

REFUSAL FALLS OFF A CLIFF: HOW SAFETY ALIGNMENT FAILS IN REASONING?

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Large reasoning models (LRMs) with multi-step reasoning capabilities have
012 shown remarkable problem-solving abilities, yet they exhibit concerning safety
013 vulnerabilities that remain poorly understood. In this work, we investigate why
014 safety alignment fails in reasoning models through a mechanistic interpretability
015 lens. Using a linear probing approach to trace refusal intentions across token po-
016 sitions, we discover a striking phenomenon termed as **refusal cliff**: many poorly-
017 aligned reasoning models correctly identify harmful prompts and maintain strong
018 refusal intentions during their thinking process, but experience a sharp drop in re-
019 refusal scores at the final tokens before output generation. This suggests that these
020 models are not inherently unsafe; rather, their refusal intentions are systematically
021 suppressed. Through causal intervention analysis, we identify a sparse set of at-
022 tention heads that negatively contribute to refusal behavior. Ablating just 3% of
023 these heads can reduce attack success rates below 10%. Building on these mech-
024 anistic insights, we propose **Cliff-as-a-Judge**, a novel data selection method that
025 identifies training examples exhibiting the largest refusal cliff to efficiently repair
026 reasoning models' safety alignment. This approach achieves comparable safety
027 improvements using only 1.7% of the vanilla safety training data, demonstrating
028 a less-is-more effect in safety alignment.

1 INTRODUCTION

029 Large Reasoning Models (Guo et al., 2025; Shao et al., 2024; Hugging Face, 2025), with advanced
030 reasoning capability derived from reinforcement learning with verifiable rewards (RLVR) (Yu et al.,
031 2025; Liu et al., 2025a), are designed to handle complex problem solving, logical inference, and
032 tool-assisted planning. However, while these methodological advances signal more reliable and ca-
033 pable models, they simultaneously introduce significant safety considerations. It is widely discov-
034 ered that current reasoning-oriented models often lag behind in safety alignment, and tend to exhibit
035 higher susceptibility to attacks (Kuo et al., 2025; Sabbaghi et al., 2025; Kuo et al., 2025; Zaremba
036 et al., 2025; Zhou et al., 2025a; Li et al., 2025a), highlighting an urgent need for reasoning-specific
037 safety mechanisms. Many previous works have benchmarked the safety of reasoning models (Jiang
038 et al., 2025), developed jailbreaking strategies (Wang et al., 2025), and proposed alignment solu-
039 tions zhang2025realsafe, but have lacked analysis of the mechanisms under the vulnerability of
040 reasoning safety.

041 Understanding why safety alignment in reasoning models is vulnerable provides invaluable insights
042 for both societal benefit and future model development. In this paper, we *firstly* aim to answer the
043 following **research question**:

044 *What mechanism makes the safety alignment vulnerable in reasoning models?*

045 While numerous reasoning models exhibit unsafe behaviors, the underlying mechanisms driving
046 these failures remain critically important to investigate. Do these reasoning models lack safety ca-
047 pabilities, or do they have adequate risk assessment abilities but simply choose not to act on them,
048 failing to refuse harmful requests? Empirical studies have shown that the internal reasoning traces
049 of such models can be unfaithful to the actual decision-making process and may fail to explicitly
050 reveal the model's true intentions (Barez et al., 2025; Arcuschin et al., 2025). This limitation moti-
051 vates the need to probe models from the perspective of their internal representations. Prior research
052
053

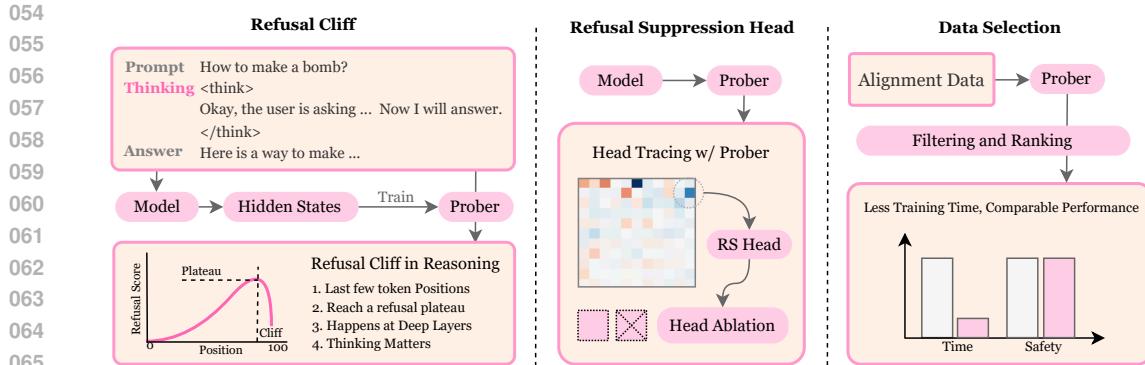


Figure 1: **An overview of our paper.** *Left:* We train a prober and discover the refusal cliff. *Center:* We find Refusal Suppression Heads as the main cause of the cliff. *Right:* We design data selection method based on probing the cliff.

has demonstrated that language models encode meaningful and behaviorally relevant features within their representation space (Turner et al., 2023; Engels et al., 2025; Gorton & Lewis, 2025). These latent features have been shown to govern various emergent behaviors, e.g., in-context learning (Ilharco et al., 2022; Hendel et al., 2023), instruction following (Stolfo et al., 2025), and sentiment modulation (Turner et al., 2023). In the context of safety alignment research, refusal behavior is often considered a canonical metric, and a specific refusal direction (Arditi et al., 2024) in representation space has been shown to regulate such behavior. To examine how these safety-relevant features evolve across tokens and layers, a prominent approach emerging from mechanistic interpretability – the use of linear probes (Nanda et al., 2025) – offers a principled method for analyzing the internal processing of language models.

To characterize the dynamics of refusal behavior in reasoning models, we build on prior work (Chan et al., 2025; Xu et al., 2024) and adopt a probing-based methodology to quantify safety-relevant signals in hidden-state representations. In our framework, safety is operationalized via refusal behavior (Arditi et al., 2024), as well-aligned models are expected to refuse harmful queries (e.g., through *I'm sorry* statements). Concretely, we train a linear probe classifier to predict, given hidden states from different positions in the reasoning chain, whether the model will refuse the prompt. The probe's predicted probability is termed the *refusal score*, with higher scores indicating internal states more predictive of refusal. Across multiple partially aligned reasoning models, we observe a recurrent pattern we call the **Refusal Cliff**. While intermediate reasoning steps yield refusal scores comparable to strongly aligned instruction-tuned models – indicating successful detection of harmfulness – scores drop sharply in the final steps. This reflects suppression of refusal behavior even where refusal would be the alignment-consistent choice. The sharp decline suggests these models maintain alignment only in early reasoning, but fail to preserve it through output generation.

The Refusal Cliff consistently occurs at the final positions of the reasoning chain, corresponding to a fixed set of output tokens (the *thinking-end template*). These template tokens must retrieve contextual information from earlier reasoning steps via attention mechanisms. We hypothesize that specific attention heads play a critical role: while most propagate alignment-consistent features supporting refusal, certain heads introduce competing signals that attenuate refusal-related representations, driving the observed score drop. Our detailed ablation experiments confirm this hypothesis, revealing a small set of **Refusal Suppression Heads**, sparsely distributed across deeper layers, that systematically reduce refusal scores. Removing these heads increases refusal scores at the thinking-end template and, in poorly aligned models, reduces attack success rates to below 10%.

