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Abstract

Self-supervised learning methods have shown
impressive results in downstream classification
tasks. However, there is limited work in under-
standing and interpreting their learned representa-
tions. In this paper, we study the representation
space of several state-of-the-art self-supervised
models including SimCLR, SwaV, MoCo V2 and
BYOL. Without the use of class label informa-
tion, we first discover discriminative features that
are highly active for various subsets of samples
and correspond to unique physical attributes in
images. We show that, using such discrimina-
tive features, one can compress the representa-
tion space of self-supervised models up to 50%
without affecting downstream linear classification
significantly. Next, we propose a sample-wise
Self-Supervised Representation Quality Score (or,
Q-Score) that can be computed without access
to any label information. Q-Score, utilizes dis-
criminative features to reliably predict if a given
sample is likely to be mis-classified in the down-
stream classification task achieving AUPRC of
0.91 on SimCLR and BYOL trained on ImageNet-
100. Q-Score can also be used as a regularization
term to remedy low-quality representations lead-
ing up to 8% relative improvement in accuracy on
all 4 self-supervised baselines on ImageNet-100,
CIFAR-10, CIFAR-100 and STL-10. Moreover,
through heatmap analysis, we show that Q-Score
regularization enhances discriminative features
and reduces feature noise, thus improving model
interpretability.

1Department of Computer Science, University of Maryland,
College Park, United States 2Meta AI, Menlo Park, United States.
Correspondence to: Neha Kalibhat <nehamk@umd.edu>.

Published at the ICML 2022 Workshop on Spurious Correlations,
Invariance, and Stability. Baltimore, Maryland, USA. Copyright
2022 by the author(s).

1. Introduction
Self-supervised models learn to extract useful represen-
tations from data without relying on human supervision.
These models (Chen et al., 2020a; Caron et al., 2020; Chen
et al., 2020b; Grill et al., 2020; Chen & He, 2021; Caron
et al., 2018; Khosla et al., 2020) have shown comparable
results to supervised models in downstream classification
tasks. By means of data augmentation, these models are
trained to encode semantically relevant information from
images while ignoring nuisance aspects. Therefore, the
representations ultimately learned should only contain the
information required to define a given sample. However,
in practice, learned representations are often quite noisy
and not interpretable, causing difficulties in understanding
and debugging their failure modes (Jing et al., 2022; Huang
et al., 2021; Ericsson et al., 2021).

In this paper, our goal is to study the representation space
of self-supervised models such as SimCLR (Chen et al.,
2020a), SwaV (Caron et al., 2020), MoCo (Chen et al.,
2020b) and BYOL (Grill et al., 2020) and discover their in-
formative features in an unsupervised manner. This can help
us debug models better, improve their representation spaces
and make them more interpretable. Understanding these
learned representations is relatively less explored. (Jing
et al., 2022), observes that self-supervised representations
collapse to a lower dimensional space instead of the entire
embedding space. Other methods (von Kügelgen* et al.,
2021; Xiao et al., 2021), propose to separate the represen-
tation space into variant and invariant information so that
augmentations are not task-specific. (Grigg et al., 2021), ob-
serve representations across layers of the encoder and com-
pare it to supervised setups. In this work, we focus more on
thoroughly studying the representation space of SSL meth-
ods and their properties. We investigate the connections
between the unsupervised properties in the representation
space and mis-classifications when the representations are
used in downstream classification tasks. We summarize our
contributions as follows:

• We study the representation space of self-supervised
models and discover discriminative features, in an un-
supervised fashion.

• We show that discriminative features often have unique



Towards Better Understanding of Self-Supervised Representations

Figure 1. We plot SimCLR representations of randomly selected ImageNet-100 samples (left) and the percentage of samples within each
class where a given feature is included in the set of dominant features (right).

physical meanings and although are discovered with-
out any label information (given that SSL models are
trained without labels), show strong correlation to class
labels. Moreover, with discriminative features, repre-
sentations can be compressed by up to 50% reliably.

• We introduce Self-Supervised Quality Score (Q-
Score) to measure the quality of each learned repre-
sentation. We empirically observe that the higher the
Q-Score, the more likely that the sample will be cor-
rectly classified, achieving an AUPRC of up to 0.91.

