA3(0)− xL1)

2 + (yA3(0)− yL1)
2.

If dA2,L1
≪ dA1,L1

or dA3,L1
≪ dA1,L1

, then having A1 move to L1 is suboptimal because another
agent (A2 or A3) is much closer to L1.

The objective is to minimize the total team reward, which is the negative sum of distances from each
landmark to the nearest agent, based on assumptions (1) and (4):

Rtotal ∝ − (D1 +D2 +D3) ,

where
Dj = min

(
dA1,Lj , dA2,Lj , dA3,Lj

)
, for j ∈ {1, 2, 3}.

Analysis. Assume agent A1 always goes to L1. The cumulative distance cost (by assumption (3))
for the team is:

Rtotal, A1 to L1 ∝ − (dA1,L1
+min(dA2,L2

, dA3,L2
) + min(dA2,L3

, dA3,L3
)) .

If instead, agent A2 (or A3) goes to L1, and A1 goes to either L2 or L3, the new cumulative reward
becomes:

Rtotal, A2 to L1 ∝ − (dA2,L1 +min(dA1,L2 , dA3,L2) + min(dA1,L3 , dA3,L3)) .

To determine which strategy is better, we compare the two total rewards. If:

Rtotal, A2 to L1 > Rtotal, A1 to L1,

then it is optimal for A2 to go to L1 instead of A1.

For this to hold, the reduction in distance to L1 by A2 must outweigh the increased travel distance
for A1 moving to L2 or L3. This is mathematically expressed as:

dA1,L1
− dA2,L1

> (min(dA1,L2
, dA3,L2

) + min(dA1,L3
, dA3,L3

))

− (min(dA2,L2 , dA3,L2) + min(dA2,L3 , dA3,L3))
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Conclusion. In cases where agent A2 or A3 is significantly closer to L1 than A1, it is more efficient
for that closer agent to go to L1, while A1 should move to either L2 or L3. This ensures that the total
team reward is maximized, as the cumulative travel distance is minimized. Hence, the assumption
that A1 should always go to L1 does not always yield the largest reward.

11.2.3 CONCLUSION OF ABOVE CASES

The assumption that agent A1 should always go to the leftmost landmark L1 is not always optimal.
The best strategy depends on initial positions, and if another agent is closer to L1, it should go there
to minimize total travel distance and maximize team reward.

12 IMPLEMENTATION DETAILS

12.1 ALGORITHM 1 EXPLANATION

The ProxyAgent framework is designed to guide the multi-agent system towards desirable outcomes
by modifying the reward structure for AI proxies and iteratively training the agents. Agents are divided
into two groups: those following a pre-policy and those following a normal policy. The algorithm
alternates between training both groups in a standard environment and one with additional intrinsic
rewards for the AI proxies, encouraging specific behaviors toward desired outcomes. Through
iterative training, agents can adapt and respond to the pre-policy, fostering dynamic interactions
between the two groups. In implementation, an additional graph-based feature extraction approach
using GNNs models dependencies between observation semantics, enhancing the learning process
by incorporating prior knowledge about the complex interactions in the systems. Furthermore, we
observed that updating both groups of policies simultaneously, rather than fixing one group per stage,
leads to more effective training.

12.2 LEARNING FEATURES GUIDED BY GRAPH STRUCTURE

Algorithm 2 Graph-Based Feature Extraction Using GNN

1: Input: Observation vector
2: Represent the observation in influence diagrams in terms of semantic features
3: Apply graph convolution using a GNN with an adjacency matrix (either learned or predefined)
4: Return: Graph embedding vector

Koller & Milch (2003) introduced a graph criterion (s-reachability) to identify the policies of other
agents that are relevant for making rational decisions, which forms the foundation for our pre-policy
intervention approach. However, considering only policies is insufficient, as an agent’s policy may
depend on other elements within the game3. Algorithm 2 provide an implementation how we can build
connection with causal graph structure for pre-policy learning. By leveraging this graph structure, we
incorporate prior knowledge about the game to help guide agents’ policy-making in practical. The
feasibility of learning the causal graph during training has been demonstrated by Richens & Everitt
(2024), where agents can learn the causal model implicitly during interaction with the environment.

