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ABSTRACT

Recent works propose complex multi-modal models that handle both time series
and language, ultimately claiming high performance on complex tasks like time
series reasoning and cross-modal question-answering. However, they skip evalua-
tions of simple and important foundational tasks, which complex models should
reliably master. They also lack direct, head-to-head comparisons with other popular
approaches. So we ask a simple question: Can recent models even produce generic
visual descriptions of time series data? In response, we propose three new tasks,
posing that successful multi-modal models should be able to recognize, differenti-
ate, and generate language descriptions of time series. We then create BEDTime,
the first benchmark dataset to assess models on each task, comprising four datasets
reformatted for these tasks across multiple modalities. Using BEDT ime, we evalu-
ate 13 state-of-the-art models, and find that (1) surprisingly, dedicated time series
foundation models severely underperform, despite being designed for similar tasks,
(2) vision—language models are quite capable, (3) language-only methods perform
worst, despite many lauding their potential, and (4) all approaches are clearly
fragile to a range of realistic robustness tests, indicating avenues for future work.”

1 INTRODUCTION

Time series measure how environments change as numerical data is collected over time. Decision-
making in crucial domains, like medicine (Lu et al., 2023; Romanowski et al., 2023; Yapa et al.,
2022; Trinh et al., 2022; Rackoll et al., 2021) and finance (Hu et al., 2020; Slepaczuk & Zenkova,
2018; Ji et al., 2019; Sezer & Ozbayoglu, 2018; Schulmeister, 2019), hinge on accurate time series
analysis. However, the history of machine learning models for time series, regardless of task, has
mostly been uni-modal (Wang et al., 2024a; Tan et al., 2024; Jiang et al., 2025; Wang et al., 2024b).
So many recent works have instead proposed multi-modal models that can “reason” about time series
using language and/or solve new multi-modal tasks (Merrill et al., 2024; Chow et al., 2024; Jin et al.,
2023; Yu et al., 2023; Wang et al., 2025; Xie et al., 2025; Tan et al., 2025; Xue & Salim, 2023).
This approach opens doors to performing more-complex tasks, but makes evaluations extremely
challenging and important.

Prior works on language-based time series models have two key limitations in how models are
evaluated. First, most models are proposed alongside specialized evaluation datasets and evaluated
in near-isolation, leaving a lack of head-to-head comparisons between models. Such comparisons
are crucial to track progress. Second, dedicated benchmarking efforts (Merrill et al., 2024; Cai et al.,
2024; Fons et al., 2024; Tan et al., 2025) often focus on complex reasoning tasks, but these can
obscure the core abilities of the models. Evaluation of simpler, more fundamental, tasks are needed
to better isolate and assess a model’s true capabilities in time series understanding and reasoning.

We propose that describing key visual features in univariate time series data is a capability that is
fundamental to more-complex time series reasoning tasks (Chow et al., 2024)—analogous to how
addition is foundational for mathematical reasoning. Describing time series with language is also
an important task on its own for both general-purpose (Trabelsi et al., 2025; Tto et al., 2025; Chow
et al., 2024) and task-specific settings (Han et al., 2024; Martinez-Cruz et al., 2021; Serrano Chica,
2020; Martinez-Cruz et al., 2023). For example, Law et al. (2005) shows that neonatal ICU staff
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made better treatment decisions when shown descriptions of physiological time series, which has
recently been corroborated in finance (Yarushkina et al., 2025). However, we lack evaluations of
whether state-of-the-art multi-modal time series models can describe time series.

To address these limitations, we introduce BEDTime, the first rigorous benchmark enabling di-
rect, task-specific comparisons of language models (LLMs,VLMs, and TSLMs) for recognizing,
distinguishing, and generating generic natural language descriptions of univariate time series. We
propose that a successful multi-modal time series reasoning model should be able to perform at
least three tasks: (1) recognize accurate descriptions when shown a corresponding time series, (2)
differentiate correct descriptions from incorrect descriptions, and (3) generate language descriptions
that capture key visual properties of an input time series. We create BEDT ime by unifying four recent
datasets, formatting them to support each of our proposed tasks and including evaluation metrics,
resulting in 10,164 time series with corresponding descriptions.

Using BEDTime, we conduct extensive head-to-head comparisons of LLMs, VLMs, and recent
pre-trained time series language models. On each task, we find that VLMs are surprisingly successful,
despite being underutilized for multi-modal time series analysis. However, they still have significant
room for improvement. We also find that prompting LLMs is largely unsuccessful on this foundational
task, despite its popularity. These findings are also corroborated in a human evaluation. We also
find that custom-trained TSLMs, frequently outperform LLMs of comparable size, indicating a clear
avenue for future research. Finally, we observe that all models are susceptible to simple, realistic
robustness tests, suggesting that surface-level accuracy may not truly reflect their ability to understand
time series data.

In summary, our work contributes to the literature as follows:

1. We introduce BEDT ime, a unified benchmark containing 10,164 unique time series with
corresponding descriptions formatted for 3 tasks including image, numeric, and text repre-
sentations.

2. Our evaluations using BEDTime suggest future works should prioritize visual represen-
tations of time series, recent methods are generally fragile to realistic perturbations, and
there remains significant value in developing novel multi-modal time series—language
architectures.

3. We introduce comprehensive evaluation methods, combining both human expert assessments
and automated metrics, to rigorously measure model performance. Additionally, upon publi-
cation we publicly release all relevant code and data to facilitate transparent, reproducible,
and further development of multi-modal time series reasoning models.

2 RELATED WORKS

Benchmarks for Multi-Modal Time Series Reasoning. Recent benchmarks for time series reasoning
fall into three categories: synthetic datasets, empirical human-annotated datasets, and domain-specific
Question-Answering datasets. Synthetic datasets such as TRUCE-Synthetic (Jhamtani & Berg-
Kirkpatrick, 2021), TaxoSynth (Fons et al., 2024), and SUSHI (Kawaguchi et al., 2024) allow
controlled evaluation over trends, periodicities and stochastic fluctuations but often lack the nuances
of real world time series. TRUCE-Stock (Jhamtani & Berg-Kirkpatrick, 2021) is one of the few
empirical datasets with real-world stock-data time series and crowd-authored descriptions. QA-style
evaluations like TimeSeriesExam (Cai et al., 2024) assess reasoning via templates, while ECG-QA
(Oh et al., 2023), DeepSQA (Xing et al., 2021), and PIXIU (Xie et al., 2023) target domain-specific
question answering with time series as auxiliary input but often rely on machine-generated language
that is not generalizable across domains or even across different datasets of the same domain.
Moreover, existing benchmarks lack multimodal coverage, evaluation frameworks for open-ended
description generation, and robustness testing under real-world perturbations; BEDT ime includes all
three, and releases all code and data upon acceptance to facilitate reproduction and evaluation of new
datasets and models.