• We apply Q-Score as a regularizer to the self-
supervised loss and show that, by improving the qual-
ity of low-score samples, we can improve downstream
classification accuracy by 8%. Moreover, we show that
using the Q-Score regularization improves the inter-
pretability of self-supervised representations by remov-
ing noise and highlighting useful information.

2. Self-Supervised Representations
Let us consider a SimCLR model with a ResNet (He et al.,
2016) base encoder f(.) and an MLP projection head g(.).
We define xi ∈ Rn and x̃i ∈ Rn as two transformed
views of the ith sample in a given input dataset contain-
ing N samples. Our setup is identical to SimCLR. We apply
data transformations, random crop, random horizontal flip,
random color distortion and random Gaussian blur. We
pass the input samples through the base encoder to get self-
supervised representations denoted by f(xi) = hi ∈ Rr

and f(x̃i) = h̃i ∈ Rr where r is the size of the represen-
tation space. For contrastive training, we use the output of
the projection head g(hi) = zi ∈ Rp and g(h̃i) = z̃i ∈ Rp

where p is the size of the projection space. The SimCLR
optimization for the set of model parameters θ, is as follows,

max
θ

1

2N

2N∑
i=1

exp(sim(zi, z̃i))∑2N
j=1 1j ̸=i exp(sim(zi, zj))

(1)

where sim(zi, zj) =
1
τ

zT
i zj

∥zi∥∥zj∥ .

In Figure 1, we visualize the representations of SimCLR pre-
trained on ImageNet-100 (Russakovsky et al., 2015). Each
row denotes the latent vector (hi) of a random sample at
index i of the ImageNet-100 test set. There are 512 columns
corresponding to the representation size of a ResNet-18 (He
et al., 2016) encoder. First, we study properties of sample
representations (hi). We observe that each representation is
nearly sparse, i.e., most feature values are close to zero (Jing
et al., 2022). However, there exists a select few features
that are strongly deviated from the remaining features in
any given representation. For ease of visualization, we have
highlighted 4 different representations (in black), which
show at least one dominant feature. For the ith sample
whose latent representation is hi ∈ R

r, let µi denote the
mean of hi and σi denote the standard deviation of hi. We
formally define the set of dominant features for the ith

sample as, Li := {j : hij > µi + ϵσi}.

where ϵ is a hyperparameter that is empirically selected.
In practice, we find that ϵ = 4 works best for our experi-
ments. We observe that dominant features of a sample may
be unique to that particular representation or may be shared
with other samples in the population. For example, in Fig-
ure 1, features 11 and 301 (highlighted in red) are strongly
activated for a single sample, whereas, features 27 and 333
are strongly activated for more than one sample. In Figure
1, we plot all the samples where the given feature is strongly
activated (i.e., dominant) and group them by their class la-
bels (note that the selection of dominant features are done
without using the label information). If we take feature 11,
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27, 301 and 333, we observe that they are dominant for over
80% of a particular class and significantly higher than the re-
maining classes. The gradient heatmaps also correspond to
informative visual attributes necessary for identifying these
objects. We will refer to these features as discriminative
features defined formally in the next section. On the other
hand, some dominant features may be strongly activated for
a large number of samples in the population. For example,
in Figure 1, we illustrate the range of classes that feature
175 is dominant for, varying from birds, animals, vegetables,
household items etc. If we examine the gradient heatmaps
of this feature across various classes, we observe that this
feature does not have a clear physical interpretation.
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Figure 2. On the left, we plot each feature in ascending order of the
number of times they are dominant in the population (y axis) and
select the middle portion as discriminative features. On the right,
we plot the linear accuracy of various subsets of discriminative
features.

3. Selecting Discriminative Features
In Figure 2 (left), we plot the number of samples where
a given feature at index j is part of the set of dominant
features (i.e., j ∈ Li). Intuitively, this is the number of
times a given feature is strongly activated for the samples in
the population. The features are visualized in the ascending
order of the number of strong activations in the population
(containing 5000 samples).

