
Mind the Uncertainty: Risk-Aware and Actively
Exploring Model-Based Reinforcement Learning

Marin Vlastelica*,1, Sebastian Blaes*,1, Cristina Pineri1, and Georg Martius1,2

1Max Planck Institute for Intelligent Systems, Tübingen, Germany
2University of Tübingen, Tübingen, Germany

Abstract

We introduce a simple but effective method for managing risk in model-based
reinforcement learning with trajectory sampling that involves probabilistic safety
constraints and balancing of optimism in the face of epistemic uncertainty and
pessimism in the face of aleatoric uncertainty of an ensemble of stochastic neural
networks. Various experiments indicate that the separation of uncertainties is
essential to performing well with data-driven MPC approaches in uncertain and
safety-critical control environments.

1 Introduction

Data-driven approaches to sequential decision-making are becoming increasingly popular [Yang
et al., 2019, Hussein et al., 2017, Polydoros and Nalpantidis, 2017, Schrittwieser et al., 2020]. They
hold the promise of reducing the number of prior assumptions about the system that are imposed by
traditional approaches that are based on nominal models.

Such approaches come in several different flavors [Kober et al., 2013]. Model-free approaches attempt
to extract closed-loop control policies directly from data, while model-based approaches rely on a
learned model of the dynamics to either generate novel data to extract a policy or to be used in a
model-predictive control fashion (MPC). This study belongs to the latter line of work.

Model-based methods have several advantages over pure model-free approaches. Firstly, humans
tend to have a better intuition on how to incorporate prior knowledge into a model rather than into a
policy or value function. Secondly, most model-free policies are bounded to a specific task, while
models are task-agnostic and can be applied for optimizing arbitrary cost functions, given sufficient
exploration.

Nevertheless, learning models for control come with certain caveats. Traditional MPC methods
require the model and cost function to permit a closed-form solution which restricts the function class
prohibitively. Alternatively, gradient-based iterative optimization can be employed, which allows for
a larger class of functions but typically fails to yield satisfactory solutions for complicated function
approximators such as deep neural network models. In addition, calculating first-order or even
second-order information for trajectory optimization tends to be computationally costly, which makes
it hard to meet the time constraints of real-world settings. This motivates the usage of zero-order, i.e
gradient-free or sample-based methods, such as the Cross-entropy Method (CEM) that do not rely on
gradient information but are efficiently parallelizable.

Many methods relying on a learned model and zero-order trajectory optimizers have been proposed
[Chua et al., 2018, Wang and Ba, 2020, Williams et al., 2015], but all share the same problem:
compounding of errors through auto-regressive model prediction. This naturally brings us to the
question of how can we effectively manage model errors and uncertainty to be more data-efficient
and safe. Arguably, this is one of the main obstacles to applying data-driven model-based methods to
the real world, e.g. to robotics settings.

16th European Workshop on Reinforcement Learning (EWRL 2023).

(a) Noisy-FetchPickAndPlace (b) Solo8-LeanOverObject (c) BridgeMaze

Figure 1: Environments considered for uncertainty-aware planning.

In this work, we introduce a risk-averse zero-order trajectory optimization method (RAZER) for
managing errors and uncertainty in zero-order MPC and test it on challenging scenarios (Fig. 1). We
argue that it is essential to differentiate between the two types of uncertainty in the model-predictive
setting: the aleatoric uncertainty arising from inherent noise in the system and epistemic uncertainty
arising from the lack of knowledge [Hora, 1996, Kiureghian and Ditlevsen, 2009]. We measure these
uncertainties by making use of probabilistic ensembles with trajectory sampling [Chua et al., 2018]
(PETS). Our contributions can be summarized as follows: (i) method for separation of uncertainties
in probabilistic ensembles (termed PETSUS); (ii) efficient use of aleatoric and epistemic uncertainty
in model-based zero-order trajectory optimizers; (iii) an simple but practical approach to probabilistic
safety constraints in zero-order MPC.

2 Related Work

Uncertainty Estimation. In the typical model-based reinforcement learning (MBRL) setting, the
true transition dynamics function is modeled through an approximator. Impressive results have been
achieved by both parametric models [Lenz et al., 2015, Fu et al., 2016, Gal et al., 2016, Hafner et al.,
2019], such as neural networks, and nonparametric models [Kocijan et al., 2004, Nguyen-Tuong
et al., 2008, Grancharova et al., 2008, Deisenroth et al., 2013], such as Gaussian Processes (GP).
The latter inspired seminal work on the incorporation of the dynamics model’s uncertainty for long-
term planning [Deisenroth et al., 2013, Kamthe and Deisenroth, 2018]. However, their usability is
limited to low-data, low-dimensional regimes with smooth dynamics [Rasmussen and Kuss, 2003,
Rasmussen and Williams, 2006], which is not ideal for robotics applications. Alternative parametric
approaches include ensembling of deep neural networks, used both in the MBRL community [Chua
et al., 2018, Kurutach et al., 2018], and outside [Osband et al., 2016, Lakshminarayanan et al., 2017].
In particular, ensembles of probabilistic neural networks established state-of-the-art results in the
MBRL community [Chua et al., 2018], but focus mainly on estimating the expected cost and disregard
the underlying uncertainties. In comparison, we propose a treatment of the resulting uncertainties of
the ensemble model.

Zero-order MPC. The learned model can be used for policy search like in PILCO [Deisenroth
and Rasmussen, 2011, Deisenroth et al., 2013, Kamthe and Deisenroth, 2018, Curi et al., 2020]
or for online model-predictive control (MPC) [Morari and Lee, 1999, Williams et al., 2017, Chua
et al., 2018]. In this work, we do planning in an MPC fashion and employ a zero-order method as a
trajectory optimizer, since less sensitive to hyperparameter tuning and less likely to get stuck in local
minima of complex objective functions. Specifically, we consider a sample-efficient implementation
of the Cross-Entropy method [Rubinstein and Davidson, 1999, Botev et al., 2013] introduced in
[Pinneri et al., 2020].

