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Abstract

We study the ability of neural and hybrid mod-001
els to generalize logical reasoning patterns. We002
created a series of tests for analyzing various003
aspects of generalization in the context of lan-004
guage and reasoning, focusing on composition-005
ality and recursiveness. We used them to study006
the syllogistic logic in hybrid models, where007
the network assists in premise selection. We an-008
alyzed feed-forward, recurrent, convolutional,009
and transformer architectures. Our experiments010
demonstrate that even though the models can011
capture elementary aspects of the meaning of012
logical terms, they learn to generalize logical013
reasoning only to a limited degree. Interest-014
ingly, the architectures’ performance can be015
unexpected, e.g., convolutional models some-016
times generalize better than transformers.017

1 Introduction018

Despite the enormous successes of models based019

on deep learning, we still need to know more about020

how and what these models learn. In particular,021

the question of fundamental importance is to what022

extent such models can ‘grasp’ the rules (or – more023

generally – the structure) governing involved data024

and tasks. It can be stated precisely for problems025

related to NLP as language structure is well under-026

stood from several perspectives: grammar, seman-027

tics, or rules of reasoning have been extensively028

studied and successfully formalized.029

However, the study of neural models for tasks030

related to logic and reasoning is limited. An early031

attempt is (Bowman et al., 2015), where networks032

learn logical relations, such as entailment, between033

pairs of sentences in a simple artificial language.034

More recent work (Ontanon et al., 2022) involves035

models that determine whether a given inference036

can be proved from a given set of premises by037

providing the list of inference rules as an output.038

In (Peter et al., 2021), models learn to reason with039

prescribed rules, while in (Schlegel et al., 2022),040

the authors consider models deciding whether a 041

given set of sentences is consistent. It is worth 042

mentioning that investigating reasoning has a sound 043

linguistic motivation. To take a straightforward 044

example, it is hard to argue that a model grasps 045

the meaning of quantifier "all" if it is not able to 046

perform reasonings of the form: "All a are b" and 047

"All b are c" implies "All a are c." 048

In this paper, we focus on logical reasoning in 049

the syllogistic fragment of the natural language. 050

The syllogistic logic has nice properties, e.g., 051

soundness and completeness. Notably, the logic is 052

non-trivial but still sufficiently elementary to play 053

the role of a benchmark for models of reasoning. 054

Generalization is broadly understood as the abil- 055

ity to perform on unseen data. However, this defi- 056

nition is void without some measure of similarity 057

between the ‘seen’ and ’unseen’ data. Even in NLP, 058

despite the available theoretical background, the 059

methodology for studying generalization is still not 060

well developed. A notable attempt in this direction 061

is (Hupkes et al., 2019), where a more systematic 062

approach to assessing generalization is proposed. 063

This is our starting point. 064

We investigate various aspects of the generaliza- 065

tion of inference patterns in the training data and 066

the task of finding proof (if it exists) that a given 067

hypothesis can be concluded from a given set of 068

premises. We think of our models as hybrid models: 069

the network, presented with a knowledge base KB 070

(i.e., a set of premises) and a hypothesis H , assists 071

the prover by selecting the premises required to 072

construct a proof of H from KB. Thus, our paper 073

can also be described as a study of reasoning in 074

the presence of multiple premises, a research line 075

rarely explored in deep learning. 076

We mainly investigate two aspects of generaliza- 077

tion: compositionality (structure of inference is de- 078

termined by its parts) and recursiveness (inferences 079

can be iteratively combined). It is worth emphasiz- 080

ing that they are frequently conflated even though 081
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conceptually different. There are fully composi-082