We define three broad categories of dominant features: (i)
Features that are strongly activated across a very small frac-
tion of the population, corresponding to the lower tail fea-
tures in Figure 2. These features are image-specific and
are unlikely to have class-relevance. (ii) Features dominant
across a large number of samples in the population i.e, the
upper tail features in Figure 2. Like feature 175 in Figure
1), such features are likely to encode very broad and general
characteristics (like texture, color etc.) common to most
samples and therefore, are not class-discriminative. The
third category includes, (iii) features that are active across
a moderate number of samples in the population (i.e. the
middle parts in Figure 2). These features are most likely to
encode unique physical attributes associated with particular
classes, similar to those illustrated in the top panel in Figure
1. We refer to this subset of dominant features as discrim-
inative features (denoted by the dotted lines in Figure 2).

We emphasize that these discriminative features are selected
without the use of any label information.

We justify the described method of selection in Figure 2
(right), where we plot the top-1 accuracy of a linear classifier
on ImageNet-100 using subsets of discriminative features of
varying sizes. We also plot the top-1 accuracy when random
subsets of features are selected. We observe that discrimina-
tive features perform significantly better than randomly fea-
tures and can reduce the representation size up to 50%, with
minimal reduction in performance. See Appendix Figures
A.1 and A.2 for results on other self-supervised models.

Figure 3. We visualize discriminative features of average represen-
tations (correct and incorrect classifications) of several ImageNet-
100 classes. In the top panel, we display the SimCLR (baseline)
and in the bottom panel, we visualize the same after using Q-Score
regularization.

Figure 4. We visualize heatmaps of discriminative and noisy fea-
tures of SimCLR on 4 classes in ImageNet-100.

4. Interpreting Representations
In this section, we study some properties of the latent space
that drive representations to be correctly classified by a
downstream linear classifier. In Figure 3, we visualize the
discriminative features selected in an unsupervised man-
ner using the approach outlined in Section 3 for several
ImageNet-100 classes. Each row corresponds to the class
averaged representation. On the left, we show the average
representations of correctly classified samples in each class
while on the right, we show the same for mis-classified
representations in each class.

As we can see, in Figure 3, in the first panel, there is a clear
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difference between representations of correctly and incor-
rectly classified examples. Both correct and mis-classified
representations are nearly sparse, however, the discrimina-
tive features are strongly deviated only in correct classi-
fications. This is especially interesting because the label
information has not been used in the selection of discrimi-
native features. In Figure 1, we observe that discriminative
features show strong correlation to ground truth, which sug-
gests that their presence may be useful in correctly classify-
ing representations. In Figure 3, our claim is confirmed as
we observe that mis-classified representations do not show
high activation on discriminative features. For every repre-
sentation, apart from the discriminative features, there are a
large number of features that have very low activation (close
to zero). We name such features as noisy features for each
representation. Correctly classified representations contain
few noisy features and are more sparse while mis-classified
representations are often more noisy. Our visual observa-
tions hint that we can potentially classify representations
in an unsupervised manner by leveraging these structural
properties of representations.

We observe that the heatmaps of discriminative features (in
Figure 4) of any given class, capture relevant and defining
characteristics of the images, therefore are highly correlated
with the ground-truth. The physical attribute associated
with a discriminative feature is consistent between the cor-
rect and incorrect classifications. Noisy features lead to
noisy heatmaps which focus on aspects of the inputs that are
uninformative (See Section A.10). For any given sample,
having a large number of noisy features and low activations
on discriminative features are strong signals indicating its
potential mis-classification in the downstream task. We
would like to emphasize that our results only indicate an
association between these structural properties and classifi-
cation accuracy and we do not claim any causal relationship
between the two.

5. Self-Supervised Q-Score
Our study of learned representation patterns help us discover
discriminative features in an unsupervised manner. We
combine our observations to design a sample-wise quality
score for self-supervised representations.

Let us define D, such that |D| < r, as the set of discrim-
inative features for a given self-supervised model trained
on a given dataset. For the ith sample, we have hi ∈ Rr

(representation), µi (mean of hi), σi (standard deviation
of hi) and the set of dominant features Li = {j : hij >
µi + ϵσi}, |Li| < r. We define our Self-Supervised Quality
Score for sample i as,

Qi :=

∑
j∈Li∩D hij

|Li ∩D|∥hi∥1
(2)

where, Li∩D is the set of discriminative features specific to
the ith sample. We also use the L1 norm ∥hi∥1 to promote
sparsity in representations consequently ensuring that noisy
features are penalized. Intuitively, higher Qi implies that the
representation is sparse with strongly activated discrimina-
tive features. It combines two favorable properties of repre-
sentations i.e., sparsity (or feature noise, computed by the L1

norm) and strongly activated discriminative features. Our
objective with this metric is to compute a sample-specific
score in an unsupervised manner indicating the quality of its
representations. Ideally, we would like to argue that samples
with higher Q-score have improved representations and thus
are more likely to be classified correctly in the downstream
task. We confirm this in Section A.3.