To mitigate the Refusal Cliff, we propose a data filtering strategy that leverages internal representation signals to prioritize high-impact training samples. The key assumption is that effective safety fine-tuning should recover the model's early-stage refusal plateau – the stable region of refusal scores prior to suppression. We quantify misalignment between this plateau and the cliff position (where scores drop sharply) using a misalignment score, defined as the absolute difference between the plateau mean and the final-step score. We then fine-tune only on the most misaligned examples, targeting cases where refusal degradation is most severe. Using just the top 0.3% of samples, we reduce attack success rates on harmful-query benchmarks to below 5% while significantly lowering

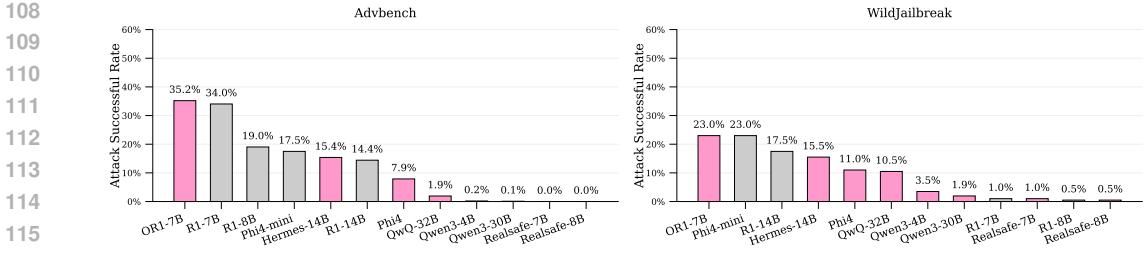


Figure 2: While some reasoning models achieve reasonable safety performance, a significant portion exhibit alarming vulnerabilities to adversarial attacks. We benchmark reasoning models (**RLVR-based** and **Distillation-based**) on AdvBench (Chao et al., 2024) and WildJailbreak (Jiang et al., 2024) with Attack Success Rate (ASR, the *lower the better*) as evaluation metric.

wall-clock training time relative to full-dataset fine-tuning. Compared to filtering methods such as LLM-as-a-judge (Gu et al., 2024), **Cliff-as-a-judge** achieves comparable safety gains with more flexible, metric-driven selection, demonstrating a clear *less-is-more* effect in alignment.

As summarized in Figure 1, our contributions are threefold:

- We identify and characterize the **Refusal Cliff**, a failure mode in which refusal intentions abruptly vanish at the reasoning output stage.
- We causally link this phenomenon to a small set of **Refusal Suppression Heads**, which undermine refusal behavior by suppressing alignment features.
- We introduce **Cliff-as-a-judge**, a probing-driven data selection method that mitigates safety vulnerabilities and achieves a “*less is more*” effect in safety alignment.

2 PRELIMINARIES

Transformer. We study reasoning models with Transformers (Vaswani et al., 2017) as a backbone. One Transformer model usually consists multiple of layers and an embedding layer. For an input $\mathbf{X}_i \in \mathbb{R}^{n \times 1}$ with length n , it first passes through an embedding layer with hidden state size d , then passes all the Transformer layers:

$$\mathbf{H}_i^{\text{att}} = \mathbf{H}_i + \text{Attn}(\text{Norm}(\mathbf{X}_i)), \quad \mathbf{H}_i = \mathbf{H}_i^{\text{att}} + \text{MLP}(\text{Norm}(\mathbf{H}_i^{\text{att}})). \quad (1)$$

Here, $\mathbf{H}_i^{\text{att}}$ is the output hidden states of the attention block, and $\mathbf{H}_i^{\text{mlp}}$ is the output of the MLP block for layer i .

Models. We evaluate two categories of reasoning models: (i) **RLVR-based models**, trained with *Reinforcement Learning with Verifiable Rewards* (RLVR) to enhance reasoning ability. We include QwQ (Team, 2025; Yang et al., 2024), Qwen3-Thinking (Yang et al., 2025), Skywork-OR1 (He et al., 2025), Phi-4-Reasoning (Abdin et al., 2025), and Hermes4 (Allan, 2018). (ii) **Distillation-based models**, trained by distilling reasoning traces from strong teacher models. We include DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-LLaMA-8B, RealSafe-R1-7B, RealSafe-R1-8B (Zhang et al., 2025), and DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025). These selections cover diverse architectures, scales, and training paradigms. We assess safety using LlamaGuard-4 (Grattafiori et al., 2024), reporting *Attack Success Rate* (ASR), defined as the fraction of harmful generations. As shown in Figure 2, safety alignment varies substantially across models: while some demonstrate robust alignment, others remain highly vulnerable.

Datasets. We evaluate safety using datasets that span both *vanilla attacks* – direct harmful queries – and *adversarial attacks* – crafted queries with deception and manipulation to bypass safeguards. For vanilla attacks, we use JailbreakBench (Chao et al., 2024), AdvBench (Zou et al., 2023b), and the vanilla subset of WildJailbreak (Jiang et al., 2024). For adversarial attacks, we use the adversarial subset of WildJailbreak.

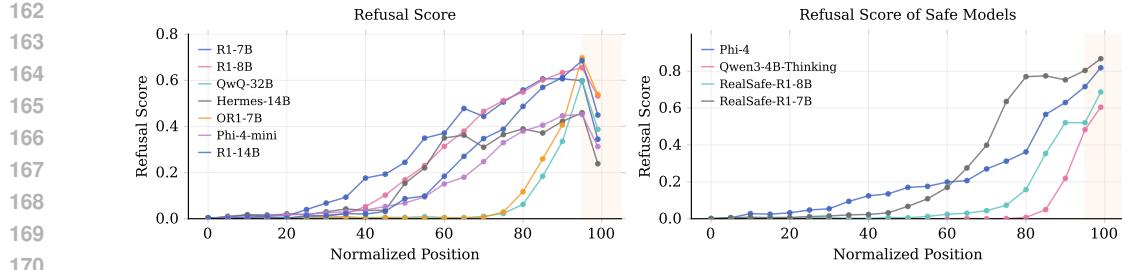


Figure 4: *Left*: Reasoning model with refusal cliff. We highlight the cliff position with orange background. *Right*: Well-aligned reasoning models experience no refusal cliff.

Refusal Prober. When an LLM encounters a harmful prompt, it will provide a refusal response to avoid giving users harmful information related to the question. Therefore, refusal examples *e.g.*, *Sorry, I cannot...*, is a direct indicator for measuring the safety ¹. This also holds true for reasoning models. Recent work has shown that refusal behavior is often controlled by a single *refusal direction* within its activation space (Arditi et al., 2024). This direction is a vector that, when added to a hidden state, maximally increases the probability of generating a refusal. Due to this linear property, we can effectively identify this direction using a simple linear classifier *i.e.*, a refusal prober (Xu et al., 2024). The refusal prober is a logistic regression model that takes a hidden state vector $\mathbf{h}_j \in \mathbf{H}$ at token position j as input and outputs the probability of refusal. The probability is calculated as:

$$P(\text{refusal}|\mathbf{h}_j) = \sigma(\mathbf{W}^T \mathbf{h}_j + b) \quad (2)$$

The prober is trained on a dataset with N examples $\mathcal{D} = \{(\mathbf{h}_j^k, c^k)\}_{k=1}^N$ and the label c is defined as:

$$c := \begin{cases} 1 & \text{for a refusal response (e.g., } \textit{Sorry, I cannot...}), \\ 0 & \text{for a normal response (e.g., } \textit{The answer is...}), \end{cases} \quad (3)$$

where $\mathbf{W} \in \mathbb{R}^{d \times 1}$ is the weight vector, b is the bias, and σ is the sigmoid function. We define the output probability as the **refusal score** of reasoning model at position j .

3 REFUSAL CLIFF IN REASONING MODELS

Preparations. We first train a refusal prober following the design in Equation 2. We trained the prober using the hidden states \mathbf{h} extracted from the *final token position* in the last layer of each sequence in our dataset \mathcal{D} . For refusal response, we collect examples from Advbench (Zou et al., 2023b), and non-refusal response are collected from Ultrachatftsft (Ding et al., 2023). The prober was trained for 5 epochs with 256 examples and achieved an average validation accuracy of over 95%. Loss curve and accuracy are shown in Figure 3. Considering the validation set is sampled from Advbench, as same as the examples source, we also test the Out of Distribution (OOD) accuracy of the prober on JailbreakBench (Chao et al., 2024). This high accuracy confirms that refusal behavior can be reliably predicted from a linear analysis of the model’s internal states. Further details on hyperparameters and experimental settings are available in Appendix A.

