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Abstract

Deep generative models have significantly advanced medical imaging analysis by
enhancing dataset size and quality. Beyond mere data augmentation, our research
in this paper highlights an additional, significant capacity of deep generative
models: their ability to reveal and demonstrate patterns in medical images. We
employ a generative structure with hybrid conditions, combining clinical data
and segmentation masks to guide the image synthesis process. Furthermore, we
innovatively transformed the tabular clinical data into textual descriptions. This
approach simplifies the handling of missing values and also enables us to leverage
large pre-trained vision-language models that investigate the relations between
independent clinical entries and comprehend general terms, such as gender and
smoking status. Our approach differs from and presents a more challenging task
than traditional medical report-guided synthesis due to the less visual correlation
of our clinical information with the images. To overcome this, we introduce a
text-visual embedding mechanism that strengthens the conditions, ensuring the
network effectively utilizes the provided information. Our pipeline is generalizable
to both GAN-based and diffusion models. Experiments on chest CT, particularly
focusing on the smoking status, demonstrated a consistent intensity shift in the
lungs which is in agreement with clinical observations, indicating the effectiveness
of our method in capturing and visualizing the impact of specific attributes on
medical image patterns. Our methods offer a new avenue for the early detection and
precise visualization of complex clinical conditions with deep generative models.
All codes are https://github.com/junzhin/DGM-VLC.

1 Introduction

Deep generative models have traditionally served as vital tools for data augmentation in medical
image analysis, enhancing the volume and quality of datasets for downstream tasks. However, the
ever-increasing volume of real medical data during routine scanning and advancements in image
acquisition algorithms challenge the necessity of using these models merely for data augmentation,
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especially when synthetic data may not match the quality of real observations. This evolution prompts
a critical reassessment of the broader applications of deep generative models beyond simple data
augmentation.

The application of generative models for anomaly detection through reconstruction techniques marked
a significant shift [12, 4]. By training on healthy data and inferencing on patient data, these models
can highlight differences as anomalies. However, the binary nature of this patient v.s. control strategy
limits its application on comparisons across multiple classes, such as categorizing patients into
different age groups.

Addressing these challenges, our research proposes a novel aspect of utilizing generative models to
identify pattern that correlates with clinical attributes. Our method features by a hybrid condition,
including both clinical information, such as gender, age, and diagnosis results, and segmentation
masks, to guide the image synthesis process. The clinical information guidance enables the generation
of diverse medical image patterns, and the segmentation masks offer structural guidance to minimize
bias and highlight distinctive patterns.

The pervasive issue of missing data represents a significant obstacle to our concept’s implementation.
Our solution involves transforming tabular clinical data into detailed textual descriptions, allowing
us to bypass the challenges posed by missing values. This conversion also exploits the potential of
pre-trained vision-language models to understand clinical information expressed in simple terms,
such as gender and smoking status.

Another challenge in our implementation is that, unlike conventional medical report-guided synthesis,
our algorithm is conditioned on clinical information with no direct visual correlation to the images.
Medical reports narrate observable patterns in medical images, while clinical parameters—like
age, gender, and smoking status—lack established visual representations. Thus, we explore two
approaches of text fusion unit including cross-attention module and Affine transformation fusion unit
to enhance the conditions, aiming to signify the conditions on generated images.

Our experiments, conducted on a publicly available chest CT dataset, not only showcase the superior
synthesis performance of our proposed framework but also highlight its effectiveness in capturing
and visualizing the impacts of clinical status in medical image patterns, matching with clinical
observations.

In summary, the primary contribution of our study is a novel method that employs generative models
to detect medical image patterns that are associated with clinical attributes like age, gender, and
smoking history. Our technical advancements include 1) Conversion of tabular data into text, which
addresses missing data issues and utilizes the capabilities of pre-trained vision-language models to
decode clinical information; 2) Advanced text fusion techniques including a cross-attention module
and an Affine transformation fusion unit, to refine the conditioning process in cases where clinical
information does not directly correspond to visual cues in images; and 3) General implementation
for GAN and diffusion models. This research opens new avenues for employing deep generative
models, surpassing traditional applications in data augmentation.