Safe MPC. Separating the sources of uncertainty is of particular importance for AI applications
directly affecting humans’ safety, as self-driving cars, elderly care systems, or in general any applica-
tion that involves a physical interaction between the AI system and humans. Disentangling epistemic
from aleatoric uncertainty allows for separate optimization of the two, as they represent semantically
different objectives: efficient exploration and risk-awareness. Extensive research on uncertainty
decomposition has been done in the Bayesian setting and the context of safe policy search [Mihatsch
and Neuneier, 2002, Garcıa and Fernández, 2015, Depeweg et al., 2017, 2018], MPC planning
[Arruda et al., 2017, Lee et al., 2020, Abraham et al., 2020], and distributional RL [Clements et al.,

2

2020, Zhang and Weng, 2021]. On the other side, a state-of-the-art baseline for ensemble learning like
PETS [Chua et al., 2018], despite estimating both uncertainties, only optimizes for the expected cost
during action evaluation. Our work aims at filling this gap by explicitly integrating the propagated
uncertainty information in the zero-order MPC planner.

3 Method
Our approach concerns itself with the efficient usage of uncertainties in zero-order trajectory opti-
mization and is therefore generally applicable to such optimizers. We are interested in modeling noisy
system dynamics xt+1 = f(xt, ut, w(xt, ut)) where f is a nonlinear function, xt the observation
vector, ut applied control input and w(xt, ut) a noise term sampled from an arbitrary distribution.

Consequently, in the absence of prior knowledge about the function f , the system needs to be
modeled by a complex function approximator such as a neural network. Furthermore, we are
interested in managing uncertainties based on our fitted model, which is erroneous. To this end, we
use stochastic ensembles of size K, where the output of each model ϑk(xt, ut) are parameters of
a normal distribution depending on input observation xt and control ut. As a by-product, our auto-
regressive model prediction based on controls u becomes a predictive distribution over trajectories
τ ; ψτ (xt,u) := p(τ |xt,u; θ) where θ denotes the parameters of the ensemble. For convenience,
from this point onward we will differentiate between multiple usages of ψτ . We denote with ψx∆t the
distribution p(xt+∆t|xt,ut:t+h; θ) over states at time step t+ ∆t and ψϑ

∆t the distribution over the
Gaussian parameter outputs p(ϑt+∆t|xt,ut:t+h; θ) at time step t+ ∆t of the planner.

3.1 Planning and Control

To validate our hypothesis that accounting for uncertainty in the environment and model prediction is
essential to develop risk-averse policies, we use the Cross-Entropy Method (CEM) with improvements
suggested in Pinneri et al. [2020]. Accordingly, at each time step t we sample a finite number of
control sequences u for a finite horizon H from an isotropic Gaussian prior distribution which we
evaluate from the state xt using an auto-regressive forward-model and the cost function. The sampling
distribution is refitted in multiple rounds based on good-performing (elite) trajectories. After this
optimization step, the first action of the mean of the fitted Gaussian distribution is executed. Since
this approach utilizes a predictive model for a finite horizon at each time step, it naturally falls into
the category of Model Predictive Control (MPC) methods.

Although we use CEM, our approach of managing uncertainty can generically be applied to other
zero-order trajectory optimizers such as MPPI [Williams et al., 2017], by a modification of the
trajectory cost function.

3.2 The Problem of Uncertainty Estimation

Since we have a stochastic model of the dynamics, at the model prediction time step t we observe a
distribution over potential outcomes. Indeed, since our model outputs are parameters of a Gaussian
distribution, with auto-regressive predictions we end up with a distribution over possible Gaussians
for a certain time step t.

Given a sampled action sequence u and the initial state xt we observe a distribution over trajectories
ψτ . To efficiently sample from the trajectory distribution ψτ we use the technique introduced by Chua
et al. [2018] (PETS) which involves prediction particles that are sampled from the probabilistic
models and randomly mixed between ensemble members at each prediction step. In this way, the
sampled trajectories are used to perform a Monte Carlo estimate of the expected trajectory cost
Eτ∼ψτ [c(τ)]. However, this does not take the properties of ψτ into account, which might be a
high-entropy distribution and may lead to very risky and unsafe behavior. In this work, we alleviate
this by looking at the properties of ψτ , i.e. different kinds of uncertainties arising from the predictive
distribution.

3.3 Learned Dynamics Model

We learn a dynamics model fθ that approximates the true system dynamics xt+1 =
f(xt, ut, w(xt, ut)). As a model class, we use an ensemble of neural networks with stochastic

3

outputs as in Chua et al. [2018]. Each model k, parameterizes a multivariate Gaussian distribution
with diagonal covariance, fkθ (xt, ut) = N (xt+1;xt + µkθ(xt, ut),Σ

k
θ(xt, ut)) where µkθ(·, ·) and

Σkθ(·, ·) are model functions outputting the respective parameters.

Iteratively, while interacting with the environment, we collect a dataset of transitions D and train
each model k in the ensemble by the following negative log-likelihood loss on the Gaussian outputs:

L(θ, k) = Ext,ut,xt+1∼D

[
− logN (xt+1;xt + µkθ(xt, ut),Σ

k
θ(xt, ut))

]
(1)

In addition, we use several regularization terms to make the model training more stable. We provide
more details on this in Suppl. A.

3.4 Separation of Uncertainties

In the realm of parametric estimators, two uncertainties are of particular interest. Aleatoric uncertainty
is the kind that is irreducible and results from inherent noise of the system, e.g. sensor noises in robots.
On the other hand, we have epistemic uncertainty resulting from lack of data or knowledge which is
reducible. This begs the question, how can we separate these uncertainties given an auto-regressive
dynamics model fθ? The way that we efficiently sample from ψτ is by mixing sampled prediction
particles, similarly as in PETS[Chua et al., 2018]. This process is illustrated by the red lines in Fig. 2.