12.2.1 ARCHITECTURE

If the adjacency matrix is not predefined, the GNN processes the observation vectors by first encoding
them into logits, which are used to generate a soft adjacency matrix via the Gumbel-Softmax
technique Jang et al. (2016). This matrix defines the relationship between features in the observations.
Once the adjacency matrix is formed, a graph convolutional layer applies message passing to update
the features of each node based on its neighbors Pearl (2014). The output node features are then
aggregated using a mean-pooling operation to produce a graph embedding. This embedding is used
for further processing or decision-making.

3(Hammond et al., 2023) refers to such elements as R-reachable to the policies.
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12.2.2 PRE-DEFINED ADJACENCY MATRIX IN MPE

In the Multi-Agent Particle Environment (MPE), the observation for each agent includes its velocity,
position, and the relative positions of other agents and landmarks. The causal graph among these
variables is straightforward: velocity influences position, and position influences the relative positions.
We pre-define the adjacency matrix based on this causal relationship.

12.2.3 LEARNED ADJACENCY MATRIX IN SMAX

In the SMAX environment, each agent’s observation includes features like health, position, weapon
cooldown, and the relative positions of other agents. Here, we employ a learnable adjacency matrix to
capture the dynamic causal relationships between agents. For example, if an enemy agent’s weapon
cooldown is beyond the self-agent’s attack range, it will not affect health. However, once the enemy
enters the attack range, the causal dependency is reestablished. This dynamic adjustment in the
adjacency matrix allows the system to learn and adapt to evolving interactions between agents during
training.

12.3 AGENT ARCHITECTURE

The architecture of the QLearning Agent consists of the following components:

1. Dense Layer: A fully connected layer that processes the input observations and converts
them into embeddings.

2. Recurrent Module (GRU): A GRU-based recurrent layer (ScannedRNN) that maintains
a hidden state across time steps.

3. Pre-policy Intervention Module: This module is implemented using an additional Dense
layer. The layer is only trainable in the environment Epre.

4. Output Layer: A fully connected layer that generates Q-values for action selection based
on the processed embeddings.

The PPO architecture consists of the following key components:

1. Input Layer: The input consists of observations and done flags, where the observations are
passed through a fully connected (Dense) layer.

2. Recurrent Module(GRU): A GRU-based recurrent layer, defined in ScannedRNN, that
maintains a hidden state across time steps.

3. Pre-policy Intervention Module: This module is implemented using an additional Dense
layer. The layer is only trainable in the environment Epre.

4. Actor Network: The actor branch uses a series of dense layers to generate the
mean action logits. These logits are used to parameterize a categorical distribution
(distrax.Categorical) for action sampling.

5. Critic Network: The critic branch, using a fully connected layer, outputs a scalar value,
representing the state value estimate used in the critic part of the actor-critic setup.

12.4 REWARD STRUCTURE

The implementation of the extrinsic reward is from JaxMARL Rutherford et al. (2023). The intrinsic
reward used in our experiments is defined as follows:

12.4.1 MPE

We denote a0, a1 as the agents and a2 as the AI proxy.

Intrinsic Reward:

In the case of pre-policy intervention, the third agent a2 receives a reward based on its distance from
the leftmost landmark, while the other agents’ rewards are based on collisions and global rewards:
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r(a2) = ragent(a2, c) · local_ratio + rleftmost(a2) · (1− local_ratio)

where:
rleftmost(a2) = −∥pa2

− pleftmost∥
is the negative Euclidean distance between the position of agent a2, denoted pa2

, and the position of
the leftmost landmark pleftmost.

For the other agents a0 and a1, the reward is given by a combination of the agent-specific reward and
the global reward:

r(ai) = ragent(ai, c) · local_ratio + rglobal · (1− local_ratio)

where the global reward rglobal is the sum of the rewards for all landmarks:

rglobal =
∑

l∈landmarks

rlandmark(pl)

Extrinsic Reward:

When there is no pre-policy intervention, the reward for all agents is given by:

r(ai) = ragent(ai, c) · local_ratio + rglobal · (1− local_ratio)

This applies to all agents ai, where i is the index of each agent.

12.4.2 SMAX

The total intrinsic reward consists of two components: the vertical alignment reward and the horizontal
spacing reward. Both are combined to assess the quality of the agent formation in terms of vertical
alignment and horizontal separation.