tional structures with limited recursiveness, e.g.,083

Boolean operations on a finite family of sets are084

compositional but can be combined only in a finite085

number of ways. There are also fully recursive086

systems that are not compositional, the best-known087

example being Tarski’s interpretation of first-order088

logic, see (Janssen and Partee, 1997) for a detailed089

discussion and more examples.090

In the context of our study, the structure of in-091

put/output can be naturally split into two layers: the092

layer of premises and that of inferences. To control093

the distance between the seen (training) and un-094

seen (test) data, most of the time, we keep the first095

one constant (making sure that involved knowledge096

bases are sufficiently rich) and vary only the second097

one. Moreover, we work only with non-redundant098

knowledge bases, i.e., such that the relationship099

between a conclusion and premises needed to infer100

it is unequivocal.101

We employed different types of architectures,102

Multilayer Perceptron, Recurrent Neural Networks,103

Convolutional Neural Networks, and Transform-104

ers, to compare their performance and capabilities105

for generalization on artificially generated syllo-106

gistic corpora. Our conclusions are mainly nega-107

tive: neural networks—and the hybrid models they108

comprise—poorly generalize, regardless of archi-109

tecture. In particular, this sheds light on the pur-110

ported superiority of the transformer architecture.111

However, we also observe some traces of general-112

ization (most notably, and quite surprisingly, for113

convolutional networks) that require further anal-114

ysis, going beyond the technical set-up developed115

for the sake of this study.116

Last but not least, one of our primary goals is to117

contribute to developing a methodology for investi-118

gating generalization in the context of composition-119

ality and recursiveness. The approach proposed in120

this paper can be exploited in other settings, either121

directly related to reasoning, e.g., other fragments122

of language and inference systems, or not, e.g.,123

sequence-to-sequence models studied in (Hupkes124

et al., 2019) and (Lake and Baroni, 2023) in the125

context of compositionality.126

2 Syllogistic Logic127

Pratt-Hartmann (Pratt-Hartmann, 2004) defines a128

fragment of a natural language as a subset of that129

language with an uncontroversial translation into130

a formal language that reconstructs logical entail-131

ment. The syllogistic fragment, first introduced 132

and studied by Aristotle, is the simplest non-trivial 133

language fragment. Aristotle considered only syllo- 134

gisms consisting of two premises and a conclusion 135

—a well-known example is “If all men are mortal 136

and all Greeks are men, then all Greeks are mor- 137

tal.” However, classical syllogistic can be easily 138

extended to inferences involving more than two 139

premises, see, e.g., (Łukasiewicz, 1951; Smiley, 140

1973). In our setting, only general names with non- 141

empty denotations are allowed. Thus, “Socrates is 142

a man” is not a syllogistic formula for us, while 143

“Every unicorn is an animal” implies “Some uni- 144

corn is an animal”). 145

2.1 Language 146

The syllogistic comprises the formulas Aab (“Ev- 147

ery a is b”), Eab (“No a is b”), Iab (“Some a is 148

b”), and Oab (“Some a is not b”). The former 149

two are called universal formulas since the trans- 150

lation to the first order logic is ∀x.[A(x) → B(x)] 151

and ∀x.[A(x) → ¬B(x)], respectively. And the 152

latter two are existential formulas represented as 153

∃x.[A(x)∧B(x)] and ∃x.[A(x)∧¬B(x)], respec- 154

tively. Note that translations of Aab and Oab are 155

contradictory, and so are Iab and Eae. Moreover, 156

existential formulas are symmetric, i.e., Iab and 157

Iba have equivalent translations, and so do Eab 158

and Eba. 159

We define a language as follows: let V = 160

(Q, C) be a vocabulary of quantifier symbols 161

Q = {A,E, I,O} and constant symbols C = 162

{a, b, c, . . .}. Formulas are built as Axy, Exy, 163

Ixy, or Oxy,where x, y ∈ C, x ̸= y. In partic- 164

ular, Aaa is not a formula. 165

There is no negation in our language; however, 166

we denote the “contradiction” of a formula F by 167

F , i.e., Aab = Oab, Oab = Aab, Iab = Eab, and 168

Eab = Iab. 169

An A-chain, denoted as Aa − b, represents ei- 170

ther the formula Aab or the sequence of two or 171

more formulas Aac1, Ac1c2, . . . , Acn−1cn, Acnb 172

(for n ≥ 1). Finally, a knowledge base is a finite 173

set of formulas or premises. 174

2.2 Types of syllogistic inferences 175

In this paper, we follow (Smiley, 1973). However, 176

we do not delve into details; in particular, we do not 177

specify the proof system because it does not matter 178

in our framework. The aforementioned translation 179

of syllogistic formulas into first-order logic allows 180

for interpreting formulas by interpreting constants 181

2



a) a

b

c

d

O

A A

b) a

b

c

d

A A

E

E

c)

a

b

c

d

e

f

I

O
A A A

E

Figure 1: Syllogistic inferences a) Type 1 {Aa−b, Ac−
d,Oad} ⊢ Obc b) Type 6 {Aa−b, Ac−d,Ebd} ⊢ Eac
c) Type 5 {Aa− b, Ac− d,Ae− f, Iae, Edf} ⊢ Obc

as non-empty unary predicates. This is sufficient182

to define the notions of consistency and inference.183

A set F of formulas is consistent if there is an184

interpretation of constants that makes all formulas185

in F true. A formula F is a conclusion from a set186

of premises F if F ∪{F} is inconsistent. We write187

F ⊢ F for the inference formed by premises F188

and conclusion F . Given a knowledge base KB, a189

hypothesis H is valid if KB ⊢ H , otherwise H is190

invalid.191

In the paper, we are interested in minimal infer-192

ences, i.e. inferences F ⊢ F such that F ′ ̸⊢ F for193

any proper subset F ′ ⊆ F . Minimal inferences cor-194

respond to antilogisms, i.e., minimal inconsistent195

sets of syllogistic formulas.196

Theorem 1 ((Smiley, 1973)). Every antilogism is197

of the following form {Aa−b,Oab}, {Aa−b, Aa−198

c, Ebc}, or {Aa− b, Ac− d, Iac (or Ica), Ebd}.199

Theorem 2 ((Smiley, 1973)). Let F be a formula200

and F be a set of formulas. F ∪ {F} is an antilo-201

gism if and only if F ⊢ F , and F ⊢ F is minimal.202

All minimal syllogistic inference types can be203

easily recovered from the above theorems. The fi-204

nal list is presented in Table 1 (see A.1 for more de-205

tails). To cover all syllogisms, symmetric formulas206

need to be used interchangeably, e.g., Ixy = Iyx;207

formulas of the form Aaa are disregarded.208

To give the reader a better idea of what syllo-209

gistic inferences look like, we present in Figure 1210

diagrams illustrating some of them.211

We say that an inference F ⊢ F can be decom-212

posed into inferences F1 ⊢ F1, F2 ∪ {F1} ⊢ F ,213

if F = F1∪̇F2, i.e. the premises can be split214

(1) {Aa− b, Ac− d,Oad} ⊢ Obc
(2) {Aa− b} ⊢ Aab
(3) {Aa− b, Ac− d,Aa− e, Ede} ⊢ Obc
(4) {Aa− b, Aa− c} ⊢ Ibc
(5) {Aa− b, Ac− d,Ae− f, Iae, Edf} ⊢ Obc
(6) {Aa− b, Ac− d,Ebd} ⊢ Eac
(7) {Aa− b, Ac− d, Iac} ⊢ Ibd