Methods for Multi-Modal Time Series Reasoning. Recent work on time series reasoning spans
three paradigms: LLMs, VLMs, and recently TSLMs. (1) LLMs: LLMTIME (Gruver et al., 2023)
treats forecasting as next-token prediction; PromptCast (Xue & Salim, 2023) frames it as a question-
answering set-up. Several surveys (Zhang et al., 2024; Jiang et al., 2024) outline prompting and fine-
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Figure 1: Overview of the benchmark for automatic time series description (BEDT ime), featuring
head-to-head comparisons across three modalities. The benchmark includes two parts: a diverse
collection of public datasets containing time series paired with textual descriptions of their visual
properties (first row); and evaluation strategies across three tasks: description recognition, description
differentiation, and open-ended generation given a time series (second row). The benchmark is
compared head-to-head across three modalities (third row).
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tuning strategies, but highlight LLMs’ limited numeric reasoning and cross-domain generalization.
(2) VLMs: Models like CLIP (Radford et al., 2021), BLIP-2 (Li et al., 2023), and Time-VLM
(Zhong et al., 2025) process plotted time series via vision-language alignment. These models capture
trends visually but lose signal fidelity. (3) TSLMs: ChatTime (Wang et al., 2025) introduces a
foundation model that discretizes raw time series and encodes them into instruction-style prompts,
enabling LLMs to perform forecasting, classification, and question-answering with strong zero-shot
generalization across modalities. ChatTS (Xie et al., 2025) leverages a synthetic data generator to align
time series and text at scale, training a time-series-aware LLM that supports fine-grained reasoning
and description generation over multivariate inputs; Trabelsi et al. (2025) uses cross-modal retrieval;
CLaSP (Ito et al., 2025) learns joint embeddings; Chow et al. (2024) integrate CoT with lightweight
encoders. These methods all target alignment, captioning, or reasoning, but lack fundamental
comparative evaluation. BEDT ime bridges these gaps with unified, multimodal evaluation of LLMs,
VLMs, and TSLMs across description recognition, differentiation, and generation—revealing how
models reason over text, images, and raw time series inputs respectively.

3 BEDTiME: A BENCHMARK FOR DESCRIBING TIME SERIES

As illustrated in Figure 1, we propose BEDTime, a benchmark to evaluate the degree to which
models can recognize, differentiate, and generate descriptions of patterns in univariate time series
data using language. BEDT ime includes over 10,000 pairs of time series and descriptions, unified
from four recent datasets and formatted for evaluation on three tasks that we propose. Each task is
fundamental to more complex and desirable reasoning capabilities. By focusing on general, simple,
and interpretable domain-agnostic language descriptions of time series’ visual properties like trend,
periodicity, and abrupt changes, BEDTime can be applied across models.

Notation. Consider a dataset D = {(x;,d;)}~; containing N pairs of time series = and corre-
sponding descriptions d. Each time series x; € R7 is a real-valued sequence of T values, which are
described by the corresponding natural language description d;. For example, Figure 1 shows a time
series and its description. A multi-modal foundation model f(-) may take in a time series z; and a
prompt p; and produce an output f(z;, p;) corresponding to the task description in p;. Section 3.1
details how p; and f(x;,p;) vary based on the task being evaluated.
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Dataset N Series Length Description Word Length Description Source Time Series Source
TRUCE-Stock 5687 12 2-9 Human Google Finance API
TRUCE-Synthetic 1677 12 1-8 Synthetic Synthetic
TaxoSynth 1400 24-150 5-40 Synthetic Synthetic
SUSHI 1400 2048 5-60 Synthetic Synthetic

Table 1: Overview of the four datasets in BEDT ime, including the number of unique time series—text
pairs, sequence lengths, and description characteristics.

3.1 PROPOSED TASKS

We propose three tasks that capable time series reasoning models should be able to perform. Tasks 1
and 2 are formulated as Question—Answering tasks, where models are given time series and asked to
recognize or differentiate correct and incorrect descriptions. Task 3 is free-response, which is hard to
evaluate, so we leverage an automated metric and conduct human evaluations.

Description Recognition (Task 1). Given a time series and an accompanying description, a model
must determine whether the description is valid. We format this as a True/False task and design
the prompt p; to encourage f(x;,d;) € {“True”, “False”}. Because our datasets do not contain
“incorrect” (False) time series and description pairs naturally, we construct them by sampling from
within our data. We use four such methods to ensure the robustness of our benchmark to the choice
of sampling method. One method assesses the similarity of captions, while the other three methods
assess the similarity of time series. In all cases, we select the most dissimilar option as the incorrect
description. Appendix B provides further details about our method for selecting incorrect options.

Description Differentiation (Task 2). Given a time series x;, the model must select the correct
description d; from a set of four options {d;, d;, dy, d;}. This is posed as a multiple-choice task,
with prompt p; formatted to present the options and elicit a letter-valued prediction f(x;,p;) €
{A, B, C,D}, in which each letter corresponds to a description option. A prediction is correct if it
corresponds to the index of the true description d;. As in Task 1, incorrect options are generated by
sampling the three most dissimilar descriptions from the dataset.

Open Generation (Task 3). Given a time series z;, the model must generate a natural language
description d; = f(x;, p;) based on a prompt p; (e.g., “describe the given time series”). We evaluate
generation quality using both automatic and manual strategies. For automatic evaluation, we use a
natural language inference (NLI) model to compute unidirectionally and bidirectionally entailment
between generated and ground truth descriptions. The human evaluation criteria are adapted from
prior literature on generating linguistic descriptions of time series (GLiDTS) work Martinez-Cruz
et al. (2023). Full evaluation details are provided in Section 4.2.2.

3.2 DATASET DESCRIPTION AND PRE-PROCESSING

BEDTime composes four existing time series description datasets, each reformatted for the tasks
above: TRUCE-Stock (short, noisy real-world stock data with crowd-sourced descriptions) and
TRUCE-Synthetic (short simple synthetic data with both crowd-sourced and template-based descrip-
tions) (Jhamtani & Berg-Kirkpatrick, 2021), TaxoSynth (variable-length taxonomic patterns based
on critical aspects of frequently analyzed time series data with synthetic descriptions) (Fons et al.,
2024), and SUSHI (long, complex signals with prominent trends, seasonality, and white noise and
template-based descriptions) (Kawaguchi et al., 2024). These datasets are not originally designed for
our specific task, so we perform several dataset-specific preprocessing steps to adapt them for use in
our experiments. For TRUCE-Stock and TRUCE-Synthetic, when a time series had multiple valid
annotations, we create a separate entry for each annotation—series pair. In the case of TaxoSynth,
we begin with their ten datasets, each from a different taxonomy, and use the univariate time series.
We use only the qualitative descriptions, which are concise, generalizable pattern summaries. To
be consistent with other datasets and recent benchmarks (Cai et al., 2024; Gruver et al., 2023), we
remove all timestamps, keeping only the value sequences. For both the SUSHI and TaxoSynth
datasets, we retain class and subclass labels, which were used to select incorrect options to ensure that
distractor descriptions for recognition and differentiation tasks always come from different classes
and subclasses than the target. Note: All code and data are included in the supplementary material
and will be made publicly available upon acceptance.



Under review as a conference paper at ICLR 2026

Datasets Datasets
Models Rank Models Rank
TRUCE-Stock TRUCE-Synth SUSHI TaxoSynth TRUCE-Stock TRUCE-Synth SUSHI TaxoSynth
GPT-4o 64 80 74 73 225 GPT-4o 52 73 65 71 250
GPT-40+LT .66 81 84 79 1.00 GPT-40+LT 56 79 67 75 1.00
. Gemini-2.0 60 72 72 69 362 Gemini-2.0 53 63 63 61 312
% Llama-3.1-8B 50 54 49 51 675 % Llama-3.1-8B 26 28 23 26 7.00
Qwen2.5-14B 61 72 51 59 425 Qwen2.5-14B 53 68 45 53 338
Qwen2.5-7B 65 63 51 57 450 Qwen2.5-7B 43 47 24 35 550
Phi-3.5 59 52 54 57 5.62 Phi-3.5 32 37 44 50 550
GPT-40 75 83 96 88 1.00 GPT-4o 67 81 97 81 1.00
2 Gemini-2.0 68 72 86 78 238z Gemini-2.0 65 75 90 71 225
£ Qwen25-VL-7B 61 72 61 73 338 2 Qwen25-VL-7B 62 73 87 76 275
Phi-3.5-vision 69 66 79 68 325 Phi-3.5-vision 61 1 76 70 400
2 ChatTime-7B 10 13 28 25 200 2 ChatTime-7B 07 10 24 15 2.00
E ChaTS-14B 4 .60 78 77 100 % ChaTS-14B 41 .59 .60 65 1.00
(a) Recognition (b) Differentiation

Table 2: Accuracy of LLMs, VLMs, and TSLMs on recognition and differentiation tasks. LT denotes
the LLMTime prompting strategy Gruver et al. (2023). DTW distance is used to pick dissimilar
descriptions. Reported ranks are intra-modal. For additional results, refer to Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We evaluate six LLMs, four VLMs, and two TSLMs on BEDTime. This includes proprietary
as well as public models that range from 4.2B to 14B parameters.