Simple model prediction disagreement is not a good measure for aleatoric uncertainty since it can be
entangled with epistemic uncertainty. Given our assumptions about the system dynamics, we measure
aleatoric uncertainty as the entropy of the predicted normal distributions of the ensemble models.
More concretely, given a sampled particle state x̃t, we define the estimated aleatoric uncertainty for
ensemble model associated to particle b at time step t as:

Ab(x|x̃t, ut) = Hx∼ψx∆t,b(x) (2)

Where ψx∆t,b is the output distribution of ensemble model based on inputs x̃t, ut. Since in the end we
are interested in the aleatoric uncertainty incurred from applying the action sequence u from initial
state xt, the quantity of interest for us is the expected aleatoric uncertainty for time slice t:

A(x|ut) = Ex̃b∼ψx∆t
[
Ab(x|x̃b, ut)

]
(3)

Intuitively, because we only have access to the ensemble for sampling, we take a time-
slice in the sampled trajectories from ψτ and compute the output entropies. Moreover,
since we assume a Gaussian 1-step predictive distribution this is an expectation over differ-
ential Gaussian entropy. An alternative way of computation which we also explore in this
work is calculating the expected particle variance for time slice t of the prediction horizon:

ut+h

xt+h

NN

xt
ut

H

h=1 h=H

mean

particle

Figure 2: Probabilistic Ensembles with Trajectory Sampling
and Uncertainty Separation (PETSUS)

VarAt+1 =
1

B

B∑
b=1

Σkθ(x̃t,b, ut) (4)

For estimating the epistemic uncer-
tainty, one would be tempted to look
at the disagreement between ensem-
ble models in parameter space Var[θ],
but this is not completely satisfying,
since neural networks tend to be over-
parametrized and variance within the
ensemble still may exist albeit the opti-
mum has been reached by all ensemble
models. An alternative would be to
calculate the Fisher information met-
ric I := Var[∇θ logL(xt+1|xt, ut)]
where L denotes the likelihood function, but this tends to be expensive to compute.

Given the assumption of local Gaussianity, the true epistemic uncertainty for this case is the predictive
entropy over the Gaussian parameters ϑ at time step t+ h.

E(xt,ut:t+h) = Hψϑ
∆t

(ϑ | xt,ut:t+h) (5)

4

It is easy to verify that this quantity is 0 given perfect predictions of the model. Note that, because of
auto-regressive predictions of a nonlinear model, this is a very difficult object to handle. Nevertheless,
since our predictive distribution p(x | xt, ut;ϑ) is parametrized by model outputs, we may utilize
disagreement in ϑt to approximate E. To get correct estimations, we need to propagate mean
predictions x̄ in addition to the particles as illustrated as the yellow lines in Fig. 2. We quantify
epistemic uncertainty as ensemble disagreement at time step t:

VarE(xt+1) = Vare[µkθ(x̄t, ut)] + Vare[Σkθ(x̄t, ut)] (6)

where Vare is the empirical variance over the k = 1 . . .K ensembles.

3.5 Probabilistic Safety Constraints
When applying data-driven control algorithms to real systems, safety is of utmost importance. In the
realm of zero-order optimization, safety constraints can be easily introduced by putting an infinite
cost on constraint-violating trajectories. Nevertheless, we are dealing with erroneous stochastic
nonlinear models which lead to nontrivial predictive distributions of future states, based on the control
sequence u. For this reason, we want to control the risk of violating the safety constraints that we,
as practitioners, are willing to tolerate. If we denote the observation space as X, given a violation
set C ⊂ X, we define the probability of the control sequence u to enter the violation set at time
t + ∆t as p(x ∈ C | xt,u) =

∫
x∈C ψ

x
∆t(x | xt,u). In practice, it is hard to compute this integral

efficiently, since our distribution ψx∆t is nontrivial as a result of nonlinear propagation of uncertainty.
Furthermore, the violation set C might not have the structure necessary to allow an efficient solution
to the integral, in which case one needs to resort to Monte Carlo estimation.

To simplify computation and gain speed, we consider box violation sets resulting in each dimension
of x being constrained to be outside of [a, b] ∈ {a, b | a, b ∈ R2, a < b}. By performing moment
matching by a Gaussian in each time-slice ψx∆t, the probability of ending up in state x at time step
t+ ∆t is given by integrating N (x;µt+∆t,Σt+∆t), where µ and Σ are estimated by Monte Carlo
sampling. If we further assume a diagonal covariance Σ, this integral can be deconstructed into d
univariate Gaussian integrals, which can be computed fast and in closed form (error function). Hence,
the probability of a constraint violation happening at time step t is defined by:

p(x ∈ C | xt,u) =

d∏
i=0

∫
x∈C
N (xi;µit+∆t, σ

i
t+∆t) (7)

3.6 Implementing Risk-Averse ZERo-Order Trajectory Optimization (RAZER)
We assume the task definition is provided by the cost c(xt,u). For trajectory optimization, we start
from a state xt and predict with an action sequence u the future development of the trajectory τ .
Along this trajectory, we want to compute a single cost term which is conveniently defined as the
expected cost of all particles x̃ summed over the planning horizon H:

c(xt,u) =

H∑
∆t=1

1

B

B∑
b=1

c(x̃bt+∆t, ut+∆t). (8)

The optimizer, in our case CEM, will optimize the action sequence u to minimize the cost in a
probabilistic sense, i.e. p(u | x) ∝ exp(−β c(x,u)) where β reflects the strength of the optimizer
(the higher the more likely it finds the global optimum). To make the planner uncertainty-aware, we
need to make sure it avoids unpredictable parts of the state space by making them less likely. Using
the aleatoric uncertainty provided by PETSUS Eq. 4, we define the aleatoric penalty as

cA(xt,u) = wA ·
H∑

∆t=1

√
VarAt+∆t, (9)

where wA > 0 is a weighting constant. The larger the aleatoric uncertainty, the higher the cost.

To guide the exploration to states where the model has epistemic uncertainty Eq. 6 (due to lack of
data), we use an epistemic bonus:

cE(xt,u) = −wE ·
H∑

∆t=1

√
VarEt+∆t, (10)

5

where wE > 0 is a weighting constant. To be able to operate on a real system, the most important
part is to adhere to safety constraints. As formulated in Eq. 7, the predicted safety violations need to
be uncertainty aware, independent of the source of uncertainty. We integrate this into the planning
method by adding:

cS(xt,u) = wS ·
H∑

∆t=1

q
p(x̂t+∆t ∈ C) > δ

y
(11)

where J·K is Iverson bracket and wS is either a large penalty cmax or 0 to disable safety. An alternative
for implementing safety constraints into CEM is by changing the ranking function [Wen and Topcu,
2018]. The overall algorithm used in a model-predictive control fashion is outlined in Suppl. B.

4 Experiments

We study our uncertainty-aware planner in 4 continuous state and action space environments and
compare to naively optimizing the particle-based estimate of the expected cost similarly to Chua et al.
[2018]. We start by giving a description of the environments.

