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ABSTRACT

While large language models based on the transformer architecture have demon-
strated remarkable in-context learning (ICL) capabilities, understandings of such
capabilities are still in an early stage, where existing theory and mechanistic un-
derstanding focus mostly on simple scenarios such as learning simple function
classes. This paper takes initial steps on understanding ICL in more complex
scenarios, by studying learning with representations. Concretely, we construct
synthetic in-context learning problems with a compositional structure, where the
label depends on the input through a possibly complex but fixed representation
function (which we instantiate as multi-layer MLPs), composed with a linear
function that differs in each instance. By construction, the optimal ICL algorithm
first transforms the inputs by the representation function, and then performs linear
ICL on top of the transformed dataset. We show theoretically the existence of
transformers that approximately implement such algorithms with mild depth and
size. Empirically, we find trained transformers consistently achieve near-optimal
ICL performance in this setting, and exhibit the desired dissection where lower
layers transforms the dataset and upper layers perform linear ICL. Through exten-
sive probing and a new pasting experiment, we further reveal several mechanisms
within the trained transformers, such as concrete copying behaviors on both the
inputs and the representations, linear ICL capability of the upper layers alone, and
a post-ICL representation selection mechanism in a harder mixture setting. These
observed mechanisms align well with our theory and may shed light on how trans-
formers perform ICL in more realistic scenarios.

1 INTRODUCTION

Large language models based on the transformer architecture have demonstrated remarkable in-
context learning (ICL) capabilities (Brown et al., 2020), where they can solve newly encountered
tasks when prompted with only a few training examples, without any parameter update to the model.
Recent state-of-the-art models further achieve impressive performance in context on sophisticated
real-world tasks (OpenAI, 2023; Bubeck et al., 2023; Touvron et al., 2023). Such remarkable ca-
pabilities call for better understandings, which recent work tackles from various angles (Xie et al.,
2021; Chan et al., 2022; Razeghi et al., 2022; Min et al., 2022; Olsson et al., 2022; Wei et al., 2023).

A recent surge of work investigates ICL in a theoretically amenable setting where the context con-
sists of real-valued (input, label) pairs generated from a certain function class. They find that trans-
formers can learn many function classes in context, such as linear functions, shallow neural net-
works, and decision trees (Garg et al., 2022; Akyürek et al., 2022; Li et al., 2023a), and further
studies provide theoretical justification on how transformers can implement and learn various learn-
ing algorithms in-context such as ridge regression (Akyürek et al., 2022), gradient descent (von
Oswald et al., 2022; Dai et al., 2022; Zhang et al., 2023a; Ahn et al., 2023), algorithm selection (Bai
et al., 2023), and Bayes model averaging (Zhang et al., 2023b), to name a few. Despite the progress,
an insufficiency of this line is that the settings and results may not actually resemble ICL in real-
world scenarios—For example, ICL in linear function classes are well understood in theory with
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Figure 1: An illustration of our setting and results. (a) We consider ICL problems with a fixed representation
composed with changing linear functions, and we construct transformers that first compute the representations
and then performs linear ICL. (b,c) Empirically, learned transformers can perform near-optimal ICL in this
setting, and exhibit mechanisms that align with our theory (detailed setups in Section 5.1).

efficient transformer constructions (Bai et al., 2023), and transformers indeed learn them well em-
pirically (Garg et al., 2022); however, such linear functions in the raw input may fail to capture
real-world scenarios where prior knowledge can often aid learning.

This paper takes initial steps towards addressing this by studying ICL in the setting of learning with
representations, a more complex and perhaps more realistic setting than existing ones. We construct
synthetic ICL tasks where labels depend on inputs through a fixed representation function composed
with a varying linear function. We instantiate the representation as shallow neural networks (MLPs),
and consider both a supervised learning setting (with input-label pairs) and a dynamical systems
setting (with inputs only) for the in-context data. Our contributions can be summarized as follows.

• Theoretically, we construct transformers that implement in-context ridge regression on the rep-
resentations (which includes the Bayes-optimal algorithm) for both learning settings (Section 4).
Our transformer constructions admit mild sizes, and can predict at every token using a decoder
architecture, (non-trivially) generalizing existing efficient constructions that predict at the last
token only using an encoder architecture.

• Empirically, using L-layer MLPs as representations, we find that trained small transformers
consistently achieve near-optimal ICL risk in both learning settings (Section 5 & Figure 1b).

• Using linear probing techniques, we identify evidence for various mechanisms in the trained
transformers. Our high-level finding is that the lower layers transforms the data by the repre-
sentation and prepares it into a certain format, and the upper layers perform linear ICL on top
of the transformed data (Figure 1c), with often a clear dissection between these two modules,
consistent with our theory. See Figure 1a for a pictorial illustration.

• We further observe several lower-level behaviors using linear probes that align well with our (and
existing) theoretical constructions, such as copying (of both the input and the representations)
where which tokens are being copied are precisely identifiable (Section 5.2), and a post-ICL
representation selection mechanism in a harder setting (Section 5.1.1 & Appendix E).

• We perform a new pasting experiment and find that the upper layers within the trained trans-
former can perform nearly-optimal linear ICL in (nearly-)isolation (Section 5.1), which provides
stronger evidence that the upper module alone can be a strong linear ICL learner.

2 RELATED WORK

In-context learning The in-context learning (ICL) capabilities of pretrained transformers have
gained significant attention since first demonstrated with GPT-3 (Brown et al., 2020). Subsequent
empirical studies have investigated the capabilities and limitations of ICL in large language models
(Liu et al., 2021; Min et al., 2021a;b; Lu et al., 2021; Zhao et al., 2021; Rubin et al., 2021; Razeghi
et al., 2022; Elhage et al., 2021; Kirsch et al., 2022; Wei et al., 2023).

A line of recent work investigates why and how pretrained transformers perform ICL from a the-
oretical perspective (Garg et al., 2022; Li et al., 2023a; von Oswald et al., 2022; Akyürek et al.,
2022; Xie et al., 2021; Bai et al., 2023; Zhang et al., 2023a;b; Ahn et al., 2023; Raventós et al.,
2023). In particular, Xie et al. (2021) proposed a Bayesian inference framework explaining ICL.
Garg et al. (2022) showed transformers could be trained from scratch for ICL of simple function
classes. Other studies found transformers can implement ICL through in-context gradient descent
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(von Oswald et al., 2022; Akyürek et al., 2022) and in-context algorithm selection (Bai et al., 2023).
Zhang et al. (2023a) studied the training dynamics of a single attention layer on linear ICL tasks.
Li et al. (2023b) used the ICL framework to explain chain-of-thought reasoning (Wei et al., 2022).
Our work builds on and extends the work of (Garg et al., 2022; Akyürek et al., 2022; von Oswald
et al., 2022; Bai et al., 2023), where we study the more challenging setting of ICL with a represen-
tation function, and also provide new efficient ICL constructions for predicting at every token using
a decoder transformer, as opposed to predicting only at the last token in most of these work.

In-weights learning versus in-context learning Recent work has investigated when transformers
learn a fixed input-label mapping versus when they perform ICL (Chan et al., 2022; Wei et al., 2023;
Bietti et al., 2023). Chan et al. (2022) refer to learning a fixed input-label mapping from the pre-
training data as “in-weights learning” (IWL), in contrast with ICL. Our problem setting assumes
the pre-training data admits a fixed representation function, which should be learned by IWL. In
this perspective, unlike these existing works where IWL and ICL are typically treated as competing
mechanisms, we study a model in which IWL (computing the fixed representation by transformer
weights) and ICL (learning the changing linear function in context) occur simultaneously.

Mechanistic understanding and probing techniques A line of work focuses on developing tech-
niques for understanding the mechanisms of neural networks, in particular transformers (Alain &
Bengio, 2016; Geiger et al., 2021; Meng et al., 2022; von Oswald et al., 2022; Akyürek et al., 2022;
Wang et al., 2022; Räuker et al., 2023). We adopted the linear probing technique of (Alain & Bengio,
2016) in a token-wise fashion for interpreting the ICL mechanisms of transformers. Beyond prob-
ing, more convincing mechanistic interpretations may require advanced approaches such as causal
intervention (Geiger et al., 2021; Vig et al., 2020; Wang et al., 2022); Our pasting experiment has a
similar interventional flavor in that we feed input sequences (ICL instances) from another distribu-
tion directly (through a trainable embedding layer) to the upper module of a transformer.

3 PRELIMINARIES

Transformers We consider sequence-to-sequence functions applied to N input vectors {hi}Ni=1 ⊂
RDhid in Dhid dimensions, which we write compactly as an input matrix H = [h1, . . . ,hN ] ∈
RDhid×N , where each hi is a column of H (also a token).

We use a standard L-layer decoder-only (autoregressive) transformer, which consists of L consec-
utive blocks each with a masked self-attention layer (henceforth “attention layer”) followed by an
MLP layer. Each attention layer computes

Attnθ(H) := H+
∑M

m=1(VmH)× σ
(
MSK⊙ ((QmH)⊤(KmH))

)
∈ RD×N ,

where θ = {(Qm,Km,Vm) ⊂ RDhid×Dhid}m∈[M ] are the (query, key, value) matrices, M is the
number of heads, MSK ∈ RN×N is the decoder mask matrix with MSKij = 1{i ≤ j}, and
σ is the activation function which is typically chosen as the (column-wise) softmax: [σ(A)]:,j =
softmax(aj) ∈ RN for A = [a1, . . . ,aN ] ∈ RN×N . Each MLP layer computes

MLPW1,W2
(H) := H+W2σ(W1H),

where W{1,2} ∈ RDhid×Dhid are the weight matrices, and σ(t) = max {t, 0} is the ReLU activation.
We use TF to denote a transformer, and typically use H̃ = TF(H) to denote its output on H.

In-context learning We consider in-context learning (ICL) on regression problems, where each
ICL instance is specified by a dataset D = {(xi, yi)}i∈[N ]

iid∼ P, with (xi, yi) ∈ Rd × R, and
the model is required to accurately predict yi given all past observations Di−1 := {(xj , yj)}j≤i−1

and the test input xi. Each instance D = D(j) is drawn from a different data distribution P = P(j).
Accurate prediction requires learning P in-context from the past observationsDi−1 (i.e. the context);
merely memorizing any fixed P(j) is not enough. This is a main challenge of in-context learning.
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We consider using transformers to do ICL, where we feed a sequence of length 2N into the trans-
former TF using the following input format:

H = [h1, . . . ,h2N ] =

[
x1 0 . . . xN 0
0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N , (1)

where px
i ,p

y
i ∈ RDhid−d−1 are fixed positional encoding vectors consisting of zero paddings, fol-

lowed by non-zero entries containing information about the position index i and indicator of being
an x-token (1 in px

i , and 0 in py
i ); see (12) for our concrete choice. We refer to each odd token h2i−1

as as an x-token (also the xi-token), and each even token h2i as a y-token (also the yi-token).

After obtaining the transformer output H̃ = TF(H), for every index i ∈ [N ], we extract the
prediction ŷi from the output token at position xi: ŷi := (h̃x

i )d+1.1 Feeding input (1) into the
transformer simultaneously computes ŷi ← TF(x1, y1, . . . ,xi−1, yi−1,xi) for all i ∈ [N ]. Denote
the parameters of transformers as θ.