LLMs. We evaluate GPT-40 (OpenAl et al., 2024), Gemini-2.0-Flash (Google, 2025), LLaMA-
3.1-8B-Instruct (Grattafiori et al., 2024), Phi-3.5-Mini-Instruct (Abdin et al., 2024), Qwen2.5-14B-
Instruct-1M, and Qwen2.5-14B-Instruct-1M (Yang et al., 2025). We convert time series to strings of
comma-separated values, following prior works (Gruver et al., 2023; Cai et al., 2024). For GPT-4o,
we also compare with the LLMTime (Gruver et al., 2023) prompting strategy, which we denote as LT.

VLMs. We evaluate GPT-40-Vision (OpenAl et al., 2024), Gemini-2.0-Flash-Vision (Google, 2025),
Qwen2.5-VL-7B-Instruct (Qwen et al., 2025), and Phi-3.5-Vision-Instruct (Abdin et al., 2024). Here,
we represent the time series as matplot1ib-rendered plots.

TSLMs. We evaluate ChatTS (Xie et al., 2025) and ChatTime (Wang et al., 2025), which operate on
time series inputted directly as numerical vectors.

Metrics. We use three metrics and human evaluations. Recognition and Differentiation are classifica-
tion tasks with balanced datasets, so we measure accuracy. Open Generation is harder to evaluate
because the models generate freeform text descriptions. Therefore, we take two approaches: First,
we use automated metrics to compute similarity between generated responses. Second, we conduct a
human evaluation with three annotators for six criteria adapted from prior literature (Martinez-Cruz
et al., 2023). Further details on open generation evaluations are available in Section 4.2.2.

4.2 RESULTS

4.2.1 CAN FOUNDATION MODELS RECOGNIZE AND DIFFERENTIATE TIME SERIES
DESCRIPTIONS?

We first compare all models on Recognition and Differentiation because they are both classification
tasks with balanced datasets evaluated using accuracy. For both tasks, to capture general trends, we
also report each model’s average rank compared to all models of the same modality, on all datasets.
Our main results for both tasks are found in Table 2, which is broken down into Recognition (Table
2a) and Differentiation (Table 2b).

Overall, we observe that VLMs are consistently the best-performing models across each dataset and
task, and GPT-4o is the best VLM. This is expected, as descriptions largely depend on visual proper-
ties, necessitating vision encoders. However, on these datasets, even the best VLM is surprisingly
inaccurate, at these extremely simple tasks. We posit that a successful time series reasoning model
should near 100% accuracy for both description recognition and differentiation, so there is clear room
for further method development on these task. LLMs are second best, with some of the best models
rivaling VLMs in some cases (e.g., GPT-40 on TRUCE-Synth). GPT-40 also benefits from LLMTime
prompting strategy, though only slightly. Notably, Qwen2.5-14B is the best public model, suggesting
a possible starting place for further development of public models. TSLMs appear to be the worst
of the three options so far, though ChatTS outperforms LLMs of comparable parameter size on the
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Natural language inference (NLI) entailment ‘ Human evaluation on 6 designed criteria
Model

Bi-directional Gen — GT GT — Gen ‘ Valid Patterns Position Noise Step-by-Step Concise
GPT-40 Vision 14.41 47.65 15.29 1.00 0.891 0.751 0.815 0.853 0.851
GPT-40 Text 2.94 9.71 6.18 1.00 0.361 0.234 0.624 0.681 0.715
ChatTS 2.65 23.53 2.65 1.00 0.738 0.540 0.657 0.613 0.620

Table 3: Evaluation results for time series descriptions from three models, showing entailment
percentages (left) and averaged human evaluation scores (right). We assess the rate at which the LM
description entails the ground truth (Gen — GT), the ground truth entails the LM description (GT
— Gen), and when both entail each other (bi-directional entailment). For additional analysis and
metrics, see Appendix G.

TRUCE-Synth, SUSHI, and TaxoSynth datasets. Interestingly, ChatTime severely underperforms in
each case, primarily due to refusals to respond rather than incorrect selections (see Appendix F for
further analysis).These trends hold for both Recognition and Differentiation task, as shown in Table
2a and Table 2b respectively, where the models are ranked similarly for both tasks.

Although VLMs dramatically outperform LLMs, their architectures still incorporate their base LLM
components. To better isolate the contribution of their visual encoders, we compare each VLM directly
with its LLM counterpart. Across datasets and tasks, VLMs of all sizes and model families—both
proprietary and public—consistently surpass their LLM baselines, irrespective of prompting strategies,
underscoring the importance of visual representations for description recognition and differentiation,
as shown in Figure 4. In comparison, increasing model scale—e.g., doubling LLM parameters from
7B to 14B—offers only marginal improvements, and switching from strong open-source LLMs to
proprietary ones results in similarly modest gains. Notably, simple number formatting via LLMTIME
can yield larger benefits than either scaling or switching model families, underscoring the importance
of input representation over raw model size. While general-purpose LLMs lag behind on long or
structured sequences, well-trained TSLMs can match—or even surpass—text-only models twice
their size, particularly on datasets like SUSHI and TaxoSynth that reward temporal inductive biases.
Nevertheless, VLMs still outperform TSLMs in the vast majority of settings, confirming that visual
context remains a key strength across time series data input modalities.

Some models fail to produce outputs in the necessary which we as errors, leading accuracy to appear
below random, as discussed further in Appendix F. We count such cases as errors, which can lead
accuracy to appear below random. Full per-dataset results for the four annotation distractor selection
schemes are presented in Appendix D, demonstrating that performance trends remain consistent
across strategies—reinforcing the robustness of our findings.

4.2.2 CAN FOUNDATION MODELS GENERATE TIME SERIES DESCRIPTIONS?

We next evaluate the open-generation capabilities of the top-performing models from each modality
on Tasks 1 and 2: GPT-40 (for LLMs), GPT-40-Vision (for VLMs), and ChatTS-14B (for TSLMs).
We use the SUSHI dataset because it has long and richly-annotated descriptions, complex temporal
structure (including trend, seasonality, and noise), and long sequence length (2048 steps).

Given a time series, each model is prompted to generate a natural language description capped at 150
tokens. Example prompts are included in Appendix C. We evaluate outputs using both automated
and human-centered metrics. Results are summarized in Table 3 and discussed below.

Automatic Evaluation. We wuse a natural language inference (NLI) model
(deberta-base-long-nli) (Sileo, 2024) to compute entailment between generated
and ground truth descriptions. Entailment is assessed bidirectionally (Machine Generated — Ground
Truth and Ground Truth — Machine Generated), and we also report the proportion of strict mutual
entailment. As shown in Table 3 (left), GPT-4o0-Vision achieves the highest entailment rates, followed
by GPT-40-Text and ChatTS. Notably, entailment from generation to ground truth is consistently
higher than the reverse, suggesting that models tend to produce more specific or detailed descriptions
than those in the reference set.

