
Meta Reinforcement Learning for Fast Adaptation of
Hierarchical Policies

Anonymous Author(s)
Affiliation
Address
email

Abstract

Hierarchical methods have the potential to allow reinforcement learning to scale to1

larger environments. Decomposing a task into transferable components, however,2

remains a challenging problem. In this paper, we propose a meta-learning approach3

for learning such a decomposition within the options framework. We formulate4

the objective as a bi-level optimization problem in which sub-policies and their5

terminations should facilitate fast learning on a family of tasks. Once such a set6

of options is obtained, it can then be used in new tasks where only the sequencing7

of options needs to be chosen. Our formalism tends to result in options where8

fewer decisions are needed to solve such new tasks. Experimentally, we show that9

our method is able to learn transferable components which accelerate learning and10

performs better than existing methods developed for this setting in the challenging11

ant maze locomotion task.12

1 Introduction13

Current state of the art model-free reinforcement learning methods were successfully applied to14

many challenging tasks [33, 41]. However, one of the main drawbacks of these methods is their15

data-inefficiency and inability to generalize to other related tasks [12]. It is often impossible to use16

the agent trained on one task to solve another related task [53] or even to use it as a starting point for17

training because trained models become increasingly exploitative and thus are unable to explore in a18

new task. In such cases, we have to gather new data and train a new model which is time-consuming.19

One way to mitigate this problem is by learning a policy with reusable modules which can be used in20

multiple tasks. For example, if we assume that related tasks contain shared sub-tasks (i.e. tasks come21

from the same family or have hierarchical structure), we can speed up the adaptation to new tasks by22

learning sub-policies that solve these sub-tasks. This is because solutions to new tasks can be created23

by combining known solutions to sub-tasks during adaptation. The idea of learning reusable skills in24

multiple environments, which dates back to at least 1995 [48], was thoroughly explored within the25

options framework [17, 24, 25, 29, 36, 46].26

In this framework, a policy is composed of options (modules that encapsulate sub-policies), and27

a high-level policy that chooses among them. Options have their own termination function, and a28

new option is only initiated when the earlier option terminates. Therefore, options define temporally29

extended behaviors that can form solutions to sub-tasks. Despite extensive research in this area, there30

is not yet a consensus on answers to many important questions about options: What are good options?31

How can we find them? When should a termination occur? How many options should one use? In32

this work our aim will be to find options that allow for fast adaptation to tasks from the same family.33

We use this single principle to address all of these questions except for the number of options which34

we consider a hyperparameter.35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Learning high-level policy, sub-policies and terminations at the same time is a challenging task.36

Recent prior work on options proposed a way to learn both, including the terminations, in an end37

to end manner with policy gradient methods [4, 44]. However, despite achieving good performance38

in single-task settings, these methods often produce options which may not be useful for transfer39

[21, 22]. This is because such options are not explicitly trained for multi-task setting and can often40

terminate too often or not at all [21, 22].41

To overcome this issue, Frans et al. [17] proposed to use such method in a multi-task setting with42

options that have predefined length and are optimized for performance after adaptation of the high-43

level policy. Although options that terminate after certain amount of steps simplify the problem44

and work well in some settings [17, 25], manually setting this important hyperparameter requires45

prior knowledge and might not work in cases where options need to have different lengths [23]. For46

example, task where this approach would not be preferable could be driving because some driving47

sub-tasks, such as driving on a highway, are much longer than others, such as driving out from one48

intersection to another in a city. Consequently, capturing the length of both sub-tasks with a single49

hyperparameter [17] or range of hyperparameters [25] can become difficult or even impossible. In50

such cases, learned terminations are preferable.51

In this paper, we propose a method for learning options that allows for fast adaptation to multiple tasks.52

We formalize this notion using recent ideas from gradient based meta-learning [14]. Rather than using53

options with fixed length [17], our algorithm learns both sub-policies and when to terminate options54

using a single meta-learning objective. We hypothesize that this objective implicitly encourages55

options to terminate in a way that yields reusable components. In our experiments, we demonstrate56

the benefits of our approach in a simple Taxi domain as well as in a complex Mujoco [49] Ant Maze57

domain [17].58

2 Related Work59

Since our work builds on insights from both hierarchical reinforcement learning and meta-learning,60

we present related work in both domains separately, in subsections 2.1 and 2.2 respectively.61

2.1 Hierarchical Reinforcement Learning62

One of the aims of hierarchical reinforcement learning is to decompose a complex task or policy into63

simpler units. Popular approaches include learning a diverse set of skills [11] or utilizing the idea of64

Feudal Reinforcement Learning [7, 34, 50]. Another large collection of related work instead relies on65

the options framework [46].66

Some works on options rely on so-called bottleneck states that can be used as sub-goals [30, 31, 35]67

whereas others use spectral clustering to create options [28]. These approaches usually require prior68

knowledge about the environment which restricts their applicability. Different from aforementioned69

methods, end-to-end methods such as the ones which rely on the Option-Critic architecture [4, 39] are70

applicable in more general settings. However, these policy gradient methods can be less efficient than71

concurrently introduced inference based end-to-end methods [6, 16, 44] because they only update the72

option that generated the action whereas inference based methods update options according to their73

responsibilities for each action.74

A common problem with end-to-end methods that learn terminations in a single-task setting is75

option collapse [4]. This causes options to terminate after every action or to never terminate. In76

such cases the learning of terminations can be facilitated by augmenting the objective with entropy77

regularization [44] or deliberation cost [21], regularizing towards a termination prior [23], or by78

optimizing different objective that encourages appropriate terminations [22]. As an alternative, one79

can also use time-based terminations with fixed [17] or randomized length [25].80

