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ABSTRACT

Autonomous agents that execute human tasks by controlling computers can en-
hance human productivity and application accessibility. However, progress in
this field will be driven by realistic and reproducible benchmarks. We present
ANDROIDWORLD, a fully functional Android environment that provides reward
signals for 116 programmatic tasks across 20 real-world Android apps. Unlike ex-
isting interactive environments, which provide a static test set, ANDROIDWORLD
dynamically constructs tasks that are parameterized and expressed in natural lan-
guage in unlimited ways, thus enabling testing on a much larger and more realistic
suite of tasks. To ensure reproducibility, each task includes dedicated initializa-
tion, success-checking, and tear-down logic, which modifies and inspects the de-
vice’s system state.
We experiment with baseline agents to test ANDROIDWORLD and provide initial
results on the benchmark. Our best agent can complete 30.6% of ANDROID-
WORLD’s tasks, leaving ample room for future work. Furthermore, we adapt a
popular desktop web agent to work on Android, which we find to be less effec-
tive on mobile, suggesting future research is needed to achieve universal, cross-
platform agents. Finally, we also conduct a robustness analysis, showing that task
variations can significantly affect agent performance, demonstrating that without
such testing, agent performance metrics may not fully reflect practical challenges.

1 INTRODUCTION

Autonomous agents that interpret natural language instructions and operate computing devices can
provide enormous value to users by automating repetitive tasks, augmenting human intelligence, and
accomplishing complex workflows. However, a key research challenge remains the realistic evalu-
ation of these agents in real-world settings. Despite growing enthusiasm for building autonomous
agents (Rawles et al., 2023; Deng et al., 2023; Zheng et al., 2024a; Koh et al., 2024; Kim et al.,
2024; He et al., 2024; Gravitas, 2023; Age, 2024; Web, 2024; Wu et al., 2023; Xie et al., 2023),
most existing approaches for evaluation compare an agent’s actions at each step to a previously col-
lected human demonstration (Deng et al., 2023; Rawles et al., 2023; Yang et al., 2023b; Zhang &
Zhang, 2023; Lù et al., 2024; Zhang et al., 2024c; Yan et al., 2023; Li et al., 2024). Measuring per-
formance in this way can be misleading because when performing tasks online in real environments
agents can take multiple paths to solve tasks, environments may behave non-deterministically, and
agents can dynamically learn from mistakes to correct their actions (Shinn et al., 2023; Liu et al.,
2018b; Li et al., 2023b; Pan et al., 2024). For this reason, online evaluation of agents in realistic
environments able to reward task outcome provides a gold standard for evaluation. While there is
an emerging body of work to address this need across different environments (Zhou et al., 2023;
Koh et al., 2024; Drouin et al., 2024; Lee et al., 2024; Xie et al., 2024; Bonatti et al., 2024), there
is no comprehensive solution for mobile platforms, such as Android, which are used by billions of
users and therefore represent environments in which automation agents may be very productively
employed. We introduce ANDROIDWORLD to address this.

At its core, ANDROIDWORLD offers a reliable means of obtaining reward signals for tasks per-
formed by agents in realistic mobile environments. Reward signals are quantitative metrics that
indicate functional correctness of a task, i.e. is the stated goal achieved? For example, for the task
“Send a text message to Jane confirming I’ll be there,” a positive reward indicates that the relevant

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Android Emulator

+ UI tree

or APIs

  Apps OS
State

Agent
116 Android & 92 
MiniWob++ tasks

…
task
goal

TaskEval
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reward

Enter 03/16/2014 
as the date and hit 
submit

In Simple Calendar Pro, create a 
calendar event on 
{year}-{month}-{day} at {hour}h with 
the title {title} and the description 
{description}. The event should last 
for {duration_mins} mins.

Add a location marker 
for {location} in the 
OsmAnd maps app.

What incomplete tasks 
do I have still to do by 
{date} in Tasks app?

Figure 1: ANDROIDWORLD is an environment for building and testing autonomous agents.