Human Evaluation. We also conduct a human evaluation to assess whether generated descriptions
are generic, accurate, interpretable, and fluent. We selected 340 model-generated descriptions using
stratified random sampling over the entire SUSHI dataset, ensuring that time series from all classes
and subclasses were proportionally represented. Three annotators then scored these model-generated
description (40 overlapping for agreement, 100 unique per annotator), across three modalities, using
six binary criteria: (1) Coherence: Descriptions must contain logically connected and meaningful
statements. (2) Pattern Identification: Relevant features (e.g., trends, spikes, periodicity) are correctly
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recognized. (3) Temporal Localization: The positions of these features within the sequence are
correctly specified. (4) Noise Filtering: Descriptions omit insignificant variations or noise. (5)
Abstraction: Descriptions are high-level, avoiding overly detailed step-by-step repetition of the
input sequence. (6) Linguistic Quality: Generated langyuage is concise, fluent, and semantically
generic. All models successfully produced relevant and coherent outputs, but GPT-40-Vision received
the highest scores for identifying and localizing temporal patterns. GPT-4o-Text produced fluent
language but often misstated underlying trends, while ChatTS generated structurally accurate but
sometimes overly literal or low-abstraction descriptions. Inter-annotator agreement was high, with
Cohen’s Kappa and Krippendorff’s Alpha exceeding 0.8 for all criteria.

4.2.3 HOW ROBUST ARE FOUNDATION MODELS AGAINST REALISTIC PERTURBATIONS?

We next evaluate how robust model performance on BEDTime is to realistic perturbations—an
essential consideration for any system claiming to "describe or “understand” time series. In real-
world deployments, sequences may vary in length, or exhibit missing values, that challenge descriptive
precision. To this end, we conduct five robustness tests designed to probe a models’ generalization
capabilities beyond the clean, fully observed inputs used in our main benchmark.

First, we assess robustness to increased sequence length by linearly interpolating time se-
ries—preserving core properties while increasing resolution. This allows us to evaluate whether
model descriptions remain consistent as inputs become longer. Second, we introduce structured
missingness via uniform random masking, simulating data sparsity that is common in practical
settings. We additionally evaluate the effects of additive Gaussian noise by applying nine levels
of perturbation (measured by standard deviation) and amplitude scaling on model performance at
five levels, where each level corresponds to a scalar multiplier applied to every element of the time
series. Lastly we also test the effect of chain of thought prompting strategy (Wei et al., 2023) on
LLM performance.

Effect of Varying the Length of the Time Series. We observe that recognition and differentiation
accuracy for text-only LLMs declines as sequence length increases (see Figure 2A and 2B) —a trend
consistent with known limitations of Transformer architectures. This degradation stems from three key
factors: (1) the O(L?) cost of self-attention with respect to input length L, which limits usable context
via truncation or approximation (Vaswani et al., 2023); (2) attention diffusion, wherein softmax
weights flatten over longer inputs, reducing focus on salient time steps; and (3) poor generalization
of positional encodings beyond pretraining lengths, which distorts temporal localization (Gruver
et al., 2023; Fons et al., 2024; Merrill et al., 2024). These limitations are most pronounced in
smaller open-source models like LLaMA, which exhibit sharp drops in performance with input length,
whereas larger models such as GPT-40 and Gemini decline more gradually. Prior work further shows
that such degradation is amplified by position bias—especially when target values appear late in the
sequence—and by the inability of standard tokenizations to preserve long-range temporal structure.
In contrast, both Chat TS and ChatTime improve with increasing sequence length, suggesting that
TSLMs benefit from interpolation and are more robust to time series longer inputs.

Interpolating time series increases floating-point precision, which drastically inflates token counts for
LLMs. This raises a natural question: is the observed performance drop primarily due to tokenization
overhead rather than sequence length itself? To test this, we scaled interpolated values by 100 to
convert floats into integers and evaluated whether this improved model accuracy. From Figure 5
we see that scaling does aid model performance across all models except Qwen2.5-14B, whose
performance declines. We attribute this to Qwen2.5-14B’s attention diffusion and weaker reliance on
discrete token structure: its larger key-value head count and higher parameter capacity encourage
more distributed representations, though the model shows limited gains on number-sensitive tasks
(Yang et al., 2025).

Effect of Missing Data. We next measure the effect of missing values on model performance. To
simulate real-world data sparsity, we introduce missingness by uniformly at random masking out a
fraction of each time series—replacing those entries with NaN—at four levels (5 %, 25 %, 50 %,
and 75 %). We then evaluate our same suite of language-only models—including proprietary and
open-source LLMs—on both Recognition and Differentiation tasks under each missingness condition.
The results are shown in Figure 2C. Missing values degrade performance across all models and
datasets. Accuracy remains relatively stable up to 25% data missingness, particularly for LLMs, but
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Figure 2: Robustness of LLMs and TSLMs to sequence length, missingness, added gaussian noise
and amplitude scaling. Recognition and differentiation accuracy decline for LLMs as time series
grow longer or contain more missing values—particularly beyond 50. Also as the signals get noisier
performance decline however models are relatively robust to amplitude scaling. DTW distance is
used to pick dissimilar descriptions.

drops sharply once 50% or more of the time series is masked. This trend holds for both recognition
and differentiation tasks.

Effect of Amplitude Scaling. We evaluate the effect of amplitude scaling on model performance by
multiplying each time series by a scalar at five levels (5, 10, 25, 50, 100). We then evaluate our suite
of models on both Recognition and Differentiation tasks under each scaling condition. The results
are shown in Figure 2D. Both LLMs and TSLMs are broadly robust to amplitude scaling, with only
minor changes in accuracy across levels. Notably, LLMs show slight improvements at the highest
scaling factor, likely due to enhanced visibility of features in scaled signals. This trend holds across
both recognition and differentiation tasks.

Effect of Gaussian Noise. We measure the effect of additive Gaussian noise on model performance
by perturbing each time series with noise at nine levels (0, 0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 25),
defined by the standard deviation of the noise distribution. We then evaluate our suite of mod-
els—including LLMs, VLMs, and TSLMs—on both Recognition and Differentiation tasks under
each noise condition. The results are shown in Figure 2E. Performance consistently degrades as
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Figure 3: Impact of Chain-of-Thought (CoT) prompting on language-only models’ accuracy across
four datasets and two tasks. CoT consistently improves both recognition and differentiation perfor-
mance, with the largest gains observed on the differentiation task—especially for proprietary models.
DTW distance is used to pick dissimilar descriptions.

noise increases. Text-only models’ performance rapidly falls below task-specific random baselines,
whereas multimodal models (VLMs and TSLMs) show greater robustness, with slower degradation
under higher levels of additive Gaussian noise.

Effect of Chain-of-Thought. We evaluate the impact of Chain-of-Thought (CoT) prompting on
model performance by testing all text only models from our model suite on both Recognition and
Differentiation tasks, with and without CoT prompting across all four datasets. The results are
shown in Figure 3. Across every model and dataset, Chain-of-Thought prompting yields a clear
and consistent uplift. Text-only language models benefit most markedly, especially on the harder
Differentiation task, where CoT closes much of the gap to vision-language models. Proprietary
systems show larger relative gains than their open-source counterparts. These findings demonstrate
that CoT is a simple yet effective strategy for improving language-only models in time series
understanding.

5 CONCLUSIONS

We introduce BEDT ime, a unified benchmark for evaluating language models on the task of time
series description—a fundamental capability for temporal reasoning. BEDT ime defines three new
tasks and adapts four recent datasets to evaluate language, vision—language, and time series—language
models. Our experiments show that models across modalities, families, and sizes still have clear
room for improvement on every task, especially under real-world perturbations. At the same time,
VLMs demonstrate notable successes, underscoring the value of visual representations for time series
understanding. Overall, BEDT ime provides a unified and extensible framework for evaluating time
series description across three modalities; upon acceptance, we will release its code and data to ensure
reproducibility and support seamless evaluation of future models and emerging time series—text
datasets.