In addition to the above setting, we also consider a dynamical system setting with D = {xi}i∈[N ]

where the transformer predicts x̂i from the preceding inputs x≤i−1. See Section 4.2 for details.

4 IN-CONTEXT LEARNING WITH REPRESENTATIONS

4.1 SUPERVISED LEARNING WITH REPRESENTATION

We begin by considering ICL on regression problems with representation, where labels depend on
the input through linear functions of a fixed representation function. Formally, let Φ⋆ : Rd → RD be
a fixed representation function. We generate each in-context data distribution P = Pw by sampling
a linear function w ∼ N(0, τ2ID) from a Gaussian prior, and then generate the ICL instance D =
{(xi, yi)}i∈[N ] ∼ Pw by a linear model on Φ⋆ with coefficient w and noise level σ > 0:

yi = ⟨w,Φ⋆(xi)⟩+ σzi, xi
iid∼ Px, zi

iid∼ N(0, 1), i ∈ [N ]. (2)
Note that all D’s share the same representation Φ⋆, but each admits a unique linear function w.

The representation function Φ⋆ can in principle be chosen arbitrarily. As a canonical and flexible
choice for both our theory and experiments, we choose Φ⋆ to be a standard L-layer MLP:

Φ⋆(x) = σ⋆
(
B⋆

Lσ
⋆
(
B⋆

L−1 · · ·σ⋆(B⋆
1x) · · ·

))
, B⋆

1 ∈ RD×d, (B⋆
ℓ )

L
ℓ=2 ⊂ RD×D (3)

where D is the hidden and output dimension, and σ⋆ is the activation function (applied entry-wise)
which we choose to be the leaky ReLU σ⋆(t) = σρ(t) := max {t, ρt} with slope ρ ∈ (0, 1).

Theory As Φ⋆ is fixed and the w is changing in model (2), by construction, a good ICL algorithm
should compute the representations {Φ⋆(xi)}i and perform linear ICL on the transformed dataset
{(Φ⋆(xi), yi)}i to learn w. We consider the following class of Φ⋆-ridge estimators:

ŵΦ⋆,λ
i := argminw∈Rd

1
2(i−1)

∑i−1
j=1 (⟨w,Φ⋆(xj)⟩ − yj)

2
+ λ

2 ∥w∥
2
2 , (Φ⋆-Ridge)

and we understand ŵΦ⋆,λ
1 := 0. In words, ŵΦ⋆,λ

i performs ridge regression on the transformed
dataset {Φ(xj), yj}j≤i−1 for all i ∈ [N ]. By standard calculations, the Bayes-optimal predictor2

for yi given (Di−1,xi) is exactly the ridge predictor ŷΦ
⋆,λ

i := ⟨ŵΦ⋆,λ
i ,Φ⋆(xi)⟩ at λ = σ2/τ2.

We show that there exists a transformer that can approximately implement (Φ⋆-Ridge) in-context at
every token i ∈ [N ]. The proof can be found in Appendix B.
Theorem 1 (Transformer can implement Φ⋆-Ridge). For any representation function Φ⋆ of form (3),
any λ > 0, BΦ, Bw, By > 0, ε < BΦBw/2, letting κ := 1 + B2

Φ/λ, there exists a transformer TF
with L+O(κ log(BΦBw/ε)) layers, 5 heads, Dhid = 2D + d+ 10 such that the following holds.

For any dataset D such that ∥Φ⋆(xi)∥2 ≤ BΦ, |yi| ≤ By and the corresponding input H ∈
RDhid×2N of format (1), we have

1There is no information leakage, as the “prefix” property of decoder transformers h̃x
i = h̃2i−1 =

[TF(H:,1:(2i−1))]2i−1 ensures that h̃x
i (and thus ŷi) only depends on (Di−1,xi).

2The predictor ŷi = ŷi(Di−1,xi) that minimizes the posterior square loss E[ 1
2
(ŷi − yi)

2|Di−1,xi].
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(a) The first (L+ 2) layers of TF transforms xi to the representation Φ⋆(xi) at each x token, and
copies them into the succeeding y token:

TF(1:L+2)(H) =

[
Φ⋆(x1) Φ⋆(x1) . . . Φ⋆(xN ) Φ⋆(xN )

0 y1 . . . 0 yN
p̃x
1 p̃y

1 . . . p̃x
N p̃y

N

]
, (4)

where p̃x
i , p̃

y
i only differ from px

i ,p
y
i in the dimension of the zero paddings.

(b) For every index i ∈ [N ], the transformer output H̃ = TF(H) contains prediction ŷi :=

[h̃2i−1]D+1 that is close to the (Φ⋆-Ridge) predictor: |ŷi − ⟨Φ⋆(xi), ŵ
Φ⋆,λ
i ⟩| ≤ ε.

The transformer construction in Theorem 1 consists of two “modules”: The lower layers computes
the representations and prepares the transformed dataset {(Φ⋆(xi), yi)}i into form (4). In particular,
each Φ⋆(xi) appears both in the i-th x-token and is also copied into the succeeding y token. The
upper layers perform linear ICL (ridge regression) on top of the transformed dataset. We will test
whether such mechanisms align with trained transformers in reality in our experiments (Section 5.1).

Proof techniques The proof of Theorem 1 builds upon (1) implementing the MLP Φ⋆ by trans-
formers (Lemma B.3), and (2) an efficient construction of in-context ridge regression (Theorem B.5),
which to our knowledge is the first efficient construction for predicting at every token using de-
coder transformers. The latter requires several new construction techniques such as a copying layer
(Lemma B.1), and an efficient implementation of N parallel in-context gradient descent algorithms
at all tokens simultaneously using a decoder transformer (Proposition B.4). These extend the related
constructions of von Oswald et al. (2022); Bai et al. (2023) who only consider predicting at the last
token using encoder transformer, and could be of independent interest.

In addition, the bounds on the number of layers, heads, and Dhid in Theorem 1 can imply a sample
complexity guarantee for (pre-)training: A transformer with ε̃-excess risk (on the same ICL instance
distribution) over the one constructed in Theorem 1 can be found in Õ

(
(L+ κ)2(D + d)2ε̃−2

)
training instances, by the generalization analysis of Bai et al. (2023, Theorem 20). We remark
that the constructions in Theorem 1 & 2 choose σ as the normalized ReLU instead of softmax,
following (Bai et al., 2023) and in resonance with recent empirical studies (Wortsman et al., 2023).

4.2 DYNAMICAL SYSTEM WITH REPRESENTATION

As a variant of model (2), we additionally consider a (nonlinear) dynamical system setting with
data D = (x1, . . . ,xN ), where each xi+1 depends on the k preceding inputs [xi−k+1; . . . ;xi] for
some k ≥ 1 through a linear function on top of a fixed representation function Φ⋆. Compared to
the supervised learning setting in Section 4.1, this setting better resembles some aspects of natural
language, where the next token in general depends on several preceding tokens.

Formally, let k ≥ 1 denote the number of input tokens that the next token depends on, and Φ⋆ :
Rkd → RD denotes a representation function. Each ICL instance D = {xi}i∈[N ] is generated as

follows: First sample P = PW where W ∈ RD×d is sampled from a Gaussian prior: Wij
iid∼

N(0, τ2). Then sample the initial input x1 ∼ Px and let

xi+1 = W⊤Φ⋆([xi−k+1; . . . ;xi]) + σzi, zi
iid∼ N(0, Id), i ∈ [N − 1], (5)

where we understand xj := 0d for j ≤ 0. We choose Φ⋆ to be the same L-layer MLP as in (3),
except that the first weight matrix has size B⋆

1 ∈ RD×kd to be consistent with the dimension of the
augmented input xi := [xi−k+1; . . . ;xi]. We remark that (5) substantially generalizes the setting
of Li et al. (2023a) which only considers linear dynamical systems (equivalent to Φ⋆ ≡ id), a task
arguably much easier for transformers to learn in context.

As xi acts as both inputs and labels in model (5), we use the following input format for transformers:

H :=

[
x1 . . . xN

p1 . . . pN

]
∈ RDhid×N , (6)

where pi := [0Dhid−d−4; 1; i; i
2; i3], and we extract prediction x̂i+1 from the i-th output token.
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Theory Similar as above, we consider the ridge predictor for the dynamical system setting

ŴΦ⋆,λ
i := argminW∈RD×d

1
2(i−1)

∑i−1
j=1

∥∥W⊤Φ⋆(xj)− xj+1

∥∥2
2
+ λ

2 ∥W∥
2
Fr . (Φ⋆-Ridge-Dyn)

We understand ŴΦ⋆,λ
0 := 0D×d, and let ∥W∥2,∞ := maxj∈[d] ∥W:,j∥2 for any W ∈ RD×d.

Again, (Φ⋆-Ridge-Dyn) gives the Bayes-optimal predictor (ŴΦ⋆,λ
i )⊤Φ⋆(xi) at λ = σ2/τ2.

The following result shows that (Φ⋆-Ridge-Dyn) can also be implemented efficiently by a trans-
former. The proof can be found in Appendix C.2.
Theorem 2 (Transformer can implement Φ⋆-Ridge for dynamical system). For the dynamical sys-
tem setting where the L-layer representation function Φ⋆ : Rkd → RD takes form (3), but otherwise
same settings as Theorem 1, there exists a transformer TF with L+2+O(κ log(BΦBw/ε)) layers,
max {3d, 5} heads, and Dhid = max {2(k + 1), D}d+3(D+d)+5 such that the following holds.

For any dataset D such that ∥Φ⋆(xi)∥2 ≤ BΦ, ∥xi∥∞ ≤ By , and ∥ŴΦ⋆,λ
i ∥2,∞ ≤ Bw/2 (cf. (Φ⋆-

Ridge-Dyn)) for all i ∈ [N ], and corresponding input H ∈ RDhid×N of format (6), we have

(a) The first transformer layer copies the k previous inputs into the current token, and computes
the first layer {σρ(B

⋆
1xi)}i∈[N ] within Φ⋆:

Attn(1)(H) =

[
x1 . . . xN

p1 . . . pN

]
=

x1−k+1 . . . xN−k+1

| |
x1 . . . xN

p1 . . . pN

 ; (7)

TF(1)(H) = MLP(1)
(
Attn(1)(H)

)
=

[
σρ(B

⋆
1x1) . . . σρ(B

⋆
1xN )

x1 . . . xN

p′
1 . . . p′

N

]
. (8)

(b) The first (L + 1) layers of TF transforms each xi to Φ⋆(xi), and copies the preceding repre-
sentation Φ⋆(xi−1) onto the same token to form the (input, label) pair (Φ⋆(xi−1),xi):

TF(1:L+1)(H) =


Φ⋆(x1) Φ⋆(x2) . . . Φ⋆(xN )
0d 0d . . . 0d

0D Φ⋆(x1) . . . Φ⋆(xN−1)
x1 x2 . . . xN

p̃1 p̃2 . . . p̃N

 . (9)

Above, pi,p
′
i, p̃i only differs from pi in the dimension of the zero paddings.

(c) For every index i ∈ [N ], the transformer output H̃ = TF(H) contains prediction x̂i+1 :=

[h̃i]1:d that is close to the (Φ⋆-Ridge-Dyn) predictor: ∥x̂i+1 − (ŴΦ⋆,λ
i )⊤Φ⋆(xi)∥∞ ≤ ε.