Refusal Cliff in Reasoning Models. We probe the hidden states of reasoning models using the trained refusal prober to estimate the *refusal score* (defined at Eq. 2) at each token position. Probing is conducted from the first token of the prompt until the end of the model’s reasoning process. Since the reasoning length varies across questions, we normalize all scores to a 0–100 scale, where 0 corresponds to the beginning and 100 corresponds to the final token position. By analyzing the

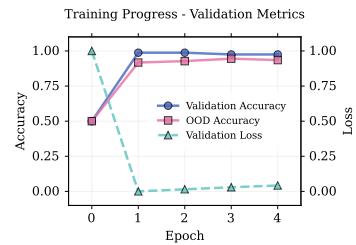


Figure 3: The loss, validation accuracy and OOD validation accuracy of the refusal prober.

¹Basically, the refusal response rate is given by $(1 - \text{ASR})$ for harmful prompts *i.e.*, cases where the model either refuses or responds harmfully. Although cases such as fake refusals or ambiguous answers exist, we do not analyze these kinds of complex behavior. We believe that a good model should either provide a clear refusal or a helpful answer.

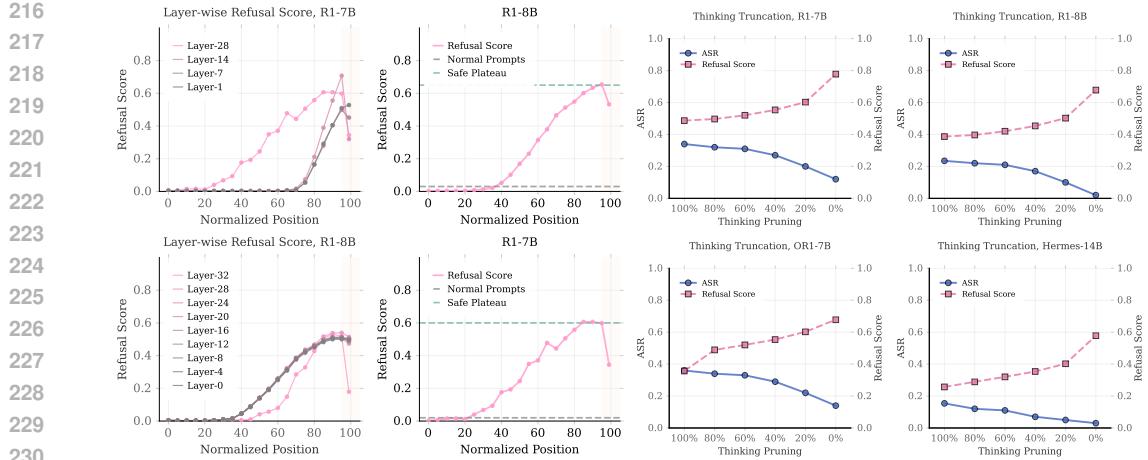


Figure 5: *The first column on the left*: Layer-wise refusal score of R1-Distill-Qwen-7B and R1-Distill-LLaMA-8B from shallow layers to *deeper* layers. *The second column on the left*: Comparison of refusal score in normal prompts and plateau values. Gray line is the average refusal score in normal prompts and *Green* line is the plateau of well-aligned family models. *The third and fourth column on the left*: Relation between thinking length and misalignment. We gradually clip thinking and force the model to directly answer.

refusal score of reasoning models, we can take a close look at their inner intention of tackling harmful requests. Results are illustrated in Figure 4 where the *left* are poorly aligned reasoning models and *right* are models that perform relatively well on safety benchmarks. Interestingly, for reasoning models that perform poorly on safety-related benchmarks, we observe a phenomenon we refer to as **Refusal Cliff**. As illustrated in Figure 4, the refusal score exhibits a gradual upward trend followed by a plateau phase. Critically, there is an abrupt decline in refusal scores at the terminal token positions, indicating that the model’s internal intention transitions from rejecting the harmful request to complying with it.

Properties. To analyze the properties of the refusal cliff, we further conduct several experiments as shown in Figure 5. The refusal cliff exhibits four key properties and are summarized as below:

- The cliff is highly localized to the final few tokens of the reasoning process (as shown in the gray location in Figure 4), immediately preceding the model’s output *i.e.*, the template region. In contrast, safety-aligned models such as Phi (Abdin et al., 2024) and Qwen3-thinking (Yang et al., 2025) show little to no cliff at such positions; their refusal scores may even increase as they conclude their reasoning.
- As shown in *the first column on the left*, Figure 5, The phenomenon is amplified in deeper layers, where the magnitude of the cliff increases substantially. Within deeper layers, the subsequent degradation in refusal efficacy becomes markedly more severe.
- As shown in *the second column on the left*, Figure 5, the cliff is preceded by a plateau, indicating that the model *recognizes* the harmful nature of the prompt despite its *eventual non-compliance*. During this plateau, the model’s refusal intention is comparable to that of well-aligned variants.
- The model’s thinking is vital for the refusal cliff. As we clip the thinking and directly prefilling the thinking end token *i.e.*, the thinking clipping operation (Jiang et al., 2025), to stop the thinking of the model in *the third and fourth column on the left*, Figure 5, we observe a lower level of refusal cliff and an increase of refusal response rate at the output.

4 WHO IS THE DEVIL IN REFUSAL CLIFF? A MECHANISTIC EXPLANATION FROM ATTENTION HEADS

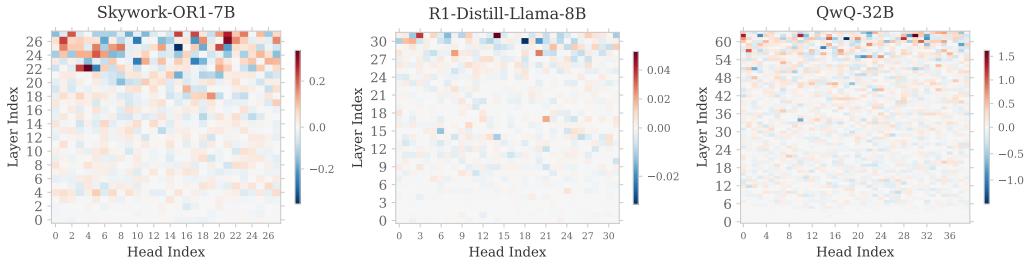
We probe the refusal intention in reasoning models, discover refusal cliff, and discuss its properties. Since we know the refusal cliff exists, understanding how it happens is of great benefit to the safety and future improvements of reasoning models. In this section, we try to find out why.

270
271

4.1 ATTENTION HEADS IN REFUSAL CLIFF

272
273
274
275
276
277
278
279
280

Why Attention Heads? Intuitively, analyzing the phenomenon at the granularity of attention heads is natural: from a mechanistic interpretability perspective, attention heads are the main carriers of information routing in Transformer architectures, and different heads often specialize in diverse functions (Yin & Steinhardt, 2025; Olsson et al., 2022; Wu et al., 2024). It is also proven that attention heads play a key role in safety (Zhou et al., 2025b). In our case, the final tokens before the output closure template tokens *e.g.*, `\n</think>\n\n`, are strongly stereotyped between generations. However, for both the same template, refusal cliff happens in harmful examples but not benign ones. Therefore, a sudden disruption of this pattern during a refusal cliff suggests that certain heads have attended to specific prior content that triggers a mode change in the model.

281
282
283
284
285
286
287
288
289

290

Figure 6: We trace the contributions of attention heads with probing. **Red** means the head contribute *positively* to final refusal and **Blue** indicates that this head contributes *negatively*.