6 LIMITATIONS

BEDTime has several limitations that open promising directions for future work. It currently supports
only univariate time series, leaving multivariate extensions unexplored. Much of the data is synthetic,
with only TRUCE-Stock reflecting real-world signals and only TRUCE-Stock and TRUCE-Synthetic
providing human-annotated descriptions—both limited in length and richness, motivating broader
curation of diverse and complex datasets. Our evaluations also depend on general-purpose NLI
models which introduce domain mismatch and numerical sensitivity, highlighting the need for time
series—specific NLI metrics or standardized automated evaluation protocols. Moreover, reliance on
instruction-tuned models risks conflating instruction-following with reasoning, underscoring the value
of instruction-robust task designs. Addressing these limitations offers clear pathways for extending
BEDTime into a richer and more versatile framework for future research.
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ETHICS STATEMENT

This work introduces BEDTime, a benchmark for evaluating models on the foundational task of
describing univariate time series. Our study does not involve human subjects, personal data, or
sensitive information. Among the four datasets in BEDTime, TRUCE-Synthetic contains synthetic
time series paired with a mix of non-identifiable, crowd-authored and template-based descriptions,
while TaxoSynth and SUSHI are fully synthetic in both their signals and captions. In contrast,
TRUCE-Stock is composed of real-world financial time series with non-identifiable, crowd-authored
descriptions. Notably, all of our data is drawn from previously released research datasets that are
already publicly available and open-source. Human evaluations were conducted by members of our
research group to assess the quality of model-generated descriptions. These annotators were not study
participants but collaborators, and no identifiable or sensitive data was involved, so IRB approval
was not required. The benchmark is intended solely for research purposes, and we emphasize that
potential downstream use in sensitive domains should be carefully evaluated. Importantly, while our
experiments benchmark large language, vision—language models and time series and language models,
no Al or LLM systems were used in writing this manuscript or in developing the accompanying code.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. All experiments are described in detail
in the main manuscript and Appendix, including dataset pre-processing steps, task formulations,
evaluation metrics, model configurations and implementation details. For submission, we provide
a zip file of our code and processed datasets as supplementary material. Upon acceptance, we will
release the full codebase and preprocessed BEDT ime datasets publicly, accompanied by detailed
user documentation to facilitate seamless use and extension.
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APPENDIX

A DATASET DESCRIPTION
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Table 4: Representative time series and descriptions from each dataset used in BEDTime. These
examples illustrate variations in sequence length, description style, and data generation method.
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To support our benchmark tasks, we unify and reformat four recent datasets containing paired time
series and natural language descriptions. These datasets vary in realism, sequence length, and
linguistic complexity, and are summarized in Table 1. These datasets described in Section 3.2
support the recognition, differentiation, and generation tasks, though each dataset is used selectively
depending on task requirements and annotation structures.

Table 4 illustrates representative samples from each dataset, showcasing the diversity in time series
patterns and caption styles—from concise, crowd-sourced descriptions of financial data to longer,
templated descriptions of synthetically generated sequences. Together, the table and examples
highlight the breadth of data modalities and linguistic forms evaluated by BEDTime.

B SAMPLING INCORRECT OPTIONS

To support both True/False and Multiple Choice formats in the Recognition and Differentiation tasks,
we construct contrastive examples by selecting negative descriptions using four distinct strategies:

» Caption-based similarity (Sentence-BERT): We compute cosine similarity over Sentence-
BERT embeddings and select descriptions that are semantically dissimilar to the reference.

* Dynamic Time Warping (DTW): We measure alignment costs between time series and
choose those with the highest DTW distance from the input.

* Euclidean Distance: We identify point-wise dissimilar series based on maximum L2
distance.

* Longest Common Subsequence (LCSS): We retrieve sequences with minimal overlapping
subsequences, prioritizing structural dissimilarity.

Only the Sentence-BERT strategy operates over natural language annotations; the other three assess
distance directly in time series space. When multiple annotations exist for a given time series, we
randomly sample one for evaluation. Negative samples are selected to be maximally dissimilar,
simplifying the contrastive setup and providing an upper-bound estimate of model performance. This
design ensures that the benchmark evaluates models’ ability to reject clearly incorrect options before
advancing to more fine-grained reasoning.

C PROMPTS

We include the exact prompts used for each BEDT ime task below. These prompts were used across
models for consistent evaluation and follow the formats outlined in Section 3.1.

Task 1: Recognition.

You are tasked with verifying if the provided annotation accurately describes the
given time series.

Please follow these instructions carefully:

1. Review the annotation: {description}.

2. Analyze the time series: {series}.

3. Determine if the annotation precisely matches the pattern depicted in the time
series.

Respond with True if the annotation accurately describes the time series.
Respond with False if it does not. Avoid providing any additional comments or
explanations.

Task 2: Differentiation.

Carefully analyze the given time series and choose the single best option that most
accurately describes its pattern.

Follow these rules strictly:

1. Read all options before deciding.

2. Only output the chosen option, highlighted as A, B, C, or D.
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3. Avoid adding extra text or explanations.
Time series: {series}
Options:

* A: {option_1}

* B: {option_2}

e C: {option_3}

* D: {option_4}

Task 3: Open Generation.

You are tasked with generating a textual description of the visual properties of the

provided time series.
Please follow these instructions carefully:

1. Analyze the given time series data: {series}.

2. Identify and describe the most prominent visual features or patterns observed in

the time series.

Consider characteristics such as trends, seasonality, anomalies, or significant

changes.

Your response should be a concise textual description of the most pronounced

visual properties of the time series.

Avoid including unnecessary details or unrelated commentary.

Note: The format of the time series input varies based on model modality. LLMs receive a comma-
separated string of numeric values. VLMs receive a matplot 1ib-rendered image of the time series
or a base64-encoded image string of the same. TSLMs are provided with the raw sequence as a

NumPy array or Python list of floats.

D RECOGNITION AND DIFFERENTIATION: FULL RESULTS ACROSS ALL

SAMPLING STRATEGIES

To support the findings presented in Sections 4.1 and 4.2, we report full accuracy and F1 score (F1
weighted in the case of differentiation) across all datasets and all four negative sampling strategies
(Sentence-BERT, DTW, Euclidean, and LCSS) for the Recognition (True/False) and Differentiation
(Multiple Choice) tasks. Tables 5, 6, 7, 8, 9, 10, 11, and 12 provide per-dataset, per-sampling

performance scores.

Model S-Bert Embeddings with Cosine Similarity DTW Distance Euclidean Distance Longest Common Subsequence
Accuracy F1 Score Accuracy F1 Score Accuracy FI Score Accuracy F1 Score
Language Models
GPT-40 0.610 0.581 0.640 0556 0.592 0.678 0.592 0.527
GPT-40 (LLMTime) 0.703 0.700 0.661  0.661  0.692 0.679 0.616 0.614
Gemini-2.0-Flash 0.607 0.546 0.600  0.528  0.585 0.557 0.534 0.472
Llama-3.1-8B-Instruct 0.501 0.334 0.501 0334 0.501 0.334 0.501 0.334
Qwen2.5-14B-Instruct-1M 0.642 0.615 0.608  0.587  0.606 0.585 0.522 0.512
Qwen2.5-7B-Instruct-1M 0.674 0.656 0.650  0.635  0.643 0.630 0.519 0.516
Phi-3.5-mini-instruct 0.526 0.389 0.587 0.519 0.520 0.386 0.519 0.385
Vision-Language Models
GPT-40 (with image inputs) 0.842 0.840 0750  0.719  0.760 0.727 0.840 0.820
Gemini-2.0-Flash (with image inputs) 0.793 0.786 0.682  0.648  0.683 0.648 0.675 0.648
Qwen2.5-VL-7B-Instruct 0.713 0.695 0.609  0.539  0.609 0.539 0.573 0.512
Phi-3.5-vision-instruct 0.824 0.822 0.686  0.685  0.679 0.679 0.612 0.611
Language Models for Time Series
ChatTime-7B-Chat 0.050 0.049 0.102  0.099  0.099 0.094 0.093 0.091
ChatTS-14B 0.414 0.393 0423 0404  0.405 0.398 0.453 0.438