message has been sent. Unlike simulated environments (Tassa et al., 2018; Shridhar et al., 2020) or
games (Mnih et al., 2013; Silver et al., 2016; Vinyals et al., 2019; Wang et al., 2023b; Tan et al.,
2024; Toyama et al., 2021), real-world apps and websites do not inherently offer explicit reward sig-
nals. While human (Rawles et al., 2023; Zheng et al., 2024a; Pan et al., 2024; Kinniment et al., 2023)
or LLM-based (Chiang et al., 2024; Zheng et al., 2023; Liu et al., 2023; Du et al., 2023; Ma et al.,
2023; Pan et al., 2024; He et al., 2024) judges can be employed to reward the outcome of a task,
these approaches scale poorly or are not fully reliable, respectively. Alternatively, environments
for autonomous agents which provide automated ground-truth rewards for complex workflows have
been developed (Yao et al., 2023; Zhou et al., 2023; Koh et al., 2024; Xie et al., 2024; Bonatti
et al., 2024). We find two problems with these environments. First, they are constrained to desktop
computing environments, overlooking the mobile domain, which is of paramount importance given
the ubiquity and diversity of mobile devices in the real world. Secondly, they are limited in their
real-world diversity and scale. Crucially, unlike in real-world scenarios where conditions and task
inputs vary widely, these environments support only static test specifications, meaning that when
task parameters deviate, the reward signal is likely to break.

We seek to develop a comprehensive benchmark that addresses the limitations of the existing ap-
proaches above for evaluating automation agents in mobile environments. ANDROIDWORLD does
this by spanning 20 Android apps on a total of 116 programmatic tasks to provide ground truth-
rewards. Unlike existing test environments (with MiniWoB++ (Shi et al., 2017) being a notable ex-
ception), each task in ANDROIDWORLD is dynamically instantiated using randomly-generated pa-
rameters, challenging agents with millions of unique task goals and conditions. While MiniWob++
consists of simple, synthetic websites, ANDROIDWORLD leverages actual Android applications. A
main challenge that ANDROIDWORLD must address is how to ensure that reward signals are durable
when using real-world applications and varying task parameters dynamically. ANDROIDWORLD’s
key insight is to leverage the extensive and consistent state management capabilities of the Android
operating system, using the same mechanisms that the apps themselves utilize to store and update
data.

In addition to providing a comprehensive benchmark, ANDROIDWORLD is lightweight, requiring
only 2 GB of memory and 8 GB of disk space, and is designed with convenience in mind. It
connects agents to the Android OS by leveraging the Python library AndroidEnv (Toyama et al.,
2021) to connect to the freely available Android Emulator.1 In addition to the 116 Android tasks,
we extend ANDROIDWORLD with web tasks by integrating the MiniWoB++ (Shi et al., 2017; Liu
et al., 2018a) benchmark into it.

To demonstrate ANDROIDWORLD’s usefulness as a benchmark, we build and release a multi-modal
agent, M3A (Multimodal Autonomous Agent for Android), and establish state-of-the-art results on
ANDROIDWORLD. We analyze M3A’s performance using both multimodal and text-only input,
and we observe that while multimodal perception can improve performance in some cases, it gen-

1The Android Emulator is packaged as part of Android Studio, which can be downloaded from
https://developer.android.com/studio
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erally does not outperform the text-only approach. On ANDROIDWORLD, M3A achieves a 30.6%
success rate, which surpasses that of a web agent adapted for Android but remains significantly
lower than the human success rate of 80.0%. In pursuit of building robust UI control agents, our
study includes comprehensive tests under varied real-world conditions, demonstrating significant
performance variations primarily driven by changes in intent parameters.

Overall, we make the following contributions: (i) the creation of a new, highly diverse and realistic
mobile UI control agent environment; (ii) establishment of benchmark performance with a state-
of-the-art multimodal agent, and (iii) a careful analysis demonstrating the need to evaluate agents
across variable task parameters and conditions due to the inherent stochasticity in both models and
environments.

2 RELATED WORK

Table 1 compares existing evaluation environments for autonomous UI agents.

2.1 INTERACTIVE EVALUATION ENVIRONMENTS

Effective evaluation of autonomous agents requires benchmarks that mimic real-world scenarios, but
also interactive environments that provide reward signals upon successful task completion (Rawles
et al., 2023; Deng et al., 2023; Abramson et al., 2022; Ruan et al., 2023; Chen et al., 2021). Many
existing benchmarking environments target web browsing. MiniWoB++ (Shi et al., 2017; Liu et al.,
2018b) consists of small, synthetic HTML pages with parameterizable tasks which allow for un-
limited task variability. WebShop (Yao et al., 2023) provides a simulated e-commerce environment,
whereas WebArena (Zhou et al., 2023) and VisualWebArena (Koh et al., 2024) consist of simulated
websites across up to six domains. WorkArena (Drouin et al., 2024) consists of 29 tasks for enter-
prise software. GAIA (Mialon et al., 2023) is a static dataset that tests an agent’s ability to interact
with live web environments. MMInA (Zhang et al., 2024e) is a multihop and multimodal benchmark
designed to evaluate agents for compositional Internet tasks.