2.2 Meta-Reinforcement Learning81

Meta-reinforcement learning is concerned with producing models which are able to adapt to novel82

tasks quickly. This sub-field includes a broad range of work such as unsupervised methods [11, 19],83

methods that rely on latent variables [20, 38] or methods that learn the update rule of a policy84

[10, 32, 51].85

2

In contrast with the latter, the recent gradient-based method Model-Agnostic Meta-Learning86

(MAML) [14] assumes that policy parameters are updated with gradient descent and instead aims to87

learn initial parameter values. MAML was extended in followup works that only trained a part of the88

network [37, 54] or showed benefits of different architectural choices such as per-parameter learning89

rates [3, 26]. Several works also focused on MAML in a reinforcement learning setting [2, 27, 45].90

In particular, Al-Shedivat et al. [2] and Stadie et al. [45] pointed out a difference between theory and91

practical implementation of MAML in automatic differentiation frameworks. This issue was further92

discussed and resolved in followup works [13, 15, 40].93

Lastly, there exist methods which do not employ the techniques mentioned above and instead rely94

on the options framework [5, 17, 23–25, 29, 36, 52] or task-specific policies [47]. These approaches95

often make different assumptions about the tasks and settings in which they are applied. Some require96

policies that solve each environment [36] whereas others need environment ID [23, 29] or cumulants97

that properly represents task dynamics [5]. Closest to our work are Meta Learning Shared Hierarchies98

(MLSH) [17] and Adaptive Skills Adaptive Partitions (ASAP) [29]. ASAP uses a policy gradient99

method to optimize immediate performance on multiple tasks with known environment ID but does100

not use neural networks and does not learn terminations. On the other hand, MLSH uses a hierarchical101

structure with predefined options length and a problem setting with unknown environment ID. It102

optimizes for post-adaptation performance by using two alternating phases that either only update103

high-level policy or both high-level policy and sub-policies simultaneously. This approach does not104

use the information from the intermediate adaptation steps when calculating the gradient which can105

negatively affect its accuracy. Additionally, options with fixed length may be difficult to use in some106

settings as we’ve described in Section 1.107

3 Background and Notation108

In this section, we will first cover the fundamentals of reinforcement learning, and then focus on the109

options framework and gradient-based meta-learning.110

3.1 Reinforcement Learning and the Options Framework111

We will consider environments which are episodic Markov decision processes (MDPs). An MDP112

M is a tuple �S,A, p0, P,R, γ� with S being a set of states, A a set of actions, p0(s0) a probability113

distribution of initial states, P (s�|s,a) a transition probability function, R(s,a) a reward function114

and γ a discount factor.115

An agent with a stochastic policy π interacts with an environment M in the following way. At116

every timestep t, the agent receives a state of the environment st ∈ S and selects an action117

at ∈ A according to conditional distribution π(at|st). Depending on the current state and the118

action performed, the environment provides the agent with a new state st+1 ∼ P (st+1|st,at) and119

a scalar reward rt = R(st,at). This process is repeated until a so-called terminal state is reached.120

We define a trajectory τ as an ordered sequence of all states actions and rewards in a single episode121

τ = (s0,a0, r0, ..., sT). Similarly, the history at timestep t consists of all states and actions preceding122

at, ht = (s0,a0, ..., st). The state value function is defined as Vπ(s) = Eπ [Gt|st = s] where the123

discounted return at timestep t is defined as Gt(τ) =
�T

t�=t γ
(t−t�)rt� .124

The agent’s objective is to maximize the expected discounted return J = Ep(τ |θ) [G0(τ)].125

We can maximize the objective with gradient descent by estimating the policy gradient126

∇θJ ≈ Ep(τ |θ)[
�T

t=0 ∇θ log πθ(at|st)At] using Monte Carlo sampling, where At is an advantage127

estimator such as the generalized advantage estimator AGAE
t [42].128

The options framework is a framework for temporal abstraction that consists of options129

ω = �Iω,πω, ξω� and a policy over options πΩ(ω|s). Each option ω consists of an initiation set, a130

sub-policy and a termination function. The initiation set Iω is a set of states in which an option can131

be selected (initiated) and in our case it is the whole state space (Iω = S). A sub-policy πω(a|s),132

also called low-level policy, is a regular policy that acts in the environment. Lastly, the termination133

condition ξω(s) is a function that outputs the probability of termination for the option in a given state.134

3

3.2 Model-Agnostic Meta-Learning and DiCE135

Model-Agnostic Meta-Learning (MAML) [14] is a meta-learning technique that trains a model for136

maximum post-adaptation performance on a distribution of tasks. The adaptation consists of one or137

several inner gradient updates. If we consider an estimator fθ with parameters θ and a task-specific138

loss LMi
, a supervised learning objective with a single inner update can be formalized as shown in139