Table 5: Performance of Various Language and Vision-Language Models on TRUCE-Stock Dataset

in the Recognition Setting using 4 Different Negative Sampling Techniques

Table 5 reports model performance on the TRUCE-Stock dataset in the Recognition setting, using
all four contrastive sampling strategies. As the only real-world dataset in the benchmark, TRUCE-
Stock presents the greatest challenge, with lower overall performance across models. GPT-4o0 with
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LLMTime performs best among language-only models, and GPT-40 with image input leads across
all modalities, though with a smaller margin than in synthetic datasets. Most open-source LLMs
underperform across distractor types, with particularly poor results from smaller models such as Phi
and LLaMA. Time-series-specific models show limited effectiveness here as well, with ChatTS-14B
underperforming relative to its base LLM counterpart, suggesting that its strengths may not translate
as well to short, real-world financial sequences.

Model S-Bert Embeddings with Cosine Similarity DTW Distance Euclidean Distance Longest Common Subsequence
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Language Models
GPT-40 0.790 0.760 0.800  0.792  0.691 0.654 0.780 0.776
GPT-40 (LLMTime) 0.806 0.804 0.806  0.802  0.696 0.695 0.802 0.802
Gemini-2.0-Flash 0.724 0.699 0.718  0.711 0.675 0.669 0.707 0.703
Llama-3.1-8B-Instruct 0.535 0.409 0.538 0.412 0.537 0.411 0.522 0.400
Qwen2.5-14B-Instruct-1M 0.819 0.817 0.724 0724 0.710 0.710 0.715 0.715
Qwen2.5-7B-Instruct-1M 0.758 0.756 0.631 0.631 0.623 0.622 0.659 0.659
Phi-3.5-mini-instruct 0.588 0.519 0.521 0.386  0.581 0.514 0.538 0.482

Vision-Language Models

GPT-4o (with image inputs) 0.893 0.890 0.830  0.838  0.880 0.800 0.920 0.868
Gemini-2.0-Flash (with image inputs) 0.741 0.735 0.724 0.716 0.752 0.751 0.723 0.712
Qwen2.5-VL-7B-Instruct 0.607 0.537 0716  0.699  0.717 0.699 0.660 0.648
Phi-3.5-vision-instruct 0.722 0.720 0.658  0.634  0.660 0.637 0.673 0.653

Language Models for Time Series

ChatTime-7B-Chat 0.174 0.172 0.132 0.130 0.132 0.130 0.162 0.160
ChatTS-14B 0.509 0.491 0.597 0.591 0.518 0.512 0.460 0.457

Table 6: Performance of Various Language and Vision-Language Models on TRUCE-Synthetic
Dataset in the Recognition Setting using 4 Different Negative Sampling Techniques

Table 6 presents Recognition performance on the TRUCE-Synthetic dataset. As a structured synthetic
benchmark with short sequences and well-defined up/down patterns, this dataset yields higher overall
model performance than TRUCE-Stock. GPT-40 with LLMTime again leads among LL.Ms, while
GPT-40 with image input achieves the highest scores across all distractor types, including near-perfect
F1. ChatTS-14B performs notably better here than on TRUCE-Stock, highlighting its alignment with
synthetic pattern recognition.

Model S-Bert Embeddings with Cosine Similarity DTW Distance Euclidean Distance Longest Common Subsequence
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Language Models
GPT-40 0.874 0.838 0.740 0.700 0.764 0.701 0.862 0.860
GPT-40 (LLMTime) 0.894 0.876 0.838  0.773  0.813 0.722 0.885 0.882
Gemini-2.0-Flash 0.775 0.765 0717  0.647  0.694 0.615 0.809 0.779
Llama-3.1-8B-Instruct 0.509 0.362 0492 0354  0.493 0.354 0.504 0.356
Qwen2.5-14B-Instruct-1M 0.510 0.357 0.507 0357  0.506 0.354 0.510 0.358
Qwen2.5-7B-Instruct-1M 0.507 0.352 0.506 0.351 0.508 0.354 0.506 0.352
Phi-3.5-mini-instruct 0.556 0.484 0.539 0472 0.567 0.492 0.582 0.503

Vision-Language Models

GPT-4o0 (with image inputs) 0.980 0.979 0.960  0.927  0.942 0.940 0.980 0.980
Gemini-2.0-Flash (with image inputs) 0.877 0.863 0.856 0.819 0.752 0.727 0.794 0.772
Qwen2.5-VL-7B-Instruct 0.613 0.545 0.612 0544  0.611 0.543 0.613 0.545
Phi-3.5-vision-instruct 0.662 0.658 0.794  0.794  0.807 0.807 0.790 0.790

Language Models for Time Series

ChatTime-7B-Chat 0.321 0.319 0.279 0.276 0.261 0.257 0.301 0.300
ChatTS-14B 0.794 0.793 0.781 0.781 0.697 0.693 0.746 0.742

Table 7: Performance of Language and Vision-Language Models on SUSHI Dataset in the Recognition
Setting using 4 Different Negative Sampling Techniques

Table 7 reports Recognition results on the SUSHI dataset, which features long, synthetic time series
with well-structured seasonal and trend components. Performance is uniformly higher here than on
other datasets, with GPT-40 (with image input) achieving near-ceiling F1 scores across all distractor
types. ChatTS-14B performs particularly well in this setting, even surpassing many open-source
LLMs, while smaller models such as LLaMA and Phi continue to underperform—highlighting the
importance of both modality and model capacity when reasoning over long sequences.
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Model S-Bert Embeddings with Cosine Similarity DTW Distance Longest Common Subsequence
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Language Models
GPT-40 0.787 0.754 0.730 0.687 0.703 0.684
GPT-40 (LLMTime) 0.861 0.845 0.789 0.755 0.887 0.881
Gemini-2.0-Flash 0.720 0.694 0.688 0.633 0.662 0.614
Llama-3.1-8B-Instruct 0.514 0.367 0.506 0.364 0.508 0.362
Qwen2.5-14B-Instruct-1M 0.620 0.536 0.586 0.506 0.582 0.486
Qwen2.5-7B-Instruct-1M 0.612 0.529 0.573 0.492 0.570 0.470
Phi-3.5-mini-instruct 0.600 0.528 0.570 0.501 0.527 0.499

Vision-Language Models

GPT-40 (with image inputs) 0.924 0.922 0.875 0.873 0.930 0.912
Gemini-2.0-Flash (with image inputs) 0.822 0.812 0.780 0.750 0.735 0.731
Qwen2.5-VL-7B-Instruct 0.718 0.714 0.733 0.727 0.738 0.733
Phi-3.5-vision-instruct 0.680 0.673 0.682 0.679 0.637 0.615

Language Models for Time Series

ChatTime-7B-Chat 0.247 0.242 0.248 0.247 0.266 0.261
ChatTS-14B 0.803 0.779 0.774 0.771 0.833 0.832

Table 8: Performance of Various Language and Vision-Language Models on TaxoSynth Dataset in
the Recognition Setting using 3 Different Negative Sampling Techniques

Table 8 presents Recognition results on the TaxoSynth dataset, which features synthetically generated
sequences of varying lengths designed to reflect a taxonomy of distinct time series behaviors. Per-
formance patterns largely mirror those seen in SUSHI, with GPT-40 (with image input) achieving
the strongest scores across all distractor types. ChatTS-14B continues to perform competitively,
while GPT-40 with LLMTime remains the strongest language-only model, reaffirming the value of
instruction tuning and visual input on complex, structured sequence data.