Table 1: Final list of inferences

into two disjoint subsets F1 and F2 so that F1 215

forms premises of the first inference, and F2, to- 216

gether with the conclusion F1 from F1, forms the 217

premises of the second one. The main observation 218

here is that every inference can be decomposed into 219

an inference in basic form, i.e., with A-chains of 220

length 1, and an inference of type 2. Other decom- 221

positions, discussed in 4.2, are also possible for 222

some inferences types. 223

3 Synthetic Data and Neural Models 224

In order to avoid problems related to the choice 225

of premises needed to infer a given hypothesis, 226

we used only non-redundant knowledge bases, i.e. 227

knowledge bases such for every valid hypothesis 228

there is unique minimal set of premises that proves 229

it. 230

We represent a knowledge base as a set of m 231

disjoint trees T1, . . . , Tm (or a forest). Each tree is 232

a directed graph Ti = (V,E) such that there is at 233

most one path between any two vertices. We cre- 234

ated synthetic consistent non-redundant knowledge 235

bases KB for training and testing the neural models 236

using the following general algorithm: 237

1. Randomly generate a forest where each ver- 238

tice corresponds to a constant and every di- 239

rected path between two vertices corresponds 240

to an A-chain. 241

2. For every pair of (different) trees (Ti, Tj): 242

Add one E-formula and one I-formula be- 243

tween Ti and Tj . 244

3. For each tree Ti: 245

Add O-formulas within Ti. 246

We randomly add formulas (steps 2. and 3.) such 247

that there is no redundancy and the set KB remains 248

consistent (see A.2 for an illustration). 249

For every experiment we generated a con- 250

sistent non-redundant knowledge base KB = 251
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{P1, . . . Pn} of n premises. We trained neural mod-252

els using a multi-label approach and supervised253

learning techniques. Each element of the dataset254

consists of an input X associated with a label y.255

The input vector X encodes the knowledge base256

KB and a hypothesis H . For a valid H , the label y257

is a binary vector of size n that tags all the neces-258

sary premises to derive H by assigning 1 to every259

yi if KB \ {Pi} ̸⊢ H and 0, otherwise. For invalid260

H , y is the zero vector.261

We stratify the training/test split by types of in-262

ferences, for types 1, 2, 3, 5, 6, and 7 we train263

75% and test on the remaining 25%. For type 4264

we split 50%/50% due to the significant amount of265

data. Finally, for invalid hypotheses we only train266

20%, since there are around 14 thousand samples.267

In some experiments the stratification somewhat268

differs (i.e., when we remove an inference type269

from the training data) but, in general, we stick to270

the above stratification principles.271

We used one-hot encodings to produce input vec-272

tors. Each constant and quantifier are represented273

as a one-hot vector of dimension d (where d is the274

size of the vocabulary). We also tested word em-275

beddings to encode knowledge bases but one-hot276

encodings give a better performance (see A.3). Be-277

sides, one-hot encodings seem better suited than278

word embeddings for representations of logical279

terms because co-occurrence relations cannot cap-280

ture the meaning of logical terms.281

4 Experiments and Results282

We randomly generated 5 consistent knowledge283

bases. Each of them consists of 4 trees, 66 con-284

stants, and 78 formulas. We made sure that no285

valid hypothesis gave rise to the same label in two286

different knowledge bases. Table 2 depicts a typical287

distribution of inferences by type. In the following288

experiments, we trained 4 different architectures289

of neural models: Multilayer Perceptron (MLP),290

Recurrent Neural Network (RNN), Convolutional291

Neural Network (CNN), and Transformers (TRA).292

The detailed specification of each architecture can293

be found in A.4. We trained each knowledge base294

for 3 runs.295

Being part of a hybrid model, networks are sup-296

posed to provide premises for the prover. Therefore,297

beside the standard measure of accuracy (correct298

label), we consider another one: an output is consid-299

ered correct if it contains all the necessary premises300

(NP).301

4.1 Overall Performance 302

In the first experiment, we checked the overall ac- 303

curacy of the models for the split described in 3. 304

The results are shown in Table 3 (more details in 305

A.5). Clearly, the numbers are high enough to ex- 306

clude a large generalization gap (see, e.g., (Hoffer 307

et al., 2017)), i.e, a substantial difference in per- 308

formance on the training and on the test data (see 309

A.6 for exact values). A large generalization gap 310

would indicate that the model excessively memo- 311

rizes (overfits) training data. However, as the next 312

experiments show, generalization gap is not a good 313

measure of compositional and recursive generaliza- 314

tion. 315

We also verified how the models generalize ba- 316

sic non-compositional and non-recursive features 317

of the syllogistic logic: Principle of Contradiction 318

(either H or H is invalid), non-empty denotations 319

of constants (if Aab is valid, then Iab is valid), as 320

well as symmetry of formulas Iab and Eab. The 321

level of generalization is very high (see A.9). It 322

suggests that the models learned at least elemen- 323

tary aspects of the meaning of involved terms (see 324

Discussion). 325

4.2 Compositionality 326

Unseen Short Lengths. We define the length of 327

an inference as the total length of all A-chains, i.e., 328

the number of A-formulas among the premises. To 329

perform the unseen lengths experiments, for the 330

training data we removed inferences either with 331

short or with long lengths, the length depending 332

on inference type (this is because maximal lengths 333

µ(t) represented in the knowledge base depend 334

on inference type t). Then we test only on the 335

eliminated inferences. 336

In this experiment we removed inferences of 337

length less than 6. Accuracies calculated for every 338

unseen length separately are shown in Figure 2. A 339

sharp and consistent drop in performance can be 340

observed, depending on how far the tested length 341

is from the lengths present in the training data. 342

We interpret these results as a clear sign of lack 343

of compositionality. The models are able to per- 344

form well on the longer inferences without being 345

able to perform on shorter ones, even though the 346

latter form parts of the former. To take type 2 as 347

example, if the model is able to conclude from Aab, 348

Abc, Acd that Aad but not that Aac, it means that 349

this inference is not compositional. 350

4



Type 1 2 3 4 5 6 7 Val. Inv. All
# Inf. 124 334 519 1026 157 245 622 3027 14133 17160

Table 2: Data distribution of the 5 knowledge bases used for training (average number of inferences by type)