To our best knowledge, Theorem 2 provides the first transformer construction for learning nonlinear
dynamical systems in context. Similar as for Theorem 1, the bounds on the transformer size here
imply guarantees ε̃ excess risk within Õ

(
(L+ κ)2((k +D)d)2ε̃−2

)
(pre-)training instances.

In terms of the mechanisms, compared with Theorem 1, the main differences in Theorem 2
are (1) the additional copying step (7) within the first layer, where the previous (k − 1) to-
kens [xi−k+1; . . . ,xi−1] are copied onto the xi token, to prepare for computing of Φ⋆(xi); (2)
the intermediate output (9), where relevant information (for preparing for linear ICL) has form
[Φ⋆(xi−1);xi; Φ

⋆(xi)] and is gathered in the x-tokens, different from (4) where the relevant infor-
mation is [Φ⋆(xi); yi], gathered in the y-token. We will test these in our experiments (Section 5.2).

5 EXPERIMENTS

We now empirically investigate trained transformers under the two settings considered in Section 4.1
& 4.2. In both cases, we choose the representation function Φ⋆ to be a normalized version of the
L-layer MLP (3): Φ⋆(x) := Φ̃⋆(x)/∥Φ̃⋆(x)∥2, where Φ̃⋆ takes form (3), with weight matrices
(B⋆

i )i∈[L] sampled as random (column/row)-orthogonal matrices and held fixed in each experiment,
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Figure 2: Test ICL risk for learning with representations. Each plot modifies a single problem parameter from
the base setting (L,D, σ) = (2, 20, 0.1). Dotted lines plot the Bayes-optimal risks for each setting respectively.
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(b) Probe Φ⋆(xi) at yi tokens
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Figure 3: Probing errors for the learning with representation setting. Each setting modifies one or two problem
parameters from the base setting (L,D, σ) = (2, 20, 0.1). Note that the orange curve corresponds to the same
setting (and thus the same transformer) across (a,b,c), as well as the red curve.

and slope ρ = 0.01. We test L ∈ {1, 2, 3, 4}, hidden dimension D ∈ {5, 20, 80}, and noise level
σ ∈ {0, 0.1, 0.5}. All experiments use Px = N(0, Id), τ2 = 1, d = 20, and N = 41.

We use a small architecture within the GPT-2 family with 12 layers, 8 heads, and Dhid = 256,
following (Garg et al., 2022; Li et al., 2023a; Bai et al., 2023). The (pre)-training objective for the
transformer (for the supervised learning setting) is the average prediction risk at all tokens:

minθ Ew,D∼Pw

[
1

2N

∑N
i=1 (ŷθ,i(Di−1,xi)− yi)

2
]
, (10)

where ŷθ,i is extracted from the (2i− 1)-th output token of TFθ(H) (cf. Section 3). The objective
for the dynamical system setting is defined similarly. Additional experimental details can be found
in Appendix D, and ablation studies (e.g. along the training trajectory; cf. Figure 9) in Appendix F.

5.1 SUPERVISED LEARNING WITH REPRESENTATION

We first test ICL with supervised learning data as in Section 4.1, where for each configuration of
(L,D, σ) (which induces a Φ⋆) we train a transformer on ICL data distribution (2) and evaluate ICL
on the same distribution. Note that Figure 1c & 1b plots the results for (L,D, σ) = (2, 20, 0.1).

ICL performance Figure 2 reports the test risk across various settings, where we observe that
trained transformers can consistently match the Bayes-optimal ridge predictor. This extends existing
results which show that linear functions (without a representation) can be learned near-optimally in-
context by transformers (Garg et al., 2022; Akyürek et al., 2022), adding our model (2) to this
list of (empirically) nearly-optimally learnable function classes. Among the complexity measures
(L,D, σ), observe that the noise level σ and hidden dimension D of the representation (Figure 2a
& 2b) appears to have a larger effect on the (nearly Bayes-optimal) risk than the depth L (Figure 2c).

Mechanisms via linear probing We conduct probing experiments to further understand the mech-
anisms of the trained transformers. In accordance with the theoretical construction in Theorem 1,
our main question here is: Does the trained transformer perform the following in order:

1. Computes Φ⋆(xi) at xi tokens;
2. Copies them onto the following yi token and obtains dataset {Φ⋆(xi), yi}i in the form of (4);
3. Performs linear ICL on top of {Φ⋆(xi), yi}i?
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(a) Illustration of the pasting experiment
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(b) Linear ICL in TF_upper via pasting
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Figure 4: (a) Illustration of our pasting experiment, which examines the linear ICL capability of the upper
module of a trained transformer. (b) Pasting results for the upper module of a trained transformer in setting
(L,D, σ) = (3, 20, 0.1). “TF_upper+ . . .” correspond to feeding the upper module of trained transformer
with different embeddings. It achieves nearly optimal linear ICL risk (in 20 dimension with noise 0.1), using a
1-layer transformer embedding, and also non-trivial performance using linear and linear copy embeddings.

While such internal mechanisms are in general difficult to quantify exactly, we adapt the linear prob-
ing (Alain & Bengio, 2016) technique to the transformer setting to identify evidence. Linear probing
allows us to test whether intermediate layer outputs (tokens) {hx,(ℓ)

i }ℓ∈[12] (ℓ denotes the layer) and

{hy,(ℓ)
i }ℓ∈[12] “contains” various quantities of interest, by linearly regressing these quantities (as the

y) on the intermediate tokens (as the x), pooled over the token index i ∈ [N ]. For example, re-
gressing Φ⋆(xi) on h

x,(ℓ)
i tests whether the xi token after the ℓ-th layer “contains” Φ⋆(xi), where a

smaller error indicates a better containment. See Appendix D.1 for further setups of linear probing.

Figure 3 reports the errors of three linear probes across all 12 layers: The representation Φ⋆(xi) in
the xi tokens and yi tokens, and the optimal ridge prediction ŷΦ

⋆,λ
i in the xi tokens. Observe that the

probing errors for the representation decrease through lower layers and then increase through upper
layers (Figure 3a & 3b), whereas probing errors for the ridge prediction monotonically decrease
through the layers (Figure 3c), aligning with our construction that the transformer first computes the
representations and then performs ICL on top of the representation. Also note that deeper represen-
tations take more layers to compute (Figure 3a). Further, the representation shows up later in the
y-tokens (layers 5-6) than in the x-tokens (layers 1,3,4,5), consistent with the copying mechanism,
albeit the copying appears to be lossy (probe errors are higher at y-tokens).

Finally, observe that the separation between the lower and upper modules seems to be strong in
certain runs—For example, the red transformer (L = 4, σ = 0.1) computes the representation at
layer 5, copies them onto y-tokens at layer 6, and starts to perform iterative ICL from layer 7, which
aligns fairly well with our theoretical constructions at a high level.

Investigating upper module via pasting To further investigate upper module, we test whether it
is indeed a strong ICL learner on its own without relying on the lower module, which would provide
stronger evidence that the upper module performs linear ICL. However, a key challenge here is that
it is unclear how to feed raw inputs directly into the upper module, as they supposedly only admit
input formats emitted from the lower module—the part we wanted to exclude in the first place.

We address this by conducting a pasting experiment, where we feed D-dimensional linear ICL
problems (y′i = ⟨w′,x′

i⟩ without a representation) with input format (1) directly to the upper module
of the transformer trained on representation Φ⋆, by adding a trainable embedding layer in between;
see Figure 4a for an illustration of the pasting approach. This trainable embedding layer itself needs
to be shallow without much ICL power—we test the following three choices: (1) Linear embedding:
h
x

i = W[xi; 0] and hy
i = W[0D; yi]; (2) Linear-copy embedding, where the y tokens are instead

h
y

i = W[xi; yi], motivated by the format (4); (3) One-layer transformer embedding TF, which
computes H = TF(H). See Appendix D.2 for further setups of pasting.

Figure 4b shows the pasting results on a trained transformer on (L,D, σ) = (3, 20, 0.1) (an ablation
in Figure 10b), where we dissect the lower and upper modules at layer 4 as suggested by the probing
curve (Figure 3a green). Perhaps surprisingly, the upper module of the transformer can indeed
perform nearly optimal linear ICL without representation when we use the one-layer transformer
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Figure 5: ICL risks and probing errors for the dynamical system setting. (a) Each curve modifies problem
parameters from the base setting (k, L,D, σ) = (3, 2, 80, 0.5). (b,c) Results are with the same base setting.

embedding. Note that a (freshly trained) single-layer transformer itself performs badly, achieving
about the trivial test risk 1.01, which is expected due to our specific input format3 (1). This suggests
that the majority of the ICL is indeed carried by the upper module, with the one-layer transformer
embedding not doing much ICL itself. Also note that the linear-copy and linear embeddings also
yield reasonable (though suboptimal) performance, with linear-copy performing slightly better.

5.1.1 EXTENSION: MIXTURE OF MULTIPLE REPRESENTATIONS

We aditionally investigate an harder scenario in which there exists multiple possible representation
functions (Φ⋆

j )j∈[K], and the ICL data distribution is a mixture of the K distributions of form (2)
each induced by Φ⋆

j (equivalent to using the concatenated representation Φ
⋆
= [Φ⋆

1, . . . ,Φ
⋆
K ] with a

group 1-sparse prior on w ∈ RKD). We find that transformers still approach Bayes-optimal risks,
though less so compared with the single-representation setting. Using linear probes, we find that
transformers sometimes implement the post-ICL algorithm selection mechanism identified in Bai
et al. (2023), depending on the setting. Details are deferred to Appendix E due to the space limit.

5.2 DYNAMICAL SYSTEMS

We now study the dynamical systems setting in Section 4.2 using the same approaches as in Sec-
tion 5.1. Figure 5a shows that transformers can still consistently achieve nearly Bayes-optimal ICL
risk. An ablation of the risks and probing errors in alternative settings can be found in Appendix F.2.

Probing copying mechanisms The main mechanistic question we ask here is about the data prepa-
ration phase, where the transformer construction in Theorem 2 performs copying twice:

i) A copying of [xi−k+1; . . . ;xi−1] onto the xi token as in (7), to prepare for the computation of
Φ⋆(xi); As copying may not be distinguishable from the consequent matrix multiplication step
[xi−k+1; . . . ,xi−1;xi] 7→ B⋆

1[xi−k+1; . . . ,xi−1;xi], we probe instead the result B⋆
1,−jxi−j

after matrix multiplication, where B⋆
1,−j ∈ RD×d denotes the block within B⋆

1 hitting xi−j .

ii) A second copying of Φ⋆(xi−1) onto the xi token to obtain (9), after {Φ⋆(xi)}i are computed.

We probe one transformer trained on the dynamical systems problem with k = 3 (so that the useful
preceding inputs are xi−1 and xi−2), and find that the transformer indeed performs the two conjec-
tured copyings. Figure 5b demonstrates copying i) onto the current token, where the copying of xi−1

happens earlier (at layer 3) and is slightly more accurate than that of xi−2 (at layer 4), as expected.
Further observe that layer 4 (which we recall contains an attention layer and an MLP layer) have
seemingly also implemented the (unnormalized) MLP representation Φ̃⋆(xi) = σρ(B

⋆
2σρ(B

⋆
1xi)),

though the probing error for the actual representation Φ⋆(xi) = Φ̃⋆(xi)/∥Φ̃⋆(xi)∥2 continues to
drop in layer 4-6 (Figure 5c). Figure 5c further demonstrates copying ii), where Φ⋆(xi−1) are in-
deed copied to the i-th token, whereas by sharp contrast Φ⋆(xi−k) for k ≥ 2 are not copied at all
into the xi token, aligning with our conjectured intermediate output format (9).