Equation 1. In order to optimize this objective one only needs to take a gradient of this expression.140

This can be easily achieved with automatic differentiation frameworks by creating a backpropagation141

graph for the gradient.142

min
θ

EM [LMi
(fθ�)] = min

θ

�

Mi∼p(M)

LMi
(fθ−α∇θLMi

(fθ)) (1)

One can similarly use this approach with a reinforcement learning objective. However, the implemen-143

tation with an automatic differentiation framework differs because a simple backpropagation through144

the computation graph of the gradient produces biased gradients [2, 45]. This is due to an additional145

dependency of the sampling distribution on parameters that is not present in the supervised learning146

objective. To produce correct higher order gradients with automatic differentiation frameworks in147

a reinforcement learning setting, one can use the objective in Equation 3 as proposed by Farquhar148

et al. [13]. This objective utilizes the DiCE operator [15] which can be implemented according149

to Equation 2 where ⊥(x) is a stop gradient operator that evaluates to x but returns a zero gradient150

when differentiated.151

(at) = exp [log πθ(at|st)−⊥(log πθ(at|st))] , ∇θEτ∼p(τ |θ)
�
GMi

0 (τ)
�
≈ ∇θJ (2)

152

∇θJ = Eτ∼p(τ |θ)

�
T�

t=0

∇θ

� t�

t�=0

(at�)λ
t−t�AGAE

t −
t−1�

t�=0

(at�)λ
t−t�AGAE

t

��
. (3)

4 Fast Adaptation of Modular Policies153

Much of the extensive research in the options framework has focused on an intuition of options154

capturing useful sub-tasks [4, 17, 36, 46]. However, there is no consensus about capturing this155

intuition in an objective function or the best way to find such options. We propose a conceptually156

simple objective: a good set of options allows quick adaptation to many novel tasks. This can157

be formulated using the MAML framework [14], where we consider a setting in which there is a158

distribution of tasks p(M) with similar (hierarchical) structure but different reward or transition159

functions. Our goal is then to maximize the expected performance after L adaptation steps of the160

hierarchical policy parametrized by θ:161

max
θ

�

Mi∼p(M)

EτL∼p(τL|θL)

�
GMi

0 (τL)
�
, θj+1 = θj + αin∇θjEτj∼p(τj |θj)

�
GMi

0 (τ j)
�
. (4)

Using conventional MAML means adapting a large number of parameters which can be disadvanta-162

geous, as was demonstrated by Zintgraf et al. [54] and Antoniou et al. [3]. By reducing the number of163

parameters that are tuned during the adaptation phase, one can reduce the complexity of the problem164

during test time at the cost of a less expressive policy. We thus split the parameters into an inner group165

θin and an outer group θout where inner parameters are updated during the adaptation step and outer166

parameters are optimized in the outer objective. Note that when using such split, the initialization167

values of inner parameters may also be meta-learned [54]. We experimented with both versions and168

observed that fixed initialization values performed better. Similarly, the per-parameter inner learning169

rate αin [3, 26] can also be meta-learned to allow for more complex inner updates. We used this170

approach in a setting with more complex environment.171

Our option model has three sets of parameters: those of the high-level policy network θΩ, sub-policy172

networks θω and termination networks θξ. We now divide these over the inner and outer parameter173

group. Since we assume that tasks with common sub-problems can be solved using identical options,174

we consider the sub-policy and termination function parameters as outer parameters. On the other175

hand, since in each task the decision of the high-level policy to choose options would be different,176

its parameters constitute the inner group. By keeping sub-policies fixed during the adaptation and177

4

Algorithm 1 Fast Adaptation of Modular Policies

initialize θΩ, θξ, θω,αin ,αout

set θin = θΩ
set θout = {θξ, θω}
repeat

Set gradient of outer parameters gθout = 0
for n = 1 to N do

set θ�in = θin
sample a task M ∼ p(M)
for l = 1 to L+ 1 do

sample k episodes τ1:k on M using π{θ�
in ,θout}

fit a baseline Vκ using data from τ1:k
compute AGAE

t for all τ1:k
compute log π(at|ht) = Eω|ht

[πω(at|st)]
compute J with AGAE

t , log π(at|ht) (Eqs. 2, 3)
if l < L+ 1 then
θ�in = θ�in + αin∇θ�

in
J

else
gθout = gθout +∇θoutJ

θout = θout + αout
1
N gθout

until convergence

restricting the update to the high-level policy, we optimize for options that can be used to solve178

multiple tasks, thereby allowing the overall policy to adapt quickly with the change of high-level179

policy. This also allows for an expressive policy which can capture different behaviors and reduces180

the number of parameters and decisions an agent needs to learn and make during test time.181

Formally, our final objective can be expressed as Equation 5 with the inner update given by Equation182

6. The objective is similar to the one used in MLSH [17] with some key differences. Firstly, by183

backpropagating through the update step we are able to capture additional information from the184

adaptation steps in the gradient and secondly, our objective includes the optimization of termination185

parameters and thus allows for options with different lengths.186

max
θω,θξ

�

Mi∼p(M)