Table 1. We compute the linear accuracy before and after Q-Score
regularization and show that Q-Score regularization improves the
baselines by up to 8%.

Dataset
SimCLR SwaV MoCo BYOL

Baseline Q-Score Baseline Q-Score Baseline Q-Score Baseline Q-Score
Regularized Regularized Regularized Regularized

CIFAR-10 90.83 92.31 89.17 90.03 86.91 92.77 86.72 92.25
CIFAR-100 65.91 71.90 62.89 66.52 63.47 68.16 60.97 67.71

STL-10 76.42 79.83 73.94 75.03 73.21 74.29 70.59 74.47
ImageNet-100 77.62 80.79 74.09 78.90 78.32 85.16 80.10 86.72

We can also use Q-Score as an intervention by further train-
ing state-of-the-art self-supervised models with Q-Score
regularization. For example, we can apply this regularizer
to the SimCLR optimization as follows,

max
θ

1

2N

2N∑
i=1

[ exp(sim(zi, z̃i))∑2N
j=1 1j ̸=i exp(sim(zi, zj))

+ λ1Qi<α(Qi)
]

(3)

where, α is a threshold with which we select the samples
whose Q-Scores should be maximized and λ is the regular-
ization coefficient. In other words the goal of this regular-
ization is to improve low-quality representations, similar to
the ones shown in Figure 3, by maximizing their Q-Score
to improve their quality for downstream classification. As
shown in in Table 1, Q-Score regularization improves the
top-1 accuracy on each dataset on all of the self-supervised
state-of-the-art models. On ImageNet-100 we observe up
to an 8% relative improvement in accuracy, most significant
on MoCo.

In addition to top-1 accuracy, Q-Score also shows significant
improvement in representation quality and interpretability.
In Figure 3, we compare the representation space before and
after Q-Score regularization. We observe that discrimina-
tive features become more enhanced after Q-Score regular-
ization on both correct and mis-classified representations.
Our regularization also greatly reduces noisy features and
produces cleaner representations with clear discriminative
features that are easier to classify (See Section A.4). There-
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fore, we attribute the improvement in performance to im-
proved representation quality. Our motivation is to produce
better quality representations that are more distinguishable
across classes and therefore, easier to classify. Although
Q-Score improves accuracy, it does not entirely prevent
mis-classifications as mis-classifications may occur due to
a variety of reasons such as, hardness of samples, encoder
capacity, dataset imbalance etc.
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A. Appendix
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Figure A.1. Selecting discriminative features: We plot each feature in ascending order of the number of times they are dominant in the
population (y axis). We show this for SimCLR (Chen et al., 2020a), SwaV (Caron et al., 2020), MoCo (Chen et al., 2020b) and BYOL
(Grill et al., 2020). Discriminative features are selected such that they are dominant for a range of samples, indicating that they may have
strong class-correlation, therefore, are useful for downstream classification. Features that are activated for a very large number of samples
may not be discriminative as they often encode information common to several classes (e.g. Feature 175 in Figure 1).

A.1. Discussion

In this paper, we studied the representation space of self-supervised models in downstream classification tasks and discovered
discriminative features. Discriminative features are a subset of features that show strong activations in smaller but sizable
sets of samples, wherever relevant, and correspond to unique physical attributes. With discriminative features, we can reduce
the representation size by 50% without affecting linear accuracy. We also observe significant differences in representations
between correctly and incorrectly classified samples. Building on these observations, we define Self-Supervised Quality
Score (Q-Score) that is effective in determining how likely samples are to be correctly or incorrectly classified. Our proposed
score can be computed per sample in an unsupervised manner (without label information). With the help of Q-Score
regularization, we remedied these low-quality samples by improving their Q-Scores, thereby, improving the overall accuracy
of state-of-the-art self-supervised models by up to 8%. We also observed that regularization improves model interpretability
by enhancing discriminative features and reducing feature noise. Our paper poses important questions for future studies
such as: 1) why do self-supervised models trained without any labels, produce axis-aligned, sparse representations, 2) what
are the causes of mis-classifications, apart from representation quality, 3) how can we utilize the better representations space
for other tasks besides classification.