3A one-layer transformer does not have much ICL power using input format (1)—xi and yi are stored in
separate tokens there, which makes “one-layer” mechanisms such as gradient descent (von Oswald et al., 2022;
Akyürek et al., 2022; Bai et al., 2023) unlikely to be implementable; see Appendix D.3 for a discussion.
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6 CONCLUSION

This paper presents theoretical and mechanistic studies on the in-context learning ability of trans-
formers on learning tasks involving representation functions, where we give efficient transformer
constructions for linear ICL on top of representations for the supervised learning and dynamical
system setting, and empirically confirm the existence of various high-level mechanisms in trained
transformers. We believe our work opens up the investigation of ICL beyond simple function classes,
and suggests open questions such as further investigations of the mechanisms of the linear ICL mod-
ules, and theory for ICL in more complex function classes. One limitation of our work is that the
setting still consists of synthetic data with idealistic representation functions; performing similar
studies on more real-world data would be an important direction for future work.
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A TECHNICAL TOOLS

The following convergence result for minimizing a smooth and strongly convex function is standard
from the convex optimization literature, e.g. by adapting the learning rate in Bubeck (2015, Theorem
3.10) from η = 1/β to any η ≤ 1/β.
Proposition A.1 (Gradient descent for smooth and strongly convex functions). Suppose L : Rd →
R is α-strongly convex and β-smooth for some 0 < α ≤ β. Then, the gradient descent iterates
wt+1

GD := wt
GD− η∇L(wt

GD) with learning rate η ≤ 1/β and initialization w0
GD ∈ Rd satisfies for

any t ≥ 1, ∥∥wt
GD −w⋆

∥∥2
2
≤ exp (−ηα · t) ·

∥∥w0
GD −w⋆

∥∥2
2
.

where w⋆ := argminw∈Rd L(w) is the minimizer of L.

B PROOFS FOR SECTION 4.1

Throughout the rest of this and next section, we consider transformer architectures defined in Sec-
tion 3 where we choose σ to be the (entry-wise) ReLU activation normalized by sequence length,
following (Bai et al., 2023): For all A ∈ RN×N and i, j ∈ [N ],

[σ(A)]ij =
1

j
σ(Aij), (11)

where we recall σ(t) = max {t, 0} denotes the standard ReLU. This activation is similar as the
softmax in that, for every (query index) j, the resulting attention weights { 1j σ(Aij)}

i∈[j]
is approxi-

mately a probability distribution in typical scenarios, in the sense that they are non-negative and sum
to O(1) when each Aij = O(1). We remark that transformers with (normalized) ReLU activation is
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recently shown to achieve comparable performance with softmax in larger-scale tasks (Shen et al.,
2023; Wortsman et al., 2023).

With activation chosen as (11), a (decoder-only) attention layer H̃ = Attnθ(H) with θ =
(Qm,Km,Vm)m∈[M ] takes the following form in vector notation:

h̃i = hi +

M∑
m=1

1

i

i∑
j=1

σ(⟨Qmhi,Kmhj⟩) ·Vmhj .

Recall our input format (1):

H =

[
x1 0 . . . xN 0
0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N .

We will use (hk)k∈[2N ] and (hx
i ,h

y
i )i∈[N ] interchangeably to denote the tokens in (1), where hx

i :=
h2i−1 and hy

i := h2i. Similarly, we will use (px
i ,p

y
i )i∈[N ] and (pk)k∈[2N ] interchangably to denote

the positional encoding vectors in (1), where p2i−1 := px
i and p2i := py

i . Unless otherwise
specified, we typically reserve use i, j as (query, key) indices within [N ] and k, ℓ as (query, key)
indices within [2N ].

We use the following positional encoding vectors for all i ∈ [N ]:

px
i = [0Dhid−d−9; 1; 2i− 1; (2i− 1)2; (2i− 1)3; i; i2; 1; i],

py
i = [0Dhid−d−9; 1; 2i; (2i)

2; (2i)3; i; i2; 0; 0].
(12)

Note that pk contains [1; k; k2; k3] for all k ∈ [2N ]; px
i , py

i contains [i; i2], an indicator of being an
x-token, and the product of the indicator and i.

B.1 USEFUL TRANSFORMER CONSTRUCTIONS

Lemma B.1 (Copying by a single attention head). There exists a single-head attention layer θ =
(Q,K,V) ⊂ RDhid×Dhid that copies each xi into the next token for every input H of the form (1),
i.e.

Attnθ(H) =

[
x1 x1 . . . xN xN

0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N .

Proof. By assumption of the positional encoding vectors, we can define matrices Q,K ∈
RDhid×Dhid such that for all k, ℓ ∈ [2N ],

Qhk = [k3; k2; k;0Dhid−3], Khℓ = [−1; 2ℓ+ 2;−ℓ2 − 2ℓ;0Dhid−3].

This gives that for all ℓ ≤ k,

σ(⟨Qhk,Khℓ⟩)
= σ

(
−k3 + k2(2ℓ+ 2)− k(ℓ2 + 2ℓ)

)
= σ

(
k(1− (k − ℓ− 1)2)

)
= k1{ℓ = k − 1}.

Further defining V such that Vhx
i = [xi;0] and Vhy

i = 0, we have for every k ∈ [2N ] that∑
ℓ≤k

1

k
σ(⟨Qhk,Khℓ⟩)Vhℓ

=
1

k
· k1{ℓ = k − 1} · [x⌈ℓ/2⌉1{ℓ is odd};0] = [x⌈ℓ/2⌉;0] · 1{ℓ = k − 1 and ℓ is odd}.

By the residual structure of the attention layer, the above exactly gives the desired copying behavior,
where every xi on the odd token H is copied to the next token.

13
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Lemma B.2 (Linear prediction layer). For any Bx, Bw, By > 0, there exists an attention layer
θ = {(Qm,Km,Vm)}m∈[M ] with M = 2 heads such that the following holds. For any input
sequence H ∈ RDhid×2N that takes form

hx
i = [xi; 0;wi;p

x
i ], hy

i = [xi; yi;0d;p
y
i ]

with ∥xi∥2 ≤ Bx, |yi| ≤ By , and ∥w∥2 ≤ Bw, it gives output Attnθ(H) = H̃ ∈ RDhid×2N with

h̃x
i = h̃2i−1 = [xi; ŷi;wi;p

x
i ], where ŷi = ⟨xi,wi⟩

for all i ∈ [N ].

Proof. Let R := max {BxBw, By}. Define matrices (Qm,Km,Vm)m=1,2 as

Q1h
x
i =

wi

i
R
0

 , K1h
x
j = K1h

y
j =

 xj

−2R
2j + 1

0

 ,V1hℓ =

[
0d

ℓ
0Dhid−d−1

]
,

Q2h
x
i =

[
i
R
0

]
, K2h

x
j = K1h

y
j =

[ −2R
2j + 1

0

]
,V2hℓ = −

[
0d

ℓ
0Dhid−d−1

]
for all i, j ∈ [N ] and ℓ ∈ [2N ]. For every i ∈ [N ], we then have

2∑
m=1

2i−1∑
ℓ=1

1

2i− 1
σ(⟨Qmhx

i ,Kmhℓ⟩) ·Vmhℓ

=
1

2i− 1

( i∑
j=1

[
σ
(
w⊤

i xj +R(−2i+ 2j + 1)
)
− σ(R(−2i+ 2j + 1))

]
· [0d; 2j − 1;0Dhid−d−1]

+

i−1∑
j=1

[
σ
(
w⊤

i xj +R(−2i+ 2j − 1)
)
− σ(R(−2i+ 2j + 1))

]
· [0d; 2j;0Dhid−d−1]

)
=

1

2i− 1
·w⊤

i xi · [0d; 2i− 1;0Dhid−d−1] = [0d;w
⊤
i xi;0Dhid−d−1].

By the residual structure of an attention layer, the above shows the desired result.

Lemma B.3 (Implementing MLP representation by transformers). Fix any MLP representation
function Φ⋆ of the form (3), suppose Dhid ≥ max {2D,D + d+ 10}, where D is the hidden di-
mension within the MLP (3). Then there exists a transformer TFθ with (L+ 1) layers and 5 heads
that exactly implements Φ⋆ in a token-wise fashion, i.e. for any input H of form (1),

H̃ = TFθ(H) =

[
Φ⋆(x1) 0 . . . Φ⋆(xN ) 0

0 y1 . . . 0 yN
p̃x
1 p̃y

1 . . . p̃x
N p̃y

N

]
,

where p̃x
i , p̃

y
i differs from px

i ,p
y
i only in the dimension of their zero paddings.

Proof. Recall that Φ⋆(x) = σρ(B
⋆
L · · ·σρ(B

⋆
1x) · · · ). We first show how to implement a single

MLP layer x 7→ σρ(B
⋆
1x) by an (MLP-Attention) structure.

Consider any input token hx
i = [xi; 0;p

x
i ] at an x-location. Define matrices W1,W2 ∈ RDhid×Dhid

such that

W1h
x
i =

[
B⋆

1xi

−B⋆
1xi

0

]
, σ(W1h

x
i ) =

[
σ(B⋆

1xi)
σ(−B⋆

1xi)
0

]
,

W2σ(W1h
x
i ) =

[
0d

σ(B⋆
1xi)− ρσ(−B⋆

1xi)
0

]
=

[
0d

σρ(B
⋆
1xi)

0

]
.

14
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Therefore, the MLP layer (W1,W2) outputs

h
x

i := [MLPW1,W2(H)]
x
i = hx

i +W2σ(W1h
x
i ) =

 xi

σρ(B
⋆
1xi)

0
px
i

 ,

and does not change the y-tokens.

We next define an attention layer that “moves” σρ(B1xi) to the beginning of the token, and removes
xi. Define three attention heads θ = (Qm,Km,Vm)m∈[3] as follows:

Q{1,2,3}hk =

 k2

k
k1{k is odd}

0

 ,K{1,2,3}hℓ =

−1ℓ1
0

 ,

V1h
x

j =

[
σρ(B

⋆
1xj)

0d

0

]
,V2h

x

j =

[−xj

0D

0

]
,V3h

x

j =

[
0d

−σρ(B
⋆
1xj)

0

]
.

The values for V1,2,3h
y

i are defined automatically by the same operations over the h
y

i tokens (which
does not matter to the proof, as we see shortly). For any ℓ ≤ k and m ∈ [3],

1

k
σ
(〈
Qmhk,Kmhℓ

〉)
=

1

k
σ(k(−k + ℓ+ 1{k is odd})) = 1{ℓ = k, k is odd}.

Therefore, these three attention heads are only active iff the query token k = 2i − 1 is odd (i.e.
being an x-token) and ℓ = k = 2i − 1. At such tokens, the three value matrices (combined with
the residual structure of attention) would further remove the xi part, and move σρ(B

⋆
1xi) to the

beginning of the token, i.e.

h̃x
i =

[
Attnθ(H)

]x
i
=

[
σρ(B

⋆
1xi)
0
px
i

]
,

and h̃y
i = hy

i . Additionally, we now add two more attention heads into θ to move all yi from entry
d+ 1 to D + 1, and leaves the x-tokens unchanged.