Eτ∼p(τ |{θω,θξ,θL
Ω})

�
GMi

0 (τ)
�

(5)

θj+1
Ω = θjΩ + αin∇θj

Ω
Eτ∼p(τ |{θω,θξ,θ

j
Ω})

�
GMi

0 (τ)
�
. (6)

4.1 Algorithm187

Written in its general form the objective leaves some freedom with regard to which policy gradient188

algorithm is used for gradient calculation. In our work we use the Inferred Option Policy Gradient189

(IOPG) [44] because it updates all options at the same time based on their responsibilities, i.e., the190

probability that the option was active given the history ht of states and actions so far. This can lead to191

better data-efficiency when compared to other methods that only update a single option at a time but192

comes at the cost of increased computation time. Another important design choice is the state value193

function estimator. In the MAML RL setting the policy constantly changes in every inner update. It is194

thus difficult to use past trajectories for fitting the value function. We therefore use a linear time-state195

dependent baseline [9] which works better than more complex baselines with little data and was also196

used in the original MAML implementation.197

The resulting algorithm for Fast Adaptation of Modular Policies (FAMP) is outlined in Algorithm 1.198

Note that in order to use IOPG with DiCE we replace π(at|st) with π(at|ht) in Equation 2. An199

intuition about why this is possible comes from the fact that we can easily formulate a new MDP200

M̃ in which states s̃t are histories ht of the original MDP without otherwise altering the dynamics.201

After L inner updates, the gradient of the objective with respect to the outer parameters is calculated.202

In principle, we would like to optimize for performance after a moderate number of gradient updates203

L such as 10 or 20. However, with more inner updates the resulting gradient of the objective becomes204

5

Figure 1: Left: Map of a taxi environment with special states and an example task. Middle and Right:
Visualization of the option usage in this task. Middle part shows states without passenger on board.
Right part shows states with passenger. Arrows represent directional actions, pick-up/drop-off is
shown as a square. Each action is colored according to the active option.

noisier due to the usage of Monte Carlo estimate in each inner update. Furthermore, the time205

complexity of gradient computation and sample complexity both scale linearly with the number of206

inner updates. In practice we found a range from 2 to 4 update steps to be acceptable. An important207

benefit of gradient-based meta-learning is that even though the model is optimized for performance208

after L adaptation steps, it can still be improved after L updates by performing more steps of gradient209

descent.210

5 Experiments211

In this section, we empirically evaluate our method and show its benefits when applied to randomly212

selected tasks within and outside of the training distribution.213

5.1 Taxi214

In the first set of experiments we use a modified Taxi environment1 [8] displayed in Figure 1. An215

agent acts as a taxi driver who starts in one of the special (colored) locations. The goal of the driver216

is then to drive a passenger from one of the special locations to his destination. The task family217

consists of 60 different tasks with different combination of start, goal and passenger positions. These218

are always initialized in special states. In 12 out of 60 easier configurations the passenger starts the219

episode in the car. The only restriction on start, goal and passenger positions in all cases is that220

passenger’s destination must not be the same as his initial position. Each task is an MDP in which the221

agent can use 4 directional actions and two special actions: pick-up/drop-off and no-op. The state222

space is represented as a one-hot vector with 72 entries for every combination of possible taxi location223

and passenger being on board. Thus the agent does not have any information about the location of224

the passenger or goal state. Therefore, in order to facilitate fast adaptation to the (unobservable)225

passenger and goal locations, the agent must acquire options that can serve as building blocks for226

exploration. The reward is 2 for reaching the goal and −0.1 per step otherwise. To speed up training227

in the early phases, we terminate the episode if it takes longer than 1500 timesteps.228

In this experiment, we use tabular representations implemented as a combination of linear layer and229

non-linearity for the policy over options, terminations and sub-policies such that each one-hot state230

has its own set of parameters. We use 48 training tasks to train sub-policies and terminations with our231

algorithm. Learned terminations and sub-policies are then kept fixed during test time and only the232

policy over options is updated. Performance is then compared on the remaining 12 test tasks (selected233

to use combinations of special locations with similar frequency) to MLSH and two baselines. We234

chose MLSH because it is a closest hierarchical method designed for our setting in which there is no235

extra information about the environment available. This is in contrast with many other hierarchical236

[5, 23, 29] and non-hierarchical [38, 47] meta-reinforcement learning methods which utilize extra237

information such as the ID of a sampled environment.238

Similarly to our method, MLSH is trained on all training tasks and evaluated with fixed sub-policies.239

The multi-task baseline is an IOPG algorithm that learns a shared policy (including high-level policy)240

1Details are included in Appendix B

6

0 25 50 75 100 125 150 175 200
Episodes

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

D
is
co
u
n
te
d
R
et
u
rn

FAMP (Ours)

Single-task

Multi-task

MLSH 4 steps

MLSH 10 steps

0 20 40 60 80 100
Episodes

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

4 opts L=3

2 opts L=3

3 opts L=3

5 opts L=3

4 opts L=2

4 opts L=1

Figure 2: Left: Average performance of different algorithms on taxi environment test tasks. Plot
shows mean and standard deviation over 5 seeds. Right: Average performance of our method with
different hyperparameter values on taxi environments test tasks. Plot shows median and interquartile
range over 5 seeds.