A.2. Experimental Setup

Our setup consists of pre-trained self-supervised encoders (f(.)) SimCLR (Chen et al., 2020a), SwaV (Caron et al.,
2020), MoCo (Chen et al., 2020b) and BYOL (Grill et al., 2020) on ImageNet-100 (Russakovsky et al., 2015), CIFAR-10
(Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b) and STL-10 (Coates et al.). We maintain the same encoder
optimization, training parameters and optimizers as the respective papers. We train the pre-trained encoders on their
self-supervised objectives with our Q-Score regularizer on the latent representations. We train with λ = 0.1 for 100 epochs
until convergence on a single NVIDIA RTX A4000 GPU.

A.3. ROC Plots of Q-Score

We measure how effective our score is in differentiating between correctly and incorrectly classified representations in an
unsupervised manner. In Figure A.3, we plot the Precision-Recall (PR) curve and the Receiver Operating Characteristic
(ROC) curve of Q-Score for SimCLR, SwaV, MoCo and BYOL, for the validation set of ImageNet-100 containing 5000
samples. We also compute the AUROC (area under receiver operating characteristic curve) and AUPRC (area under
precision-recall curve) in differentiating between correct and incorrect classifications. We observe up to 0.91 AUPRC and
0.74 AUROC among our baselines. Based on these results we can conclude that, Q-Score is a reliable metric in assessing
the quality and representations with lower Q-Score (quality), are more likely to be mis-classified.

A.4. Gradient Heatmaps after Q-Score Regularization

In Figure A.4, we visualize heatmaps of several samples of 4 classes in the Q-Score regularized model. The discriminative
features under each class, activate relevant attributes for each example within that class. The noisy features, in contrast
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Figure A.2. Linear classification accuracy on discriminative features: We train linear classifiers after selecting subsets of discriminative
features of various sizes (middle portion of Figure 2) and plot their top-1 accuracy for SimCLR, SwaV, MoCo and BYOL. We compare
these results to the baseline and the accuracy on randomly selected features where models trained using discriminative features consistently
outperform those of randomly selected features. We can achieve up to 50% reduction in representations size using discriminative features
without significantly affecting the top-1 accuracy.
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Figure A.3. Precision-Recall and ROC curves of Q-Score: We compute the precision-recall and ROC curve of Q-Score for correct and
mis-classified representations on ImageNet-100 on SimCLR, SwaV, MoCo and BYOL. We achieve an AUPRC of up to 0.91 and AUROC
of 0.71 in distinguishing between correct and mis-classified representations using Q-Score.

to Figure 4, are now not activated for the majority of the examples. Strongly activated discriminative features, sparse
representations (Figure 3) and reduced noise in heatmaps (Figure A.4), are indicators that Q-Score regularized representations
are more interpretable for downstream classification.

A.5. Linear Head

In Figure A.5, we plot the magnitude of linear head weights of the top classes for each feature. We observe that the linear
head weight at the given feature index is strongly correlated with a particular class. The class mappings are identical to
those observed in Figure 1. This indicates that the linear head implicitly learns to assign higher weights for discriminative
features at their respective classes.

A.6. Selecting Discriminative Features

In Figure 2, we select features based on the number of times they are dominant in the population. Discriminative features
are selected in the middle portion, illustrated by dotted black lines. In this section, we discuss the performance when the
selection range is either to the left or the right of the curve. In Figure A.6, we add two additional baselines on top of Figure
A.2. The red curve shows the top-1 accuracy of features selected from the lower tail (left) of Figure 2. The purple curve
shows the top-1 accuracy of features selected from the upper tail (right) of Figure 2. We observe that discriminative features
outperform all baselines, indicating that selecting discriminative features from the middle portion in Figure 2 is optimal for
best linear evaluation performance.
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Figure A.4. Heatmaps of discriminative and noisy features after Q-Score Regularization: We visualize heatmaps of discriminative
and noisy features of 4 classes in Q-score regularized SimCLR. We observe that discriminative features capture meaningful attributes
of each image. The noisy features (unlike Figure 4), do not get activated in most cases indicating that the regularization reduces noise
in the representation space, thereby improving model interpretability. These observations are consistent between correct and incorrect
classifications.