Model S-Bert Embeddings with Cosine Similarity DTW Distance Euclidean Distance Longest Common Subsequence
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Language Models
GPT-40 0.531 0.531 0.524 0523 0514 0.514 0.566 0.565
GPT-40 (LLMTime) 0.584 0.574 0.562  0.557  0.543 0.543 0.620 0.590
Gemini-2.0-Flash 0.505 0.501 0529 0528 0518 0.517 0.499 0.497
Llama-3.1-8B-Instruct 0.310 0.261 0259  0.195  0.242 0.183 0.249 0.182
Qwen2.5-14B-Instruct-1M 0.471 0.470 0.534  0.533  0.521 0.520 0.431 0.429
Qwen2.5-7B-Instruct-1M 0.474 0.465 0.429 0.414 0.438 0.422 0.290 0.265
Phi-3.5-mini-instruct 0.468 0.467 0320 0322 0318 0.319 0.319 0.322

Vision-Language Models

GPT-40 (with image inputs) 0.631 0.630 0.669  0.669  0.657 0.657 0.541 0.541
Gemini-2.0-Flash (with image inputs) 0.608 0.592 0.650 0.607 0.604 0.600 0.501 0.500
Qwen2.5-VL-7B-Instruct 0.526 0.525 0.623  0.624  0.621 0.621 0.481 0.481
Phi-3.5-vision-instruct 0.589 0.588 0.612 0613  0.603 0.604 0.577 0.559

Language Models for Time Series

ChatTime-7B-Chat 0.040 0.038 0.074  0.071 0.072 0.069 0.048 0.045
ChatTS-14B 0.492 0.492 0412 0409  0.393 0.389 0.501 0.499

Table 9: Performance of Various Language and Vision-Language Models on TRUCE-Stock Dataset
in the Differentiation Setting using 4 Different Negative Sampling Techniques

Table 9 shows Differentiation task performance on the TRUCE-Stock dataset. As in the Recognition
setting, this real-world dataset proves difficult across all model classes, with notably lower F1 scores.
GPT-40 with LLMTime again leads among LLMs, and GPT-40 with image input remains strongest
overall, though margins are narrower than in Recognition. ChatTS-14B continues to outperform most
open-source LLMs, including its base LLM, reinforcing its strength in fine-grained comparison tasks
under realistic conditions, even on the more difficult Differentiation setting.
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Model S-Bert Embeddings with Cosine Similarity DTW Distance Euclidean Distance Longest Common Subsequence

Accuracy F1 Score Accuracy FI Score Accuracy FI Score Accuracy F1 Score

Language Models

GPT-40 0.751 0.752 0.725 0.724 0.696 0.696 0.692 0.692
GPT-40 (LLMTime) 0.832 0.809 0.794 0.794 0.804 0.809 0.787 0.786
Gemini-2.0-Flash 0.745 0.741 0.629 0.625 0.592 0.591 0.690 0.665
Llama-3.1-8B-Instruct 0.342 0.284 0.275 0.217 0.267 0.210 0.257 0.200
Qwen2.5-14B-Instruct-1M 0.720 0.721 0.681 0.683 0.656 0.656 0.616 0.617
Qwen2.5-7B-Instruct-1M 0.612 0.607 0.470 0.463 0.445 0.433 0.417 0.402
Phi-3.5-mini-instruct 0.618 0.619 0.373 0.379 0.369 0.369 0.346 0.347

Vision-Language Models

GPT-40 (with image inputs) 0.801 0.801 0.808  0.807  0.769 0.769 0.729 0.728
Gemini-2.0-Flash (with image inputs) 0.789 0.786 0.745 0.739 0.727 0.725 0.704 0.700
Qwen2.5-VL-7B-Instruct 0.754 0.754 0732 0732 0.719 0.718 0.665 0.666
Phi-3.5-vision-instruct 0.802 0.802 0.708 0.709 0.694 0.693 0.657 0.658

Language Models for Time Series

ChatTime-7B-Chat 0.130 0.127 0.104  0.101 0.109 0.107 0.134 0.134
ChatTs-14B 0.654 0.652 0.593 0.588 0.601 0.598 0.711 0.708

Table 10: Performance of Various Language and Vision-Language Models on TRUCE-Synthetic
Dataset in the Differentiation Setting using 4 Different Negative Sampling Techniques

Table 10 presents Differentiation performance on the TRUCE-Synthetic dataset. Overall scores are
slightly lower than in the Recognition setting, reflecting the added complexity of multi-choice reason-
ing. GPT-40 with LLMTime and GPT-40 with image input lead across all sampling strategies, while
ChatTS-14B again stands out among TSLMs, outperforming many open-source LLMs, including
its base LLM. This pattern underscores the benefit of both vision-based inputs and domain-specific
training for tasks requiring contrastive reasoning.

Model S-Bert Embeddings with Cosine Similarity DTW Distance Euclidean Distance Longest Common Subsequence
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Language Models
GPT-40 0.802 0.803 0.646  0.648  0.583 0.584 0.916 0.916
GPT-40 (LLMTime) 0.850 0.823 0.673  0.670  0.615 0.614 0.975 0.959
Gemini-2.0-Flash 0.728 0.711 0.625 0549  0.527 0.488 0.880 0.827
Llama-3.1-8B-Instruct 0.385 0.382 0.226 0.214 0.239 0.221 0.380 0.376
Qwen2.5-14B-Instruct-1M 0.740 0.738 0446  0.431 0.365 0.351 0.792 0.792
Qwen2.5-7B-Instruct-1M 0.636 0.633 0239 0216  0.178 0.150 0.557 0.540
Phi-3.5-mini-instruct 0.643 0.648 0444 0443  0.344 0.344 0.716 0.721

Vision-Language Models

GPT-40 (with image inputs) 0.981 0.981 0.965 0965  0.951 0.951 0.988 0.988
Gemini-2.0-Flash (with image inputs) 0.976 0.969 0.896 0.894 0.898 0.893 0.972 0.940
Qwen2.5-VL-7B-Instruct 0.974 0.974 0.871 0.871 0.851 0.851 0.968 0.968
Phi-3.5-vision-instruct 0.808 0.807 0.756  0.755  0.716 0.713 0.864 0.865

Language Models for Time Series

ChatTime-7B-Chat 0.287 0.285 0.235 0.231 0.261 0.260 0.281 0.283
ChatTS-14B 0.783 0.781 0.602  0.595 0.574 0.570 0.809 0.808

Table 11: Performance of Various Language and Vision-Language Models on SUSHI Dataset in the
Differentiation Setting using 4 Different Negative Sampling Techniques

Table 11 summarizes Differentiation results on the SUSHI dataset. GPT-40 with image input achieves
near-perfect F1 scores across all distractor types, followed closely by other VLMs, confirming the
advantage of visual modality in structured settings. GPT-40 with LLMTime continues to lead among
text-only models, while ChatTS-14B again proves competitive, performing on par with or better than
many open-source LLMs, including its base LLM.
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Model S-Bert Embeddings with Cosine Similarity DTW Distance Longest Common Subsequence
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Language Models
GPT-40 0.716 0.716 0.709 0.710 0.655 0.655
GPT-40 (LLMTime) 0.794 0.781 0.752 0.747 0.696 0.687
Gemini-2.0-Flash 0.642 0.639 0.607 0.602 0.654 0.633
Llama-3.1-8B-Instruct 0.394 0.283 0.259 0.254 0.287 0.282
Qwen2.5-14B-Instruct-1M 0.668 0.667 0.527 0.520 0.658 0.658
Qwen2.5-7B-Instruct-1M 0.589 0.584 0.349 0.344 0.455 0.447
Phi-3.5-mini-instruct 0.596 0.593 0.495 0.497 0.524 0.528

