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Abstract

Much of the success of deep learning is drawn from building architectures that1

properly respect underlying symmetry and structure in the data on which they2

operate—a set of considerations that have been united under the banner of geo-3

metric deep learning. Often problems in the physical sciences deal with relatively4

small sets of points in two- or three-dimensional space wherein translation, rota-5

tion, and permutation equivariance are important or even vital for models to be6

useful in practice. In this work, we present an architecture for deep learning on7

these small point clouds with rotation and permutation equivariance, composed of8

a set of products of terms from the geometric algebra and reductions over those9

products using an attention mechanism. The geometric algebra provides valuable10

mathematical structure by which to combine vector, scalar, and other types of11

geometric inputs in a systematic way to account for rotation invariance or covari-12

ance, while attention yields a powerful way to impose permutation equivariance.13

We demonstrate the usefulness of these architectures by training models to solve14

sample problems relevant to physics, chemistry, and biology.15

Introduction16

Deep learning has been immensely successful in solving a wide range of problems over the last17

several years, driven in large part by identifying appropriate ways to embed structure of data and18

symmetry of problems directly into the architecture of the network—an idea at the core of geometric19

deep learning[1]. Some applications of geometric deep learning include the use of convolutional20

filters in CNNs to attain translational equivariance, or graph convolutions in graph neural networks21

for permutation equivariance.1 Building symmetry into the architecture of a deep neural network22

can improve the data efficiency of the network and guarantee important analytical properties without23

having to rely on the network to learn to approximate them from training data.24

In this work, we derive a family of architectures that is useful in applications from physics to biology,25

where problems often deal with relatively small point clouds of labeled coordinates. These could26

be local environments of particles assembling into a crystal[2], atoms in a molecule interacting27

with other atoms[3], or coarse-grained beads representing parts of a protein[4]. In many of these28

applications without the influence of an external field, we are interested in modeling attributes of the29

1In this work, we use the following terms to discuss symmetry of functions f and operations ρ: f is invariant
to ρ if it does not change when ρ changes: f ◦ ρ = f . If f and ρ commute, then we say that f is covariant
with respect to the operation of ρ: f ◦ ρ = ρ ◦ f (some sources call this equivariance or same-equivariance; the
typical definition of equivariance is more general, but we will only discuss f and ρ that are endomorphisms in
the context of covariance). Here we use equivariance to broadly mean considerations of covariance as well as
invariance (since scalars of interest are typically invariant to translation and rotation in physical applications)
for simplicity of discussion.
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Figure 1: Overall strategy for incorporating rotation and permutation equivariance into deep neural
networks using attention mechanisms and geometric products. (a) At its simplest level, our pro-
posed structure uses an attention mechanism over the bond lengths of a cloud of points, each of
which carries a value as commonly used in graph neural networks. (b) Geometric products (or linear
combinations thereof) can be used to combine pairs, triplets, or larger tuples of vectors in a system-
atic and geometrically meaningful way. Rotational equivariance can be attained by using invariant
or covariant quantities, as desired. (c) An attention mechanism reduces the set of generated geomet-
ric products to enforce proper permutation equivariance, and the learned attention maps can provide
insights into how models operate. For example, here, a carbon atom in a naphthalene molecule
(indicated by a blue star) directs its focus broadly around the carbon atoms of the aromatic rings in
which it is situated, rather than focusing exclusively on its nearest neighbors in the molecular graph.
Brighter-colored bonds indicate a greater attention weight for the two atoms sharing the bond.

system—such as the identity of a particle’s local self-assembly environment, or the potential energy30

of a group of atoms—which are invariant with respect to rotation of the input coordinates, as well as31

permutation in the ordering of points. Here we attain rotation invariance by constructing functions32

from rotation-invariant components of geometric products of input vectors from geometric algebra,33

and permutation invariance by using an attention mechanism to intelligently reduce representations34

over the set of vector products.35

Related Work36

“Large” point clouds. Point clouds are a ubiquitous data structure and are often found in domains37

outside of the physical sciences. For the purposes of this work, we focus on comparatively small sets38

of points where the points are relatively information-rich—for example, carrying information about39

atom identities, local environments, or other information—in contrast to point clouds commonly40

found in computer vision and robotics which may represent the geometry of a mesh or be sampled41

from an object, but otherwise not have as much information associated with each point. We refer42

to Guo et al. for a survey of this field[5], but a few of the recently-developed notable approaches43

include PointNet[6], deep sets[7], and kernel point convolutions[8].44

Geometric approaches for small point clouds. Many architectures have been proposed to incor-45

porate rotation equivariance by augmenting graph neural networks with geometric attributes that46

are known to be rotation-invariant, such as bond lengths and angles. SchNet[9] learns distance-47

based convolution filters which are used to propagate signals over graphs. PhysNet[10] also refines48

node representations based on bond lengths, while incorporating a learnable attention mechanism.49