A.7. Deconstructing Self-Supervised Q-Score

The self-supervised Q-Score contains two components - 1) The mean of the discriminative features within a representation
and 2) The L1-norm of the representation. In Figure A.8, we visualize the AUC curves for each component separately to
study their effectiveness in discriminating between correct and mis-classified representations. We observe that the AUPRC
and AUROC values, for each individual component is significantly lower compared to Q-Score in Figure A.3, for each
self-supervised model baseline. Combining both the components allows us to promote the magnitude of discriminative
features, and at the same time ensure that representations remain sparse. The improved AUC numbers in Figure A.3, confirm
that combining both properties in Q-Score is more effective in distinguishing between correct and incorrect classifications.

In Figure A.7, we also visualize histograms of Q-Score between correct and mis-classified samples for 4 self-supervised
models. We observe that mis-classified representations are clearly shifted in their Q-Score distribution on each model. This
confirms that Q-Score, without the use of any label information, can predict the likelihood of being correctly classified for
any given representation.

A.8. Class-wise Accuracy and Sparsity

In Figure A.9, we plot the class-wise accuracy of ImageNet-100 classes before and after Q-Score regularization. We observe
that Q-Score regularization, maintains or improves that performance of 83 classes and does not significantly degrade the
performance of any class. In Figure A.10, we plot the sparsity of the representations in ImageNet-100 before and after
regularization. Due to the use of L1-norm, we observe a significant increase in sparsity.

A.9. Transfer Performance of Q-Score Regularization

In Table A.1, we tabulate the transfer learning performance (linear evaluation) of various unseen datasets (Krizhevsky et al.,
a;b; Coates et al.; Maji et al., 2013; Nilsback & Zisserman, 2008; Bossard et al., 2014; Krause et al., 2013; Cimpoi et al.,
2014) on 4 self-supervised models trained on ImageNet-100 with Q-Score regularization. We observe that the average
accuracy of unseen datasets improves on all setups, especially on SwaV and BYOL. We would like to mention that these
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Figure A.5. Linear head weights at various features: We plot the weight magnitude of the linear head for various features and show that
the weights are significantly high for select classes in ImageNet-100. These classes exactly match with Figure 1.
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Figure A.6. Top-1 Accuracy of subsets of features: Building on Figure A.2, we plot the linear accuracy of features selected from the
lower tail in Figure 2 (red) and features selected from the upper tail in Figure 2. We observe that discriminative features outperform all the
baselines.

self-supervised models use ResNet-18 and are pre-trained on ImageNet-100 due to limited resource constraints, therefore,
the accuracy numbers may be lower than those reported in the baselines.

In Figure A.11, we visualize the gradient heatmaps of the discriminative features discovered on SimCLR on ImageNet-100
on both ImageNet-100 and unseen datasets, Aircraft (Maji et al., 2013), Food (Bossard et al., 2014) and Cars (Krause et al.,
2013). We observe that the physical meaning associated with each discriminative feature is consistent between both the
training and unseen data. The heatmaps also correspond to informative features, strongly correlated with the ground truth.
These gradients indicate that discriminative features are transferable across unseen datasets, which support the improvement
we observe in Table A.1.

We also visualize the representations of correct and incorrect classifications of the Flowers (Nilsback & Zisserman, 2008)
dataset in Figure A.12. We use SimCLR pre-trained on ImageNet-100 (top panel) and with Q-Score regularization (bottom
panel). We observe that the same properties as Figure 3 on ImageNet-100 (train dataset) transfer at test time to Flowers,
an unseen dataset. Before regularization, representations, especially the mis-classified ones are more noisy. We observe
dominant features on each sample which get more enhanced after Q-Score regularization. The representations also become
more sparse with reduced noise leading to improved top-1 accuracy as shown in Table A.1.