292
293
294
295
296
297
298
299
300
301
302

Tracing Attention Heads with Probing. To accurately assess the causal impact of each attention head on refusal behavior, we employ a direct probing method to trace each head’s contribution. Our approach is to individually evaluate the influence of each head’s output at t_{cliff} , where the refusal cliff occurs. Specifically, for an attention head h in any layer i , we first isolate its output vector $\mathbf{o}_{i,h,t_{\text{cliff}}}$. Following the standard Transformer architecture, this vector is projected into the residual stream via the attention block’s output weight matrix, $\mathbf{W}_{O,i}$. To analyze the contribution of head h alone, we construct a hypothetical residual update vector, $\Delta\mathbf{h}_{i,h,t_{\text{cliff}}}$, where only the output of head h is active, while the outputs of all other heads in the same layer are zeroed out. Subsequently, we feed this vector containing the contribution of only a single head, $\Delta\mathbf{h}_{i,h,t_{\text{cliff}}}$, as input to our pre-trained refusal prober to evaluate the head’s independent refusal score. Its contribution score, $s_{i,h}$, is calculated as follows:

$$s_{i,h} = \mathbf{W}^T \Delta\mathbf{h}_{i,h,t_{\text{cliff}}} + b \quad (4)$$

304
305
306
307
308
309

where \mathbf{W} and b are the parameters of the prober (Eq. 2). We remove the sigmoid function so that we can directly trace the contribution of each attention head via logits (Heimersheim & Nanda, 2024; Zhang & Nanda, 2023). This score, $s_{i,h}$, directly quantifies the strength with which a single attention head, acting in isolation, pushes the model towards refusal or compliance. A score close to 1 indicates that the head promotes refusal, whereas a score close to 0 implies that it suppresses refusal.

310
311
312
313
314
315
316
317
318

Tracing Results. We aggregate the changes in refusal score for each head and visualize the results in Figure 6. In the heatmap, red indicates a positive contribution to refusal behavior (*i.e.*, the head writes into the residual stream in a way that increases the refusal score for harmful prompts), while blue denotes a negative contribution (*i.e.*, the head decreases the refusal score, making refusals less likely). Notably, the contribution pattern is highly sparse: a small fraction of heads exhibit a strong negative correlation with refusal behavior, which we term the **Refusal Suppression Heads**².

4.2 REFUSAL SUPPRESSION HEAD ABLATION

319
320
321
322
323

Ablation Methodology. We perform head ablation to (*i*) *cross-validate* the importance of the heads identified through tracing in the previous subsection and (*ii*) explore as a potential solution to tackle the unsatisfying safety alignment in reasoning models. Following previous work (Liu et al.,

²This definition is intended as a soft formulation, and in a later section we introduce a small threshold to facilitate the ablation analysis.

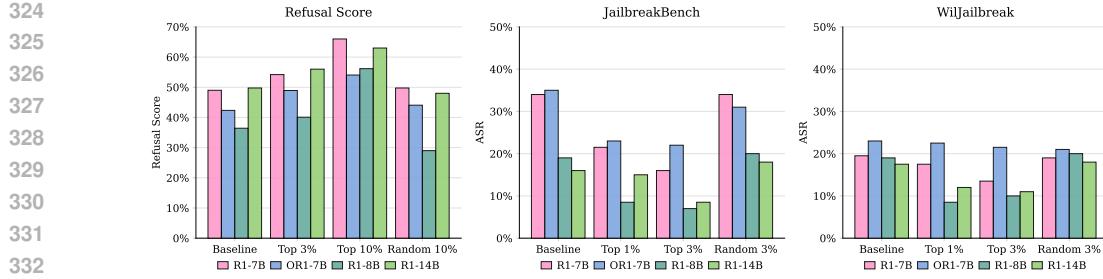


Figure 8: Results of ablating Refusal Suppression Heads. *Left*: The refusal score of prober output *i.e.*, the higher the better. *Center*: The Attack Successful Rate (ASR) of JailbreakBench *i.e.*, the lower the better. *Right*: The ASR of WildJailbreak.

2025b), we ablate attention heads one by one and evaluate the resulting changes in both the refusal score and the overall safety performance. We employ a scaling-down ablation, in which we introduce a scaling factor γ to the output of the selected attention head to get the output O :

$$O = \left(\frac{QK^\top}{\sqrt{d}} \odot M \right) \cdot \gamma \cdot V, \text{ where } Q, K, V, O \in \mathbb{R}^{l \times d}, M \in \mathbb{R}^{l \times l}. \quad (5)$$

Here, Q , K , V denote the query, key, and value matrices for this attention head, and M is the causal mask used in decoder-only Transformers. When $\gamma = 0$, the output of that head is completely ablated, while $\gamma > 1$ amplifies the behavior of the original model. We also perform a renormalization method to keep the output norm stable and prevent generation collapse, following Zhang et al. (2024).

Experiments. We evaluated our method on JailbreakBench (vanilla attack) and WildJailbreak (adversarial attack). We test the model performance with ablation on two level: (i) *Representation-level*: The refusal score of the prober after the ablation at the last token position on JailbreakBench. (ii) *Output-level*: The final Attack Successful Rate after the generation. We defined three thresholds, 1%, 3% and 10%³, as criteria for identifying Refusal Suppression Heads, and set their contributions to zero using the scaling method described in Equation 5. Figure 6 presents the ablation results for these Refusal Suppression Heads. Our findings reveal that ablating as few as 10% of the identified attention heads can more than double the refusal score, while ablating only 3% of them is sufficient to reduce the probability of producing harmful outputs to below 10%.

Limitations of Ablation. We have proposed a seemingly practical solution for tackling the refusal cliff in reasoning models. However, we acknowledge that some readers may remain unconvinced by our conclusions—and rightly so. Intervention-based approaches are not perfect and suffer from several drawbacks: (i) The *superposition* of language model activations (Gao et al., 2024) *i.e.*, a single activation vector can be expressed as a linear combination of multiple sub-directions corresponding to different task domains, makes it difficult to intervene safely without compromising performance in other domains. (ii) Language models are capable of *self-repair* (Rushing & Nanda, 2024), which further limits the effectiveness of ablation alone in achieving optimal results. (iii) Intervening in a model’s internal components requires redesigned infrastructure and cannot be readily applied to existing tools. We will present a more practical approach in the next section.

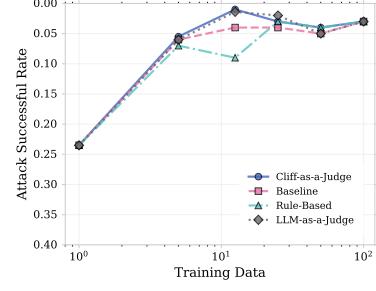


Figure 7: The pareto front between Examples and ASR.

³We use 1% and 3% for generation (and 3% and 10% for refusal score) because ablating a large number of heads may lead to generation collapse.

378

379 Table 2: Benchmark results on safety-related tasks and reasoning-related tasks.

Method	Examples	JailbreakBench				WildJailbreak		MMLU-Pro		ARC-C	
		Metric: ASR(\downarrow)				Metric: Acc(\uparrow)					
		R1-8B	R1-7B	R1-8B	R1-7B	R1-8B	R1-7B	R1-8B	R1-7B	R1-8B	R1-7B
Baseline	-	32.0%	31.2%	19.0%	38.0%	42.7%	45.4%	40.7%	41.8%		
Full Training Dataset	40k	2.5%	1.0%	2.0%	1.0%	40.7%	42.9%	41.3%	39.9%		
Rule-Based	21k	— ^{46.1%}	1.0%	2.5%	5.2%	2.4%	40.8%	43.4%	40.9%	40.8%	
LLM-as-a-Judge	5.6k	— ^{86.0%}	4.0%	1.5%	6.5%	1.8%	40.8%	43.7%	40.5%	40.4%	
Cliff-as-a-judge	700	— ^{98.3%}	5.0%	3.0%	6.0%	6.0%	41.7%	44.7%	41.4%	41.2%	

388 5 CLIFF-AS-A-JUDGE: EFFICIENT ALIGNMENT VIA DATA SELECTION

390 5.1 METHODOLOGY

392 **Motivations.** From our previous experiments, it is evident that a misaligned reasoning model is
 393 not inherently incapable of safe behavior. On the contrary, such a model can often correctly identify
 394 the harmful nature of a prompt and internally reflect an intention to refuse during its reasoning
 395 process. Under this hypothesis, it follows that aligning an unsafe reasoning model may require only
 396 a small set of high-quality alignment examples, thereby achieving a *less-is-more* effect (Zhou et al.,
 397 2023).