DimeNet[11] extends the information used to calculate node-level representations to include angles50

between bonds. GNNFF[12] generates rotation-covariant results by computing a weighted sum of51

modulated input vectors based on a graph message passing scheme.52

Group representation-based approaches. These methods take advantage of group representation53

theory by first transforming inputs into a space in which rotation-equivariant maps are more eas-54

ily expressed. This set of methods is powerful, having been used in the past to design rotation-55

and permutation-equivariant models[13–15], and have even been expanded recently for arbitrary56

groups[16]. Attention-based models have also been utilized in this area: SE(3) Transformers[17]57
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extend tensor field networks[14] with a self-attention mechanism for increased expressivity by in-58

corporating value- and geometry-dependent attention weights.59

The approach we present here is similar to several of the ideas presented above; however, rather60

than specifying particular rotation-invariant quantities to utilize or learning maps that operate on61

irreducible representations, we leverage the structure provided by geometric algebra to determine62

which rotation-invariant and -covariant quantities are of interest.63

Geometric Attention Networks64

In this work we formulate deep neural networks using learnable functions consisting of two parts:65

(1) a set of geometric products of input vectors; and (2) a permutation-equivariant reduction over66

these products using an attention mechanism. We describe each of these aspects below.67

Geometric Algebra68

The geometric algebra was developed in the 19th century and provides a consistent framework for69

dealing with scalars and other geometric quantities—such as vectors, areas, and volumes in three-70

dimensional space—in arbitrary dimensions[18]. Here, we will describe the essential parts of geo-71

metric algebra as related to our proposed attention mechanism, and defer to other works for a more72

thorough description[19]. The geometric algebra specifies a binary operator, the geometric product,73

that works on multivectors. Multivectors can be expressed as linear combinations of terms from a74

fixed basis set for a given space, such as R2 or R3; in three-dimensional space, this yields scalars,75

vectors, bivectors (which specify signed areas within a plane and have 3 components), and trivec-76

tors (which specify signed volumes and have 1 component)—a total of 8 linearly independent terms77

for each multivector2. When rotation invariance is desired, we can utilize the rotation-invariant78

components of a multivector: scalars, trivectors, the norms of vectors, and the norms of bivectors79

are rotation-invariant. As an example, the geometric product of two vectors yields a scalar plus a80

bivector; the scalar component is the dot product, and the bivector component is related to the cross81

product of the two.82

Geometric algebra provides a general framework that can be used to build up expressive functions83

as linear combinations and geometric products of multivector inputs; rotation-equivariant quantities84

can then be derived from the products, depending on the application and symmetry of the problem85

of interest. The types of elements produced by a geometric product of two multivectors in R3 with86

the given components are listed in Table 1 below.87

Table 1: Terms arising from the geometric product AB = (As+Av+Ab+At)(Bs+Bv+Bb+Bt)
in R3. In three dimensions, multivectors A and B consist of scalars (s), vectors (v), bivectors (b),
and trivectors (t).

Bs Bv Bb Bt

As s v b t
Av v s + b v + t b
Ab b v + t s + b v
At t b v s

From Table 1, we can see that successive products of vectors alternate between producing two types88

of multivectors: products of even numbers of vectors yield a scalar and bivector ((v+t)v = vv+tv =89

(s + b) + b → s + b), while products of odd numbers of vectors produce a vector and trivector90

((s + b)v = sv + bv = v + (v + t) → v + t). Generating rotation-invariant quantities from these91

products is the primary application of geometric algebra in this work, although in general the method92

2Multivectors form a vector space: the individual components of multivectors (any number of bivectors, for
example) can be directly summed elementwise, but multivector components of different types stay separate and
are multiplied using the distributive property of geometric products when needed. The geometric product has
an identity of the scalar 1 and is associative; in other words, it forms a monoid over multivectors.