Repeating the above argument L times, we obtain a structure (MLP-Attention-. . . -MLP-Attention)
with five heads in each attention layer that exactly implements the Φ⋆ in a token-wise fashion. This
structure can be rewritten as an (L+1)-layer transformer by appending an identity {Attention, MLP}
layer (with zero weights) {before, after} the structure respectively, which completes the proof.

B.2 IN-CONTEXT RIDGE REGRESSION BY DECODER TRANSFORMER

This section proves the existence of a decoder transformer that approximately implements in-context
ridge regression at every token i ∈ [N ] simultaneously. For simplicity, we specialize our results to
the ridge regression problem; however, our construction can be directly generalized to any (gener-
alized) linear models with a sufficiently smooth loss, by approximating the gradient of the loss by
sum of relus (Bai et al., 2023, Section 3.5).

Denote the regularized empirical risk for ridge regression on dataset Di = {(xj , yj)}j∈[i] by

L̂λ
i (w) :=

1

2i

i∑
j=1

(
w⊤xj − yj

)2
+

λ

2
∥w∥22 (13)

for all i ∈ [N ]. Let ŵλ
i := argminw∈Rd L̂λ

i−1(w) denote the minimizer of the above risk (solution
of ridge regression) for dataset Di−1. We further understand L̂λ

0 (w) := 0 and ŵλ
1 := 0. Let

L̂i(w) := L̂0
i (w) denote the unregularized version of the above risk.

Proposition B.4 (Approximating a single GD step by a single attention layer). For any η > 0 and
any Bx, Bw, By > 0, there exists an attention layer θ = {(Qm,Km,Vm)}m∈[M ] with M = 3

heads such that the following holds. For any input sequence H ∈ RDhid×2N that takes form

hx
i = [xi; 0;wi;p

x
i ], hy

i = [xi; yi;0d;p
y
i ]
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with ∥xi∥2 ≤ Bx, |yi| ≤ By , and ∥w∥2 ≤ Bw, it gives output Attnθ(H) = H̃ ∈ RDhid×2N with
h̃x
i = h̃2i−1 = [xi; 0; w̃i;p

x
i ], where

w̃i = wi − ηi∇L̂λ
i−1(wi)

with ηi =
i−1
2i−1η, and h̃y

i = hy
i , for all i ∈ [N ].

Proof. Let R := max {BxBw, By}. By the form of the input (hk)k∈[2N ] in (1), we can define two
attention heads {(Qm,Km,Vm)}m=1,2 ⊂ RDhid×Dhid such that for all i, j ∈ [N ],

Q1h
x
i =


wi/2
−1
i
−3R
−R
0

 , K1h
y
j =


xj

yj
3R
j
1
0

 , V1h
x
j = V1h

y
j = −η ·

[
0d+1

xj

0Dhid−2d−1

]
,

Q2h
x
i = Q2h

y
i =

 i
−3R
−R
0

 , K2h
x
j = K2h

y
j =

3Rj1
0

 , V2h
x
j = V2h

y
j = η ·

[
0d+1

xj

0Dhid−2d−1

]
.

Further, Q1h
y
i takes the same form as Q1h

x
i except for replacing the wi/2 location with 0d and

replacing the −1 location with 0 (using the indicator for being an x-token within px
i ,p

y
i ); K1h

x
j

takes the same form as K1h
y
j except for replacing the yj location with 0.

Fixing any i ∈ [N ]. We have for all j ≤ i− 1,
σ
(〈
Q1h

x
i ,K1h

y
j

〉)
− σ

(〈
Q2h

x
i ,K2h

y
j

〉)
= σ

(
w⊤

i xj/2− yj +R(3i− 3j − 1)
)
− σ(R(3i− 3j − 1)) = w⊤

i xj/2− yj ,

and for all j ≤ i,
σ
(〈
Q1h

x
i ,K1h

x
j

〉)
− σ

(〈
Q2h

x
i ,K2h

x
j

〉)
= σ

(
w⊤

i xj/2 +R(3i− 3j − 1)
)
− σ(R(3i− 3j − 1)) = w⊤

i xj/2 · 1{j ≤ i− 1}.
Above, we have used

∣∣w⊤
i xj/2− yj

∣∣ ≤ 3R/2,
∣∣w⊤

i xj/2
∣∣ ≤ R/2, and the fact that σ(z + M) −

σ(M) equals z for M ≥ |z| and 0 for M ≤ − |z|.
Therefore for all j ≤ i− 1,

σ
(〈
Q1h

x
i ,K1h

y
j

〉)
V1h

y
j + σ

(〈
Q2h

x
i ,K2h

y
j

〉)
V2h

y
j

=
(
σ
(〈
Q1h

x
i ,K1h

y
j

〉)
− σ

(〈
Q2h

x
i ,K2h

y
j

〉))
· −η[0d+1;xj ;0Dhid−2d−1]

= −η
(
w⊤

i xj/2− yj
)
· [0d+1;xj ;0Dhid−2d−1],

and similarly for all j ≤ i,
σ
(〈
Q1h

x
i ,K1h

x
j

〉)
V1h

x
j + σ

(〈
Q2h

x
i ,K2h

x
j

〉)
V2h

x
j

= −η
(
w⊤

i xj/2
)
1{j ≤ i− 1} · [0d+1;xj ;0Dhid−2d−1]

Summing the above over all key tokens ℓ ∈ [2i−1], we obtain the combined output of the two heads
at query token 2i− 1 (i.e. the i-th x-token):

2i−1∑
ℓ=1

∑
m=1,2

1

2i− 1
σ(⟨Qmh2i−1,Kmhℓ⟩)Vmhℓ

=

i−1∑
j=1

∑
m=1,2

1

2i− 1
σ
(〈
Qmhx

i ,Kmhy
j

〉)
Vmhy

j +

i∑
j=1

∑
m=1,2

1

2i− 1
σ
(〈
Qmhx

i ,Kmhx
j

〉)
Vmhx

j

=
1

2i− 1

i−1∑
j=1

−η
(
w⊤

i xj/2− yj
)
+

i∑
j=1

−η
(
w⊤

i xj/2
)
1{j ≤ i− 1}

 · [0d+1;xj ;0Dhid−2d−1]

=
i− 1

2i− 1
·
[
0d+1;−η∇L̂i−1(wi);0Dhid−2d−1

]
.

(14)
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It is straightforward to see that, repeating the same operation at query token 2i (i.e. the i-th y-token)
would output 0Dhid

, since the query vector Q1h
y
i contains [0d; 0] instead of [wi/2;−1] as in Q1h

x
i .

We now define one more attention head (Q3,K3,V3) ⊂ RD×D such that for all k ∈ [2N ], j ∈ [N ],

Q3hk =

k
2

k
1
0

 , K3hℓ =

 −1/2
(1− ℓ)/2
1− ℓ/2

0

 , V3h
x
j =

[
0d+1

−ηλwj

0Dhid−2d−1

]
, V3h

y
j = 0Dhid

.

For any ℓ ≤ k, we have

σ(⟨Q3hk,K3hℓ⟩) = σ
(
−k2/2 + k(1− ℓ)/2 + 1− ℓ/2

)
=

k − 1

2
σ(−k + ℓ+ 1) =

k − 1

2
1{ℓ = k}.

Therefore, for query token k = 2i− 1, the attention head outputs

k∑
ℓ=1

1

k
σ(⟨Q3hk,K3hℓ⟩)Vmhℓ =

k∑
ℓ=1

1

k
· k − 1

2
1{ℓ = k} ·Vmhℓ

=
k − 1

2k
·Vmhk =

i− 1

2i− 1
·Vmhx

i =
i− 1

2i− 1
· [0d+1;−ηλwi;0Dhid−2d−1].

(15)

It is straightforward to see that the same attention head at query token k = 2i outputs 0Dhid
, as the

value vector V3hk = V3h
y
i is zero.

Combining (14) and (15), letting the full attention layer θ := {(Qm,Km,Vm)}m=1,2,3, we have

Attnθ(H) = H̃, where for all i ∈ [N ],

h̃x
i = h̃2i−1 = h2i−1 +

3∑
m=1

2i−1∑
ℓ=1

1

2i− 1
σ(⟨Qmh2i−1,Kmhℓ⟩) ·Vmhℓ

=

xi

0
wi

∗

+
i− 1

2i− 1

 0d+1

−η
(
∇L̂i−1(wi) + λwi

)
0Dhid−2d−1

 =


xi

0

wi − ηi∇L̂λ
i−1(wi)
∗

 ,

where ηi :=
i−1
2i−1wi, and h̃y

i = hy
i . This finishes the proof.

Theorem B.5 (In-context ridge regression by decoder-only transformer). For any λ ≥ 0,
Bx, Bw, By > 0 with κ := 1 + B2

x/λ, and ε < BxBw/2, let Dhid ≥ 2d + 10, then there ex-
ists an L-layer transformer TFθ with M = 3 heads and hidden dimension Dhid, where

L = ⌈3κ log(BxBw/(2ε))⌉+ 2, (16)

such that the following holds. On any input matrix H of form (1) such that problem (13) has bounded
inputs and solution: for all i ∈ [N ]

∥xi∥2 ≤ Bx, |yi| ≤ By,
∥∥ŵλ

i

∥∥
2
≤ Bw/2, (17)

TFθ approximately implements the ridge regression algorithm (minimizer of risk (13)) at every
token i ∈ [N ]: The prediction ŷi := [TFθ(H)]d+1,2i−1 satisfies∣∣ŷi − 〈

ŵλ
i ,xi

〉∣∣ ≤ ε. (18)

Proof. The proof consists of two steps.

Step 1 We analyze the convergence rate of gradient descent on L̂λ
i−1 simultaneously for all 2 ≤

i ≤ N , each with learning rate ηi =
i−1
2i−1η as implemented in Proposition B.4.

Fix 2 ≤ i ≤ N . Consider the ridge risk L̂λ
i−1 defined in (13), which is a convex quadratic function

that is λ-strongly convex and λmax

(
X⊤

i−1Xi−1/(i− 1)
)
+ λ ≤ B2

x + λ =: β smooth over Rd.
Recall κ = β/λ = 1 +B2

x/λ.

17
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Consider the following gradient descent algorithm on L̂λ
i−1: Initialize w0

i := 0, and for every t ≥ 0

wt+1
i = wt

i − ηi∇L̂λ
i−1(w

t
i), (19)

with ηi =
i−1
2i−1η. Taking η := 2/β, we have ηi ∈ [2/(3β), 1/β], and thus ηiλ ∈ [2/(3κ), 1/κ].

By standard convergence results for strongly convex and smooth functions (Proposition A.1), we
have for all t ≥ 1 that∥∥wt

i − ŵλ
i

∥∥2
2
≤ exp (−ηiλt)

∥∥w0
i − ŵλ

i

∥∥2
2
= exp (−ηiλt)

∥∥ŵλ
i

∥∥2
2
.

Further, taking the number of steps as

T :=

⌈
3κ log

(
BxBw

2ε

)⌉
so that ηiλT/2 ≥ 2/(3κ) · 3κ log(BxBw/(2ε))/2 = log(BxBw/(2ε)), we have∥∥wT

i − ŵλ
i

∥∥
2
≤ exp (−ηiλT/2)

∥∥ŵλ
i

∥∥
2
≤ 2ε

BxBw
· Bw

2
≤ ε

Bx
. (20)

Step 2 We construct a (T + 2)-layer transformer TFθ by concatenating the copying layer
in Lemma B.1, T identical gradient descent layers as constructed in Proposition B.4, and the linear
prediction layer in Lemma B.2. Note that the transformer is attention only (all MLP layers being
zero), and the number of heads within all layers is at most 3.