Model Inf. Best Mean STD NP

MLP
Val. 83.4 73.1 11.3 82.3
Inv. 96.4 94.0 2.2 –
All 95.1 92.3 2.6 –

RNN
Val. 91.4 87.7 2.0 91.9
Inv. 98.3 97.7 0.4 –
All 97.4 96.9 0.4 –

CNN
Val. 90.0 86.0 2.4 90.8
Inv. 97.7 96.9 0.4 –
All 96.6 96.0 0.3 –

TRA
Val. 95.0 90.4 3.7 94.3
Inv. 97.9 96.7 1.2 –
All 97.5 96.1 1.3 –

Table 3: Overall accuracy

Removing an inference type. For this experi-351

ment, we proceeded to split the training/test dataset352

in a way similar to described in 3, the only differ-353

ence being that an entire type of inferences is re-354

moved from the training dataset. We then checked355

the performance by testing on each type separately.356

Table 4 presents the results (mean accuracy) of tests357

on the removed type, which are most relevant from358

our perspective.359

The first observation is that the categorization of360

the data based on inference types is not spurious.361

The models are essentially incapable of finding in-362

ferences of types that are not present in the training363

data. On the other hand, these results confirm our364

conclusion from the experiment on short unseen365

lengths: the models do not use compositional infer-366

ences.367

Compositional inferences presuppose recogniz-368

ing inferential structures of its parts. It has been369

noted in 2.2 that an inference of every type can370

be decomposed into two inferences, one of which371

is of type 2. There are other possible decomposi-372

tions. For example, an inference of type 5 requires373

knowledge that Iea and Aa − b imply Ieb, i.e.,374

it can be decomposed into two inferences, one of375

which is of type 7. There are similar relationships376

between type 5 and type 6, or type 3 and types 6377

and 7. Therefore removing a type from the training378

data would not completely annihilate performance379

on this type for a model that processes inferences380

in a compositional manner. 381

The only exception is type 3, on which all the 382

architectures exhibit non-zero performance after 383

removing it from the training data. However, this 384

can be explained by the models’ grasping the non- 385

empty denotations of constants (i.e. that Aab im- 386

plies Iab). With an aid of this generalization, type 387

3 can be derived from type 5. Indeed, after remov- 388

ing additionally type 5, the performance on type 3 389

drops to zero. 390

4.3 Recursiveness 391

Unseen Long Lengths. This experiment is simi- 392

lar to the experiment on unseen short lengths but 393

with the longest inferences removed from the train- 394

ing data. The results for inferences of length more 395

than µ(t) − 6 removed (i.e. the 5 longest lengths 396

for each type), and accuracies calculated for ev- 397

ery unseen length separately are shown in Figure 2. 398

Again, we can see a very clear drop in performance, 399

depending on the distance of the length from the 400

lengths seen in training. It means that the models 401

are not able to perform inferences much longer than 402

those used for training. As a matter of fact, for in- 403

ferences longer only by 1, the accuracy is still high. 404

This is even more evident, when only inferences of 405

the maximal length are removed: then there is no 406

decrease in performance (see A.7). 407

Clearly, every inference type has a recursive 408

structure: longer inferences can be constructed 409

from shorter ones by extending the involved A- 410

chains. This kind of recursiveness, consisting of 411

iterative application of a rule, is termed in (Hupkes 412

et al., 2019) as productivity. Thus, we can interpret 413

results of this experiment as a sign of lack of pro- 414

ductivity. On the other hand, the results when only 415

inferences of maximal length are removed, indicate 416

that some local extrapolation takes place. 417

Unseen Lengths except for type 2. In these two 418

experiments, we removed from the training data 419

either the shortest or the longest inferences, except 420

for inferences of type 2. These are selected with- 421

out any restrictions on the length. The results are 422

presented in Figure 3. 423

The performance drops, but the change is much 424

smaller as compared to the experiments on unseen 425
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Model 1 2 3 4 5 6 7
MLP 0.0 0.0 7.1 0.1 0.0 0.0 0.0
RNN 0.0 0.0 18.5 0.6 0.0 0.0 0.0
CNN 0.0 0.0 7.0 0.3 0.0 0.0 0.0
TRA 0.0 0.0 13.2 2.5 0.1 0.0 0.0

Table 4: Mean accuracy for a type after removing it from the training data

Figure 2: Unseen lengths (5) for short inferences (left) and long inferences (right)

Figure 3: Unseen lengths (5) for short inferences (left) and long inferences (right), with all lengths of type 2 for
training
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Model Best Mean STD
MLP 0.0 0.0 0.0
RNN 0.0 0.0 0.0
CNN 0.0 0.0 0.0
TRA 0.0 0.0 0.0

Table 5: Unseen combinations of premises

lengths described above and in 4.2 (see Figure 2).426

This is particularly evident for MLPs and TRAs.427

For short unseen lengths, when lengths of type 2428

inferences are also restricted, the performance is429

8.8% (MLP) and 9.0% (TRA), while with all the430

lengths of type 2 inferences present, it is 35.4%431

(MLP) and 43.9% (TRA). For long unseen lengths432

the corresponding values are 3.4% (MLP), 18.4%433

(TRA), and 24.5% (MLP), 39.5% (TRA). A more434

detailed discussion of general performance of the435

architectures will be carried out in a separate sec-436

tion.437

We interpret these results a sign of some capa-438

bilities of the models to combine inferences, i.e.,439

as evidence for some level of recursiveness. As it440

was pointed out in the introduction, composition-441

ality and recursiveness are distinct categories of442

language, and langauge processing, so our findings443

from this and the previous section, indicating lack444

of compositionality and some presence of recur-445

siveness, are not contradictory.446

Unseen combinations of premises. In this ex-
periment, we select a set ∆ of formulas forming
an A-chain from the knowledge base, remove from
the training data inferences F ⊢ F such that