Towards building generalist agents that control operating systems (OSes), OSWorld (Xie et al., 2024)
and WindowsAgentArena (Bonatti et al., 2024) provide a test suite of tasks for desktop computer use
cases and custom execution-based evaluation scripts across across 9 and 11 apps, respectively. In
the mobile domain, existing benchmarks are limited and do not capture the diversity of real-world
mobile interactions, containing low-complexity tasks or on a limited number of applications. B-
MoCA’s (Lee et al., 2024) evaluation is based on 6 simple tasks (e.g., ”Call 911”, ”turn on airplane
mode”) across 4 apps2, validated using regular expressions. Mobile-Env (Zhang et al., 2024b) offers
task reproducibility limited to 13 task templates for a single app (WikiHow).

While ANDROIDWORLD shares the mobile platform focus of B-MoCA and Mobile-Env, it is more
comparable to OSWorld (and WindowsAgentArena, which builds on top of OSWorld) in terms
of task complexity and the diversity of interactions it supports. ANDROIDWORLD enhances OS-
World’s approach by dynamically constructing the start states of an agent’s run and varying the task
parameters in unlimited ways, thus allowing for a new type of evaluation under varying real-world
conditions.

Other studies leverage human evaluation (Rawles et al., 2023; Zheng et al., 2024a; Bishop et al.,
2024) for tasks where automatic evaluation is not available. Lastly, emerging research (Pan et al.,
2024; He et al., 2024; Xing et al., 2024) explores the potential of multimodal models to generalize
agent evaluations to new settings, though this area requires further research to achieve accuracy
comparable to manually-coded rewards.

AndroidEnv (Toyama et al., 2021) provides a mechanism to manage communication with the An-
droid emulator, similar to Playwright and Selenium for web environments. While ANDROIDWORLD
leverages this functionality, it diverges in its reward system. AndroidEnv’s approach requires mod-
ifying application source code and implementing task-specific logging statements, making it well-
suited for gaming environments with easily verifiable success criteria. In contrast, ANDROID-
WORLD implements a non-invasive reward mechanism, allowing it to create a benchmark suite

2Based on what reported in the Experiments Section of the B-MoCA manuscript as of October 1st, 2024.
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Table 1: Comparison of different datasets and environments for benchmarking computer agents.

Env? # of apps # task Avg # task Reward Platform
or websites templates instances method

GAIA 7 n/a 466 1 text-match None
MIND2WEB 7 137 2350 1 None Desktop Web
WEBLINX 7 155 2337 1 None Desktop Web
WEBVOYAGER 7 15 643 1 LLM judge Desktop Web
PIXELHELP 7 4 187 1 None Android
METAGUI 7 6 1125 1 None Android
MOTIF 7 125 4707 1 None Android (Apps+Web)
AITW 7 357+ 30378 1 None Android (Apps+Web)
ANDROIDCONTROL 7 833 15283 1 None Android (Apps+Web)
OMNIACT 7 60+ 9802 1 None Desktop (Apps+Web)
ANDROIDARENA 7 13 221 1 Action match/LLM Android (Apps+Web)
LLAMATOUCH 7 57 496 1 Screen match Android (Apps+Web)

MINIWOB++ 3 1 114 ∞ HTML/JS state Web (synthetic)
WEBSHOP 3 1 12k 1 product attrs match Desktop Web
WEBARENA 3 6 241 3.3 url/text-match Desktop Web
VISUALWEBARENA 3 4 314 2.9 url/text/image-match Desktop Web
WORKARENA 3 1 29 622.4 cloud state Desktop Web
MOBILE-ENV 3 1 13 11.5 regex Android (Apps)
B-MOCA 3 4 6 1.9 regex Android (Apps+Web)
MMINA 3 14 1050 1 text-match Desktop web
OSWORLD 3 9 369 1 device/cloud state Desktop (Apps+Web)
WINDOWSAGENTARENA 3 11 154 1 device state Desktop (Apps+Web)

ANDROIDWORLD 3 20 116 ∞ device state Android (Apps+Web)

for apps where source code access is unavailable and to reuse validation components across differ-
ent apps. This approach enables ANDROIDWORLD to cover a broader range of real-world mobile
tasks.