2 Method

The general procedure, shown in Figure 1 of our model pipeline proceeds as follows: First, we utilize
any available tabular data related to lung CT scan masks, and use a transformation rule to normalize
tabular data to text descriptions. We then employ a pre-trained Bert model [1] specialized in the
healthcare domain, to transform this tabular data into clinically relevant text descriptions. These text
descriptions are fed into the frozen text encoder to obtain text embeddings. Next, the text embeddings
are fused with the generative models using text-vision affine transformation fusion units.

2.1 Transformation of Tabular Data into Textual Representations

Electronic Health Record (EHR) data are predominantly stored in a tabular format. However, utilizing
tabular data presents several challenges. The first issue is data missingness, leading to a reduction
in the available data. The second issue is that tabular data cannot represent relationships between
different classes. For instance, in diagnosing lung fibrosis, both Connective Tissue Disease-Interstitial
Lung Disease (CTD-ILD) and Idiopathic Pulmonary Fibrosis (IPF) exhibit an Usual Interstitial
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Figure 1: Overview of the proposed method. Top left: Illustration of the mechanism by which the text
encoding embeddings are incorporated into the conditional diffusion model. Top right: Description
of the process for utilizing tabular clinical data to obtain text embeddings from the pre-trained text
encoder. Bottom left: A zoomed-in view of the fusion point where text embeddings integrate with
the backbone of the models. Bottom right: Depiction of the compatibility of text fusion with a visual
generator within the GAN framework.

Figure 2: Left: Modified DFBlock Fusion Unit Right: Modified Cross-attention Fusion Unit
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Pneumonia (UIP) pattern. However, tabular data merely categorize these conditions into distinct
classes (e.g., 0, 1) without acknowledging their similarities. Lastly, the CLIP model [9, 15] emerges
as a notable method for generating text embeddings, offering a training-free approach for feature
extraction. Considering these, we design a template that converts tabular data into textual descriptions.

Our framework, outlined in Figure 1 (b), processes each row of tabular data xi using a function f
to generate a textual description x′

i, following specific rules R. This involves filtering out attributes
with unreasonable or missing values. Unlike other processes, we don’t fill in missing values for
text encoding with Bert, but simply omitting them. The process enriches text encoder context by
concisely describing each data entry’s attributes and their values. Mathematically, for the set of
attributes J , we form a matrix X ′

text for text embedding, with rows:

∀i ∈ {1, . . . , |X|}, x′
i = f([k,1{(xi)j ̸=∅}(xi)], R). (1)

2.2 Incorporating Tabular Data as Text Embeddings in Generative Models

Given that our method of dealing with the text embeddings from tabular data is adaptable across
various generative models, we have showcased its effectiveness with two popular generative frame-
works pix2pix [7] and 3D diffusion models [3, 6]. We employ the schemes of text embedding fusions
in two settings shown in Figure 1 (a) and (d). While these fusion units are technically adaptable to
any generative architecture, our choose different units for different generative backbones based on
experimental observations.

Text-Visual Affine Transformation Fusion Unit. We enhance the training by incorporating an
information mask with random noise during the denoising step and utilize X

′

text for data synthesis.
Adapting DFBlock from DF-GAN [13] for 3D, we switch 2D convolutions to 3D and use an MLP
linear layer for upsampling to maintain channel consistency for integrating text and visual features.
This suits the U-shaped network’s fusion needs, as shown in Figure 2 (a).

For text embeddings, affine transformations use scaling (γ) and shifting (θ) parameters to transform
visual features, optimized via MLPs. Text embeddings are reshaped to align with visual feature
channels before affine transformations:

AFF (ei | x′) = MLPγ(x
′) · ei +MLPθ(x

′), (2)

where MLPs match visual feature channels. This is followed by a 3D convolution and another fusion
unit. Despite their efficiency in diffusion models, these units face modal collapse in Pix2pix, likely
due to the original DFBlock’s design for text-to-image synthesis, contrasting Pix2pix’s conditional
voxel generation.