BridgeMaze This toy environment (see Fig. 1c) was specifically designed to study the different
aspects of uncertainty independently. The agent (blue cube) starts on the left platform and has to
reach the goal platform on the right. To reach the goal platform, the agent has to move over one of
three bridges without falling into the lava. The upper bridge is safeguarded by walls; hence, it is
the safest path to the goal but also the longest. The lower bridge has no walls and therefore is more
dangerous for an unskilled agent to cross but the path is shorter. The middle bridge is the shortest
path to the goal. However, randomly appearing strong winds perpendicular to the bridge might cause
the agent to fall off the bridge with some probability, making this bridge dangerous.

Noisy-HalfCheetah This environment is based on HalfCheetah-v3 from the OpenAI Gym toolkit.
We introduce aleatoric uncertainty to the system by adding Gaussian noise ξ ∼ N (µ, σ2) to the
actions when the forward velocity is above 6. The action noise translates into a non-Gaussian and
potentially very complicated state space noise distribution that makes the control problem very
challenging.

Noisy-FetchPickAndPlace Based on the FetchPickAndPlace-v1 gym environment. Additive action
noise is applied to the gripper so that its grip on the box might become tighter or looser. The noise is
applied for x-positions < 0.8 which is illustrated in Fig. 1a by a blue line causing the agent to drop
the box with high probability if it tries to lift the box too early.

Solo8-LeanOverObject In this robotic environment, the task of a quadrupedal robot [Grimminger
et al., 2020] is to stand up and lean forward to reach a target position (purple markers need to reach
green dots in Fig. 1b) without hitting an object visualized by the red cube representing the unsafe zone.
The robot starts in a laying position as shown in the inset of Fig. 1b. As in the Noisy-HalfCheetah
environment, Gaussian action noise is applied to mimic real-world perturbances.

4.1 Algorithmic Choices and Training Details

For model-predictive planning we use the CEM implementation from Pinneri et al. [2020]. Further
details about hyperparameters can be found in Suppl. A.2. For planning, we use the same architecture
for the ensemble of probabilistic models, both in RAZER and in PETS. The only difference is that
in RAZER we also forward propagate the mean state predictions in addition to the sampled state
predictions. Further details can be found in Suppl. A.1.

For training the predictive model, we alternate between two phases: data collection and model fitting.
In the BridgeMaze environment, we collect 5 rollouts of length 80 steps and append them to the
previous rollouts. Afterwards, we fit the model for 25 epochs. For Noisy-HalfCheetah, we collect 1
rollout and fit for 50 epochs. For Noisy-FetchPickAndPlace and Solo8-LeanOverObject we replace
the f̂ in Fig. 2 with independent instances of noisy ground truth simulators.

Next, we will present RAZER’s exploration and safety behavior in the BridgeMaze environ-
ment. Afterwards, we are going to discuss planning with external safety constraints in the Solo8-
LeanOverObject environment. We complete this section with results on Noisy-HalfCheetah and
Noisy-FetchPickAndPlace.

6

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Co

ve
ra

ge

0.0 (PETS) 0.005 0.01 0.05

(a) State space exploration over time
depending on epistemic bonus (wE).

(b) State space coverage with
wE = 0.

(c) State space coverage with
wE = 0.05.

Figure 3: Active learning setting: The epistemic bonus allows RAZER to seek states for which no or
only little training data exists (a,c). Means and standard deviations for (a) were computed over 5 runs.
PETS overfits to a particular solution (b). In (b) and (c), the brightness of the dots is proportional to
the time when they were first encountered.

0.0
PETS

0.05 0.12 0.14 0.16

Aleatoric Penalty

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(a) BridgeMaze success depending on wA for 50 runs.

0.1 0.5 1.0 2.0 5.0
Gripper Noise

0.0

0.1

0.2

0.3

0.4

0.5

Dr
op

pi
ng

 R
at

e

RAZER PETS

(b) Dropping rate in Noisy-FetchPickAndPlace for 100
runs.

Figure 4: Risk-averse planning in the face of aleatoric uncertainty yields higher success rates in noisy
environments. For (b) we use ground truth models and a fixed aleatoric penalty weight wA.

4.2 Active Learning for Model Improvement

If model uncertainties are used for risk-averse planning, they are only meaningful if the model has
the right training data. Only from good data can the parameters of the approximate noise model be
learned correctly. In case of too little data, the agent might avoid parts of the state space due to an
overestimation of the model uncertainties. On the other hand, the agent might enter unsafe regions
for which the uncertainties are underestimated. By adding the epistemic bonus to our domain-specific
cost, the planner can actively seek states with high epistemic uncertainty, i.e. for which no or only
little training data exists.

Figure 4a shows this active data gathering process for the BridgeMaze environment. PETS finds one
particular solution to the problem of reaching the goal platform. It chooses the path over the safer,
lower bridge rather than the dangerous middle path and the longer path via the upper bridge (Fig. 3b).
Once, one solution is found, the model overfits to it without exploring any other parts of the state
space. This is also reflected in the plateauing of the red curve in Fig. 3a.

In comparison, RAZER actively explores larger and larger parts of the state space with an increasing
weight of the epistemic bonus (Fig. 3a). RAZER not only finds the easy solution found by PETS
but also extensively explores other parts of the state space (Fig. 3c). To not get stuck at the middle
bridge during exploration due to the inherent noise, it is important to separate between epistemic
and aleatoric uncertainties. Only the former should be used for exploration. With enough data, our
model can correctly capture the uncertainties of these states resulting in the epistemic uncertainty
approaching zero.

4.3 Risk-Averse Planning

Once a good model is learned, it can be used for safe planning. What differentiates RAZER from
PETS is that it makes explicit use of uncertainty estimates while in the latter uncertainties only enter
planning by taking the mean over the particle costs and not differentiating between different sources
of uncertainty.

7

RAZER@5% RAZER@20% RAZER@50% PETS

0 25 50 75 100 125 150
Training Iterations

0

2

4

Av
g.

 V
el

oc
ity

(a) With aleatoric penalty (10 runs).

0 25 50 75 100 125 150
Training Iteration

0

20

40

60

80

100

Sa
fe

ty
 V

io
la

tio
ns

(b) With safety constraints.
0.05 0.2 0.5 1.0

PETS

0

200

400

600

800

Av
g.