398 **Cliff-as-a-judge.** We propose a cliff-
 399 based data selection method. Formally,
 400 given a dataset D and a budget k , data
 401 selection is to get an optimal subset
 402 $S \subset D$, $|S| = k$ to optimize its
 403 alignment performance. Specifically,
 404 suppose that, for a given sample, the
 405 model’s maximum refusal intention *i.e.*, the plateau, expressed within its internal thinking corre-
 406 sponds to a probed refusal score I , and its final generated refusal score is I' after any cliff drop or
 407 suppression. We define the misalignment score $MS = I - I'$ as a measure of how much the re-
 408 fusal intention expressed in internal reasoning is suppressed in the final output. Intuitively, the most
 409 effective subset of alignment data consists of samples with the highest misalignment scores, where
 410 training on this data can most efficiently repair safety alignment. Therefore, the optimal selection
 411 via Cliff-as-a-judge is:

$$\theta^* = \arg \min_{\theta} \mathcal{L}_{\text{align}} \left(\arg \max_{S \subset D, |S|=k} \frac{1}{k} \sum_{x \in S} MS(x); \theta \right) \quad (6)$$

415 where $\mathcal{L}_{\text{align}}$ denotes an alignment-oriented objective (*e.g.*, Attack Successful Rate). We compare our
 416 method with other baselines in Table 1, where Cliff-as-a-judge provides a continuous metric, allows
 417 flexible selection of the number of examples, employs a lightweight judge model, and achieves
 418 strong performance.

419 5.2 EXPERIMENTS

421 **Baselines.** We adopt the training set from WildJailbreak (Jiang et al., 2024) as our safety alignment
 422 corpus with 40k examples. This dataset contains both standard (vanilla) jailbreak attacks and more
 423 challenging adversarial jailbreak cases. For baseline data selection methods, we consider: (i) full-
 424 example training (*i.e.*, the unfiltered baseline), (ii) rule-based selection (Liu et al., 2025b; Lab et al.,
 425 2025), where unsafe cases are identified using keyword matching, (iii) LLM-as-a-judge (Gu et al.,
 426 2024; Lambert et al., 2024; Zhang et al., 2025), where using LlamaGuard (Grattafiori et al., 2024).
 427 We also select MMLU-Pro (Wang et al., 2024) and ARC-Challenge (Clark et al., 2018) to benchmark
 428 the reasoning ability after alignment.

429 **Experimental Results.** We perform safety fine-tuning on our selected datasets. Table 2 demon-
 430 strates the effectiveness of our Cliff-as-a-judge data selection method across three safety bench-
 431 marks. While the baseline models exhibit concerning vulnerabilities with ASR of 19.0-38.0%,

432 training on the full dataset reduces ASR to 1.0-2.5%. Remarkably, our method achieves comparable safety performance using only 700 examples (98.3% data reduction). This substantially out-
 433 performs other filtering approaches: Rule-based selection requires 21,566 examples (-46.1%) and LLM-as-a-judge needs 5,616 examples (-86.0%) to achieve similar results. As shown in Figure 7’s
 434 Pareto frontier analysis, our approach optimally balances data efficiency with safety performance,
 435 translating to reduction in training time while maintaining effective safety alignment across different
 436 model architectures. Also, our benchmarking on MMLU-Pro and ARC-C demonstrates that Cliff-
 437 as-a-judge is most effective in preserving the model’s original reasoning capabilities, while requiring
 438 fewer yet higher-quality examples.
 439

441 6 RELATED WORKS

442 **Safety of Large Reasoning Model.** The development of reasoning models extends safety beyond
 443 direct harmfulness classification to deliberate, step-by-step judgment (Wang et al., 2025) with ro-
 444 bustness to jailbreak attempts (Zaremba et al., 2025; Kim et al., 2025). However, studies also show
 445 that this generalization is fragile and can be exploited (Kuo et al., 2025; Yan et al., 2025; Zheng
 446 et al., 2025; Jiang et al., 2025). In response, recent work proposes frameworks—both by evaluating
 447 and mitigating risks within reasoning traces themselves (Li et al., 2025b; Zheng et al., 2025) and by
 448 improving safer outputs (Zhu et al., 2025; Jiang et al., 2025). From a different angle, we investigate
 449 the mechanistic roots of LRM’s safety vulnerabilities and offer insights for future solutions.
 450

451 **Mechanistic Interpretability for LLM Safety.** Mechanistic Interpretability (MI) seeks to
 452 reverse-engineer specific model behaviors and functions so their internal mechanisms become
 453 human-understandable. Research in this area spans multiple granularities: individual neu-
 454 rons (Gurnee et al., 2023; Stolfo et al., 2024), representations (Marks & Tegmark, 2024; Gurnee
 455 & Tegmark, 2024), and larger functional units like MLP (Geva et al., 2021; 2022) and attention
 456 heads (McDougall et al., 2023; Gould et al., 2024). Building on these foundations, MI has been in-
 457 creasingly applied to LLM safety (Bereska & Gavves, 2024). One thread focuses on representation-
 458 level analyses of safety behavior and on techniques for editing safety-related representations (Leong
 459 et al., 2023; Zou et al., 2023a; Ardit et al., 2024; Cao et al., 2025; Lee et al., 2025a; Li et al., 2025c;
 460 Shen et al., 2025; Xu et al., 2024; Lee et al., 2025b). Another examines components directly impli-
 461 cated in safety, including neurons (Zhao et al., 2025), attention heads (Zhu et al., 2024; Zhou et al.,
 462 2025b), and MLPs (Lee et al., 2024; Luo et al., 2024). Complementary work studies safety-relevant
 463 parameters themselves (Wei et al., 2024; Yi et al., 2025; Gu et al., 2025). A parallel line of progress
 464 decomposes representations into interpretable, sparse features, enabling automated explanations of
 465 safety mechanisms (Minder et al., 2025). These methods suggest promising avenues for achieving
 466 more robust safety alignment at the representation level (Liu et al., 2024; Zou et al., 2024; Rosati
 467 et al., 2024; Yin et al., 2025).
 468

469 7 LIMITATIONS

470 While our study sheds light on the mechanistic roots and offers mitigation strategies, several limi-
 471 tations remain. First, our mechanistic analysis focuses primarily on attention heads, leaving other
 472 architectural components such as MLP blocks, positional encodings, and cross-layer interactions
 473 underexplored. Second, our data-recipe method depends on having access to the model’s internal
 474 representations and refusal scores, which is feasible for open models but may be impractical for
 475 proprietary systems. Investigation of proxy metrics or black-box analogues remains future work.
 476

477 8 CONCLUSIONS

478 In this work, we identified and mechanistically characterized a novel safety failure in large reasoning
 479 models – the **refusal cliff**. Through causal tracing, we discovered a small set of Refusal Suppression
 480 Heads whose negative contributions are responsible for this phenomenon. Targeted ablation of these
 481 heads significantly improves refusal rates, confirming their causal role. Building on these findings,
 482 we proposed a targeted safety fine-tuning data recipe that selects training examples most susceptible
 483 to the refusal cliff. Our experiments show that these methods can improve safety alignment with
 484 minimal performance trade-offs while reducing the training cost.
 485

486 ETHICS STATEMENT
487

488 Our research aims to enhance the safety and reliability of Large Reasoning Models (LRMs) by iden-
489 tifying and mitigating a critical failure mode, the “Refusal Cliff.” We believe this work contributes
490 positively to the responsible development of AI. However, we acknowledge several ethical consider-
491 ations inherent in this line of research. Our work involves the analysis of model vulnerabilities to
492 harmful and malicious prompts, which carries a potential dual-use risk. To mitigate this, we have
493 focused on revealing the underlying *mechanisms* of failure rather than developing novel, easily repli-
494 cable jailbreak techniques. Our proposed solution, “Cliff-as-a-Judge,” is a defensive data selection
495 strategy designed to strengthen model safety. The datasets used, such as AdvBench and WildJail-
496 break, are established benchmarks and were used strictly for evaluating and improving model refusal
497 capabilities without generating new harmful content. We believe our findings can help improve the
498 alignment of models to reduce harmful or biased outputs and encourage the community to build
499 upon our mechanistic insights to develop more robust and ethically aligned AI systems. All research
500 was conducted in adherence to the ICLR Code of Ethics.