Text-Visual Cross-Attention Fusion Unit. To address the problem identified earlier, we incorporate
the conventional cross-attention mechanism within the Pix2pix method to enhance the integration of
text embeddings. This approach is beneficial when there is no direct correlation between the textual
information and structural guidance. We employ a tailored strategy that combines text embeddings
with visual feature maps, where the text embeddings exclusively act as a "key" to selectively modulate
the visual features as "query" and "value". This technique does not require a direct match between
textual descriptions and visual conditions. Mathematically, shown in Figure 2 (b), consider an feature
map denoted as X ∈ RB×C×D×H×W and a text embedding vector X

′

text ∈ RB×E , the tabular text
embeddings cross-attention mechanism is defined as:

Attention(X,X
′

text) = softmax

(
Q(X) ·K(X

′

text))
T

√
dk

)
⊙ V (X),

Q(X) = ConvQ(X), K(X
′

text) = WKX
′

text, V (X) = ConvV (X),

(3)

where ⊙ denotes element-wise multiplication, dk is the scaling factor, typically the dimensionality
of the key vectors, softmax is applied over the flattened spatial dimensions of the input tensor
X after being projected to the query space, ConvQ(·) and ConvV (·) are 1 × 1 × 1 convolution
operations to generate query and value representations, WK is a learnable weight matrix for the linear
transformation of the text embedding into the key space.
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Figure 3: Visual comparison of reconstructed lung CT scans produced by four methods. From
left to right: the original scan, followed by the four class labels—right lung, left lung, airway, and
background. Subsequent columns present the results of Pure Unet, Pix2pix, Pix2pix with Text
Encoder, Cond DDPM and Cond DDPM with Text Encoder.

3 Experiments

3.1 Dataset and Implementation

Our dataset is sourced from AIIB challenge, where the segmentation masks of lung regions and
airways are available [8]. We utilized training data of 50 samples, each with a size of 512×512 along
the axial size, which is flexible depending on the individual images. To process the 3D image before
training, we randomly crop the 3D image to a size of 256× 256× 64 and apply a minimum number
of mask criteria to ensure each crop contains some valid values of certain classes in the masks. For
validation purposes, we preserve another set of 45 samples of the same size and evaluate the GAN
metrics Fréchet Inception Distance (FID)[5], Kernel Inception Distance (KID)[2] , and Inception
Score (IS)[11] at a patch-wise level (256× 256× 64), with each test data randomly cropped 5 times.

For the details of the implementation, experiments were conducted on one A100 GPU for 1800
epochs, and the models were optimized through the Adam optimizer with an initial learning rate of
0.0001 and 0.00001 for the Pix2pix and DDpm methods, respectively, with both having a batch size
of 2. The learning rate decayed after 800 epochs. The diffusion model is trained and evaluated with
the timesteps of 250. The code implementation is based on [14].

3.2 Synthesis Performance Comparison

To evaluate the effectiveness of the tabular data utilization strategies with the existing deep learning
framework, we choose the four models, 1) Pure UNet [10] 2) Pix2pix [7], 3) Pix2pix + Text Encoder
[15] 4) Cond DDPM, 5) Cond DDPM + Text Encoder to perform the quantitative experiments
evaluated on FID, KID and IS metrics.