3



could be used to incorporate different types of scalar, vector, bivector, and trivector quantities; for93

example, rotations could be input as quaternions, which are isomorphic to the scalar-and-bivector94

product of even numbers of vectors.95

Attention from Geometric Products96

For input point clouds with N points, we can construct a series of successively higher-order geo-97

metric products for all N2 possible pairs, N3 triplets, and so on; these individual points, pairs, or98

triplets we will call a tuple in this context. In addition to a coordinate r⃗i, we associate a set of values99

vi to each point indexed by i in some space with a given working dimension (we avoid calling these100

vectors to decrease the confusion with geometric vectors; these correspond to the non-geometric101

attributes of the point, such as type embeddings). To create permutation-covariant functions (pro-102

ducing a value for each input point) or permutation-invariant functions (producing a single output103

value), we make use of a simple attention mechanism based on the rotation-invariant attributes of104

each tuple. Attention has been used widely in applying deep learning to a range of problem do-105

mains over the last few years, with particular success in the field of natural language processing[20].106

Since we are already generating tuple-wise quantities, we choose to utilize a simpler mechanism107

than the typical dot product self-attention. We specify four functions: a value-generating function108

V , a tuple value-merging function M, a joining function that summarizes the invariant and tuple109

representations J , and a score-generating function S. The functions have the following uses within110

the network:111

• V produces features in the working dimension of the model from the invariants associated112

with each tuple.113

• M merges the 1, 2, 3, or more values associated with a tuple of input points into the114

working dimension of the model. The form of M could be a complex function, a learned115

linear projection for each tuple position, or simply taking the sum of the tuple values.116

• J joins the invariant representations from V and the tuple representations from M. Like117

M, it could be a learned projection or a simple sum function.118

• S generates score logits from the representation of each tuple, which incorporates invariants119

associated with the tuple and the values being associated with each point that is part of the120

tuple. The results from S, passed through a softmax function, will yield the weights for the121

attention mechanism.122

We first calculate the multivector geometric products pijk... of all combinations of input vectors123

i, j, k, and so on, up to a specified rank (pairwise attention would produce a two-dimensional124

matrix of products pij). We then use V , M, J , and S—together with a function extracting the125

rotation-invariant attributes of a geometric product (the scalar component, trivector component, and126

the norms of the vector and bivector components)—as follows for a network producing permutation-127

covariant outputs yi:128

pijk... = r⃗ir⃗j r⃗k...

qijk... = invariants(pijk...)
vijk... = J (V(qijk...),M(vi, vj , vk, ...))

wijk... = softmax
jk...

(S(vijk...))

yi =
∑
jk...

wijk...vijk...

(1)

If a permutation-invariant reduction is desired, then the softmax and final sum can be performed over129

all tuples simultaneously, rather than for each input point individually. While J , V , and M could in130

principle be used to change the working dimension as permutation-covariant layers are stacked on131
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top of each other, in this work we keep the working dimension constant for the sake of easily adding132

residual connections.133

If rotation-covariant, rather than rotation-invariant, behavior is needed for the output of the network,134

the same attention structure can be used with slight modifications; here, we coerce a vector from135

the product pijk... (which consists of directly taking the vector component from products of odd136

numbers of input vectors, or multiplying a bivector by the unit trivector to produce a vector—as137

shown in the last column of Table 1—in the case of even numbers of input vectors). These vectors138

can be combined with a scalar rescaling each vector—generated by a learned function R—and the139

attention mechanism to yield140

r⃗i
′ =

∑
jk...

wijk...R(qijk...)vector(pijk...). (2)

Results141

We demonstrate the utility of our geometric algebra attention scheme by training deep networks to142

solve three problems appearing in physics, chemistry, and biology. For simplicity, all the models143

presented here utilize pairwise attention with a working depth of 32 units. Value functions V , score144

functions S, and rescaling functions R are simple multilayer perceptrons with a hidden width of145