2.2 STATIC DATASETS FOR UI AUTOMATION

Datasets derived from human interactions provide proxy metrics that correlate with real-world agent
performance (Li et al., 2020; Burns et al., 2021; Deng et al., 2023; Rawles et al., 2023). On mo-
bile platforms, AitW (Rawles et al., 2023), AndroidControl (Li et al., 2024), PixelHelp (Li et al.,
2020), AndroidArena (Xing et al., 2024), LlamaTouch (Zhang et al., 2024d), UGIF (Venkatesh
et al., 2022), and MoTIF (Burns et al., 2021) consist of demonstrations across Android apps and
mobile websites, with screens often represented via accessibility trees. In contrast, desktop web
environments typically utilize the DOM for representing website content, with Mind2Web (Deng
et al., 2023), OmniAct (Kapoor et al., 2024) and others, across various desktop websites. Mobile-
based datasets frequently involve more complex actions, such as scrolling, which are not as useful in
DOM-based desktop interactions where the entire action space is readily accessible. Additionally,
API-centric datasets like API-Bank (Li et al., 2023a), ToolTalk (Farn & Shin, 2023), and ToolBench
(Xu et al., 2023) assess agents’ capabilities to manipulate computer systems via APIs.

2.3 INTERACTIVE AGENTS

Prior to today’s foundation models, traditional approaches to developing user interface-operating
agents primarily used reinforcement learning and behavioral cloning to simulate interactions like
mouse clicks and keyboard typing (Liu et al., 2018b; Li et al., 2020; Shvo et al., 2021; Gur et al.,
2022a; Humphreys et al., 2022). More recent work tends to leverage off-the-shelf foundational
models (Team, 2023a;b; Touvron et al., 2023) with in-context learning (ICL) and fine-tuning applied
to mobile (Rawles et al., 2023; Hong et al., 2023; Wang et al., 2023a; Yan et al., 2023; Zhang &
Zhang, 2023; Bishop et al., 2024; Zhang et al., 2023), desktop web (Zheng et al., 2024a; Deng et al.,
2023; Zhou et al., 2023; Koh et al., 2024; Cheng et al., 2024; Lai et al., 2024), and desktop OS
(Wu et al., 2024; Zhang et al., 2024a; Xie et al., 2024). Recent work explores agents that reflect on
system state (Shinn et al., 2023; Yao et al., 2022; Madaan et al., 2024) by leveraging exploration,
self-evaluation, and retry-capabilities enabling continual learning and adaptation (Li et al., 2023b;
Yang et al., 2023b; Pan et al., 2024; Wu et al., 2024; Gao et al., 2023; Murty et al., 2024).
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(a) (b) (c)

Figure 2: Annotators performed the tasks assigned to them, assigned a difficulty level (2a) and
estimated the number of steps required to complete each task (2b), using the action space available
to an agent. For each task, they selected relevant category tags from a predefined list (2c).

3 ANDROIDWORLD

3.1 ANDROID FOR AUTONOMOUS AGENTS

Android is an ideal environment for developing autonomous agents. It is the most widely-used OS
globally3 and is highly flexible for research, while providing an open world of the Web4 and over
2M apps for agents to operate in. Using emulation, an Android environment is easy to deploy, does
not require specialized hardware, and can be run on a laptop. Android Virtual Devices or emulator
images are well suited for research as they are self-contained, easy to distribute, and configurable.

Compared to desktop environments, mobile environments, like Android, pose unique research chal-
lenges for computer control agents. On one hand, mobile UIs tend to be simpler than their desktop
counterparts because of their smaller screen size. On the other hand, the action space on mobile
devices is more complicated and more actions can be required to complete tasks. Precise gestures
are needed to fully operate the UI, such as when navigating a carousel widget, long-pressing on a
widget, or performing multi-finger gestures to zoom in. Since it is an OS, Android is a fully open
environment compared to web-browser-only environments. Android’s flexibility is also reflected in
its action space; in addition to UI actions (click, scroll, type, etc.), Android provides function-calling
APIs, such as sending a text message, for example, which allow computer control agents to utilize a
broader action space.

3.2 THE OBSERVATION AND ACTION SPACE

ANDROIDWORLD provides an interface for agents to receive observations and execute actions on
Android. It uses AndroidEnv (Toyama et al., 2021) and the Android Device Bridge to facilitate
interaction between Android and the agent. The observation space consists of a full-resolution
screenshot and a UI tree representation developed for accessibility purposes. The action space is
similar to that which humans use, consisting of gestures (i.e., tapping, long-press, and swiping),
typing, and navigation buttons (i.e., go home and go back). In addition to these naturalistic actions,
ANDROIDWORLD exposes a limited set of function calling APIs, such as send text message,
to help agents accomplish goals. Appendix B provides more details on the observation format and
action space.

3.3 REPRODUCIBLE AND PARAMETERIZED TASKS

ANDROIDWORLD consists of a suite of 116 tasks, spread across 20 diverse applications (see Ap-
pendix C for more details). These tasks simulate practical, everyday activities, including note-taking,
scheduling appointments, communicating through messaging, and interacting with system utilities.
The suite consists of open-source apps and built-in Android system apps, such as Settings and Con-
tacts. As rated by humans, the tasks vary in difficulty, duration, and categories (Figure 2).