|F ∩ ∆| > 1,

and test on the removed inferences. In other words,447

during training the models do not see inferences448

that combine two or more premises from ∆. This449

aspect of generalization is termed systematicity in450

(Hupkes et al., 2019).451

For n ∈ {2, 4, 6, 8}, we randomly selected an A-452

chain ∆ of length n, and performed the experiment.453

The results presented in Table 5 (mean for all values454

of n) are rather extreme: all architectures exhibited455

zero accuracy. Apparently, in order for the models456

to be able to employ a combination of premises in457

an inference, the premises need to be seen together458

in some inference during training. It is true even of459

the simplest inferences like {Aab,Abc} ⊢ Aac.460

Model Inf. Best Mean STD

MLP
Val. 0.1 0.0 0.0
Inv. 67.5 63.3 2.3
All 55.2 51.8 1.9

RNN
Val. 0.0 0.0 0.0
Inv. 30.1 11.2 6.6
All 24.5 9.2 5.4

CNN
Val. 0.0 0.0 0.0
Inv. 100.0 95.3 6.6
All 81.7 78.0 5.4

TRA
Val. 0.0 0.0 0.0
Inv. 83.1 81.9 0.7
All 67.9 67.1 0.6

Table 6: Test on new knowledge bases

4.4 Testing on a new knowledge base 461

In the last experiments, we went beyond the general 462

framework of the study. We substantially increased 463

the distance between the training and the test data, 464

employing a new knowledge base for testing. We 465

selected 3 bases with no overlapping labels for a 466

given hypothesis, and repeated the experiment 6 467

times, for every combination of the base used for 468

training and for testing. 469

The results in Table 6 show that in this setting 470

the models poorly generalize. In particular, the 471

accuracy on valid hypotheses is always zero. A 472

more detailed analysis of the results reveals (see 473

A.8) that some architectures learn to ignore the 474

knowledge base part of the input, and, regardless of 475

the test data, produce labels that correspond to the 476

base used for training. This is true of TRAs, and, 477

to a lesser extent, of CNNs and MLPs. However, 478

RNNs do not memorize in this way. 479

On the other hand, CNNs exhibit almost perfect 480

performance (mean: 95.3%) on invalid hypotheses, 481

and this behavior cannot be explained by memo- 482

rization: 16% (i.e., around 2300) of the hypotheses 483

that are invalid in the new knowledge base are valid 484

in the old one (see Table 7). The task of deciding 485

if a hypothesis H is invalid for a knowledge base 486

KB amounts to deciding if the set KB ∪ {H} is 487

consistent. Thus, CNNs learnt to recognize con- 488

sistency of sets of syllogistic formulas far beyond 489

the training setup. All other architectures obtained 490

zero accuracy on this task. 491

Finally, we tested generalization of basic fea- 492

tures of the syllogistic logic as in 4.1. The results 493

show almost perfect performance for CNNs and 494

TRAs (see A.9 for details). Interestingly, RNNs 495

7



exhibit low level of generalization of Principle of496

Contradiction.497

4.5 Comparison of architectures498

TRAs do not substantially outperform other archi-499

tectures. This stands in contrast to presuppositions500

(see, e.g., (Smolensky et al., 2022)) that it is trans-501

formers’ ability to process data in a compositional502

manner that explains their successes in real-world503

applications. They do perform better on tests re-504

lated to recursiveness but are below average on our505

compositionality tests. More importantly, we never506

see qualitative superiority, e.g., tasks on which only507

TRAs attain non-zero performance.508

RNNs struggle when tested on a new knowl-509

edge base. It is the only architecture that does not510

generalize Principle of Contradiction. Moreover,511

RNNs’ limited memorization indicates that they512

process data differently. CNNs’ almost perfect per-513

formance on invalid hypotheses hints that they may514

have some interesting distinctive features, deserv-515

ing further studies.516

MLPs, unsurprisingly, lag behind, but they are517

not so much worse. Thus, if understood as a bench-518

mark architecture, their performance indicates that519

in terms of capabilities for compositional and recur-520

sive aspects of language processing, all the known521

deep-learning designs are basically on par – at least522

when employing standard training regimes.523

5 Discussion524

The paper’s main contributions are two-fold:525

methodological and experimental.526

Studies of logical reasoning in neural networks527

usually consider much simpler toy logic examples,528

often not even fully recursive, than the experimen-529

tal setup offered in this paper, cf. (Bowman et al.,530

2015). On the other hand, articles focusing on vari-531

ous aspects of generalizations, like compositional-532

ity, systematicity, or recursiveness, often adopt em-533

pirical frameworks less straightforwardly linked to534

reasoning and semantics, cf. (Hupkes et al., 2019)535

or (Lake and Baroni, 2023). Moreover, many pa-536

pers do not distinguish between recursiveness and537

compositionality. For example, in (Lake and Ba-538

roni, 2023) a sequence-to-sequence model’s per-539

formance on unseen combinations of functions is540

tested (see Fig. 2 in the paper); however, it is not541

verified whether the model can correctly process542

corresponding subcombinations, which is a nec-543

essary condition for compositionality. Similarly,544

in (Peter et al., 2021), the authors investigate the 545

generalization of certain rule-based reasonings to 546

patterns longer than those seen in training (see Ta- 547

ble 1). But they do not take into consideration their 548

internal structure, either. 549

The current paper proposes solving these prob- 550

lems by a systematic study of reasoning in a nat- 551

ural language fragment (Pratt-Hartmann, 2004). 552

Our experiments show that even though the neu- 553

ral network models can grasp some elementary 554

aspects of syllogistic reasoning, they cannot learn 555

the logic’s fully recursive and compositional nature. 556

They manifest various aspects of the meaning of 557

involved terms, e.g., the Principle of Contradiction, 558

non-emptiness of denotations, or the symmetry of 559

quantifiers. They also exhibit some ability to com- 560

bine inferences into more complex ones, which 561

agrees with findings, e.g., from (Lake and Baroni, 562