64 units, with layer normalization applied to the output of V . The network for crystal structure146

identification uses the mean function for merge functions M and join functions J , while the other147

two applications use learned linear projections. Networks are trained for up to 800 epochs using148

the adam optimizer[21]; the learning rate is decreased by a factor of 0.75 after the validation set149

loss does not decrease for 20 epochs, and training is ended early if the validation set loss does not150

decrease for 50 epochs. Numerical results are reported as the mean and standard error of the mean151

over 5 samples. Python code under the MIT license implementing each experimental workflow is152

included in the supplementary information.153

Crystal Structure Identification154

On length scales ranging from those of atoms to colloidal particles, matter often organizes itself into155

ordered two- or three-dimensional structures. One of the core ideas of materials science is that struc-156

ture is one of the major determining factors for material behavior. With this perspective in mind,157

when studying computational models of self-assembling systems we often first identify what struc-158

tures, if any, have formed in our simulations—a task complicated by naturally-occurring thermal159

noise, crystallographic defects, and potentially the complexity of the structures themselves. Early160

efforts to automatically characterize structure led to the widely-used Steinhardt order parameters[22–161

24], which are rotationally-invariant sums of spherical harmonic magnitudes over local particle162

environments. While the Steinhardt order parameters can be useful when studying phase transi-163

tions or distinguishing among a small number of phases, determining appropriate hyperparameters—164

including neighborhood size to consider, spherical harmonic order ℓ to use, and thresholds to iden-165

tify behaviors of interest—can be difficult[23]. For this reason, data-driven approaches to analyzing166

structure have been the subject of great interest in recent years[25].167

We use geometric attention networks to identify the source structure type of small neighborhoods168

of particles extracted from bulk crystals. We select 8 prototypes of single- and two-component169

crystals from the AFLOW Encyclopedia of Crystallographic Prototypes[26, 27]. These structures170

are chosen to demonstrate that models can learn not only geometric information (cF4-Cu and hP2-171

Mg are similar structures but with a different stacking of their close-packed layers; the clathrates172

cP46-Si and cF136-Si are also similar, with a different arrangement of many common motifs), but173

also the information encoded within each point (cP2-CsCl and cF8-ZnS differ from cI2-W and174

cF8-C only by their particle type assignments). For each structure, we rescale the unit cell such that175

the shortest nearest-neighbor distance over the structure is 1 before replicating the unit cell to consist176

of at least 2048 particles. We then create three samples of each structure by adding Gaussian noise177
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Figure 2: (a) Network architecture for crystal structure identification. Coordinates and particle
types are passed through two permutation-covariant layers before a final permutation-invariant re-
duction. (b) Crystal structure prototypes chosen for the structure identification benchmark. Simple
and complex structure types—including two binary structures—are included.

with a standard deviation of 10−3, 5 ·10−2, and 0.1 separately to the particle coordinates, in order to178

emulate thermal noise. For each particle in the structure, we find the 12 nearest neighbors and their179

associated types using the freud[28] python library, which we feed into the network as the pairwise180

distance r⃗ij = r⃗j − r⃗i and one-hot-encoded symmetrized type vector ∆tij = [Iti − Itj , Iti + Itj ],181

where I is the identity matrix of dimension corresponding to the maximum number of types.182

We train classifiers with 2 permutation-covariant attention blocks before a final reduction over the en-183

tire particle neighborhood—as shown in Figure 2—in order to categorize local particle environments184

according to their source crystal structure type. These networks rapidly learn to identify structures185

after a few epochs, with a final overall accuracy of 98.7% ± 0.2% after training for roughly 45186

minutes on an NVIDIA Titan Xp GPU.187

Molecule Force Regression188

One of the most dramatic contributions of deep learning to the field of chemistry lies in constructing189

fast, accurate approximations of expensive physical calculations[29, 30]. Machine learning models190

can be many orders of magnitude faster than the methods used to generate their training data, which191

can bring vastly more detailed and longer-time simulations into the realm of possibility. Central192

to the applicability of these methods are issues of symmetry and equivariance: any imperfection193

in rotational invariance of a learned potential energy function could ruin the proper thermodynamic194

behavior of a model, for example, so models must be carefully designed to ensure physical behavior.195

In a method similar to Batzner et al.[31], we train models to predict the per-atom forces calculated196

using ab initio molecular dynamics and density functional theory available in the MD17 dataset[3].197