by optimizing average return over tasks rather than the meta-learning objective in Equations 5 and241

6. After the training, it only adapt its high-level policy on test tasks. We expect this baseline to242

perform poorly in the long run because it does not optimize for post-update performance. Lastly,243

the single-task baseline is an IOPG algorithm that learns the test tasks from scratch without any244

pre-training. Therefore, since it does not need to generalize to many tasks and has a policy with245

enough capacity, we expect that it should eventually outperform other methods after sufficiently246

long training. However, meta-learned policy with desirable options should find good solution much247

quicker. To make the single-task baseline as strong as possible, we set its learning rate to the highest248

value that was able to solve all tasks reliably.249

Results250

As shown in Figure 2, our method is able to outperform both MLSH and the multi-task baseline251

reaching the final performance of −0.315. Furthermore, it also outperforms all other algorithms252

in terms of adaptation speed. We additionally checked whether the single-task baseline eventually253

overtakes FAMP and found that after more than 200 episodes, its performance stabilizes at a final254

discounted return value of −0.284. This demonstrates that FAMP can learn sub-policies and termi-255

nations that allow for fast adaptation in similar unseen environments at the cost of slightly lower256

asymptotic performance. An example trajectory that was produced by the agent in one of the hardest257

test tasks is displayed in Figure 1. In this task, the agent is able to combine three options to form an258

optimal solution. Plots with meta-training curves and learned options are included in Appendix C.259

In Figure 2 (right), we show how the performance varies with changes to important hyperparameters,260

namely, the number of options and adaptation steps. We observe that decreasing the number of261

adaptation steps during training to one leads to a clear drop in performance. This can be attributed to262

the policy not being able to switch from exploratory to exploitatory behavior in a single inner update263

as well as the smaller amount of data observed before each outer update.264

Unlike the number of adaptation steps, the number of options does not seem to affect the performance265

too much. The only noticeable exception is lower performance when using only 2 options. This266

exception can be explained by noticing that in some states one needs to perform 3 different actions267

to represent all optimal paths. As an example, consider the state two squares above the blue special268

state in Figure 1. To reach the blue state in the minimum number of steps the agent needs to use the269

down action. Similarly, to go from the blue state to the red or yellow one it needs to use up and right270

respectively. Thus the agent cannot represent the optimal policies with only 2 options. Interestingly,271

even in this case, the agent is still able to separate trajectories in such a way that it can reach all goals272

albeit with slightly worse performance.273

This outcome demonstrates another benefit of learned option lengths as the optimal option length274

does not only depend on tasks and their difficulty but also on the number of options that are available.275

To illustrate this, consider an extreme case where there are as many options as tasks. In this case, it276

would be sensible to have solution to a different task in each option and not terminate at all because277

each task would be solved with only one high-level action. However, as the number of available278

options decreases, sharing options between tasks becomes necessary and terminations should start to279

7

Table 1: Percentage of terminations in trajectories obtained from adapted policies averaged over 5
seeds. Standard deviations are in 1-2% range.

Number of options 2 3 4 5 8 16
Avg. terminations in traj 70% 63% 57% 55% 44% 28%

Figure 3: Ant maze tasks. The agent needs to control a simulated 4-legged ant-like robot and move it
towards the green square.

occur to allow for all tasks to be solved. Moreover, if the number of options is decreased even further,280

there may not be enough to options to capture the optimal behavior for all tasks. Consequently, it281

becomes even more difficult to choose the appropriate option length a priori since it can depend on282

the number of available options. To confirm this intuition, we ran a followup experiment with longer283

time horizon in the taxi environment. While the trajectories produced by adapted policies had similar284

length, relative number of terminations decreased with the increase in the number of options as shown285

in Table 1.286

5.2 Ant Maze287

In our second experiment, we demonstrate the applicability of our method to more complex environ-288

ments. We use the family of ant maze tasks introduced by Frans et al. [17] shown in Figure 3. This289

allows us to reproduce the results of MLSH as closely as possible by mirroring the setting used in290

the original paper. In addition to MLSH, we also compare to RL2, a non-hierarchical meta-learning291

algorithm designed for fast-adaptation and Proximal Policy Optimization (PPO) [43], which serves292

as a strong single-task baseline.293

In each task the agent needs to move a simulated 4-legged ant-like robot through a small maze towards294

the goal. Both state space and action space are continuous with 29 and 8 dimensions respectively295

and each episode lasts 1000 timesteps. States do not contain any information about the maze layout296

or the location of the goal. The original implementation also resets the orientation of the ant every297

200 steps. However, we removed these resets because they made the MDP partially observable,298

introduced discontinuities and were not realistic for the robotics scenario they are supposed to imitate.299

Results of experiments with the original implementation are similar to the ones we present. They can300

be found in Appendix C along with meta-training plots.301

Both FAMP and MLSH use the same architecture with two hidden layers of 64 nodes to represent the302

high-level policy, sub-policies and terminations (only applies to FAMP). We used existing repositories303

for the implementation of RL2 [18] and PPO [1]. Hyperparameter values can be found in Appendix304