3https://gs.statcounter.com/os-market-share
4Mobile is the most popular platform for accessing the web; https://gs.statcounter.com/

platform-market-share/desktop-mobile/worldwide/
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Table 2: Selected tasks with code describing validation logic.

Task Validation code
In Simple Calendar Pro, create a calendar event on
{event.year}-{event.month}-{event.day} at
{event.hour}h with the title ‘{event.title}’ and the description
‘{event.description}’. The event should last for
{event.duration} mins.

event exists(event)

Send a text message to {phone number} with message: {message}. message exists(phone number,
message, messaging db)

Create a new drawing in Simple Draw Pro. Name it {file name}. Save
it in the Pictures folder.

file exists(file path)

Create a timer with {hours} hours, {minutes} minutes, and
{seconds} seconds. Do not start the timer.

timer displays(time,
ui hierarchy)

Create a new note in Markor named {file name} with the following
text: {text}. Share the entire content of the note with the phone number
{number} via SMS.

(file exists(file name,
content=text) +
message exists(phone number,
message)) / 2.0

Turn on WiFi and open {app name}. (wifi enabled() +
app launched(app name))/2.0

To achieve a high degree of reproducibility in real-world scenarios, ANDROIDWORLD precisely
controls the OS and app states in several ways. The Android OS is fixed, consisting of a Pixel 6
emulator running Android 13 with a fixed time on the date October 15th, 2023. All applications
in ANDROIDWORLD are fully-functional and consists of both open-source apps and OS-level apps
included with Android. For the open-source apps, ANDROIDWORLD maintains a constant environ-
ment by installing a fixed version of each app, acquired from F-Droid.5 OS-level apps’ versions are
determined by the Android OS, which is also fixed. To maintain a reproducible environment, AN-
DROIDWORLD utilizes apps that do not require login/authentication and can store their application
data on device.

In addition to managing the states of apps and operating systems, ANDROIDWORLD precisely de-
fines and controls the state during task execution. Each task has its own unique setup, reward deter-
mination logic, and teardown procedures (see Appendix C.2 and C.3 for more details), ensuring a
fully reproducible suite of tasks.

Automatic task parameterization is a critical mechanism, unique to ANDROIDWORLD, to evaluate
agents on a much larger and more realistic suite of tasks than current benchmarks support. Achiev-
ing this requires significantly more effort than randomly generating new task parameters because
it involves developing evaluation logic that remains valid across different task instantiations. It is
exactly through its careful state management that in addition to reproducibility AndroidWorld en-
sures that the reward mechanisms function correctly. Task parameters, initialized randomly at the
start of each task based on a controlled random seed, dictate the initial state and influence reward
outcomes. Similarly to MiniWoB++ (Shi et al., 2017; Liu et al., 2018a), ANDROIDWORLD consists
of a practically infinite set of varying initial conditions and success criteria.

This approach provides more granular analyses of agents’ adaptability — a vital attribute for real-
world deployment. Beyond testing agent robustness, the dynamic construction of tasks supports
the use of online learning methodologies, particularly reinforcement learning (Shi et al., 2017; Liu
et al., 2018a; Humphreys et al., 2022; Gur et al., 2022a). It also simplifies the generation of distinct
train/test datasets, facilitating supervised learning experiments (Humphreys et al., 2022; Shaw et al.,
2023; Furuta et al., 2023).

3.4 DURABLE REWARDS FROM SYSTEM STATE

ANDROIDWORLD provides reward signals by managing application state using the Android De-
bug Bridge (adb). With the adb tool ANDROIDWORLD has complete access to system resources
including the file system, application databases, and system settings. Determining reward signals

5https://f-droid.org/
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from system state has several benefits. It is highly accurate because an application’s state can be
quickly inspected and manipulated using the same mechanisms that the app itself utilizes. Using
the underlying system state is much more durable than matching superficial UI changes. Addition-
ally, it facilitates easy re-use across disparate apps, which tend to use the same underlying caching
mechanisms. For instance, logic for checking existence of a specific file is used across many un-
related applications, including those for file management, note-taking, and media playback. For
applications leveraging SQLite databases, a common pattern, ANDROIDWORLD implements evalu-
ators that verify the existence of new and deleted rows. Table 2 shows examples of the validators in
ANDROIDWORLD. For more examples see Table 5.