From the results in Table 1 and Figure 3, we observe the following trends. The Pix2pix method
outperforms the other approaches in terms of FID and KID scores, underscoring the potential benefits
of integrating tabular text embeddings within the existing conditional GAN framework. However, the
performance gain is not replicated with the Conditional 3D Diffusion models when text embedding is
introduced; a marginal decrease in performance is noted, with FID scores showing a 2% reduction and
KID scores dropping by 0.01. The nature of diffusion models, which rely on multiple iterative steps to
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Table 1: Comparative Analysis of Generative Models

Models Components Evaluation Metrics
Diffusion GAN Tabular Data FID ↓ KID ↓ IS ↑

Pure Unet ✗ ✗ ✗ 221.99 0.207 (0.003) 4.508(0.086)
Pix2pix ✗ ✓ ✗ 143.779 0.098 (0.002) 3.920(0.054)

Pix2pix + Text Encoder ✗ ✓ ✓ 113.097 0.077 (0.002) 3.552(0.054)
Cond DDPM ✓ ✗ ✗ 160.0576 0.114 (0.002) 3.721(0.044)

Cond DDPM + Text Encoder ✓ ✗ ✓ 163.0374 0.120 (0.003) 3.136(0.128)

reconstruct or generate images, may render text embeddings less effective as the incremental denoising
process may diminish their impact. Nevertheless, the incorporation of tabular text embeddings still
adds value.

Regarding the Inception Score (IS), our interest lies in the model’s capacity to leverage the information
provided to constrain the generation results. Observations indicate that methods incorporating text
embeddings exhibit a decline in IS scores. This suggests that while the diversity of the synthesized
output is constrained by the additional information, it is indicative that text embeddings are indeed
influencing the behaviour of the models. This finding highlights the complexity of balancing the
fidelity and diversity of generated images in generative models.

3.3 Pattern Identification Analysis

We provide visual comparisons to show how clinical data influences image generation. A control
experiment examined the impact of slight changes in tabular text descriptions on CT scan synthesis,
measuring change by the difference in voxel values, using the Pix2pix and Text Encoder method. As
shown in Figure 4, heatmaps highlight differences in test samples with varying "age" and "smoker"
descriptions.

Transitioning from "non-smoker" to "smoker" status resulted in a distinct intensity pattern, with
dot-like increases linked to the formation of lung nodules or inflammation and dot-like decreases
associated with the destruction of lung tissue and the formation of air spaces. This is observed in
Figure 4 (c2), aligning with clinical evidence that smoking can lead to a dual effect on lung density:
increased in areas of tissue densification and decreased where lung tissue is compromised. Overall,
an increase in the intensity is consistently observed.

Conversely, we did not identify a consistent trend in intensity changes with age variations, which
we attribute to the limitations of our dataset, starting at a minimum age greater than 30, and the
possible inability of language models to discern numerical relationships. Future efforts will focus on
independently integrating numerical inputs to overcome this challenge.

This observation confirms that text encoders such as BERT or CLIP are adequately sensitive to condi-
tion the synthesis through their integration within the generative framework, employing mechanisms
like cross-attention or affine transformation fusion.

4 Conclusion

In this study, we developed a versatile framework demonstrating the potential of deep generative
models for uncovering invisible patterns in medical images associated with various clinical states.
We innovatively transformed tabular data into textual descriptions, enabling the integration of clinical
data with image synthesis methods through pre-trained vision-language models. Given the unique
optimization challenges of generative models, we designed two distinct units to fuse textual and
structural guidance for both GAN and Diffusion Model backbones, ensuring high-quality image
synthesis while maintaining clinical relevance.

Moreover, we observed that while language models are good at understanding abstract concepts like
life and death, they struggle with numerical understanding, such as recognizing that age 24 is less
than age 68, which suggests a need for inputs beyond just text. In our future work, we aim to explore
various conditioning to broaden the use of generative models beyond only data augmentation.

Our results are promising, showing that generative models can identify unseen patterns related to
specific clinical attributes, such as the smoking status in lungs. These findings underscore the potential
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Figure 4: Qualitative Assessment of Pixel-Level Variations Following Prompt Modification: Illustra-
tive Cases Demonstrating the Impact of Altered Prompt Content on Prediction Outcomes.

for significant advancements in the early detection of lung diseases and other complex medical
conditions. This research opens new avenues for employing deep generative models, surpassing
traditional applications in data augmentation.
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