B. During the training phase, sub-policies (and terminations) of both hierarchical algorithms were305

trained on all tasks until the return averaged over all environments stopped improving. In the test306

phase all parameters except for the policy over options were frozen. Similarly, RL2 was pre-trained307

on all tasks and subsequently evaluated while PPO was trained from scratch.308

The comparison of the performance and speed of adaptation can be seen in Figure 4 (left). Our309

method achieves superior performance reaching an average return of 1330. We also observed a310

similar trend across individual environments. Plots of these comparisons are available in Appendix C.311

While the zero-shot performance of RL2 is slightly better than FAMP, it often struggles to further312

adapt to specific tasks and quickly gets outperformed by both hierarchical methods. This is likely be313

8

0 25 50 75 100 125 150 175 200
Episodes

−250

0

250

500

750

1000

1250

R
et
u
rn

FAMP (Ours)

MLSH

PPO

RL2

Figure 4: Left: Average performance of algorithms on ant maze environments tasks. Plot shows mean
and standard deviation over 3 seeds. Right: Option usage visualization on ant maze tasks. Both plots
were created using positions of the ant during 3 trajectories. Each of the 3 options is represented by a
different color.

due to the objective that optimizes average return over all training episodes and not post-adaptation314

performance directly. Lastly, PPO continuously improves but its performance does not come close to315

the meta-learning algorithms. After about 1000 episodes it reaches the performance of MLSH and if316

ran sufficiently long , we would expect that it would eventually catch up to FAMP.317

We visualize the option usage of FAMP on two example tasks in Figure 4 (right). After the high-level318

policy is fine-tuned, we use the x and y positions of the ant in 3 sampled trajectories to highlight319

which option is active at each part of the state space. Although we only take 2 out of 29 dimensions320

into account, we are still able to get useful insight about the learned option structure. In the task that321

is depicted in the left part of the plot, the agent uses the blue option before switching to cyan in the322

middle and finishing with a combination of blue and purple. On the other hand, in the right task, the323

agent uses a combination of blue and purple to move down instead of to the right. This shows that the324

agent learned a useful abstraction that allows it to perform two different useful behaviors in similar325

parts of the state space by using terminations and different options.326

6 Discussion and Future Work327

In this work, our aim was to learn both sub-policies and terminations of options by using a single328

simple principle: options should accelerate adaptation in many tasks. We proposed a method for329

learning hierarchical policies that combines the options framework with gradient-based meta-learning330

and explicitly optimizes for performance after several adaptation steps. In our experiments, we331

have demonstrated the benefits of our approach in quickly learning previously unseen test tasks.332

Furthermore, we have shown that the proposed method outperforms the closest hierarchical and333

non-hierarchical meta-reinforcement learning methods designed for similar setting in a challenging334

multi-task learning scenario.335

The computation limitations of our method are mostly connected to the calculation of responsibilities336

in IOPG. In this calculation, many sequential matrix multiplications are required both in the forward337

and backward pass. The compute time for each update is thus dependent on the trajectory length338

because these calculations cannot be done in parallel. One direction for future work could thus be339

alleviating this limitation.340

Our objective does not explicitly constrain the number of terminations as long as they lead to fast341

adaptation. Thus, there are many combinations of options with different lengths which can lead to342

good performance on all tasks, which do not always correspond to intuitive decompositions. One343

possible cause of spurious terminations lies in the continuous state space used in some tasks. When344

neural networks are used to represent termination functions, they learn to generalize to nearby states.345

In tasks such as the ant maze, the agent will visit many states in the same neighborhood and might346

thus terminate options several times in quick succession. A promising topic for future investigation is347

whether this problem could be alleviated by using terminations that also depend on the state in which348

the option was initiated.349

9

References350

[1] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.351

[2] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter352

Abbeel. Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environ-353

ments. In International Conference on Learning Representations, 2018.354

[3] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. In355

International Conference on Learning Representations, 2019.356

[4] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic Architecture. Proceedings357

of the AAAI Conference on Artificial Intelligence, 31(1), Feb. 2017.358

[5] Andre Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel,359

Daniel Toyama, Jonathan hunt, Shibl Mourad, David Silver, and Doina Precup. The op-360

tion keyboard: Combining skills in reinforcement learning. In H. Wallach, H. Larochelle,361

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Informa-362

tion Processing Systems, volume 32. Curran Associates, Inc., 2019.363

[6] Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic inference364

for determining options in reinforcement learning. Machine Learning, 104(2-3):337–357, 2016.365

[7] Peter Dayan and Geoffrey E Hinton. Feudal Reinforcement Learning. In S. J. Hanson, J. D.366

Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages367

271–278. Morgan-Kaufmann, 1993.368

[8] Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function369

Decomposition. Journal of Artificial Intelligence Research, 13(1):227–303, 2000.370

[9] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking Deep371

Reinforcement Learning for Continuous Control. In Proceedings of The 33rd International372

Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,373

pages 1329–1338. PMLR, 2016.374

[10] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:375

Fast Reinforcement Learning via Slow Reinforcement Learning. CoRR, abs/1611.02779, 2016.376

[11] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is All You377

Need: Learning Skills without a Reward Function. In International Conference on Learning378

Representations, 2019.379

[12] Jesse Farebrother, Marlos C. Machado, and Michael Bowling. Generalization and Regularization380

in DQN. CoRR, abs/1810.00123, 2018.381

[13] Gregory Farquhar, Shimon Whiteson, and Jakob Foerster. Loaded DiCE: Trading off Bias and382

Variance in Any-Order Score Function Gradient Estimators for Reinforcement Learning. In383

Advances in Neural Information Processing Systems, volume 32, pages 8151–8162. Curran384

Associates, Inc., 2019.385

[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast386

Adaptation of Deep Networks. In Proceedings of the 34th International Conference on Machine387

Learning, volume 70 of Proceedings of Machine Learning Research, pages 1126–1135. PMLR,388

2017.389

[15] Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and390

Shimon Whiteson. DiCE: The Infinitely Differentiable Monte Carlo Estimator. In Proceedings391

of the 35th International Conference on Machine Learning, volume 80 of Proceedings of392

Machine Learning Research, pages 1529–1538. PMLR, 2018.393

[16] Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-Level Discovery of Deep394

Options. CoRR, abs/1703.08294, 2017.395

[17] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta Learning Shared396

Hierarchies. In International Conference on Learning Representations, 2018.397

10

[18] The garage contributors. Garage: A toolkit for reproducible reinforcement learning research.398

https://github.com/rlworkgroup/garage, 2019.399

[19] Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised400

Meta-Learning for Reinforcement Learning. CoRR, abs/1806.04640, 2018.401

[20] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-402

Reinforcement Learning of Structured Exploration Strategies. In Advances in Neural Informa-403

tion Processing Systems, volume 31, pages 5302–5311. Curran Associates, Inc., 2018.404

[21] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When Waiting Is Not an405

Option: Learning Options with a Deliberation Cost. Proceedings of the AAAI Conference on406

Artificial Intelligence, 32(1), 2018.407

[22] Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Remi Munos, and Doina408

Precup. The Termination Critic. In Proceedings of Machine Learning Research, volume 89 of409

Proceedings of Machine Learning Research, pages 2231–2240. PMLR, 2019.410

[23] Maximilian Igl, Andrew Gambardella, Jinke He, Nantas Nardelli, N Siddharth, Wendelin411

Boehmer, and Shimon Whiteson. Multitask Soft Option Learning. In Proceedings of the412

36th Conference on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of413

Machine Learning Research, pages 969–978. PMLR, 2020.414

[24] George Konidaris and Andrew Barto. Building portable options: Skill transfer in reinforcement415

learning. In Proceedings of the 20th International Joint Conference on Artificial Intelligence,416

pages 895–900, 2007.417

[25] Alexander Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy Adaptation for418

Hierarchical Reinforcement Learning. In International Conference on Learning Representations,419

2020.420

[26] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to Learn Quickly for421

Few Shot Learning. CoRR, abs/1707.09835, 2017.422

[27] Hao Liu, Richard Socher, and Caiming Xiong. Taming MAML: Efficient unbiased meta-423

reinforcement learning. In Proceedings of the 36th International Conference on Machine424

Learning, volume 97 of Proceedings of Machine Learning Research, pages 4061–4071. PMLR,425

2019.426

[28] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A Laplacian framework for427

option discovery in reinforcement learning. In Proceedings of the 34th International Conference428

on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 2295–429

2304. PMLR, 2017.430

[29] Daniel J Mankowitz, Timothy A Mann, and Shie Mannor. Adaptive skills adaptive partitions431

(asap). In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in432

Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.433

[30] Amy McGovern and Andrew G. Barto. Automatic Discovery of Subgoals in Reinforcement434

Learning Using Diverse Density. In Proceedings of the 18th International Conference on435

Machine Learning, ICML ’01, page 361–368, 2001.436

[31] Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-Cut — Dynamic Discovery of Sub-Goals437

in Reinforcement Learning. In Proceedings of the 13th European Conference on Machine438

Learning, ECML’02, page 295–306. Springer-Verlag, 2002.439

[32] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A Simple Neural Attentive440

Meta-Learner. In International Conference on Learning Representations, 2018.441

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan442

Wierstra, and Martin A. Riedmiller. Playing Atari with Deep Reinforcement Learning. CoRR,443

abs/1312.5602, 2013.444

11

[34] Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-Efficient Hierarchi-445

cal Reinforcement Learning. In Advances in Neural Information Processing Systems 31, pages446

3303–3313. Curran Associates, Inc., 2018.447

[35] Scott Niekum and Andrew Barto. Clustering via Dirichlet Process Mixture Models for Portable448

Skill Discovery. In Advances in Neural Information Processing Systems, volume 24, pages449

1818–1826. Curran Associates, Inc., 2011.450

[36] Marc Pickett and Andrew G. Barto. Policyblocks: An algorithm for creating useful macro-451

actions in reinforcement learning. In Proceedings of the Nineteenth International Conference452

on Machine Learning, pages 506–513. Morgan Kaufmann, 2002.453

[37] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid Learning or Feature454