3.5 TASK COMPOSABILITY

In addition to facilitating accurate and reusable evaluations, inferring a task’s success from system
state makes it easy to create composite tasks by combining together existing tasks. For example, the
task “Create a calendar event with details and text the details to contact” was created by combining
together two existing tasks for creating a calendar event and for sending a text message, which is
possible because each task initialization and success detection logic is hermetic. Composite tasks
tend to be more challenging because of their complexity, although they provide partial rewards based
on completion of sub tasks, to help facilitate hill climbing. The last two rows of Table 2 show the
validation code for composite tasks.

3.6 INTEGRATING MINIWOB++

We implement MiniWoB++ in the ANDROIDWORLD framework and term it MobileMiniWoB++.
Each MobileMiniWoB++ task is instantiated using the standard ANDROIDWORLD interface, in-
heriting from TaskEval base class, and contains methods like initialize state and
is successful. Since MiniWoB++ leverages JavaScript for task configuration and success de-
tection, we built a WebView app to communicate between Python and the app. For instance, the
is successful method of each task retrieves the reward value from the WebView app via an
Android intent.

MobileMiniWoB++ introduces modifications in both observations and actions compared to the orig-
inal benchmark. For example, HTML5 <input> elements are rendered with native Android UI wid-
gets like the date-picker (see Figure 4), enhancing the realism of the tasks. MobileMiniWoB++ uses
the same observation space as the Android tasks (accessibility tree and screenshot). Notably, it does
not include the DOM as in the original implementation. The action space from ANDROIDWORLD
is retained. We manually review and test each task to ensure they are solvable. We excluded twelve
of the original tasks that failed to render correctly on Android, presented compatibility issues with
the touch interface, or required near real-time interaction, which poses challenges on emulators.
Overall, ANDROIDWORLD supports 92 MiniWoB++ tasks. See Appendix B.3 for more details.

4 ANDROIDWORLD AS A COMPUTER-CONTROL BENCHMARK

To test ANDROIDWORLD’s applicability for autonomous agents, we develop and test a state-of-the-
art agent and its variants across all 20 apps and 116 tasks, as well as on MobileMiniWoB++.

4.1 COMPUTER CONTROL AGENTS

4.1.1 M3A

We develop a multimodal autonomous agent for Android, M3A. It is zero-shot, integrating ReAct-
style (Yao et al., 2022) and Reflexion-style (Shinn et al., 2023) prompting to consume user instruc-
tions and screen content, reason, take actions, and update its decision-making based on the outcome
of its actions.

In the first stage, M3A generates an action, represented in JSON, and reasoning for that action.
To generate this output, the agent is provided with a list of available action types, guidelines for
operating the phone, and a list of UI elements derived from the Android accessibility tree’s leaf
nodes. The agent receives the current screenshot and a Set-of-Mark (SoM) (Yang et al., 2023a)

7
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Table 3: Success Rates (SR) on ANDROIDWORLD and MobileMiniWoB++.

Agent Input Base model SRANDROIDWORLD SRMobileMiniWoB++

Human screen N/A 80.0 100.0
M3A a11y tree GPT-4 Turbo 30.6 59.7
M3A a11y tree Gemini 1.5 Pro 19.4 57.4
M3A SoM (screen + a11y tree) GPT-4 Turbo 25.4 67.7
M3A SoM (screen + a11y tree) Gemini 1.5 Pro 22.8 40.3
SeeAct (Zheng et al., 2024a) SoM (screen + a11y tree) GPT-4 Turbo 15.5 66.1

annotated screenshot, which includes bounding boxes with numeric labels on the top-left corner
for each UI element (see screenshot in Figure 5). The agent attempts to execute outputted action by
referencing the specific mark (if applicable). In addition to the multimodal agent, we have developed
a text-only variant that consumes the screen represented using the accessibility tree and selects the
relevant action in JSON format.

After executing an action, M3A reflects on its effect by observing any state changes that may have
occurred. During this stage, the agent is provided with available action types, general operating
guidelines, the actual action taken, and its reasoning, as well as before-and-after UI states, repre-
sented by UI element representations and screenshots with SoM annotations. We request the agent
to provide a concise summary of this step, including the intended action, success or failure, potential
reasons for failure, and recommendations for subsequent actions. This summary will serve as the
action history and be used for future action selection. See Appendix D for more details on the agent.

4.1.2 SEEACT BASELINE

We implement a baseline agent based on SeeAct (Zheng et al., 2024a), which was originally de-
signed for GPT-4V for web navigation. Specifically, we implement the best-performing variant,
SeeActchoice, which grounds actions via textual choices. We implement SeeAct for the Android en-
vironment to evaluate how an existing model that performs well on web tasks (Deng et al., 2023)
can be adapted and applied to Android.