As shown in Figure 3, we first transform the raw coordinates and types of each atom in a given198

molecule into the pairwise difference and symmetric sum and difference of the coordinates and one-199

hot type encoding for each atom with respect to each other atom, respectively, to fix translation200

invariance and assign type representations to the pairwise particle bonds. We then perform a series201

of geometric attention calculations, calculating new values per atom, which are finally summed to202

produce a scalar energy. The gradient of this energy with respect to the input coordinates is used to203

produce the force output of the network, which ensures that a conservative force field is learned.204

Consistent with previous benchmarks on this dataset, we train networks using the mean squared205

distance loss for each molecule using 1,000 snapshots of forces each as training, validation, and test206
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Figure 3: (a) Network architecture for molecular force regression. Coordinates and particle types
for all atoms in a molecule are fed into the network as a set of pairwise distances, with the atomic rep-
resentations refined through a series of geometric algebra attention layers. Six permutation-covariant
layers are stacked before reducing the representations with a final, permutation-invariant geometric
product attention layer. (b) Sample pairwise attention maps for four training data molecules (mal-
onaldehyde, aspirin, benzene, and uracil) after filtering out low-attention pairs. The attention maps
indicate how strongly the pair of atoms joined by the line affect the representation of the atom
indicated with a star, with lighter lines indicating greater influence. Qualitatively, more complex
bonding environments such as those on the right tend to have longer-range attention interactions
than the simpler environments on the left.

data sets. We also report results for models trained on all molecules’ data simultaneously, or 8,000207

snapshots each for training, validation, and testing. Training a model on an individual molecule’s208

data takes between 30 minutes (ethanol and malonaldehyde, with nine atoms each) to two hours209

(aspirin, with twenty-one atoms) on an NVIDIA Titan Xp GPU, while the all-molecule dataset210

requires roughly 16 hours to train. Test set losses, expressed as the mean absolute error over each211

force component for each sample, are presented in Table 2.212

Table 2: Mean absolute error of force components (in meV
Å

) for geometric algebra attention net-
works, NequIP[31], and SchNet[9] architectures.

Molecule This work NequIP SchNet
Aspirin 37.0 ± 1.1 15.1 58.5
Benzene 11.8 ± 0.5 8.1 13.4
Ethanol 21.4 ± 0.5 9.0 16.9

Malonaldehyde 30.6 ± 1.1 14.6 28.6
Naphthalene 23.7 ± 1.0 4.2 25.2
Salicylic acid 30.2 ± 1.2 10.3 36.9

Toluene 20.5 ± 1.3 4.4 24.7
Uracil 27.4 ± 0.8 7.5 24.3

All molecules 10.7 ± 0.2

Our geometric algebra attention networks produce results competitive with SchNet[9], an architec-213

ture using learned radial distance convolution filters. Although the models generated here do not out-214

perform the Neural Equivariant Interatomic Potentials by Batzner et al.[31], we note that our models215

are trained for a fraction of the time (2 GPU hours and 800 epochs for our method, compared to on216

the order of 8 GPU days and 2500 epochs for NequIP) and without drastic hyperparameter tuning217

aside from optimizing the number of residual blocks to use in the network architecture. Notably, the218

models trained on all 8,000 molecular snapshots perform significantly better than almost all of the219

specialized models, indicating that additional data could likely improve the results presented here220

even without careful hyperparameter optimization.221
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Figure 4: Network architecture for inverting a coarse-grained mapping of a protein. Models are
trained to predict atomic-resolution coordinates from Ncoarse = 12 neighboring amino acid centers of
mass using geometrically-informed scalar-to-scalar attention (blue), scalar-to-vector attention (pur-
ple), and vector-to-vector attention (red).

Backmapping Coarse-Graining in Proteins222

When simulating large molecules—such as proteins or other polymers—it is common to employ223

coarse graining: a process by which groups of particles are merged into (fewer) distinct beads, en-224

abling faster simulations by decreasing the number of degrees of freedom of the model[4]. Although225

data-driven approaches have been highly successful to formulate coarse graining operations in the226

forward direction (that is, from more-detailed to less-detailed systems), some problems are best227

solved using the original, fine-grained system coordinates, which are not directly available in coarse-228

grained simulations. To demonstrate the potential for our geometric algebra attention mechanism229

on this task, we train models to predict the coordinates of the heavy atoms that form an amino acid230

from the centers of mass of the nearest-neighbor amino acids. We take 19 protein structures[32–50]231

that have high-resolution structural refinements (with resolution error less than or equal to 1.0Å)232