1. VERTICAL ALIGNMENT REWARD

The horizontal positions of the first three agents are denoted as x1, x2, x3. The goal is to minimize
the vertical misalignment between agents.

The pairwise vertical differences between agents are given by:

Vertical Differences = |xi − xj | ∀i, j ∈ {1, 2, 3}
The mean vertical difference is used to penalize the misalignment. It is calculated as:

mean_vertical_diff =
1

3

3∑
i=1

3∑
j=1

|xi − xj |

This penalizes larger vertical differences, encouraging the agents to stay in alignment along the
x-axis.

2. HORIZONTAL SPACING REWARD

To ensure that the agents maintain appropriate horizontal spacing, the maximum vertical distance
between the agents is considered. Let the vertical positions of the first three agents be denoted by
y1, y2, y3.

The maximum horizontal distance between agents is given by:

horizontal_diffs = max (|yi − yj |) ∀i, j ∈ {1, 2, 3}
The horizontal reward is computed using a log-scaled function to encourage proper horizontal spacing,
with diminishing returns after 2 units of separation:

horizontal_reward = log (1 + min (horizontal_diffs, 1.0))
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3. TOTAL INTRINSIC REWARD

The total intrinsic reward is a weighted combination of the penalties for vertical misalignment and
the reward for horizontal spacing:

total_intrinsic_reward = α · (−mean_vertical_diff + β · horizontal_reward)

where α represents the vertical line reward scale, and β represents the relative horizontal reward
scale. These parameters control the importance of vertical alignment and horizontal spacing in the
total reward calculation.

13 ADDITIONAL EXPERIMENTS

13.1 ADDITIONAL MAIN RESULT

13.1.1 3S2Z

Figure 7: PPO in 3s2z.

In the 3 stalkers scenario, while MPE achieves successful coordination as shown in 3(a), the PPO
implementation struggles to replicate this performance. The results indicate that although the
intervened agents steadily learn and improve, their performance consistently lags behind the baseline.
This performance gap suggests that PPO is not effectively optimizing agent behaviors within the
constraints of the scenario, likely due to inherent instability in the PPO algorithm. Future work should
focus on refining PPO or exploring alternative reinforcement learning algorithms that may be better
suited for multi-agent coordination tasks.

13.1.2 3S2H

(a) VDN in 3s2h. (b) PPO in 3s2h.

Figure 8: Comparison of VDN and PPO in 3s2h scenario.

Figures above provide a comparison of our approach versus the baseline, using two different methods:
VDN and PPO, in the 3s2h scenario.
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In 8(a), for VDN, our approach initially performs below the baseline but gradually catches up,
eventually reaching a 100% won rate. This suggests that VDN, though slower to converge, can
eventually match the baseline in achieving the optimal outcome with sufficient timesteps. This
demonstrates the effectiveness of VDN in reaching the desired coordination, albeit with a delay.

In 8(b), for PPO, our approach continues to show a performance lag when compared to the baseline.
The PPO curve does exhibit improvement over time, but the gap remains significant, indicating
that PPO struggles with stability and optimization in this multi-agent scenario. This observation is
consistent with the instability issues previously noted, reinforcing the need for future refinements or
alternative algorithms that are better suited for such complex coordination tasks.

13.1.3 5M VS 6M

(a) VDN in 5m_vs_6m. (b) PPO in 5m_vs_6m.

Figure 9: Comparison of VDN and PPO in 5m_vs_6m scenario.

In 9(a), VDN illustrates that our approach can, in some cases, outperform the baseline after some
certain number of timesteps. This suggests that under our method, intervened agents are capable
of learning pre-policies that align with the desired outcomes, and in some instances, the normal
agents learn highly effective response policies. The variance indicates that while not all cases
perform equally well, there are scenarios where the coordination is exceptionally strong, leading to
superior performance. These strong cases demonstrate the potential of our approach in achieving
high alignment with desired outcomes, although consistency needs to be improved.

In 9(b), PPO lags behind the baseline initially but shows improvement over time. The gap indicates
that the specified outcomes might affect the performance of extrinsic rewards, as the agents struggle
with stability and optimization. Despite this, there are still instances where our approach begins to
catch up, showing that learning is taking place, albeit at a slower and more unstable rate.