To accommodate the Android environment, we adapt SeeAct in several ways. Firstly, we augment
the action space from the original SeeAct implementation to support actions needed for mobile,
including scroll, long press, navigate home and back, and open app actions. Secondly, in lieu of the
DOM, which is not available for Android apps, we utilize the accessibility tree to construct candidate
UI actions. Due to the lack of the DOM representation, we do not use the bespoke ranker model
from the original implementation. However, we observe that after applying a filtering heuristic to
remove non-interactable elements, the majority of screens contains less than 50 candidate elements.
See Appendix D.5 for more details on the implementation.

4.2 EXPERIMENTAL RESULTS

We evaluate M3A and SeeAct on ANDROIDWORLD and MobileMiniWoB++. We set the seed to 30
and provide a task-specific step budget. We use Gemini 1.5 Pro and GPT-4 Turbo as base models.
For MobileMiniWoB++, we evaluate on a subset of 62 tasks, consistent with recent studies (Zheng
et al., 2024b; Kim et al., 2024; Gur et al., 2022b).

Table 3 presents the success rates (SR) for the agents and human performance on both task suites.
Although the agents have far from human performance, they demonstrate out-of-the-box capabilities
in operating mobile UIs, exhibiting basic understanding and control capabilities of UIs. They can
perform a variety of actions, including long-press, scrolling to search for information, and revising
their plan if actions do not work out. The best performance is obtained for M3A when using GPT-
4. On ANDROIDWORLD the SoM-based variant is less performant, while on MobileMiniWoB++
it performs best. A similar result was obtained in recent work in the context of computer agents
for desktop applications (Xie et al., 2024). We posit SoM plays a more critical role in MobileMi-
niWoB++ tasks due to the often incomplete accessibility tree, compared to that of native Android
apps.
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Figure 3: Success rate variation across tasks due to the parametrization built into ANDROIDWORLD.
Using a fixed seed, the agent appears completely incapable of solving some tasks due to “bad luck”
with the seed. In contrast, under different task parameterizations, we observe the agent is capable
of solving the tasks fairly often. Wilson binomial proportion confidence intervals (95%) are shown
for the different seed group (orange) and the same seed group (blue). The different seed group
has higher variance than the same seed group. Significant differences, with p-value < 0.05, are
indicated by “*”.

4.3 ANALYSIS

Agents have difficulty understanding mobile UIs, often failing to detect visual cues that are essential
for task completion (see Figure 6a). Additionally, agents struggle with certain UI patterns and
affordances, and when they make reasoning mistakes (see Figure 6b), they often lack the capability
to explore and adapt as humans do (see Figure 6c). Moreover, agents sometimes struggle with tasks
that simply involve confirming system states, e.g., confirming the WiFi is turned on, suggesting
challenges in both task and screen understanding.

The agents struggle with grounding, particularly when executing precise interactions, such as manip-
ulating text (see Figure 7) or operating sliders, and they are often unable to recover from mistyping
errors. In addition, for tasks that demand memory, such as performing transcriptions across apps,
multiplying numbers, or scrolling, the agents struggle as they are unable to “remember” content.

SeeAct performs less effectively than M3A on the ANDROIDWORLD task suite and similarly on
MobileMiniWoB++, reflecting its optimization for web rather than mobile environments. It strug-
gles with mobile-specific actions like long-presses and swipes, and often fails to select appropriate
actions due to not incorporating screen elements during action generation. Memory-intensive tasks
are particularly challenging, as SeeAct only caches actions without remembering outcomes, leading
to repetitive, ineffective behaviors such as endless scrolling. This lack of quick error recovery often
results in task termination once maximum steps are reached.

Finally, we note that large foundation models significantly increase latency, taking three times longer
than humans on average to complete tasks. On average, M3A takes 3.9 minutes to complete a task,
with the text-only version taking 2.5 minutes.

4.4 AGENT ROBUSTNESS UNDER RANDOM SEEDS

We evaluate agent robustness under two conditions: (1) identical tasks with the same parameters and
(2) tasks with different parameter combinations, which change the initial state and task definition.
Due to computational constraints, we perform this analysis on a representative subset of ANDROID-
WORLD tasks (listed in Appendix D.4). We use the strongest agent, M3A using the accessibility
tree and GPT-4, for this analysis. Our results are shown in Figure 3.

In the baseline experiment with a constant seed, the agent fails the add and edit tasks, and rarely
solves the two delete tasks. For the add and edit tasks, the agent struggles with UI operations, while
for the delete tasks, it often gets confused before the step budget is consumed. Surprisingly, the

9
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agent’s performance varies even with a fixed seed, suggesting the model’s non-determinism affects
agent reliability.