2023). At the same time, they do not assimilate 563

the recursive structure of inferences, so high perfor- 564

mance on shorter inferences of a given type does 565

not translate to high performance on longer ones 566

(see (Schlegel et al., 2022) for similar results for 567

the task of recognizing consistency of a set of for- 568

mulas). Moreover, the networks do not pass the 569

compositionality test: they appear to apprehend 570

complex inferences without apprehending the con- 571

stituent subinferences. From the semantical per- 572

spective, this shows that the models do not under- 573

stand the meanings of syllogistic formulas because, 574

ultimately, it is their meanings that determine the 575

structure of syllogistic inferences. 576

5.1 Limitations 577

The syllogistic forms only a small fragment of the 578

natural language, so our findings are not conclu- 579

sive with regard to aspects of logical reasoning that 580

are not present in the syllogistic logic. Moreover, 581

the choice of encodings and the synthetic data con- 582

structed for the sake of experiments conducted in 583

the study further increase the distance of our set-up 584

from the natural language reasoning. 585

Another limitation is related to the employed 586

training regimes. It is possible that other meth- 587

ods of training neural networks would allow for a 588

higher level of compositional and recursive gener- 589

alization. 590
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A Appendix 644

A.1 Construction of inferences 645

We derived all possible syllogisms from Theorems 646

1 and 2 as follows: for each antilogism of the form 647

F ∪ F , we consider all possible values that F can 648

have to construct a valid syllogism of the form 649

F ⊢ F . Table 18 summarizes this process for ev- 650

ery form of antilogism described in Theorem 1. 651

Note that from the third form, i.e., {Aa− b, Ac− 652

d, Iac, Ebd} and {Aa− b, Ac− d, Ica,Ebd}, we 653

only describe the former, since the latter is equiva- 654

lent but with swapping variables. After renaming 655

variables and removing equivalent syllogisms, the 656

list from Table 18 boils down to 7 types of valid 657

inferences presented in Table 1. 658

A.2 An example of a knowledge base 659

Figure 4 shows a consistent non-redundant knowl- 660

edge base with 22 constants and 27 premises. The 661

20 A-formulas are the black arrows, the 5 green 662

arrows represent O-formulas, and finally, the red 663

and the blue arrows between the two trees depict 664

the E and I formulas, respectively. The total num- 665

ber of hypotheses that can be obtained using the 666

4 quantifiers (A,E, I and O) and all constants are 667

computed as 4 × P (k, n) or 4 times the number 668

of k-permutations (without repetition) of n (where 669

k = 2 and n = 22), therefore, the total number of 670

all possible hypotheses is 4× 22× 21 = 1848. For 671

this particular knowledge base, 632 hypotheses are 672

valid and 1216 are invalid. 673

A.3 Types of encodings 674

We experimented with one-hot and word embed- 675

dings to encode syllogistic formulas. We picked the 676

former because it achieves higher accuracy within 677

our framework. To see the comparison between 678

one-hot encoding and word embeddings, we trained 679

a single knowledge base using both techniques, we 680

then tested the overall accuracy for each architec- 681

ture. The results are shown in Figure 8. For valid 682
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Figure 4: A knowledge base represented as a graph

Model Enc. Best Mean STD

MLP
1-hot 82.8 82.4 0.3
emb. 65.5 54.9 9.5

RNN
1-hot 86.2 85.6 0.6
emb. 74.9 74.4 0.4

CNN
1-hot 86.0 85.4 0.8
emb. 84.4 83.4 0.7

TRA
1-hot 93.7 91.9 2.1
emb. 65.6 61.0 5.5

Table 8: Comparison between 1-hot encodings and word
embeddings (accuracy for valid hypotheses)

hypotheses there is a significant difference in MLP683

and TRA. RNNs did a much better work and CNNs684

seem to be able to handle both types of encoding685

quite well. Still, one-hot representations show a686

better performance.687

A.4 Neural models specification688

We built our models using the TensorFlow library689

and Python as a programming language. The gradi-690

ent descent method we used is the Adam optimiza-691

tion algorithm (for MLP, CNN, and TRA) and its692

variant Adamax (for RNN) with a learning rate of693

0.001. The number of epochs performed is 350694

for transformers and 250 for the rest, and the batch695

size for all architectures is 20. The configuration of696

layers used for each model is detailed in Table 9.697

We optimized the configuration for each archi- 698

tecture by performing the overall accuracy test un- 699

til we obtained satisfying results, in particular for 700

valid inferences. We experimented with increasing 701

the number of layers and units or tweaking other 702

parameters such as the learning rate, however with- 703

out seeing any significant improvements. In other 704

more complicated architectures, we also tried dif- 705

ferent numbers of filters, kernel and pooling sizes 706

(for CNNs) or increasing the number of attention 707

heads (for TRAs). Again, the results were very 708

similar or the models overfit the data. With the 709

current configuration, we achieve at least 90% of 710

correct predictions for all inferences using mostly 711

default parameters, and keeping the models with 712

simple and general specifications as much as possi- 713

ble. We performed our experiments using a GPU- 714

A100. The time for training a model varies for each 715

architecture and each experiment. A single run, 716

on average, for MLPs, CNNs, and TRAs takes be- 717

tween 10 and 20 minutes, whereas for RNNs, it 718

takes around 60 minutes. 719

We also experimented with LSTM and GRU re- 720

current models. However, the performance was not 721

superior to RNNs, so we decided to stick with the 722

latter. Last but not least, we tried fine-tuning tech- 723

niques and trained our data on pre-trained models 724

(Devlin et al., 2018) but with no success. This type 725

of encoding could not take apart the hypothesis 726
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Model Layers
MLP 1 Dense layer with 2500 units and tanh activation
RNN 2 SimpleRNN layers with 250 units and tanh activation