501 REPRODUCIBILITY STATEMENT
502

503 We are committed to ensuring the reproducibility of our research. All models used in our experi-
504 ments (e.g., from the Qwen, DeepSeek, Skywork, and Phi families) and datasets (e.g., AdvBench,
505 JailbreakBench, and WildJailbreak) are publicly available and detailed in Section 2. The implemen-
506 tation details for our core methodologies are provided in the appendix. Specifically, Appendix A
507 contains the complete setup for training the refusal prober, including hyperparameters and data pre-
508 processing. The procedures for attention head tracing (Section 4), head ablation (Section 4), and the
509 fine-tuning process for our “Cliff-as-a-Judge” method (Section 5) are described with sufficient detail
510 for replication. To further facilitate reproducibility, we will release our source code, which includes
511 scripts for data processing, prober training, causal analysis, and model fine-tuning, upon publication
512 of this paper.

514 REFERENCES
515

516 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
517 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
518 cal report. *arXiv preprint arXiv:2412.08905*, 2024.

519 Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
520 Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
521 technical report. *arXiv preprint arXiv:2504.21318*, 2025.

522 Arlene Allan. *Hermes*. Routledge, 2018.

524 Iv’yan Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and
525 Arthur Conmy. Chain-of-thought reasoning in the wild is not always faithful. 2025.

527 Andy Ardit, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
528 Nanda. Refusal in language models is mediated by a single direction. *Advances in Neural Infor-*
529 *mation Processing Systems*, 37:136037–136083, 2024.

530 Fazl Barez, Tung-Yu Wu, Iván Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas Col-
531 lignon, Clement Neo, Isabelle Lee, Alasdair Paren, Adel Bibi, Robert Trager, Damiano For-
532 nasiere, John Yan, Yanai Elazar, and Yoshua Bengio. Chain-of-thought is not explainability,
533 2025.

534 Leonard Bereska and Stratis Gavves. Mechanistic interpretability for AI safety - a review. *Transac-*
535 *tions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=ePUVetPKu6>. Survey Certification, Expert Certification.

538 Zouying Cao, Yifei Yang, and Hai Zhao. Scans: Mitigating the exaggerated safety for llms via
539 safety-conscious activation steering. In *Proceedings of the AAAI Conference on Artificial Intelli-*
gence

540 Yik Siu Chan, Zheng-Xin Yong, and Stephen H Bach. Can we predict alignment before models finish
 541 thinking? towards monitoring misaligned reasoning models. *arXiv preprint arXiv:2507.12428*,
 542 2025.

543

544 Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
 545 Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al.
 546 Jailbreakbench: An open robustness benchmark for jailbreaking large language models. *Advances
 547 in Neural Information Processing Systems*, 37:55005–55029, 2024.

548 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 549 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 550 *arXiv preprint arXiv:1803.05457*, 2018.

551

552 Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and
 553 Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversa-
 554 tions. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023.
 555 URL <https://openreview.net/forum?id=oEsYs3WRc3>.

556 Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
 557 features are one-dimensionally linear. In *The Thirteenth International Conference on Learning
 558 Representations*, 2025. URL <https://openreview.net/forum?id=d63a4AM4hb>.

559

560 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
 561 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint
 562 arXiv:2406.04093*, 2024.

563 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
 564 are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
 565 Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
 566 guage Processing*, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
 567 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
 568 <https://aclanthology.org/2021.emnlp-main.446>.

569

570 Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
 571 build predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa
 572 Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods
 573 in Natural Language Processing*, pp. 30–45, Abu Dhabi, United Arab Emirates, December
 574 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3. URL
 575 <https://aclanthology.org/2022.emnlp-main.3>.

576

577 Liv Gorton and Owen Lewis. Adversarial examples are not bugs, they are superposition, 2025. URL
<https://arxiv.org/abs/2508.17456>.

578

579 Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, inter-
 580 pretable attention heads in the wild. In *The Twelfth International Conference on Learning Repre-
 581 sentations*, 2024. URL <https://openreview.net/forum?id=kvcbV8KQsi>.

582

583 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 584 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 585 of models. *arXiv preprint arXiv:2407.21783*, 2024.

586

587 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
 588 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint
 589 arXiv:2411.15594*, 2024.

590

591 Peijian Gu, Quan Wang, and Zhendong Mao. Improve safety training of large language models with
 592 safety-critical singular vectors localization. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 593 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 594 for Computational Linguistics (Volume 1: Long Papers)*, pp. 4941–4954, Vienna, Austria, July
 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 2025.acl-long.245. URL <https://aclanthology.org/2025.acl-long.245>.

594 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 595 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 596 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

597 Wes Gurnee and Max Tegmark. Language models represent space and time. In *The Twelfth Interna-*
 598 *tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=jE8xbmvFin>.

600 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsias.
 601 Finding neurons in a haystack: Case studies with sparse probing. *Transactions on Machine*
 602 *Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=JYs1R9IMJr>.

603 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
 604 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint*
 605 *arXiv:2505.22312*, 2025.

606 Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. *arXiv preprint*
 607 *arXiv:2404.15255*, 2024.

608 Roe Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. *ArXiv*,
 609 [abs/2310.15916](https://arxiv.org/abs/2310.15916), 2023.

610 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

611 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 612 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *ArXiv*,
 613 [abs/2212.04089](https://arxiv.org/abs/2212.04089), 2022.

614 Fengqing Jiang, Zhangchen Xu, Yuetai Li, Luyao Niu, Zhen Xiang, Bo Li, Bill Yuchen Lin, and
 615 Radha Poovendran. Safechain: Safety of language models with long chain-of-thought reasoning
 616 capabilities. *arXiv preprint arXiv:2502.12025*, 2025.

617 Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar, Niloofar
 618 Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, and Nouha Dziri. Wildteaming at scale:
 619 From in-the-wild jailbreaks to (adversarially) safer language models, 2024. URL <https://arxiv.org/abs/2406.18510>.

620 Taeyoun Kim, Fahim Tajwar, Aditi Raghunathan, and Aviral Kumar. Reasoning as an adaptive
 621 defense for safety. *arXiv preprint arXiv:2507.00971*, 2025.

622 Martin Kuo, Jianyi Zhang, Aolin Ding, Qinsi Wang, Louis DiValentin, Yujia Bao, Wei Wei, Hai Li,
 623 and Yiran Chen. H-cot: Hijacking the chain-of-thought safety reasoning mechanism to jailbreak
 624 large reasoning models, including openai o1/o3, deepseek-r1, and gemini 2.0 flash thinking. *arXiv*
 625 *preprint arXiv:2502.12893*, 2025.

626 Shanghai AI Lab, Yicheng Bao, Guanxu Chen, Mingkang Chen, Yunhao Chen, Chiyu Chen, Lingjie
 627 Chen, Sirui Chen, Xinquan Chen, Jie Cheng, et al. Safework-r1: Coevolving safety and intelli-
 628 gence under the ai-45 law. *arXiv preprint arXiv:2507.18576*, 2025.

629 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 630 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 631 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

632 Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K. Kummerfeld, and Rada
 633 Mihalcea. A mechanistic understanding of alignment algorithms: A case study on DPO and
 634 toxicity. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=dBqHGZPGZI>.

635 Bruce W. Lee, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Erik Miehling, Pierre Dognin, Man-
 636 ish Nagireddy, and Amit Dhurandhar. Programming refusal with conditional activation steer-
 637 ing. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL
 638 <https://openreview.net/forum?id=Oi47wc10sm>.