 S
af

et
y

Vi
ol

at
io

ns
 p

er
 R

un

(c) With safety constraints.
Figure 5: Noisy-HalfCheetah environment (task lengths 300 steps) with learning models from scratch.
At 150 iterations we have seen only 45k points. (a) Performance under noisy actions. By applying
the aleatoric penalty, RAZER can navigate the uncertainties better – leading to higher returns faster.
(b) Safety violations above a certain body height (simulating a low ceiling) for different values of
δ. With increasing δ, RAZER is seldomly violating constraints in stark contrast to PETS. In (c) the
number of violations is averaged over the last 50 iterations (summed over 10 rollouts).

BridgeMaze. Figure 4a shows the success rate of PETS and RAZER in the BridgeMaze. In
both cases, we use the same model that was trained from data collected during a training run with
wE = 0.05. Hence, the model saw enough training data from all parts of the state space. The noise
in the environment is tuned such that there is a chance to cross the bridge without falling. While
in Fig. 3b PETS avoided this path because of an overestimation of the state’s value due to a lack
of training data and sometimes sees a chance to cross the bridge. However, these attempts are very
likely to fail because of stronger winds that occur randomly, resulting in a success rate of only 58%.
RAZER does not rely on sampling for the aleatoric part and can thus avoid risk. With a higher penalty
constant the success rate increases up to 96% but only as long as the agent is willing to take a risk at
all. For large values of wA the agent becomes so conservative that it only moves slowly (decreasing
reward in Fig. 4a).

Noisy-HalfCheetah. How does RAZER perform on the Noisy-HalfCheetah environment when
models are learned from scratch? Without aleatoric penalty, the planner is optimistic. Risky situations
are only detected if a failing particle is sampled. Thus, the noise is mostly neglected and the robot
increases its velocity, gets destabilized, and ends up slower than with the aleatoric penalty (Fig. 5a).

Noisy-FetchPickAndPlace. In this environment, a 7-DoF robot arm should bring the box to a target
position – starting and target positions are at the opposite sides of the table. The shortest path is to lift
the box and move in a straight line to the target. However, with noise applied to the gripper action,
there is a certain probability to drop the box along the way. When penalizing aleatoric uncertainty,
this is avoided and also fewer trajectory samples are “wasted” in high-entropic regions, as presented
in Fig. 1a. Figure 4b shows the number of times the box is dropped on the table depending on the
aleatoric penalty. RAZER adopts a cautious behavior, preferring to slide the box on the table and
lifting it only in the area without action noise, achieving a dropping rate lower than 20%, even when
considerable noise is applied.

4.4 Planning with External Safety Constraints

Noisy-HalfCheetah:. We consider a safety constraint on the height of the body above ground
simulating a narrow passage. Figure 5b shows the number of safety violations. Note that PETS has
the same penalty cost for hard violations.

Solo8-LeanOverObject:. In this experiment, the robot has to move to two target points with its
front and rear of the trunk while avoiding entering a specified rectangular area (fragile object). The
front feet are fixed. To track the points, the robot has to lean forward, such that it can lose balance due
to noisy actions. In contrast to PETS, RAZER successfully manages to satisfy the safety constraints
almost always as shown in Fig. 6. However, satisfying the safety constraint comes with the cost of
reduced tracking accuracy.

8

0.01 0.95 1.0
PETS

Delta

0

20

40

60

80

100

120

Sa
fe

ty
 V

io
la

tio
ns

0.01 0.95 1.0
PETS

Delta

20

40

60

80

100

120

Tr
ac

ki
ng

 E
rro

r

Figure 6: Safe planning vs. task-oriented planning in the Solo8-LeanOverObject environment with
noisy actions. Left: number of safety violations for different values of δ (Eq. 11). Right: enforcing
safety constraints causes slight reduction in tracking accuracy due to the fixed planning budget and
the competing objectives of task and safety costs.

5 Conclusion
In this work, we have provided a methodology to separate uncertainties in stochastic ensemble
models (PETSUS) which can be used as a tool to build risk-averse model-based planners that are
also data-efficient and enforce safety through probabilistic safety constraints (RAZER). This type of
risk-averseness can be achieved by a simple modification of the cost function in form of uncertainty
penalties in zero-order trajectory optimizers.

Furthermore, the separation of uncertainties allows us to do proper exploration via epistemic bonus
which benefits generalization of the model and therefore makes it applicable to more settings. As
future work, it would be of interest to see this approach applied to a proper transfer learning setting
from simulations to real systems, where risk-averseness combined with exploratory behavior is crucial
for efficient learning and safe operation.

Acknowledgments and Disclosure of Funding

The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-
IS) for supporting Marin Vlastelica and Sebastian Blaes. We acknowledge the support from the
German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center (FKZ:
01IS18039B). Georg Martius is a member of the Machine Learning Cluster of Excellence, EXC
number 2064/1 – Project number 390727645.

References
I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and D. Fox. Model-based generalization

under parameter uncertainty using path integral control. IEEE Robotics and Automation Letters, 5
(2):2864 – 2871, April 2020.

E. Arruda, M. J. Mathew, M. Kopicki, M. Mistry, M. Azad, and J. Wyatt. Uncertainty averse pushing
with model predictive path integral control. 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), pages 497–502, 2017.

Z. Botev, D. Kroese, R. Rubinstein, and P. L’Ecuyer. Chapter 3. The Cross-Entropy Method for
Optimization, volume 31, pages 35–59. Elsevier, 2013.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems,
volume 31 of NeurIPS. Curran Associates, Inc., 2018.

W. Clements, B.-M. Robaglia, B. V. Delft, R. B. Slaoui, and S. Toth. Estimating risk and uncertainty in
deep reinforcement learning. Workshop on Uncertainty & Robustness in Deep Learning Workshop
at the International Conference on Machine Learning (ICML UDL), 2020.

S. Curi, F. Berkenkamp, and A. Krause. Efficient model-based reinforcement learning through
optimistic policy search and planning. In Proc. Neural Information Processing Systems (NeurIPS),
December 2020.

M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In International Conference on Machine Learning, ICML, 2011.

9

M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning
in robotics and control. IEEE transactions on pattern analysis and machine intelligence, 37(2):
408–423, 2013.

S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft. Learning and policy search
in stochastic dynamical systems with bayesian neural networks. In International Conference on
Learning Representations (ICLR), 2017.

S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of uncertainty
in bayesian deep learning for efficient and risk-sensitive learning. In International Conference on
Machine Learning, pages 1184–1193. PMLR, 2018.

J. Fu, S. Levine, and P. Abbeel. One-shot learning of manipulation skills with online dynamics
adaptation and neural network priors. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4019–4026. IEEE, 2016.