CNN
1 Conv1D layer with 512 filters, a kernel of size 5, and relu activation
1 MaxPooling1D layer with a pool size of 3

TRA

1 Embedding layer (to learn the positions of constants and quantifiers)
Transformer Block:

1 MultiHeadAttention layer with 2 heads
1 Feed-forward network

1 Dense layer with 250 units and tanh activation

Table 9: Layers used in all architectures

from the knowledge base and the dense vectors the727

model produced were extremely similar to each728

other. As a result, there was no learning at all. We729

solved this problem by encoding the knowledge730

base and the hypothesis independently, but even731

then, the models were not able to outperform the732

other architectures.733

A.5 Overall accuracy by types of inference734

We present the detailed results from the experi-735

ment described in 4.1. Tables 10, 11, 12, and 13736

show the overall performance results by types of737

inference for MLPs, RNNs, CNNs, and TRAs, re-738

spectively. The NP column is the mean percentage739

of the model’s output when taking into account all740

correct predictions plus predictions that include the741

necessary premises to derive a given hypothesis.742

Moreover, in the last column, we present the aver-743

age Hamming distance (HD) between the correct744

NP predictions and the labels (the correct answer),745

i.e., the average number of premises that are not746

needed. Note that for all architectures, this value747

is smaller than 2, which means that models (on748

average) do not select too many unneeded premises749

whenever they get the needed ones.750

A.6 Generalization gap751

We test on the training data for all architectures to752

check the generalization gap, i.e., the difference in753

performance on training versus test data. It can be754

seen from Table 14 that in this sense the models755

generalize very well (compare it with Table 3).756

A.7 Unseen lengths plots757

In this section, we present detailed plots from the758

unseen lengths experiments. Each experiment con-759

sists of removing from the training data inferences760

of the shortest k lengths or the longest k lengths,761

where k ∈ {1, . . . , 5}, and testing on the removed762

Inf. Best Mean STD NP HD
1 75.0 45.1 18.6 51.9 1.4
2 88.6 78.0 9.8 82.9 1.1
3 100.0 86.8 11.3 89.4 1.0
4 77.2 63.7 11.9 77.3 1.3
5 100.0 91.8 19.2 96.5 1.0
6 100.0 90.5 10.4 91.3 1.0
7 100.0 83.1 15.6 90.7 1.0

Val. 83.4 73.1 11.3 82.3 1.3
Inv. 96.4 94.0 2.2 – –
All 95.1 92.3 2.6 – –

Table 10: Overall accuracy for MLP

Inf. Best Mean STD NP HD
1 69.2 57.5 9.1 58.5 1.2
2 96.4 89.4 3.7 90.4 1.1
3 100.0 97.2 1.4 97.5 1.0
4 87.4 81.7 3.7 89.2 1.2
5 100.0 99.7 0.9 99.7 0.0
6 100.0 98.5 2.7 98.5 0.0
7 100.0 97.2 2.2 98.9 1.0

Val. 91.4 87.7 2.0 91.9 1.2
Inv. 98.3 97.7 0.4 – –
All 97.4 96.9 0.4 – –

Table 11: Overall accuracy for RNN
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Inf. Best Mean STD NP HD
1 77.8 58.1 12.4 64.9 1.4
2 91.6 89.1 1.4 90.2 1.2
3 96.4 92.6 3.4 92.6 0.0
4 87.0 79.6 4.5 88.4 1.3
5 100.0 98.6 2.8 98.6 0.0
6 100.0 96.7 1.9 96.7 0.0
7 100.0 97.6 2.6 98.1 1.3

Val. 90.0 86.0 2.4 90.8 1.3
Inv. 97.7 96.9 0.4 – –
All 96.6 96.0 0.3 – –

Table 12: Overall accuracy for CNN

Inf. Best Mean STD NP HD
1 75.0 55.9 11.5 67.1 1.4
2 91.8 81.7 8.8 83.8 1.0
3 97.8 93.0 2.4 95.0 1.1
4 95.7 90.1 4.5 95.3 1.1
5 100.0 93.1 5.0 95.7 1.1
6 100.0 99.0 1.6 99.6 1.0
7 100.0 97.0 2.9 99.1 1.0