The copying layer ensures that the output format is compatible with the input format required in
Proposition B.4, which in turn ensures that the T gradient descent layers implement (19) simulta-
neously for all 1 ≤ i ≤ N (wT

1 := 0 is not updated at token i = 1). Therefore, the final linear
prediction layer ensures that, the output matrix H̃ := TFθ(H) contains the following prediction at
every i ∈ [N ]:

ŷi := [h̃x
i ]d+1 =

〈
wT

i ,xi

〉
,

which satisfies ∣∣ŷi − 〈
ŵλ

i ,xi

〉∣∣ = ∣∣〈wT
i − ŵλ

i ,xi

〉∣∣ ≤ (ε/Bx) ·Bx = ε.

This finishes the proof.

B.3 PROOF OF THEOREM 1

The result follows directly by concatenating the following two transformer constructions:

• The MLP implementation module in Lemma B.3, which has (L+ 1)-layers, 5 heads, and trans-
forms every xi to Φ⋆(xi) to give output matrix (4);

• The in-context ridge regression module in Theorem B.5 (with inputs being {Φ⋆(xi)} instead of
xi) which hasO(κ log(BΦBw/ε)) layers, 3 heads, and outputs prediction ŷi := [h̃x

i ]D+1 where
|ŷi − ⟨Φ⋆(xi), ŵ

Φ⋆,λ
i ⟩| ≤ ε, where ŵΦ⋆,λ

i is the (Φ⋆-Ridge) predictor.

Claim (4) can be seen by concatenating the (L+1)-layer MLP module with the first layer in the ridge
regression module (Theorem B.5), which copies the Φ⋆(xi) in each x token to the same location in
the succeeding y token.

Further, the hidden dimension requirements are Dhid ≥ max {2D,D + d+ 10} for the first module
and Dhid ≥ 2D + 10 for the second module, which is satisfied at our precondition Dhid = 2D +
d+ 10. This finishes the proof.

C PROOFS FOR SECTION 4.2

Recall our input format (6) for the dynamical system setting:

H :=

[
x1 . . . xN

p1 . . . pN

]
∈ RDhid×N ,

our choice of the positional encoding vectors pi = [0Dhid−d−4; 1; i; i
2; i3] for all i ∈ [N ], and that

we understand xi := 0 for all i ≤ 0.

18
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C.1 USEFUL TRANSFORMER CONSTRUCTIONS

Lemma C.1 (Copying for dynamical systems). Suppose Dhid ≥ kd + 4. For any k ∈ [N ], there
exists a (k + 1)-head attention layer θ = {(Qm,Km,Vm)}m∈[k+1] ⊂ RDhid×Dhid such that for
every input H of the form (6), we have

H̃ = Attnθ(H) =

x1−k+1 . . . xi−k+1 . . . xN−k+1

| | |
x1 . . . xi . . . xN

p1 . . . pi . . . pN

 ∈ RDhid×N , (21)

where pi only differs from pi in the dimension of the zero paddings. In words, Attnθ copies the
k − 1 previous tokens [xi−k+1; . . . ;xi−1] onto the i-th token.

Proof. For every k′ ∈ [k], we define an attention head (Qk′ ,Kk′ ,Vk′) ⊂ RDhid×Dhid such that for
all j ≤ i ∈ [N ],

Qk′hi = [i3; i2; i;0Dhid−3],

Kk′hj = [−1; 2j + 2(k′ − 1);−j2 + 2(k′ − 1)j + 1− (k′ − 1′)2;0Dhid−3],

Vk′hj = [0(k−k′)D;xj ;0].

Note that

σ(⟨Qk′hi,Kk′hj⟩) = σ
(
−i3 + 2i2j + 2(k′ − 1)i2 − ij2 + 2ij(k′ − 1) + i− i(k′ − 1)2

)
= iσ

(
1− (j − i+ k′ − 1)2

)
= i1{j = i− k′ + 1}.

Therefore, at output token i ∈ [N ], this attention head gives

1

i

i∑
j=1

σ(⟨Qk′hi,Kk′hj⟩)Vk′hj =
1

i
· i ·Vk′hi−k′+1 = [0(k−k′)D;xi−k′+1;0]

when i − k′ + 1 ≥ 1, and zero otherwise. Combining all k heads, and defining one more head
(Qk+1,Kk+1,Vk+1) to “remove” xi at its original location (similar as in the proof of Lemma B.3),
we have

k+1∑
m=1

1

i

i∑
j=1

σ(⟨Qk′hi,Kk′hj⟩)Vk′hj =


xi−k+1 − xi

xi−(k−1)+1

|
xi

0

 .

By the residual structure of an attention layer, we have

[Attnθ(H)]i =

[
xi

pi

]
+


xi−k+1 − xi

xi−(k−1)+1

|
xi

0

 =


xi−k+1

xi−(k−1)+1

|
xi

pi

 .

(The precondition Dhid ≥ D+4 guarantees that the x entries would not interfere with the non-zero
entries within pi.) This is the desired result.

Lemma C.2 (Implementing MLP representation for dynamical systems). Fix any MLP representa-
tion function Φ⋆ : Rkd → RD of the form (3), suppose Dhid ≥ 2(k + 1)d + 3D + 2d + 5. Then
there exists a module MLP-(Attention-MLP-. . . -Attention-MLP) with L+1 (Attention-MLP) blocks
(i.e. transformer layers) and 5 heads in each attention layer (this is equivalent to an (L + 2)-layer
transformer without the initial attention layer) that implements Φ⋆ in the following fashion: For any
input H of form

H =

[
x1 . . . xN

p1 . . . pN

]
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where we recall xi = [xi−k+1; . . . ;xi] ∈ Rkd, the following holds. The first MLP layer outputs

MLP(1)(H) =

[
σρ(B

⋆
1x1) . . . σρ(B

⋆
1xi)

x1 . . . xi

p′
1 . . . p′

i

]
.

The full transformer outputs

H̃ = TFθ(H) =


Φ⋆(x1) Φ⋆(x2) . . . Φ⋆(xi)
0d 0d . . . 0d

0D Φ⋆(x1) . . . Φ⋆(xi−1)
x1 x2 . . . xi

p̃1 p̃2 . . . p̃i

 . (22)

where p̃i, p̃i differs from pi,pi only in the dimension of their zero paddings.

Proof. We first construct the first MLP layer. Consider any input token hi = [xi;pi]. Define
matrices W1,W2 ∈ RDhid×Dhid such that (below ±u := [u;−u])

W1hi =

±B
⋆
1xi

±xi

±xi

0

 , σ(W1hi) =

σ(±B
⋆
1xi)

σ(±xi)
σ(±xi)

0

 ,

W2σ(W1hi) =

[
σ(B⋆

1xi)− ρσ(−B⋆
1xi)

0

]
+

[
−σ(xi) + σ(−xi)

0

]
+

[
0D

σ(xi)− σ(−xi)
0

]
.

Therefore, the MLP layer (W1,W2) outputs

hi := [MLPW1,W2(H)]i = hi +W2σ(W1hi) =

[
σρ(B

⋆
1xi)

xi

pi

]
. (23)

The requirement for Dhid above is Dhid ≥ max {2D + 2(k + 1)d,D + d+ 5}.
The rest of the proof follows by repeating the proof of Lemma B.3 (skipping the first (MLP-
Attention) block), with the following modifications:

• Save the xi ∈ xi location within each token, and move it into the (2D+ d+1 : 2D+2d) block
in the final layer (instead of moving the label yi in Lemma B.3); this takes the same number (at
most 2) of attention heads in every layer, same as in Lemma B.3.

• Append one more copying layer with a single attention head (similar as the construction
in Lemma C.1) to copy each Φ⋆(xi) to the (D + d+ 1 : 2D + d) block of the next token.

The above module has structure (L − 1)×(MLP-Attention), followed by a single attention layer
which can be rewritten as an MLP-Attention-MLP module with identity MLP layers. Alto-
gether, the module has an MLP-L×(Attention-MLP) structure. The max number of atten-
tion heads within the above module is 5. The required hidden dimension here is Dhid ≥
max {kd+ 4, 2D + d+max {D, d}+ 5}, with Dhid ≥ max {kd, 3D + 2d}+5 being a sufficient
condition.

Combining the above two parts, a sufficient condition for Dhid is Dhid ≥ 2(k+1)d+3D+2d+5,
as assumed in the precondition. This finishes the proof.

Consider the following multi-output ridge regression problem:

Ŵλ
i := argmin

W∈RD×d

1

2(i− 1)

i−1∑
j=1

∥∥W⊤xj − yj

∥∥2
2
+

λ

2
∥W∥2Fr . (24)
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Theorem C.3 (In-context multi-output ridge regression with alternative input structure). For any
λ ≥ 0, Bx, Bw, By > 0 with κ := 1 + B2

x/λ, and ε < BxBw/2, let Dhid ≥ Dd+ 2(D + d) + 5,
then there exists an L-layer transformer TFθ with M = 3d heads and hidden dimension Dhid,
where

L = O(κ log(BxBw/(ε))) (25)

such that the following holds. On any input matrix

H =


x1 x2 . . . xN

0d 0d . . . 0d

0D x1 . . . xN−1

0d y1 . . . yN−1

p1 p2 . . . pN


(where xi ∈ RD, yi ∈ Rd) such that problem (24) has bounded inputs and solution: for all i ∈ [N ]

∥xi∥2 ≤ Bx, ∥yi∥∞ ≤ By, ∥Ŵλ
i ∥2,∞ ≤ Bw/2, (26)

TFθ approximately implements the ridge regression algorithm (24) at every token i ∈ [N ]: The
prediction ŷi := [TFθ(H)](D+1):(D+d),i satisfies∥∥∥ŷi − (Ŵλ

i )
⊤xi

∥∥∥
∞
≤ ε. (27)

Proof. Observe that the multi-output ridge regression problem (24) is equivalent to d separable
single-output ridge regression problems, one for each output dimension. Therefore, the proof fol-
lows by directly repeating the same analysis as in Theorem B.5, with the adaptation that

• Omit the copying layer since each token already admits the previous (input, label) pair;

• Use a O(κ log(BxBw/(ε)))-layer transformer with 3d heads to perform d parallel ridge regres-
sion problems (each with 3 heads), using in-context gradient descent (Proposition B.4) as the
internal optimization algorithm, and with slightly different input structures that can be still ac-
commodated by using relu to implement the indicators. Further, by the precondition (26) and
Dhid − 2(D + d)− 5 ≥ Dd, we have enough empty space to store the Wt

i ∈ RD×d within the
zero-paddings in pi.

• Use a single-attention layer with d parallel linear prediction heads (Lemma B.2), one for each
j ∈ [d], to write prediction (ŷi)j into location (i,D + j) with |(ŷi)j − ⟨(Ŵλ

i )j ,xi⟩| ≤ ε.
Therefore, ∥∥∥ŷi − (Ŵλ

i )
⊤xi

∥∥∥
∞

= max
j∈[d]

∣∣∣(ŷi)j −
〈
(Ŵλ

i )j ,xi

〉∣∣∣ ≤ ε.