Vision-Language Models

GPT-40 (with image inputs) 0.805 0.805 0.812 0.812 0.797 0.797
Gemini-2.0-Flash (with image inputs) 0.707 0.706 0.731 0.725 0.745 0.732
Qwen2.5-VL-7B-Instruct 0.767 0.763 0.759 0.753 0.748 0.748
Phi-3.5-vision-instruct 0.719 0.700 0.689 0.686 0.708 0.712

Language Models for Time Series

ChatTime-7B-Chat 0.175 0.172 0.150 0.147 0.176 0.176
ChatTS-14B 0.756 0.754 0.650 0.647 0.786 0.785

Table 12: Performance of Various Language and Vision-Language Models on TaxoSynth Dataset in
the Differentiation Setting using 3 Different Negative Sampling Techniques

Table 12 reports Differentiation results on the TaxoSynth dataset. GPT-40 with LLMTime and GPT-40
with image input perform best overall, with consistent results across all sampling strategies. ChatTS-
14B achieves strong performance, narrowing the gap with proprietary models and outperforming its
base LLM, showing robustness even in longer, more complex multi-choice tasks.

These results offer fine-grained insight into model behavior and reinforce that our main findings
are robust across contrastive construction strategies. (1) Across datasets, we find that vision-
language models consistently outperform their text-only counterparts. (2) This performance gap
is most evident in synthetic datasets like SUSHI and TRUCE-Synthetic, where models such as
GPT-40 with image input achieve near-perfect F1 scores. (3) In contrast, the real-world TRUCE-
Stock dataset presents a more substantial challenge, with significantly lower performance across all
models, including proprietary LLMs and VLMs. (4) Recognition remains consistently easier than
Differentiation, with a uniform drop in performance observed across models when switching tasks.
(5) While vision-based models lead in most settings, strong time-series-specific language models
like ChatTS-14B perform competitively in the Differentiation task, especially on datasets such as
TaxoSynth where they outperform many open-source and some proprietary LLMs. (6) We further
observe that annotation-based distractor construction yields the most consistent and stable results
across tasks and models, with performance dropping more notably under time series-based contrast
sets, particularly for smaller or less tuned LLMs like Phi and LLaMA. (7) Instruction tuning (as
in GPT-40 + LLMTime) has a more pronounced effect on performance than model scale alone, and
consistently improves robustness across both tasks. (8) Finally, model rankings remain remarkably
stable across all datasets, contrastive sampling strategies, and task settings, underscoring that the
observed trends are not artifacts of any specific evaluation construction. This consistency holds
across synthetic and real-world datasets, across short and long time series, and across both simple
and complex descriptions. The fact that model ordering is preserved despite this breadth of variation
demonstrates the robustness and diagnostic reliability of the BEDT ime.

Note: Euclidean distance was excluded for TaxoSynth due to its variable-length sequences, which
prevent direct computation.

E IMPLEMENTATION DETAILS

Experiments are run through the OpenAl GPT-40 API and the Google Gemini API and model
inference endpoints for Qwen, Phi, Llama, ChatTS and ChatTime models. Batching is used where
possible to minimize API overhead. Inference is parallelized across NVIDIA A6000 GPUs for
models requiring local deployment. Each experiment is repeated with all distractor sampling methods
to ensure robustness of results.
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Figure 4: Accuracy of LLMs and VLMs on recognition and differentiation tasks across real-world
(TRUCE-Stock) and synthetic (TRUCE-Synthetic, SUSHI, TaxoSynth) time series datasets. Negative
samples for contrastive evaluation were generated using Dynamic Time Warping (DTW). The
consistent performance gains of VLMs, especially on the differentiation task, highlight the importance
of visual cues for robust time series analysis.

F WHY DOES CHATTIME PERFORM WORSE THAN RANDOM GUESSING ON
RECOGNITION AND DIFFERENTIATION TASKS?

Upon analysis, we found that ChatTime often fails to follow the task instructions, which significantly
affects its performance in these classification-based tasks. Specifically, rather than outputting a
discrete label (e.g., “A/B/C/D” or “True/False”), ChatTime frequently returns a numeric value
extracted directly from the input time series. Since our evaluation requires a well-formed answer to
compare against the gold label, any non-conforming output is marked as incorrect, which brings down
both accuracy and F1 considerably. To better understand this behavior, we tracked refusal rates (Refer
to Table 1), the percentage of prompts where ChatTime did not produce a valid classification. As
shown in Table below, these refusal rates are very high, especially in recognition tasks. We hypothesize
that ChatTime’s high error rates on instruction-following tasks like recognition and differentiation
stem from its architectural and training design. While ChatTime incorporates instruction fine-tuning,
its base LLM is LLaMA-2-7B-Base, a non-instruction tuned model that undergoes continuous
pretraining on time series data before instruction tuning. The fine-tuning phase focuses on generation-
based tasks such as forecasting and time series QA, but not on multiple-choice classification with strict
formatting constraints. As a result, ChatTime often returns only numeric outputs rather than discrete
classification labels (e.g., “A”, or “True”), especially when the prompt requires strict instruction-
following behavior. Table13 - Refusal rates for both Recognition and differentiation tasks across all
four datasets, using DTW-based negative sampling.

Task Dataset Refusal Rate (%)
TRUCE-Stock 83.4
Recognition TRUCE-Synthetic ~ 79.1
& SUSHI 61.6
TaxoSynth 64.3
TRUCE-Stock 74.2
. o TRUCE-Synthetic  67.0

Diffi tiat]

ifferentiation SUSHI 535
TaxoSynth 58.7

Table 13: Refusal rates across recognition and differentiation tasks on different datasets.
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G ADDITIONAL BASELINE METRICS

We ran additional Baseline comparison metrics against the generated descriptions by the top performer
LLM, VLM and TSLM and the ground truth on SUSHI dataset:Average Edit Distance:GPT-40
Vision: 473.15, ChatTS: 426.22,GPT-40: 434.68.Average Token Overlap: GPT-40 Vision: 0.071,
ChatTS: 0.068, GPT-40: 0.067.

The low token overlap and moderate edit distances suggest that exact matching metrics (such as
BLEU or token overlap) may not fully capture quality in this task. These results support our choice
to favor NLI-based entailment over string-based heuristics such as token overlap or edit distance.

Additionally, we recomputed the NLI metrics for the testing samples that include no numbers. This
provides a result on samples where numeric alterations cannot be a problem. Our results are in Table
14 below, where “w/ #” denotes the dataset with all samples (N=1400), including those with numbers
as in the paper, and “w/o #” denotes the dataset without numbers (N=1279). Here we see that there is
minimal difference between the scores for datasets with and without numbers, suggesting numeric
misalignment have minimal impact.

Model Bi-dir Gen — GT GT — Gen
GPT-40-Vision (w/ #) 14.41 47.65 15.29
GPT-40-Vision (w/o #) 15.76 49.84 16.72
GPT-40 (w/ #) 2.94 9.71 6.18
GPT-40 (w/o #) 3.22 10.61 6.43
ChatTS (w/ #) 2.65 23.53 2.65
ChatTS (w/o #) 2.89 25.40 2.89

Table 14: DeBERTa NLI entailment percentages when ground truth numeric values are included
(w/#) and excluded (w/o #).

H INTERPOLATION
Figure 5 supports the analysis in Section 4.4.1 by evaluating whether scaling interpolated values
mitigates the tokenization-related degradation observed in LLMs. Performance improves for most

models, except Qwen2.5-14B due to reasons previously discussed.
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Figure 5: Scaling for different time series lengths
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