Val. 95.0 90.4 3.7 94.3 1.1
Inv. 97.9 96.7 1.2 – –
All 97.5 96.1 1.3 – –

Table 13: Overall accuracy for TRA

Model Inf. Best Mean STD

MLP
Val. 98.9 90.5 10.1
Inv. 99.6 98.4 1.3
All 99.3 95.2 4.6

RNN
Val. 99.5 99.0 0.3
Inv. 99.9 99.7 0.1
All 99.6 99.4 0.1

CNN
Val. 99.4 98.8 0.3
Inv. 99.8 99.7 0.1
All 99.6 99.3 0.1

TRA
Val. 99.4 97.8 2.1
Inv. 99.9 99.3 0.8
All 99.6 98.7 1.2

Table 14: Test on the same data used for training

Model Inf. Best Mean STD

MLP
Val. 66.2 61.0 3.7
Inv. 77.4 72.7 2.7
All 75.1 70.6 2.9

RNN
Val. 14.3 4.3 3.1
Inv. 30.6 11.4 6.7
All 27.6 10.1 6.0

CNN
Val. 73.2 68.4 8.2
Inv. 84.3 81.0 5.0
All 82.2 78.7 5.6

TRA
Val. 98.3 97.4 0.6
Inv. 98.0 97.4 0.5
All 98.0 97.4 0.4

Table 15: Permutation test on new knowledge bases

inferences. Results (mean overall accuracy) are 763

shown in Figure 5. 764

Similarly, Figure 6 depicts the same experiment 765

but with one important difference: the training data 766

includes all inferences of type 2. To see the exact 767

accuracy improvement, we also calculated accuracy 768

for type 2 inferences removed from the test data in 769

the previous experiment (see Figure 7). 770

A.8 Permutation test 771

For this test, we train a model on a knowledge 772

base KB1, and test it on a new knowledge base 773

KB2. However, we count an output as correct if 774

it is correct for KB1. High performance on this 775

test indicates that the model memorized the train- 776

ing base KB1, and ignores the part of the input 777

corresponding to KB2. 778

We selected 3 knowledge bases and performed 6 779

tests, i.e., trained models were tested on the other 780

2 knowledge bases. Table 15 shows the accura- 781

cies calculated in the way described above. TRAs 782

memorize the training base almost perfectly, while 783

RNNs do not memorize in this way. 784

A.9 Principle of Contradiction, non-emptiness 785

of denotations, symmetry 786

For these tests, we search the output for the 787

following pairs of hypotheses: (1) {H,H}; 788

(2) {Aab, Iab}; (3) {Iab, Iba} and {Eab,Eba}. 789

Then we calculate the percentage of pairs that 790

confirm (1) Principle of Contradiction (2) Non- 791

emptyness of denotations (i.e., Aab implies Iab), 792

and (3) symmetry of formulas Iab, Eab. The re- 793

sults are shown in Table 16 for tests on a new knowl- 794

edge base, and Table 17 for tests on the same knowl- 795

edge base (i.e., its own test dataset). Apparently, 796
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Figure 5: Unseen lengths for short inferences (left) and long inferences (right)

Figure 6: Unseen lengths for short inferences (left) and long inferences (right) with type 2 for training
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Figure 7: Unseen lengths for short inferences (left) and long inferences (right) without type 2

Model Pair Highest Mean STD

MLP
(1) 94.8 92.9 1.1
(2) 100.0 100.0 0.1
(3) 93.6 92.3 0.7

RNN
(1) 75.7 59.8 5.6
(2) 100.0 100.0 0.0
(3) 98.3 94.2 1.9

CNN
(1) 100.0 99.3 1.5
(2) 100.0 99.7 0.4
(3) 100.0 98.5 1.4

TRA
(1) 99.9 99.7 0.2
(2) 100.0 99.8 0.2
(3) 99.8 99.6 0.2

Table 16: Pairs on new KBs. (1) valid/invalid {H,H},
(2) valid/valid {Aab, Iab}, (3) valid/valid {Iab, Iba},
{Eab,Eba}

RNNs poorly generalize Principle of Contradiction797

on a new knowledge base.798

Model Pair Highest Mean STD

MLP
(1) 99.8 99.4 0.3
(2) 100.0 99.9 0.1
(3) 98.5 97.6 0.8

RNN
(1) 99.9 99.9 0.0
(2) 100.0 100.0 0.0
(3) 99.7 99.2 0.2

CNN
(1) 99.7 99.7 0.1
(2) 100.0 100.0 0.0
(3) 99.1 98.9 0.2

TRA
(1) 100.0 99.8 0.2
(2) 100.0 99.7 0.1
(3) 99.8 99.4 0.5

Table 17: Pairs on test data. (1) valid/invalid {H,H},
(2) valid/valid {Aab, Iab}, (3) valid/valid {Iab, Iba},
{Eab,Eba}
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F ∪ {F} F F ⊢ F

{Aa− b,Oab}

Aab {Oab} ⊢ Oab
Aax1 {Ax1 − b,Oab} ⊢ Oax1
Axixi+1

(1) {Aa− xi, Axi+1 − b,Oab} ⊢ Oxixi+1

Axmb {Aa− xm, Oab} ⊢ Oxmb
Oab {Aa− b} ⊢ Aab

{Aa− b, Aa− c, Ebc}

Aab {Aa− c, Ebc} ⊢ Oab
Aac {Aa− b, Ebc} ⊢ Oac
Aax1 {Ax1 − b, Aa− c, Ebc} ⊢ Oax1
Aay1 {Aa− b, Ay1 − c, Ebc} ⊢ Oay1
Axixi+1

(1) {Aa− xi, Axi+1 − b, Aa− c, Ebc} ⊢ Oxixi+1

Ayiyi+1
(2) {Aa− b, Aa− yi, Ayi+1 − c, Ebc} ⊢ Oyiyi+1

Axmb {Aa− xm, Aa− c, Ebc} ⊢ Oxmb
Aync {Aa− b, Aa− yn, Ebc} ⊢ Oync
Ebc {Aa− b, Aa− c} ⊢ Ibc

{Aa− b, Ac− d, Iac, Ebd}

Aab {Ac− d, Iac, Ebd} ⊢ Oab
Acd {Aa− b, Iac, Ebd} ⊢ Ocd
Aax1 {Ax1 − b, Ac− d, Iac, Ebd} ⊢ Oax1
Acy1 {Aa− b, Ay1 − d, Iac, Ebd} ⊢ Ocy1
Axixi+1

(1) {Aa− xi, Axi+1 − b, Ac− d, Iac, Ebd} ⊢ Oxixi+1

Ayiyi+1
(2) {Aa− b, Ac− yi, Ayi+1 − d, Iac, Ebd} ⊢ Oyiyi+1

Axmb {Aa− xm, Ac− d, Iac, Ebd} ⊢ Oxmb
Aynd {Aa− b, Ac− yn, Iac, Ebd} ⊢ Oynd
Iac {Aa− b, Ac− d,Ebd} ⊢ Eac
Ebd {Aa− b, Ac− d, Iac} ⊢ Ibd

(1)∀i.1 ≤ i < m (2)∀i.1 ≤ i < n

Table 18: Construction of inferences
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