This finishes the proof.

C.2 PROOF OF THEOREM 2

Proof of Theorem 2. The proof is similar as that of Theorem 1. The result follows directly by con-
catenating the following three transformer modules:

• The copying layer in Lemma C.1, which transforms the input to format (21), and thus verifies
claim (7).

• The MLP representation module in Lemma C.2, which transforms (21) to (22). Together with
the above single attention layer, the module is now an (L + 1)-layer transformer with 5 heads.
Claim (8) follows by the intermediate output (23) within the proof of Lemma C.2.

• The in-context multi-output ridge regression construction in Theorem C.3 (with inputs be-
ing {Φ⋆(xi)} and labels being {xi+1}). This TF has O(κ log(BΦBw/ε)) layers, and 3d

heads. It takes in input of format (22), and outputs prediction ŷi := [h̃i]D+1:D+d where
∥ŷi − (ŴΦ⋆,λ

i )⊤Φ⋆(xi)∥∞ ≤ ε, where ŴΦ⋆,λ
i is the (Φ⋆-Ridge-Dyn) predictor.

21



Published as a conference paper at ICLR 2024

The resulting transformer has max {3d, 5} heads, and the hidden dimension requirement is Dhid ≥
max {kd+ 5, 2(k + 1)d+ 3D + 2d+ 5, Dd+ 2(D + d) + 5}. A sufficient condition is Dhid =
max {2(k + 1), D}d+ 3(D + d) + 5, as assumed in the precondition. This finishes the proof.

D DETAILS FOR EXPERIMENTS

Architecture and training details We train a 12-layer decoder model in GPT-2 family with 8
heads and hidden dimension Dhid = 256, with positional encoding. We use linear read-in and
read-out layer before and after the transformers respectively, both applying a same affine trans-
form to all tokens in the sequence and are trainable. The read-in layer maps any input vector to a
Dhid-dimensional hidden state, and the read-out layer maps a Dhid-dimensional hidden state to a
1-dimensional scalar for model (2) and to a d-dimensional scalar for model (5).

Under the in-context learning with representation setting, we first generate and fix the represen-
tation Φ⋆. For a single ICL instance, We generate new coefficients w and N training examples
{(xi, yi)}i∈[N ] and test input (xN+1, yN+1). Before feeding into transformer, we re-format the
sequence to HICL−rep, as shown in equation (28).

HICL−rep =

[
x1,

[
y1

0d−1

]
, . . . ,xN ,

[
yN
0d−1

]]
∈ Rd×2N (28)

We use the use the Adam optimizer with a fixed learning rate 10−4, which works well for all ex-
periments. We train the model for 300K steps, where each step consists of a (fresh) minibatch with
batch size 64 for single representation experiments, except for the mixture settings in Appendix E
where we train for 150K iterations, each containing K batches one for each task.

Under ICL dynamic system setting, for a single ICL instance, we don’t need to reformat the input
sequence. We feed the original sequence HDynamic = [x1, . . . ,xN ] ∈ Rd×N to transformer.

Generating representations: Denote the column-wise orthogonal matrices with size r×s (r ≥ s)
as O(r, s). We sample Unif[O(r, s)] through generating an r × r matrix, getting its QR decompo-
sition, then taking the first s columns of the Q matrix. To generate L layers MLP with hidden
dimension D. We first generate L weight matrices Bℓ, ℓ = 1, . . . , L, with B1 ∼ Unif[O(d,D)] (if
d < D, we sample B⊤

1 ∼ Unif[O(d,D)]) and the rest independently from Unif[O(D,D)]. After
calculating MLP(x), we self-normalize it with ∥MLP(x)∥2.

All our plots show one-standard-deviation error bars, though some of those are not too visible.

D.1 DETAILS FOR LINEAR PROBING

Denote the ℓ−th hidden state of transformers as

H(ℓ) =
[
h
x,(ℓ)
1 ,h

y,(ℓ)
1 , . . . ,h

x,(ℓ)
N ,h

y,(ℓ)
N

]
∈ RDhid,2N for ℓ ∈ [12].

Denote the probing target as g({xj , yj}j∈[i]) ∈ Rdprobe for i ∈ [N ]. Denote the linear probing
parameter as wx,(ℓ) and wy,(ℓ) that belong to RDhid×dprobe . Denote the best linear probing model as

w
x,(ℓ)
⋆ = argmin

wx,(ℓ)

E
[ N∑

i=1

{(
wx,ℓ

)⊤
h
x,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
and

w
y,(ℓ)
⋆ = min

wy,(ℓ)
E
[ N∑

i=1

{(
wy,ℓ

)⊤
h
y,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
.

To find them, we generate 2560 ICL input sequences with length N , and obtain 12 hidden states
for each input sequences. We leave 256 sequences as test sample and use the remaining samples to
estimate w

x,(ℓ)
⋆ and w

y,(ℓ)
⋆ for each ℓ with ordinary least squares. We use the mean squared error to

measure the probe errors. In specific, define

Probe Errorx,(ℓ)i (g) = E
[{(

wx,ℓ
⋆

)⊤
h
x,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
with
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Probe Errorx,(ℓ)(g) =
1

N

N∑
i=1

Probe Errorx,(ℓ)i (g), and

Probe Errory,(ℓ)i (g) = E
[{(

wx,ℓ
⋆

)⊤
h
x,(ℓ)
i − g

(
{xj , yj}j∈[i]

)}2]
with

Probe Errory,(ℓ)(g) =
1

N

N∑
i=1

Probe Errory,(ℓ)i (g).

When ℓ = 0, we let hx,(0)
i = h

y,(0)
i = xi as a control to the probe errors in the hidden layer.

We normalize each probe error with E[∥g(x, y)∥22]/dprobe. We use the 256 leaved-out samples to
estimate these errors. We replicate the above procedure for three times and take their mean to get
the final probe errors.

D.2 DETAILS FOR PASTING

From the single fixed representation settings above, we pick a trained transformer trained on the
representation with D = d = 20 to avoid dimension mismatch between Φ⋆(x) and x. We choose
L = 3 and noise level σ = 0.1.

We change the data generating procedure of y from Equation (2) to

yi = ⟨w,xi⟩+ σzi, i ∈ [N ], (29)

which corresponds to a linear-ICL task. According to the results of probing Fig 3a, we conjecture
that transformer use the first 4 layers to recover the representation, and implement in-context learn-
ing through the 5-th to the last layers. Therefore, we extract the 5 − 12 layers as the transformer
upper layers. Then paste them with three kinds of embeddings:

1. Linear embedding W ∈ RDhid×(D+1) with re-formatted input HLinear:

HLinear =

[[
x1

0

]
,

[
0D

y1

]
, . . . ,

[
xN

0

]
,

[
0D

yN

]]
∈ RD+1×2N

2. Linear copy embedding W ∈ RDhid×(D+1) with re-formatted input Hcopy that copies xi to yi
tokens in advance:

Hcopy =

[[
x1

0

]
,

[
x1

y1

]
, . . . ,

[
xN

0

]
,

[
xN

yN

]]
∈ RD+1×2N

3. Transformer embedding TF using the same input format HICL−rep with normal settings, as
shown in (28). We extract the 4-th layer of the GPT-2 model, its a complete transformer
block with trainable layer norm. We use a linear read-in matrix to map HICL−rep to the Dhid-
dimension hidden state, apply one block of transformer to it to get the TF embedding H =
TF(H).

We apply the upper layers to the three embeddings, then use the original read-out matrix to get the
prediction of ŷi. For comparison, we also train a one-layer transformer using the input sequence
HICL−rep.

We use the same training objective as in (10). In the retraining process, we switch to task (29),
fix the parameters of upper layers of the transformer, and only retrain the embedding model. The
training methods are exact the same with the original transformer. We also find that using a random
initialized transformer block or extracting the 4-th layer of the transformer don’t make difference to
the results.

D.3 DIFFICULTY OF LINEAR ICL WITH A SINGLE-LAYER TRANSFORMER WITH SPECIFIC
INPUT FORMAT

Recall the input format (1):

H =

[
x1 0 . . . xN 0
0 y1 . . . 0 yN
px
1 py

1 . . . px
N py

N

]
∈ RDhid×2N .
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Here we heuristically argue that a single attention layer alone (the only part in a single-layer trans-
former that handles interaction across tokens) is unlikely to achieve good linear ICL performance
on input format (1).

Consider a single attention head (Q,K,V). As we wish the transformer to do ICL prediction at
every token, the linear estimator wi used to predict ŷi is likely best stored in the xi token (the only
token that can attend to all past data Di−1 and the current input xi). In this case, the attention layer
needs to use the following (key, value) vectors to compute a good estimator wi from the data Di−1:

{Vhx
j ,Vhx

j }j∈[i]
, {Vhy

j ,Vhy
j}j∈[i−1]

.

However (apart from position information), hx
j only contains xj , and hy

j only contains yj . Therefore,
using the normalized ReLU activation as in Appendix B & C.2, it is unlikely that an attention layer
can implement even simple ICL algorithms such as one step of gradient descent (von Oswald et al.,
2022; Akyürek et al., 2022):

wi = w0
i − η

1

i− 1

∑
j≤i−1

(〈
w0

i ,xj

〉
− yj

)
xj ,

which (importantly) involves term−yjxj that is unlikely to be implementable by the above attention,
where each attention head at each key token can observe either xj or yj but not both.

D.4 REPRODUCIBILITY

Code for our experiments is provided at the following anonymous link4.

E EXPERIMENTS ON MIXTURE OF MULTIPLE REPRESENTATIONS

We train transformers on a mixture of multiple ICL tasks, where each task admits a different rep-
resentation function. This setting is a representation selection problem similar as the “algorithm
selection” setting of Bai et al. (2023). In specific, let K ≥ 2 denote the number of tasks. Given j,
let

yi =
〈
w,Φ⋆

j (xi)
〉
+ σzi, zi ∼ N(0, 1), i ∈ [N ], where

Φ⋆
j (x) = σ⋆

(
B

⋆,(j)
L σ⋆,(j)

(
B⋆

L−1 · · ·σ⋆,(j)
(
B

⋆,(j)
1 x

)
· · ·

))
, B

⋆,(j)
1 ∈ RD×d, (B

⋆,(j)
ℓ )Lℓ=2 ⊂ RD×D.

The distributions for w, {xi}i∈[N ], and {B⋆,(j)
L } are same with previous setting. We generate dif-

ferent Φ⋆
j for j ∈ [K] independently. We choose K ∈ {3, 6}, σ ∈ {0, 0.1, 0.5}, L = 3, and noise

σ ∈ {0, 0.1, 0.5}.
At each training step, we generate K independent minibatches, with the j−th minimatch takes the
representation Φ⋆

j to generate {yi}i∈[N ]. Due to multiple minibatches, we shorten the number of
total training steps to 150K. The other training details are the same with fixed single representation
setting.

ICL performance We choose one representation Φ⋆
1 from the representations that transformers

are trained on. Figure 6a & Figure 6b report the test risk. We vary K ∈ {3, 6} and noise level
σ ∈ {0.1, 0.5}. We consider two baseline models.

1. The Bayes optimal algorithm: Note that the training distribution follows the Bayesian hierar-
chical model:
j ∼ Unif([K]), xi ∼ N(0, Id), w ∼ N(0, τ2Id), and yi | xi, j,w ∼ N(⟨w,xi⟩ , σ2).