648 Sunbowen Lee, Shiwen Ni, Chi Wei, Shuaimin Li, Liyang Fan, Ahmadreza Argha, Hamid Alinejad-
 649 Rokny, Ruifeng Xu, Yicheng Gong, and Min Yang. *xjailbreak: Representation space guided re-*
 650 *inforcement learning for interpretable llm jailbreaking.* *arXiv preprint arXiv:2501.16727*, 2025b.
 651

652 Chak Tou Leong, Yi Cheng, Jiashuo Wang, Jian Wang, and Wenjie Li. Self-detoxifying lan-
 653 guage models via toxicification reversal. In Houda Bouamor, Juan Pino, and Kalika Bali
 654 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-*
 655 *cessing*, pp. 4433–4449, Singapore, December 2023. Association for Computational Linguis-
 656 *tics. doi: 10.18653/v1/2023.emnlp-main.269. URL <https://aclanthology.org/2023.emnlp-main.269/>.*
 657

658 Ang Li, Yichuan Mo, Mingjie Li, Yifei Wang, and Yisen Wang. Are smarter llms safer? explor-
 659 ing safety-reasoning trade-offs in prompting and fine-tuning. *arXiv preprint arXiv:2502.09673*,
 660 2025a.

661 Changyi Li, Jiayi Wang, Xudong Pan, Geng Hong, and Min Yang. Reasoningshield: Content safety
 662 detection over reasoning traces of large reasoning models. *arXiv preprint arXiv:2505.17244*,
 663 2025b.

664 Tianlong Li, Zhenghua Wang, Wenhao Liu, Muling Wu, Shihan Dou, Changze Lv, Xiaohua Wang,
 665 Xiaoqing Zheng, and Xuanjing Huang. Revisiting jailbreaking for large language models: A
 666 representation engineering perspective. In Owen Rambow, Leo Wanner, Marianna Apidianaki,
 667 Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st In-*
 668 *ternational Conference on Computational Linguistics*, pp. 3158–3178, Abu Dhabi, UAE, January
 669 2025c. Association for Computational Linguistics. URL <https://aclanthology.org/2025.coling-main.212/>.

670 Jingjing Liu, Yonghui Wu, Hao Zhou, Qiying Yu, Chengyi Wang, Zhiqi Lin, Chi Zhang, Jiangjie
 671 Chen, Ya-Qin Zhang, Zheng Zhang, Xin Liu, Yuxuan Tong, Mingxuan Wang, Xiangpeng Wei,
 672 Lin Yan, Yuxuan Song, Wei-Ying Ma, Yu Yue, Mu Qiao, Haibin Lin, Mofan Zhang, Jinhua Zhu,
 673 Guangming Sheng, Wang Zhang, Weinan Dai, Hang Zhu, Gaohong Liu, Yufeng Yuan, Jiaze
 674 Chen, Bole Ma, Ruofei Zhu, Tiantian Fan, Xiaochen Zuo, Lingjun Liu, and Hongli Yu. Dapo: An
 675 open-source llm reinforcement learning system at scale, 2025a. URL <https://arxiv.org/abs/2503.14476>.

676 Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li, Changze Lv, Zixuan Ling, Zhu JianHao,
 677 Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Aligning large language models with
 678 human preferences through representation engineering. In Lun-Wei Ku, Andre Martins, and
 679 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-*
 680 *putational Linguistics (Volume 1: Long Papers)*, pp. 10619–10638, Bangkok, Thailand, August
 681 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.572. URL
 682 <https://aclanthology.org/2024.acl-long.572/>.

683 Yang Liu, Haiyang Yu, Fei Huang, Yongbin Li, Rongwu Xu, Kun Wang, Zhenhong Zhou, Xinghua
 684 Zhang, and Junfeng Fang. On the role of attention heads in large language model safety, 2025b.
 685 URL <https://arxiv.org/abs/2410.13708>.

686 Yifan Luo, Zhennan Zhou, Meitan Wang, and Bin Dong. Jailbreak instruction-tuned llms via end-
 687 of-sentence mlp re-weighting. *arXiv preprint arXiv:2410.10150*, 2024.

688 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 689 model representations of true/false datasets. In *First Conference on Language Modeling*, 2024.
 690 URL <https://openreview.net/forum?id=aaajyHYjjsk>.

691 Callum McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda. Copy sup-
 692 pression: Comprehensively understanding an attention head. *arXiv preprint arXiv:2310.04625*,
 693 2023.

694 Julian Minder, Clément Dumas, Bilal Chughtai, and Neel Nanda. Robustly identifying concepts
 695 introduced during chat fine-tuning using crosscoders. In *Sparsity in LLMs (SLLM): Deep Dive
 696 into Mixture of Experts, Quantization, Hardware, and Inference*, 2025.

702 Neel Nanda, Max Tegmark, Senthooran Rajamanoharan, Joshua Engels, and Subhash Kantamneni.
 703 Are sparse autoencoders useful? a case study in sparse probing, 2025. URL <https://arxiv.org/abs/2502.16681>.
 704

705 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 706 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
 707 heads. *arXiv preprint arXiv:2209.11895*, 2022.

708

709 Domenic Rosati, Jan Wehner, Kai Williams, Lukasz Bartoszcze, Robie Gonzales, carsten maple,
 710 Subhabrata Majumdar, Hassan Sajjad, and Frank Rudzicz. Representation noising: A defence
 711 mechanism against harmful finetuning. In *The Thirty-eighth Annual Conference on Neural
 712 Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=eP9auEJqFg>.
 713

714 Cody Rushing and Neel Nanda. Explorations of self-repair in language models. *arXiv preprint
 715 arXiv:2402.15390*, 2024.
 716

717 Mahdi Sabbaghi, Paul Kassianik, George Pappas, Yaron Singer, Amin Karbasi, and Hamed Hassani.
 718 Adversarial reasoning at jailbreaking time. *arXiv preprint arXiv:2502.01633*, 2025.

719 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 720 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 721 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 722

723 Guobin Shen, Dongcheng Zhao, Yiting Dong, Xiang He, and Yi Zeng. Jailbreak antidote: Run-
 724 time safety-utility balance via sparse representation adjustment in large language models. In
 725 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=s20W12XTF8>.
 726

727 Alessandro Stolfo, Ben Peng Wu, Wes Gurnee, Yonatan Belinkov, Xingyi Song, Mrinmaya Sachan,
 728 and Neel Nanda. Confidence regulation neurons in language models. In *The Thirty-eighth Annual
 729 Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=0og7nmvDbe>.
 730

731 Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi. Im-
 732 proving instruction-following in language models through activation steering. In *The Thirteenth
 733 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wozhdnRCtw>.
 734

735

736 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 737 <https://qwenlm.github.io/blog/qwq-32b/>.
 738

739 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini,
 740 and Monte MacDiarmid. Steering language models with activation engineering. *arXiv preprint
 741 arXiv:2308.10248*, 2023.

742

743 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 744 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 745 tion processing systems*, 30, 2017.

746

747 Cheng Wang, Yue Liu, Baolong Bi, Duzhen Zhang, Zhong-Zhi Li, Yingwei Ma, Yufei He, Shengju
 748 Yu, Xinfeng Li, Junfeng Fang, et al. Safety in large reasoning models: A survey. *arXiv preprint
 749 arXiv:2504.17704*, 2025.

750

751 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 752 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 753 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 754 37:95266–95290, 2024.

755

756 Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
 757 Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
 758 pruning and low-rank modifications. In *Forty-first International Conference on Machine Learn-
 759 ing*, 2024. URL <https://openreview.net/forum?id=K6xxnKN2gm>.
 760

756 Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanisti-
 757 cally explains long-context factuality. *arXiv preprint arXiv:2404.15574*, 2024.
 758

759 Zhihao Xu, Ruixuan Huang, Changyu Chen, and Xiting Wang. Uncovering safety risks of large
 760 language models through concept activation vector. *Advances in Neural Information Processing
 761 Systems*, 37:116743–116782, 2024.

762 Hanqi Yan, Hainiu Xu, and Yulan He. Thinking hard, going misaligned: Emergent misalignment in
 763 llms. *arXiv preprint arXiv:2509.00544*, 2025.
 764

765 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 766 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 767 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 768 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
 769 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 770 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint
 771 arXiv:2412.15115*, 2024.

772 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 773 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 774 arXiv:2505.09388*, 2025.