A.10. More Gradient Heatmaps of SimCLR

In Figures A.13, A.14, A.15 and A.16, we plot more heatmaps of discriminative and noisy features of SimCLR. We observe
that discriminative features are highly correlated with the ground truth, whereas, noisy features, map to spurious portions
that do not contribute to useful information.
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Figure A.7. Histograms of Q-Score of correct and incorrect classifications: We plot the distributions of Q-Score between correct and
mis-classified samples in SimCLR, SwaV, MoCo and BYOL. We observe that the distributions are clearly shifted, indicating that Q-Score
is effective predicting whether any given sample would be correctly or incorrectly classified.
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Figure A.8. AUC plots of Q-Score components: We plot the ROC and PR curves of the two components of Q-Score. We observe that,
on all self-supervised models, the AUROC and AUPRC scores are better with Q-Score (Figure A.3) which combines both properties.
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Figure A.9. Class-wise accuracy of SimCLR with and without Q-Score regularization): We observe that Q-Score regularization
improves the accuracy of 83 classes in ImageNet-100. Q-Score regularization, does not degrade the performance significantly for any
class.
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Figure A.10. Sparsity of representations: In this scatter plot, we show that Q-Score regularization significantly increases the sparsity of
representations compared to the SimCLR baseline.

Table A.1. Transfer learning performance of various state-of-the-art self-supervised models trained on ImageNet-100 with Q-Score
regularization: We observe that Q-Score regularization improves the average transfer accuracy on all self-supervised models.

Transfer
SimCLR SwaV MoCo BYOL

Dataset Baseline Q-Score Baseline Q-Score Baseline Q-Score Baseline Q-Score
Regularized Regularized Regularized Regularized

CIFAR-10 70.13 70.55 71.27 72.42 73.26 72.39 71.36 72.99
CIFAR-100 40.23 40.70 42.52 42.69 45.70 44.11 45.92 45.36

STL-10 65.74 65.77 65.81 65.89 66.87 67.03 85.45 86.07
Aircraft 11.94 11.79 11.97 17.31 12.06 13.08 11.91 11.73
Flowers 49.52 51.63 49.53 55.03 50.20 50.82 50.23 51.26

Food 48.47 48.01 48.38 51.73 48.36 49.74 48.35 50.22
Cars 10.67 10.59 10.63 16.17 10.68 12.47 10.72 13.09
DTD 55.69 56.06 55.63 57.18 55.90 57.12 55.63 56.06

Average 44.05 44.39 44.47 47.30 45.38 45.85 47.45 48.35
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Figure A.11. Discriminative features on unseen datasets: We visualize the discriminative features discovered on ImageNet-100 on
unseen datasets like Aircraft (Maji et al., 2013), Food (Bossard et al., 2014) and Cars (Krause et al., 2013). We observe that discriminative
features correspond to the same physical attribute as the training data and are core and informative.
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Figure A.12. Comparing correct and mis-classified representations in Flowers dataset: In these heatmaps, we visualize the top
features several Flowers (Nilsback & Zisserman, 2008) dataset samples. In the top panel, we display the correct (left) and incorrect (right)
classifications of SimCLR (trained on ImageNet-100) and in the bottom panel, we visualize the same after using Q-Score regularization.
Similar to the observations in Figure 3, we observe that the regularization makes representations more sparse with discriminative features
enhanced, thereby leading to an improvement in performance.
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Figure A.13. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Ski Mask): We plot the gradient heat maps of
the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that discriminative
features are more correlated with ground truth labels in correct classifications but are not correlated in misclassifications. Noisy features
map to spurious portions of the images.
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Figure A.14. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Park Bench): We plot the gradient heat maps of
the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that discriminative
features are more correlated with ground truth labels in correct classifications but are not correlated in misclassifications. Noisy features
map to spurious portions of the images.
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Figure A.15. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Head Cabbage): We plot the gradient heat maps of
the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that discriminative
features are more correlated with ground truth labels in correct classifications but are not correlated in misclassifications. Noisy features
map to spurious portions of the images.
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Figure A.16. Heatmaps of Discriminative and Noisy Features of SimCLR (Class - Dutch Oven): We plot the gradient heat maps of
the most discriminative feature (by magnitude) of the given class and a noisy feature of the same class. We observe that discriminative
features are more correlated with ground truth labels of correct classifications but are not correlated in misclassifications. Noisy features
map to spurious portions of the images.