13.2 ABLATION STUDY ON GNN AND INTRINSIC REWARD

Aiming to assess the impact of incorporating the Graph Neural Network (GNN) and extrinsic rewards
in the experiments, we analyzing performance variations in terms of total win rates in the StarCraft
Multi-Agent Challenge (SMAX) 3s2z environment using the PPO and VDN algorithms.

From Figures 10 and 11, it is clear that adding GNN as a correlational mapping helps
agents better understand their environment during the learning process, capturing structural
dependencies and inter-agent relationships, which leads to improved team strategy and formation
maintenance. This effect is evident across both algorithms and reward types, especially when
considering the integration of intrinsic rewards refer as pre-policy intervention in shaping reward
formulation into the original extrinsic rewards, achieving a significantly larger gap throughout all
time steps in 10(a), 11(a), and 11(b). This clear improvement in won rate through the integration of
both rewards further highlights the effectiveness of incorporating the GNN correlation matrix during
training and the reach of human desired outcome for pre-policy agent. However, the fact that the final
win rate does not reach 100% in Figure 11(a) may be due to PPO is high sensitivity and resistance to
policy changes when intrinsic rewards are added.
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(a) Trained with shaping rewards. (b) Trained with only extrinsic rewards.

Figure 10: VDN ablation study on GNNs in SMAX 3s2z scenarios.

(a) Trained with shaping rewards. (b) Trained with only extrinsic rewards.

Figure 11: PPO ablation study on GNNs in SMAX 3s2z scenario.

14 HYPERPARAMETERS

Computing Resources: All training runs were conducted using 8 × NVIDIA A100 64GB GPUs.
and the algorithm and environments is implemented by JAX Bradbury et al. (2018); Rutherford et al.
(2023).
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Table 2: VDN Hyperparameters for 3s2z_HeuristicEnemySMAX MARL Environment given envi-
ronment setting:{ "see_enemy_actions": True, "walls_cause_death": True, "attack_mode": "closest",
"train_pre": False, "vertical_line_reward_scale": 0.11, "relative_horizontal_reward_scale": 0.1}

Hyperparameter Value

TOTAL_TIMESTEPS 1× 107

NUM_ENVS 16
NUM_STEPS 128
BUFFER_SIZE 5000
BUFFER_BATCH_SIZE 32
HIDDEN_SIZE 512
MIXER_INIT_SCALE 0.001
EPS_START 1.0
EPS_FINISH 0.05
EPS_DECAY 0.1%
MAX_GRAD_NORM 10
TARGET_UPDATE_INTERVAL 10
TAU 1.0
NUM_EPOCHS 8
LEARNING_STARTS 10,000
LR_LINEAR_DECAY False
GAMMA 0.99
REW_SCALE 10
AGENT_OPT radam
AGENT_LR 0.001
GNN OUTPUT FEATURE DIMENRSION 32
SWITCH_INTERVAL 200
PRE_POLICY_OPT sgd
PRE_POLICY_LR 0.0005
MOMENTUM 0.9
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Table 3: Q-Learning with GNN Hyperparameters for MPE_simple_spread_v3 MARL Environment

Hyperparameter Value

AGENT_INIT_SCALE 1.0
AGENT_LR 0.005
AGENT_OPT sgd
BUFFER_BATCH_SIZE 128
BUFFER_SIZE 5000
GNN OUTPUT FEATURE DIMENRSION 8
EPS_DECAY 0.1
EPS_FINISH 0.05
EPS_START 1.0
GAMMA 0.9
HIDDEN_SIZE 512
LEARNING_STARTS 10,000
LR_LINEAR_DECAY true
MAX_GRAD_NORM 25
MIXER_EMBEDDING_DIM 32
MIXER_HYPERNET_HIDDEN_DIM 128
MOMENTUM 0.9
NUM_ENVS 8
NUM_EPOCHS 5
NUM_STEPS 26
PRE_POLICY_LR 0.0005
PRE_POLICY_OPT radam
SWITCH_INTERVAL 200
TARGET_UPDATE_INTERVAL 200
TAU 1.0

Table 4: PPO Hyperparameters for 3s2z_HeuristicEnemySMAX Environment given environment set-
ting:{ "see_enemy_actions": True, "walls_cause_death": True, "attack_mode": "closest", "train_pre":
True, "vertical_line_reward_scale": 0.011, "relative_horizontal_reward_scale": 0.1 }