Y. Gal, R. McAllister, and C. E. Rasmussen. Improving pilco with bayesian neural network dynamics
models. In Data-Efficient Machine Learning workshop, ICML, volume 4, page 25, 2016.

J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

A. Grancharova, J. Kocijan, and T. A. Johansen. Explicit stochastic predictive control of combustion
plants based on gaussian process models. Automatica, 44(6):1621–1631, 2008.

F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich, M. Naveau, V. Berenz, S. Heim,
F. Widmaier, T. Flayols, et al. An open torque-controlled modular robot architecture for legged
locomotion research. IEEE Robotics and Automation Letters, 5(2):3650–3657, 2020.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International Conference on Machine Learning, pages
2555–2565. PMLR, 2019.

S. C. Hora. Aleatory and epistemic uncertainty in probability elicitation with an example from
hazardous waste management. Reliability Engineering & System Safety, 54(2):217–223, 1996.
ISSN 0951-8320. doi: https://doi.org/10.1016/S0951-8320(96)00077-4. URL https://www.
sciencedirect.com/science/article/pii/S0951832096000774.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning methods.
ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

S. Kamthe and M. Deisenroth. Data-efficient reinforcement learning with probabilistic model
predictive control. In International Conference on Artificial Intelligence and Statistics, pages
1701–1710. PMLR, 2018.

A. D. Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter? Structural
Safety, 31(2):105–112, 2009. ISSN 0167-4730. doi: https://doi.org/10.1016/j.strusafe.
2008.06.020. URL https://www.sciencedirect.com/science/article/pii/
S0167473008000556.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The International
Journal of Robotics Research, 32(11):1238–1274, 2013.

J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard. Gaussian process model based
predictive control. In Proceedings of the 2004 American control conference, volume 3, pages
2214–2219. IEEE, 2004.

T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-ensemble trust-region policy
optimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SJJinbWRZ.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 6405–6416, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

K. Lee, G. N. An, V. Zakharov, and E. A. Theodorou. Perceptual attention-based predictive control.
In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, Proceedings of the Conference on Robot
Learning, volume 100 of Proceedings of Machine Learning Research, pages 220–232. PMLR, 30
Oct–01 Nov 2020. URL http://proceedings.mlr.press/v100/lee20b.html.

10

https://www.sciencedirect.com/science/article/pii/S0951832096000774
https://www.sciencedirect.com/science/article/pii/S0951832096000774
https://www.sciencedirect.com/science/article/pii/S0167473008000556
https://www.sciencedirect.com/science/article/pii/S0167473008000556
https://openreview.net/forum?id=SJJinbWRZ
https://openreview.net/forum?id=SJJinbWRZ
http://proceedings.mlr.press/v100/lee20b.html

I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model predictive
control. In Robotics: Science and Systems. Rome, Italy, 2015.

O. Mihatsch and R. Neuneier. Risk-sensitive reinforcement learning. Machine learning, 49(2):
267–290, 2002.

M. Morari and J. H. Lee. Model predictive control: past, present and future. Computers & Chemical
Engineering, 23(4-5):667–682, 1999.

D. Nguyen-Tuong, J. Peters, and M. Seeger. Local gaussian process regression for real time online
model learning and control. In Proceedings of the 21st International Conference on Neural
Information Processing Systems, pages 1193–1200, 2008.

I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep exploration via bootstrapped dqn. In Proceed-
ings of the 30th International Conference on Neural Information Processing Systems, NIPS’16,
page 4033–4041, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek, and G. Martius. Sample-
efficient cross-entropy method for real-time planning. In Conference on Robot Learning 2020,
2020. URL https://corlconf.github.io/corl2020/paper_217/.

A. S. Polydoros and L. Nalpantidis. Survey of model-based reinforcement learning: Applications on
robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

C. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In NIPS, 2003.
C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. Adaptive Computation

and Machine Learning. MIT Press, Cambridge, MA, USA, Jan. 2006.
R. Rubinstein and W. Davidson. The cross-entropy method for combinatorial and continuous

optimization. Methodology and Computing in Applied Probability, 1999.
J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,

D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

T. Wang and J. Ba. Exploring model-based planning with policy networks. In International
Conference on Learning Representations (ICLR), 2020.

M. Wen and U. Topcu. Constrained cross-entropy method for safe reinforcement learning.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
34ffeb359a192eb8174b6854643cc046-Paper.pdf.

G. Williams, A. Aldrich, and E. Theodorou. Model predictive path integral control using covariance
variable importance sampling. ArXiv, abs/1509.01149, 2015.

G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 1714–1721. IEEE, 2017.

Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani. Data Efficient Reinforcement
Learning for Legged Robots. Conference on Robot Learning (CoRL), 2019.

J. Zhang and P. Weng. Safe distributional reinforcement learning. ArXiv, abs/2102.13446, 2021.

11

https://corlconf.github.io/corl2020/paper_217/
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf

In this supplementary we provide additional details for our method. We also provide videos
that showcase risk-averse behavior of RAZER at https://sites.google.com/view/
razer-traj-opt.

Our research suffered from pandemic impacts on lab access which is detailed in Sec. ??.

A Implementation Details

A.1 Model Learning

Parameters used for model learning in the BridgeMaze experiments.

Table 1: Model parameters
Ensemble parameters

Name Value

num_layers 6
size 400
activation silu
ensemble_size (n) 5
output_activation None
l1_reg 0
weight_initializer truncated_normal
bias_initializer 0
use_spectral_normalization False

Stochastic NN parameters

Name Value

var_clipping_low −10.0
var_clipping_high 4
state_dependent_var True
regularize_automatic_var_scaling False

Remaining parameters

Name Value

lr 0.002
grad_norm 2.0
batch_size 512
weight_decay 1e−5

use_input_normalization True
use_output_normalization False
epochs 25
predict_deltas True
train_epochs_only_with_latest_data False
iterations 0
optimizer Adam
propagation_method TS1
sampling_method sample

We bound the predicted log variance by applying (as in [Chua et al., 2018, A.1])

logvar = max_logvar - softplus(max_logvar - logvar)

logvar = min_logvar + softplus(logvar - min_logvar)

to the output of the network that predicts the log variance, logvar. In principle, we could differ-
entiate through this bound to automatically adjust the bounds max_logvar and min_logvar.
However, we decided to not make these parameters learnable.