This gives the Bayes optimal predictor

ŷi =

K∑
j=1

η
(j)
i ŷ

(j)
i , with (. . . , η

(j)
i , . . .) = SOFTMAX

{[
. . . ,

i∑
k=1

(yk − ŷ
(j)
k )2/σ2, . . .

]}
(30)

with ŷ
(j)
i being ridge predictor with optimal λ based on

{(
Φ⋆

j (xr), yr
)}

r∈[i−1]
.

4https://anonymous.4open.science/r/tf-rep-icl
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(a) Risk for K = 3
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(b) Risk for K = 6
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Figure 6: ICL risks for multiple representations setting. Dotted lines plot two baseline risks. (a) The
transformer with lower risks is trained with (K,L,D, σ) = (3, 3, 20, 0.1). The upper one is trained with
(K,L,D, σ) = (3, 3, 20, 0.5). (b) The two transformers are trained with K = 6 and same settings otherwise.

2. The oracle ridge algorithm: We use the ridge predictor ŷ(1)i based on {(Φ⋆
1(xr), yr)}r∈[i−1],

which is the representation for test distribution. Note that this is an (improper) algorithm that
relies on knowledge of the ground truth task.

Comparable to those trained on single fixed representation, transformers consistently match the
Bayes-optimal ridge predictor. As expected, the oracle ridge algorithm is better than transform-
ers and the Bayes optimal algorithm and transformers. Increasing number of tasks K can slightly
increase this gap. Increasing the noise level has the same effect on transformers and baseline algo-
rithms.
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Figure 7: Probing errors for transformer trained with (K,L,D, σ) = (3, 3, 20, 0.1). Dotted lines plot probing
errors on y tokens.
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Figure 8: Probing errors for transformer trained with σ = 0.5

Probe setup: Similar to single fixed representation setting, we conduct linear probing experi-
ments. We are wondering transformer implements the ICL-learning on representations with algo-
rithm selections mechanism. We identify three sets of probing targets: Φ⋆(xi), ŷ(j) and η

(j)
i . All

of them are intermediate values to compute the Bayes optimal estimator (30). We generate different
data for different probing targets:
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1. To probe Φ⋆(xi) and ŷ(j) for each j, we choose one from the representations that transformers
are trained on, then train and test our linear probing model. This is the same with the training
and testing methods for probing transformers trained on a single representation.

2. To probe choose concatenated probing targets Yi = [ŷ
(1)
i , . . . , ŷ

(K)
i ] and Bi =

[η
(1)
i , . . . , η

(K)
i ], we generate 2560 in-context sequences for each representation, and obtain

2560 × K samples together. We use ordinary linear square on 2560 × K − 256 samples to
get the linear probing models. Then test them on the remaining 256 samples to get the probing
errors. We also repeat this process for three times and take means to get the final probing errors.

Probe representations: Take the transformer trained on K = 3 mixture representations with
noise level σ ∈ {0.1, 0.5}. Figure 7 show the probing errors for σ = 0.1: Figure 7a reports the
errors of probing Φ⋆

j j ∈ [3], with probing models trained on task Φ⋆
1. Echoing the results for

transformers trained on single representation, the probing errors for each representations decrease
through lower layers and increase through upper layers on x tokens. The probing errors on y tokens
drop after x tokens, which suggests a copy mechanism. Surprisingly, on x-tokens, the probing
errors for all representations attain their minimum at the 3-th layer, with transformers trained on
single representation achieving their minimum on 4-th layer (compare with Figure 3a).

More importantly, for both x and y tokens, the probing errors for each representation are similar
through lower layers, but the probing errors for the true representation Φ⋆

1 become the lowest through
the upper layers. The gap between the probing errors increases. At the last layer, the probing error
for the other representations go up to match the initial input.

Probe intermediate values for computing Bayes optimal predictor: Figure 7b shows the prob-
ing errors for concatenated ridge predictors ŷ

(j)
i and Bayes weights η

(j)
i , i.e., Yi and Bi. The

probing errors for Yi start dropping at the 4−th layer, which suggest that transformer are imple-
menting ICL using each representations. Probing errors for Bi have a sudden drop at the 10−th
layer. Figure 7c shows the probing errors for probing ŷ

(j)
i . At (j, k)-th cell, we show the probing

error of ŷ
(j)
i with probing models trained on Φ⋆

k at the x tokens of the last layer. The diagonal
elements are much smaller than others. The results combined together suggest the possibility that
transformer implements in-context learning with three representations and selects one at the 10−th
layer.

In comparison, Figure 8 shows results of probing the same targets for transformer under σ = 0.5.
Figure 8a differs with Figure 7b at upper layers, where probing errors for different representations
don’t have significant differences. Figure 8b is close to Figure 7b, also suggesting the algorithm
selection mechanism. Figure 8c shows that the last layer encodes the information of all ridge pre-
dictors

{
ŷ
(j)
i

}
, which is drastically different from the results in Figure 7c.

Conjecture on two different algorithm selection mechanisms: Based on the empirical findings,
we conjecture two possible mechanisms of algorithm selection in transformer: (1) For small noise
level data, transformers implement “concurrent-ICL algorithm selection”, which means they concur-
rently implement ICL with algorithm selection. They wouldn’t finish algorithms that are not have
good performances. (2) For large noise level data, transformers implement “post-ICL algorithm se-
lection”, which means they would finish each algorithm. Then they select and output the best one.
However, we need further experimental and theoretical work to inspect this conjecture.

F ABLATIONS

F.1 SUPERVISED LEARNING WITH REPRESENTATION

Probing results along training trajectory Figure 9a, Figure 9b, and Figure 9c show the probing
error for Φ⋆(xi) at x and y tokens and ŷΦ

⋆ridge at x tokens. As expected, all probe errors reduce
through training steps, showing that the progress of learning Φ⋆ is consistent with the progress of the
training loss. At the 2000 training steps, transformer cannot recover the representation. At the 5000
training steps, the transformer starts memorizing the representation, starting showing differences
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between lower and upper layers. From 5000 training steps to 10000, the trend of probe errors
varying with layers remains the same.

(a) 2000 training steps
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(b) 5000 training steps

0 2 4 6 8 10 12
layer

10−1

m
ea

n 
sq

ua
re

d 
er

ro
r

Φ ⋆ (xi) at x tokens
Φ ⋆ (xi) at y tokens
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(c) 10000 training steps
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Figure 9: Probing errors for transformer trained after 2000, 5000, and 10000 steps. All three plots are for the
training run on (L,D, σ) = (2, 10, 0.1).

Additional results for probing and pasting Figure 10a plots the same probing errors as in Figure
3a with (L,D, σ) = (3, 20, 0.1) (the green line there), except that we separate the errors of the
first 4 tokens with the rest (token 5-41), but the probing training remains the same (pooled across
all tokens). We observe that lower layers compute the representation in pretty much the same ways,
though later layers forget the representations more for the beginning tokens (1-4) than the rest tokens.

Figure 10b plots the same pasting experiment as in Figure 4b, except that for noise level σ = 0.5 as
opposed to σ = 0.1 therein. The message is mostly the same as in Figure 4b.

(a) Probe errors per token
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(b) Pasting experiment
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Figure 10: (a) Probing errors of Φ⋆(xi) in xi tokens evaluated per-token. (b) Pasting results for the upper
module of a trained transformer in setting (L,D, σ) = (3, 20, 0.5).

F.2 DYNAMICAL SYSTEMS

Risk Figure 11 gives ablation studies for the ICL risk in the dynamical systems setting in Sec-
tion 4.2. In all settings, the trained transformer achieves nearly Bayes-optimal risk. Note that the
noise appears to have a larger effect than the hidden dimension, or the number of input tokens.

(a) Varying noise level
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(b) Varying rep hidden dim.
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(c) Varying number of input tokens
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Figure 11: Ablation studies for the risk for Risk for fixed rep setting. Each plot modifies a single problem
parameter from the base setting (k, L,D, σ) = (3, 2, 20, 0.1).
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Probing Figure 12a & 12b gives ablation studies for the probing errors in the dynamical systems
setting in Section 4.2, with D = 20 instead of D = 80 as in Figure 5b & 5c. The message is largely
similar except that in Figure 12a, all past inputs and intermediate steps in Φ⋆(xi) are simultaneously
best implemented after layer 4.

(a) Probe past inputs at xi tokens
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(b) Probe Φ⋆(xi−j) at xi tokens
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Figure 12: Ablation study for the probing errors in the dynamics setting. Here (k, L,D, σ) = (3, 2, 20, 0.5),
different from Figure 5 where D = 80.

F.3 REPRESENTATION FUNCTIONS WITH HIGHER COMPLEXITY OR ALTERNATIVE
STRUCTURES

Here we provide additional experiments when the representation function Φ⋆ has a higher complex-
ity or alternative structures (such as the nonlinearity σ⋆) from the ones in the main text.

We consider three scenarios for representations: 1. deep MLPs with D = 20, L ∈ {8, 12, 16} and
σ = 0.1; 2. wide MLPs with D ∈ {100, 200, 300}, L = 20 and σ = 0.1; 3. entry-wise nonlinear
functions, where we replace MLP with entry-wise square, exponential, square leaky ReLU, and
exponential leaky ReLU functions.

Figure 13 shows their risk curves. Both deep MLPs and other nonlinear functions match the optimal
ridge regression. For wide MLPs, TF has slightly higher risk than optimal ridge regression. The risk
curve of D = 100 is the lowest, with the other two on top of each other. Figure 14 shows probing
error for deep MLPs. It seems that transformers would stop implement representations at the 7-th
layer, with linear-ICL algorithm starts from 8-th layer.

Figure 15 shows the result of wide MLPs, we find that transformer needs one extra layer to get
the representations if D = 300, which is wider than GPT2. Figure 16 shows for other entry-wise
nonlinear functions. Transformer can get the representation within the first two layers, with copying
happens in 4-th to 6-th layers. The gradient descent happens thereafter.

(a) Deep MLPs
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(b) Wide MLPs
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(c) Other Functions
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Figure 13: Test ICL risk for learning with complex representations. From left to right: deep MLPs, wide
MLPs, nonlinear functions.

28



Published as a conference paper at ICLR 2024

(a) Probe Φ⋆(xi) at xi-tokens
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(b) Probe Φ⋆(xi) at yi-tokens
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Figure 14: Probe Φ⋆(xi) and ŷΦ⋆,λ
i at xi and yi tokens with deep MLPs. We normalize the probing error,

making the error at 0−th layer to be 1.

(a) Probe Φ⋆(xi) at xi-tokens
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(b) Probe Φ⋆(xi) at yi-tokens
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i at xi tokens

0 2 4 6 8 10 12
layer

10−1

100 D=100
D=200
D=300

Figure 15: Probe Φ⋆(xi) and ŷΦ⋆,λ
i at xi and yi tokens with wide MLPs. We normalize the probing error,

making the error at 0−th layer to be 1.

(a) Probe Φ⋆(xi) at xi-tokens
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(b) Probe Φ⋆(xi) at yi-tokens
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Figure 16: Probe Φ⋆(xi) and ŷΦ⋆,λ
i at xi and yi tokens with other non-linear functions. We normalize the

probing error, making the error at 0−th layer to be 1.
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