and were published between 2015 and 2020 from the Protein Data Bank[51]. For applications of233

this method to systems at nonzero temperature, we would expect to be better-served by using an234

architecture that produces distributions instead of only point values, but we disregard this here for235

simplicity; in other words, here we are teaching models to memorize the results of structure refine-236

ment algorithms, which may be different for each PDB entry. For every amino acid in each entry,237

we create a point cloud of its 12 nearest neighbor amino acid centers of mass, as well as a point238

cloud of the primary amino acid’s atomic coordinates relative to its center of mass. Two layers of239

permutation-covariant geometric product attention are applied to the coarse-grained amino acid co-240

ordinates before being passed to a layer which produces a vector output according to Equation 2 by241

augmenting the tuple representation vijk... of Equation 1 with labels corresponding to the identity242

of the atom that should be produced, so that the value is calculated as243

vatom,ijk... = J (vatom,V(qijk...),M(vi, vj , vk, ...)).

Following this layer—which maps coarse-grained coordinates of amino acids to fine-grained coordi-244

nates of atoms—two rotation-covariant layers are applied to the atomic coordinates to further refine245

them, as shown in Figure 4.246

Because the resolution of the structural refinement algorithms is on the order of 0.5Å or greater, we247

use the training set error as a measure of the learning progress of the models instead of performing248

a standard split of training, validation, and test set data. After training for roughly 3 hours on249
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an NVIDIA Titan Xp GPU, models achieve a mean absolute error of 0.128Å ± 0.002Å (down250

from approximately 0.5Å initially), indicating that they are able to learn to reconstruct atomic-scale251

coordinates from coarse-grained positions.252

Discussion253

Overall, we find the architectures formulated here to be useful for a variety of tasks. Rather254

than being limited to operating on bond distances and angles as in SchNet[9], PhysNet[10], and255

DimeNet[11], geometric algebra provides a systematic way to build functions with the desired256

rotation- and permutation-equivariance, with the flexibility to incorporate other types of geomet-257

ric objects (such as the orientation quaternion commonly used for anisotropic particles in molecular258

dynamics methods[52]). The attention mechanism presented here provides a simple yet powerful259

method to incorporate both geometric and node-level signals. The primitives of our geometric alge-260

bra attention scheme—distances, areas, angles, and volumes—and the calculated attention weights261

naturally lend themselves to interpretability, which we believe will prove useful in distilling insights262

from trained models.263

Limitations264

Combination of terms. Although the architectures presented here work well for the problems we265

have selected, creating geometric products of vectors is only a subset of the valid combinations that266

could be generated. In these cases we have carefully chosen sums and differences of input vectors to267

respect symmetries we would like to impose on the system—such as using the pairwise distance of268

all input coordinates for the molecular force regression task to impose translation invariance—but it269

is possible that more powerful models could be formed by incorporating learned linear combinations270

of inputs or intermediate multivector quantities. We leave this as a topic of future work.271

Computational scaling and neighborhood definition. An obvious limitation to using higher-272

degree correlations lies in the computational complexity and memory scaling of generating tuples,273

which are both proportional to Nr for neighborhoods of N coordinates and tuples of length r. Poly-274

nomial scaling behavior can be ameliorated by restricting which combinations of input points are275

considered, essentially treating the attention weights of all other combinations as 0. These combi-276

nations could be randomly sampled from all valid indices ijk... or use more physically-relevant re-277

strictions, such as utilizing the molecular connectivity graph for molecular force regression or edges278

derived from the Voronoi tessellation for other applications. If smoothness of model predictions is279

a concern—as may be the case for learning general N-body interaction potentials, for example—the280

architectures presented here could be augmented by incorporating weights that decay to 0 as bonds281

are broken in the Voronoi diagram graph[23].282

Conclusion283

In this work, we have presented a strategy for developing rotation- and permutation-equivariant284

neural network architectures by combining geometric algebra and attention mechanisms. These285

architectures operate directly on the vector, scalar, and other geometric quantities of interest to pro-286

duce outputs which respect desirable symmetries by construction. We believe that the mathematical287

simplicity and the insights derived from attention maps are particularly appealing aspects of the288

algorithms presented here. We hope that these architectures will help a wider range of scientific289

disciplines reap the benefits of geometric deep learning.290
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