Hyperparameter Value

Learning Rate (LR) 0.007
Number of Environments 128
Number of Steps 128
GRU Hidden Dimension 128
Fully Connected Dim Size 256
Total Timesteps 5× 107

Update Epochs 4
Number of Minibatches 4
Gamma 0.99
GAE Lambda 0.95
Clip Epsilon 0.06
Scale Clip Epsilon False
Entropy Coefficient 0.003
Value Function Coefficient (VF Coef) 0.7
Max Gradient Norm 0.25
Activation relu
Seed 0
GNN Output Feature Dimenstion 8
Observer Encoder Dimension 64
Temperature of Leanable Adjacency Matrix 1.0
Anneal Learning Rate True
Initializer normal_0.01
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15 REVIEWER FGSJ

(a) Agent collision. (b) Extrinsic Returns.

Figure 12: Experiment results of JaxNav. (a) indicates the total number of agent collisions per step.

JaxNav is a 2D navigation environment for differential drive robots, featuring continuous action
spaces for linear and angular velocities (Rutherford et al., 2024). Robots use simulated LiDAR-like
range readings, velocity data, and goal direction to navigate obstacle-filled maps without collisions.

In the environment, there are three agents among which one acts as the AI proxy, receiving additional
intrinsic rewards when it is close to another agent and moving slowly.

Mathematically, the intrinsic reward function is defined as follows:

rintrinsic =

{
1, if ∥v0∥ < vthreshold and ∃i ∈ {1, . . . , N − 1}, ∥pproxy − pi∥ < dthreshold,

0, otherwise,

where

• ∥v0∥: Speed of agent 0 (Euclidean norm of its velocity);
• vthreshold: Speed threshold (default: 0.3);
• pproxy: Position of agent 0;
• pi: Position of agent i (for i = 1, . . . , N − 1);
• dthreshold: Distance threshold (default: 1.0);
• N : Total number of agents.

The average collisions and extrinsic returns are depicted in the graph. The extrinsic reward is a
weighted combination of the rewards associated with goal-reaching, collisions with walls in the map,
and time penalties. We use the default parameters as defined in Rutherford et al. (2024).

16 REVIEWER DY2F

16.1 RESULTS OF ADDITIONAL MARL BASE ALGORITHMS

(a) QMIX win rate in SMAX 3s2z. (b) MAPPO win rate in SMAX 3s2z.

Figure 13: Comparison of QMIX and MAPPO test win rates in SMAX 3s2z.
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Table 5: Comparison of average intrinsic rewards evaluated over 10 episodes. All rewards are scaled
by a factor of 100 for ease of demonstration.

Method Ours Baseline
MAPPO −0.88± 0.40 −1.63± 0.29
QMIX −1.10± 0.34 −1.52± 0.48

16.2 PRE-POLICY MODULE ABALATIOB STUDY

Figure 14: Comparison between ProxyAgent and its variant without pre-policy in SMAX 3s2z. The
curve labeled with “w/ pre-policy” indicates the paradigm proposed in Algorithm 1, while the curve
labeled with “w/o pre-policy” indicates the paradigm without pre-policy.

17 REVIEWER RJTB

(a) MPE returns. (b) SMAX win rate.

Figure 15: Comparison between the two-stage and the simultaneous-update versions of ProxyAgent.
The two-stage version is the one we introduced in Algorithm 1 where proxy AI and other AI agents
alternate to update their policies, while the simultaneous-update version is the one which updates all
agents’ policies simultaneously.

The simultaneous-update version is implemented based on training both pre-policies and agents’
policies in one environment with shaping rewards constituted of extrinsic rewards and intrinsic
rewards.
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18 REVIEWER Y3C4

(a) 3s2z. (b) 3s2h (c) 5m_vs_6m

Figure 16: Comparison of different intrinsic reward methods in different scenarios in SMAX.

We implement a method for learning intrinsic rewards as described in Zheng et al. (2018). Besides,
we include another baseline with random intrinsic rewards which are sampled from a uniform
distribution. Both intrinsic reward values above are scaled to the same range as the manually designed
intrinsic rewards encoding human’s desirable outcomes. This justifies the importance of conveying
human’s desirable outcomes through manually designed intrinsic rewards if the goal is explicit and
can be described.
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