Parameters used for model learning in the Noisy-HalfCheetah environment (only differences to
BridgeMaze environment).

Table 2: Model parameters
Ensemble parameters

Name Value

num_layers 4
size 200

Stochastic NN parameters

Name Value

var_clipping_low −6.0
state_dependent_var True

Remaining parameters

Name Value

lr 0.0002
grad_norm None
batch_size 256
weight_decay 3e−5

epochs 50

12

https://sites.google.com/view/razer-traj-opt
https://sites.google.com/view/razer-traj-opt

A.2 Controller Parameters

Parameters used in the CEM controller. For an explanation of the different parameters, we refer the
reader to[Pinneri et al., 2020].

Table 3: Controller parameters, BridgeMaze environment.
Action sampler parameters

Name Value

alpha 0.1
colored_noise true
elite_size 10
execute_best_elite true
finetune_first_action false
fraction_elites_reused 0.3
init_std 0.5
keep_previous_elites true
noise_beta 2.0
opt_iterations 3
relative_init true
shift_elites_over_time true
use_mean_actions true

Remaining parameters

Name Value

cost_along_trajectory sum
delta 0.0
factor_decrease_num 1
horizon 30
num_simulated_trajectories 128

Table 4: Controller parameters, Noisy-HalfCheetah environment (only difference to BridgeMaze
environment).

Action sampler parameters

Name Value

noise_beta 0.25
opt_iterations 4

Remaining parameters

Name Value

num_simulated_trajectories 120

Table 5: Controller parameters, Solo8-LeanOverObject environment (only difference to BridgeMaze
environment).

Action sampler parameters

Name Value

init_std 0.3
noise_beta 3.0

A.3 Timings

While our code is not tuned for speed specifically, in this section we provide some timings for a single
step in the environment (hyper-parameters are set as specified in Suppl. A.1 and Suppl. A.2, with
num_simulated_trajectories = 128 and op_iterations = 3) in Table 6.

A.4 Uncertainty Separation

In our method, we separate the epistemic uncertainty, denoted as E and aleatoric uncertainty, denoted
as A, the details of which are explained in Sec. 3 with the resulting costs that arise. Since we are
using a variant of the CEM algorithm that needs to sort the sampled action sequences u according to
their cost, the cost of an action sequence is a single floating point number.

The stochastic NN ensemble that we are using samples trajectories from the predictive distribution ψτ
for each action sequence u. In addition, our variant (PETSUS), also propagates the mean prediction
x̄t for each ensemble member for an action sequence u. The auto-regressive prediction follows a
recursive relation:

[x̄t+1,Σt+1] = ϑ(x̄t, ut)

13

Table 6: Timings per one environment step in ms. We measured the timings on a system with 1
GeForce GTX 1050 Ti, an Intel Core i7-6800K and 31GB of memory.

Environment Timing [ms]

BridgeMaze 0.25
Noisy-HalfCheetah 0.14

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Co

ve
ra

ge

0.0 (PETS) 0.005 0.01 0.05

Figure 7: Exploration over time.

We make use of this in order to estimate the epistemic uncertainty E. At each time point of
the predicted sequence of observations, we take the empirical variance of the outputted Gaussian
parameters ϑ(x̄t, ut), predicted from the previous mean prediction x̄t and control ut, across the
ensembles for that time slice in the predicted trajectories. This is then summed up across horizon H
to obtain the epistemic bonus for action sequence u.

Fig. 7 shows that scaling wE results in better state-coverage. This is of particular interest if we want
to learn models that are able to generalize to different task settings, e.g. when changing the cost
function. While the naive PETS algorithm overfits the model to the task at hand, RAZER learns a
truly task-agnostic model and is able to reap the benefits of model-based approaches to control.

For the aleatoric penalty we rely on the actual predictions of the covariance Σ(xt, ut) and average
them across the time slice, following with the sum across horizon H . Alternatively to this, we also
use the entropy of the Gaussian as the A uncertainty measurement. In Sec. A.5 we argue how these
terms are interchangeable.

Note that, for the safety term ideally we want to use the full distribution ψτ and separation in aleatoric
and epistemic uncertainty is neither required nor desirable.

A.5 Entropy vs. Variance as Uncertainty Measurement

We use entropy of Gaussian and variance interchangebly as uncertainty estimates. Indeed, since the
Gaussian distribution is the maximum entropy distribution for certain variance σ2, the entropy scales
linearly with log σ2. We have found that utilizing the variance directly causes RAZER to be much
more risk-averse, which can be explained by the variance not being suppressed by the log term in the
entropy. Moreover, using the variance directly is much more interpretable and easier to tune because
it’s of the same scale as the observation space.

A.6 Observation Space vs. Cost Space Uncertainty

A natural question to ask when attempting to make efficient use of uncertainties in MPC is where to
measure these uncertainties. As an alternative to observation space uncertainties, one could measure
uncertainty in cost space. Here we argue why this is not a reasonable thing to do for each of the
individual cost terms.

Epistemic Bonus. Since we operate under the desiderata that the benefit of model-based methods is
in task-agnosticism, we shouldn’t measure epistemic uncertainty in the cost space, since this would
decouple the task definition through the cost from the observation space and would lead to learning
models that are not task-agnostic.

14

Aleatoric Penalty. This is perhaps the most questionable case for using observation space uncertainty
instead of cost space uncertainty. Nevertheless, we assume that high-aleatoric uncertainty translates
to control difficulty, and we want to avoid parts of the observation space that are difficult to control.
Moreover, the uncertainty measurements become completely invalidated in the case of a task switch,
which plays against the task-agnosticism desiderata.

Safety Penalty. Safety is something that is enforced by infusing the algorithm with prior knowledge
through a set of constraints which mostly manifest themselves as subsets of the observation space X
or action space U .

B Algorithm

In Algo. 1 we provide an overview of the CEM algorithm that we utilize for implementing RAZER.
Concretely, we use an improved sample efficient version of CEM as proposed by Pinneri et al. [2020]
that involves shift-initialization of the distribution mean, sampling time-correlated noise and further
improvements.