Reuse? Towards Understanding the Effectiveness of MAML. In International Conference on455

Learning Representations, 2020.456

[38] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient Off-457

Policy Meta-Reinforcement Learning via Probabilistic Context Variables. In Proceedings of the458

36th International Conference on Machine Learning, volume 97 of Proceedings of Machine459

Learning Research, pages 5331–5340. PMLR, 2019.460

[39] Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning Abstract Options. In Advances in461

Neural Information Processing Systems 31, pages 10424–10434. Curran Associates, Inc., 2018.462

[40] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. ProMP: Proximal463

Meta-Policy Search. In International Conference on Learning Representations, 2019.464

[41] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust465

Region Policy Optimization. In Proceedings of the 32nd International Conference on Machine466

Learning, volume 37 of Proceedings of Machine Learning Research, pages 1889–1897. PMLR,467

2015.468

[42] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.469

High-Dimensional Continuous Control Using Generalized Advantage Estimation. CoRR,470

abs/1506.02438, 2015.471

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal472

policy optimization algorithms. CoRR, abs/1707.06347, 2017.473

[44] Matthew Smith, Herke van Hoof, and Joelle Pineau. An Inference-Based Policy Gradient474

Method for Learning Options. In Proceedings of the 35th International Conference on Machine475

Learning, volume 80 of Proceedings of Machine Learning Research, pages 4703–4712. PMLR,476

2018.477

[45] Bradly Stadie, Ge Yang, Rein Houthooft, Peter Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel,478

and Ilya Sutskever. The importance of sampling in meta-reinforcement learning. In Advances479

in Neural Information Processing Systems, volume 31, pages 9280–9290. Curran Associates,480

Inc., 2018.481

[46] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A482

framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):483

181–211, 1999.484

[47] Yee Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,485

Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In486

Advances in Neural Information Processing Systems, volume 30, pages 4496–4506. Curran487

Associates, Inc., 2017.488

[48] Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning. In G. Tesauro,489

D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems,490

volume 7. MIT Press, 1995.491

[49] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012492

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.493

12

[50] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,494

David Silver, and Koray Kavukcuoglu. FeUdal Networks for Hierarchical Reinforcement495

Learning. In Proceedings of the 34th International Conference on Machine Learning, volume 70496

of Proceedings of Machine Learning Research, pages 3540–3549. PMLR, 2017.497

[51] Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,498

Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learning to reinforcement learn.499

CoRR, abs/1611.05763, 2016.500

[52] Shangtong Zhang and Shimon Whiteson. DAC: The Double Actor-Critic Architecture for501

Learning Options. In Advances in Neural Information Processing Systems, volume 32, pages502

2012–2022. Curran Associates, Inc., 2019.503

[53] Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M. Hospedales. Investigating504

Generalisation in Continuous Deep Reinforcement Learning. CoRR, abs/1902.07015, 2019.505

[54] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast506

Context Adaptation via Meta-Learning. In Proceedings of the 36th International Conference on507

Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7693–7702.508

PMLR, 2019.509

Checklist510

1. For all authors...511

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s512

contributions and scope? [Yes]513

(b) Did you describe the limitations of your work? [Yes] See Section 6514

(c) Did you discuss any potential negative societal impacts of your work? [No] We propose515

a general meta-reinforcement algorithm that does not have any foreseeable negative516

social impact517

(d) Have you read the ethics review guidelines and ensured that your paper conforms to518

them? [Yes]519

2. If you are including theoretical results...520

(a) Did you state the full set of assumptions of all theoretical results? [N/A]521

(b) Did you include complete proofs of all theoretical results? [N/A]522

3. If you ran experiments...523

(a) Did you include the code, data, and instructions needed to reproduce the main experi-524

mental results (either in the supplemental material or as a URL)? [Yes] In supplemental525

material526

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they527

were chosen)? [Yes] Some training details are given in Section 5, the rest is provided528

in Appendix B529

(c) Did you report error bars (e.g., with respect to the random seed after running experi-530

ments multiple times)? [Yes]531

(d) Did you include the total amount of compute and the type of resources used (e.g., type532

of GPUs, internal cluster, or cloud provider)? [Yes] Included in Appendix B533

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...534

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the codebases535

and works that introduced environments we use in Section 5536

(b) Did you mention the license of the assets? [No] We used publicly available code537

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]538

We include our codebase in the supplemental material and will make a public github539

repository540

(d) Did you discuss whether and how consent was obtained from people whose data you’re541

using/curating? [No] We used publicly available code542

13

(e) Did you discuss whether the data you are using/curating contains personally identifiable543

information or offensive content? [N/A] We use data from virtual environments544

5. If you used crowdsourcing or conducted research with human subjects...545

(a) Did you include the full text of instructions given to participants and screenshots, if546

applicable? [N/A]547

(b) Did you describe any potential participant risks, with links to Institutional Review548

Board (IRB) approvals, if applicable? [N/A]549

(c) Did you include the estimated hourly wage paid to participants and the total amount550

spent on participant compensation? [N/A]551

14