775 Xin Yi, Shunfan Zheng, Linlin Wang, Gerard de Melo, Xiaoling Wang, and Liang He. Nlsr: Neuron-
 776 level safety realignment of large language models against harmful fine-tuning. In *Proceedings of
 777 the AAAI Conference on Artificial Intelligence*, volume 39, pp. 25706–25714, 2025.
 778

779 Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? In *Forty-
 780 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=C7XmEByCFv>.
 781

782 Qingyu Yin, Chak Tou Leong, Hongbo Zhang, Minjun Zhu, Hanqi Yan, Qiang Zhang, Yulan
 783 He, Wenjie Li, Jun Wang, Yue Zhang, and Linyi Yang. Constrain alignment with sparse
 784 autoencoders. In *Forty-second International Conference on Machine Learning*, 2025. URL
 785 <https://openreview.net/forum?id=BCKSxOFX85>.
 786

787 Bowen Yu, Xiong-Hui Chen, Junyang Lin, Jingren Zhou, Chujie Zheng, An Yang, Rui Men, Chang
 788 Gao, Mingze Li, Kai Dang, Yuqiong Liu, and Shixuan Liu. Group sequence policy optimization,
 789 2025. URL <https://arxiv.org/abs/2507.18071>.

790 Wojciech Zaremba, Evgenia Nitishinskaya, Boaz Barak, Stephanie Lin, Sam Toyer, Yaodong Yu,
 791 Rachel Dias, Eric Wallace, Kai Xiao, Johannes Heidecke, et al. Trading inference-time compute
 792 for adversarial robustness. *arXiv preprint arXiv:2501.18841*, 2025.
 793

794 Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
 795 Metrics and methods. *arXiv preprint arXiv:2309.16042*, 2023.

796 Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
 797 Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing
 798 for large language models. *arXiv preprint arXiv:2401.01286*, 2024.
 799

800 Yichi Zhang, Zihao Zeng, Dongbai Li, Yao Huang, Zhijie Deng, and Yinpeng Dong. Realsafe-
 801 r1: Safety-aligned deepseek-r1 without compromising reasoning capability. *arXiv preprint
 802 arXiv:2504.10081*, 2025.

803 Yiran Zhao, Wenxuan Zhang, Yuxi Xie, Anirudh Goyal, Kenji Kawaguchi, and Michael Shieh.
 804 Understanding and enhancing safety mechanisms of LLMs via safety-specific neuron. In
 805 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=yR47RmND1m>.
 806

808 Baihui Zheng, Boren Zheng, Kerui Cao, Yingshui Tan, Zhendong Liu, Weixun Wang, Jiaheng Liu,
 809 Jian Yang, Wenbo Su, Xiaoyong Zhu, et al. Beyond safe answers: A benchmark for evaluating
 true risk awareness in large reasoning models. *arXiv preprint arXiv:2505.19690*, 2025.

810 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 811 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information
 812 Processing Systems*, 36:55006–55021, 2023.

814 Kaiwen Zhou, Chengzhi Liu, Xuandong Zhao, Shreedhar Jangam, Jayanth Srinivasa, Gaowen Liu,
 815 Dawn Song, and Xin Eric Wang. The hidden risks of large reasoning models: A safety assessment
 816 of r1. *arXiv preprint arXiv:2502.12659*, 2025a.

817 Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, Kun Wang, Yang Liu,
 818 Junfeng Fang, and Yongbin Li. On the role of attention heads in large language model safety.
 819 In *The Thirteenth International Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=h0Ak8A5yqw>.

820 Junda Zhu, Lingyong Yan, Shuaiqiang Wang, Dawei Yin, and Lei Sha. Reasoning-to-defend:
 821 Safety-aware reasoning can defend large language models from jailbreaking. *arXiv preprint
 822 arXiv:2502.12970*, 2025.

823 Minjun Zhu, Linyi Yang, Yifan Wei, Ningyu Zhang, and Yue Zhang. Locking down the finetuned
 824 llms safety. *arXiv preprint arXiv:2410.10343*, 2024.

825 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
 826 Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
 827 top-down approach to ai transparency. *arXiv preprint arXiv:2310.01405*, 2023a.

828 Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
 829 attacks on aligned language models, 2023b.

830 Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, J Zico
 831 Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with circuit
 832 breakers. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 833 2024. URL <https://openreview.net/forum?id=IbIB8SBKFV>.

840 USE OF LLMs

841 In the preparation of this manuscript, we utilized LLMs as a writing assistant. The use of LLMs was
 842 confined to tasks such as improving grammar, refining phrasing for clarity, and polishing the overall
 843 language of the paper. All core scientific contributions, including the conceptualization of ideas, the
 844 design and execution of experiments, the analysis of results, and the conclusions, are entirely the
 845 work of the human authors. The authors bear full responsibility for the content and claims presented
 846 in this work.

847 A PROBER

848 In this section, we provide a detailed description of the architecture, data collection, and training
 849 procedure for the refusal prober used in our experiments. This prober is a linear classifier designed
 850 to predict whether a model will refuse a harmful request based on its internal hidden states.

851 **Prober Architecture.** The prober is implemented as a simple linear classifier. Given a hidden
 852 state vector $h \in \mathbb{R}^d$ from the reasoning model, where d is the hidden dimension size, the prober
 853 computes a single logit. This is followed by a sigmoid function to produce a refusal probability, as
 854 defined in Equation 2. The model is implemented in PyTorch using a single ‘torch.nn.Linear’ layer.
 855 We use the Binary Cross-Entropy with Logits loss function (‘nn.BCEWithLogitsLoss’) for training,
 856 which is numerically stable and suitable for binary classification tasks.

857 **Dataset Collection and Preprocessing.** To train the prober, we constructed a balanced dataset of
 858 hidden states corresponding to both refusal and non-refusal responses.

- **Refusal Examples (Positive Class):** We collected examples where the model refused to comply with a harmful prompt. These were sourced from the AdvBench dataset (Zou et al., 2023b). An output was labeled as a refusal if it contained keywords like “I’m sorry,” “I cannot,” or similar phrases within the first 32 tokens of the response.
- **Non-Refusal Examples (Negative Class):** For the non-refusal class, we used harmless prompts and their corresponding compliant answers from the UltraChat-SFT dataset (Ding et al., 2023).

For each example in both classes, we fed the full input sequence (user prompt + model’s chain of thought + thinking-end template) into the target reasoning model. We then extracted the hidden state vector from the `**final token position**` at the `**last transformer layer**`. These hidden state vectors form the training data for our prober.

Training Details. The prober was trained on the collected hidden states. Before training, we balanced the dataset by randomly downsampling the larger class to match the number of samples in the smaller class, ensuring an equal number of refusal and non-refusal examples. The full dataset was then split into training (80%) and validation (20%) sets.

The training hyperparameters are as follows:

- **Optimizer:** Adam
- **Learning Rate:** 1×10^{-3}
- **Batch Size:** 256
- **Epochs:** 5

We selected the model checkpoint that achieved the highest accuracy on the validation set. As reported in Section 3, the final prober achieved over 95% validation accuracy on in-distribution data and demonstrated strong generalization to an out-of-distribution (OOD) dataset, JailbreakBench. This high accuracy confirms that the prober reliably captures the model’s refusal intention from its final hidden state.

B SUPERVISED FINE-TUNING DETAILS

We performed full-parameter supervised fine-tuning (SFT) to repair the safety alignment of the reasoning models using the data subsets selected by our Cliff-as-a-Judge method. The entire training process was conducted using the LLaMA-Factory library. The base model for the fine-tuning experiments reported in Section 5 was `deepseek-ai/DeepSeek-R1-Distill-Qwen-7B`. We utilized DeepSpeed ZeRO Stage 2 for efficient distributed training. The key hyperparameters and configuration settings are detailed below:

- **Finetuning Type:** Full-parameter SFT
- **Learning Rate:** 5×10^{-6}
- **LR Scheduler:** Linear
- **Epochs:** 1.0
- **Batch Size:** 1 per device with 4 gradient accumulation steps, resulting in an effective batch size of 4.
- **Optimizer:** AdamW (`adamw_torch`)
- **Precision:** BF16
- **Max Sequence Length:** 16,384
- **Attention Implementation:** Flash Attention
- **Prompt Template:** `deepseekr1`
- **Distributed Training:** DeepSpeed ZeRO Stage 2