Algorithm 1: RAZER: Risk-aware and safe CEM-MPC
1 Parameters:
2 N : number of samples; B: Number of particles, H: planning horizon; wA, wE, wS

CEM-iterations
3 for t = 1 to T // loop over episode length
4 do
5 for i = 1 to CEM-iterations do
6 (samplesp)

P
p=1← N samples from CEM(µit,Σ

i
t), with P particles per sample

7 c, cA, cE, cS ← compute cost functions over particles
8 ctot = c+ cA + cE + cS // compute total cost
9 elite-sett← best K samples according to total cost

10 µi+1
t , Σi+1

t ← fit Gaussian distribution to elite-sett
11 execute first action of best elite sequence
12 shift-initialize µ1

t+1

C Environments

All environments are based on the MuJoCo physics engine [Todorov et al., 2012]. The Noisy-
Halfcheetah and Noisy-FetchPickAndPlace environments are based on HalfCheetah-v3 and
FetchPickAndPlace-v1, respectively.

BridgeMaze. We designed the BridgeMaze environment to show the different aspects of uncertainty,
namely the epistemic and aleatoric uncertainty, in isolation. The agent is a simple cube with only a
free joint attached to it. The state-space x = [x0, x1, x2, a, b, c, d, vx0

, vx1
, vx2

] is 10-dimensional,
consisting of 3 positional (x0 to x2), 4 rotational (a to d) and 3 velocity-based (vx0 to vx2), agent-
centric coordinates. The action-space u = [τx0 , τx1] is 2-dimensional. The torque τ applied to the
agent in x0- and x1-direction.

The task in the environment is to reach a goal platform at x?0 ≥ 12 by crossing one of three bridges
that go over deadly lava.

The domain reward is defined as

rt(xt, ut, xt+1) =


|(x0)t − x?0| − |(x0)t+1 − x?0| , if (x1)t+1 ≥ −1.5

0 , if (x0)t+1 ≥ x?0 and (x1)t+1 ≥ −1.5

−1 , otherwise
(12)

where x? is the goal state. We define the cost for planning as ct(xt, ut, xt+1) = −rt(st, ut, st+1).

15

We designed the environments such that the agent is able to accelerate fast and also comes to a full
stop relatively fast if no torque is applied. This makes the control problem and the task of learning
the model relatively easy.

Noise is added in form of an external force in x1-direction injected through the xfrc_applied
attribute of the model. The sign of the force, as well as the force amplitude, sampled from fext ∈
U(0, fmax

ext), are randomly changing every 5 simulation steps. The external force is added only if
−8 ≤ x0 ≤ 8 and −3.6 ≤ x1 ≤ 3.6. Otherwise the external force is zero.

Noisy-HalfCheetah. We utilize a modified HalfCheetah environment where we apply a normally
distributed noise term ξ ∼ N (µ,Σ) to the simulator state in the case when the velocity of the cheetah
is greater than 6. More concretely, let st denote the simulator state at time step t, then the modified
state is calculated as follows:

s′t = st + ξt (13)

In our case, Σ is a diagonal covariance matrix with the diagonal terms equal to 0.2. In addition, for
the safety experiments with the Noisy-HalfCheetah we create a virtual ceiling at height h = 0.3.
In the case that the body height crosses this threshold, the agent incurs a large penalty. When the
safety-constraint is violated, we don’t end the episode.

Noisy-FetchPickAndPlace. We modified the FetchPickAndPlace-v1 environment to show the effect
of the aleatoric penalty on the CEM action plan. Given the difficulty of the task, we performed the
experiments without the learned model, using instead an ensemble of noisy ground truth dynamics.
In this way, we could more easily understand the role of the aleatoric uncertainty during planning.

The noise term ξ ∼ N (µ,Σ) is applied to the action controlling the gripper state: a positive additive
noise forces the robot to open the grip with a force proportional to the noise magnitude. This noise is
applied to all the ground truth models of the ensemble, and to the environment as well.

In particular, the box position is centered at y-coordinate -1.5 while the target is at y = 2.0. The
gripper state is noisy until y = 1.67, right before the target.

Solo8-LeanOverObject. The state space of the this environment is 47-dimensional. It contains the
absolute position, rotation, velocity and angular velocity of the robot as well as the positions and
velocities of all the joints. In addition, the state contains the positions of the end-effectors and of the
sites at the front and back of the robot. The actions space is 8-dimensional and controls the relative
position of the joints. We fixed the two front legs of the robot with a soft-constraint to the ground to
prevent the robot from uncontrollable jumping. We apply Gaussian noise to the action with a mean of
0 and a diagonal covariance matrix with the diagonal elements all being 0.3. The noise is uniformly
applied over the entire state-action-space.

The experiments for the Solo8-LeanOverObject environment use the ground truth model during
planning. The same noise were applied in the ’mental’ as well as the ’real’ environment.

C.1 Computing State-Space Coverage

For computing the state coverage in Fig. 3a we divided the continues state-space in 50 equally spaced
bins in the range −20 ≤ x0 ≤ 20 and −10 ≤ x1 ≤ 15. The state space-coverage is the fractions
between states visited at least once and the total number of states.

D Application to Transfer Learning

In this work we have demonstrated that an approach such as PETS[Chua et al., 2018] to data-driven
MPC that relies on zero-order trajectory optimization of the expected cost is not enough to manage
uncertain environments and safety constraints. These problems need to be addressed when dealing
with sim-to-real. The separation of uncertainties allows us to effectively manage epistemic uncertainty
in the real system, which is important for improving the model once distribution shift to the real
system happens. This can be done in a way of combining the epistemic bonus and probabilistic
safety constraints, such that the policy explores parts of the state space where there is knowledge to
be obtained while avoiding high-cost regions as a consequence of the incurred safety and aleatoric
penalties.

16

In comparison to standard approaches for sim-to-real which involve domain randomization at training
time, this approach incurs lower computational overhead and relies on learning on the real system.

17

	Introduction
	Related Work
	Method
	Planning and Control
	The Problem of Uncertainty Estimation
	Learned Dynamics Model
	Separation of Uncertainties
	Probabilistic Safety Constraints
	Implementing Risk-Averse ZERo-Order Trajectory Optimization (RAZER)

	Experiments
	Algorithmic Choices and Training Details
	Active Learning for Model Improvement
	Risk-Averse Planning
	Planning with External Safety Constraints

	Conclusion
	Implementation Details
	Model Learning
	Controller Parameters
	Timings
	Uncertainty Separation
	Entropy vs. Variance as Uncertainty Measurement
	Observation Space vs. Cost Space Uncertainty

	Algorithm
	Environments
	Computing State-Space Coverage

	Application to Transfer Learning