Agent performance varies much more using different seeds, with statistically significant differences
for the add expense and edit note tasks. The high intra-task variation indicates the model’s sensitivity
to the seed and its task parameters, stemming from a lack of robustness from the underlying model.

Research in RL environments (Henderson et al., 2018; Raffin et al., 2021; Colas et al., 2018) has
noted similar sensitivity to seeds. Consistent with these studies, we observe agent performance is
best represented by the mean across random seeds. Notably, the observation of non-zero rewards
under some seeds points to potential enhancements through RL-like mechanisms in future work.

This experiment underscores the importance of extensively testing agents under varied task param-
eters to ensure they can handle real-world variability, a capability that ANDROIDWORLD supports
effectively.

5 LIMITATIONS

ANDROIDWORLD currently supports tasks from open-source Android apps with at least 1 million
downloads and from built-in Android system apps. While testing on more trending apps is desirable,
we found open-source apps to be equally realistic and, in some cases, more challenging than apps
with larger user bases. Trending apps tend to have UIs which are heavily optimized for smooth user
experience, offering more UI functionality and shortcuts. Testing on less-optimized UIs makes the
agent’s task harder. In an example failure we show in Figure 6c, the agent needed to delete all notes
in a list and failed by repeatedly searching for a “delete-all” button. Instead, an agent with stronger
reasoning capabilities would have probably searched once for that functionality, realized it was not
available, and deleted the notes one by one.

6 CONCLUSION

We introduced ANDROIDWORLD, a realistic and robust agent environment for Android that enables
the development and evaluation of autonomous agents across a wide range of tasks and apps. AN-
DROIDWORLD provides a reproducible task suite consisting of 116 tasks across 20 apps, with each
task dynamically generated using random parameters to challenge agents with millions of unique
goals. By releasing ANDROIDWORLD and establishing benchmark performance with M3A, we aim
to accelerate research and development in this area, ultimately leading to the creation of computer
control agents capable of operating effectively in real-world environments. Further, the dynamic
nature of ANDROIDWORLD opens up new research opportunities for online learning algorithms in
computer control agents.
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APPENDIX A ETHICAL CONSIDERATIONS

Malicious use There is a risk that malicious actors could engineer agents to bypass security mea-
sures like CAPTCHAs or engage in activities like spamming. Additionally, they could alter prompts
or screen outputs to further harmful objectives.

Societal impact Automation agents may transform societal norms, disrupt employment, and mod-
ify human behavior. While they can enhance efficiency, this improvement could pose risks if ex-
ploited by malevolent forces.

APPENDIX B ANDROIDWORLD ENVIRONMENT

B.1 OBSERVATION SPACE

In ANDROIDWORLD, the Android screen is represented using a State class, which includes the
following attributes:

• Pixels: An RGB array representing the current screen capture of the device. The screenshot
resolution is 2400× 1080× 3.

• Accessibility tree: A raw representation of the accessibility tree.6 This UI tree provides a
detailed snapshot of all UI elements currently displayed on the screen. We utilize an acces-
sibility forwarding app from AndroidEnv (Toyama et al., 2021), which leverages gRPC to
transmit the accessibility tree data efficiently to the device.

• UI elements: A list of processed UI elements extracted from the children of the accessibil-
ity tree. Each UIElement contains attributes such as text, content description, bounding
boxes, and various state flags (e.g., clickable, scrollable, focused).

Since Android observations and actions are asynchronous, changes resulting from actions may take
some time to manifest. Therefore, instead of using an RL-based interface, which assumes a tight
coupling between actions and observations, we design an interface for the agent tailored for asyn-
chronous interaction. This interface implements a get state method responsible for capturing
the current state of the environment, typically after executing an action. This method includes an
optional wait to stabilize flag, which, when enabled, employs heuristics to ensure the UI el-
ements are not in a transient state, thus providing a stable and accurate snapshot of the environment.

B.2 ACTION SPACE

Actions are stored using a Python dataclass (shown below) and are executed using adb. Each action
type corresponds to specific ADB commands that interact with the Android environment. For click-
based actions (click, double tap, long press), we use ADB to simulate touch events at specified
coordinates on the screen. For text input actions, we first focus on the text input field and then use
ADB to type the desired text and press the enter button. Navigation actions (home, back) involve
sending corresponding key events to the device. Scrolling and swiping actions, which are essentially
inverse operations, are both implemented by generating and issuing swipe commands through ADB
to simulate these gestures. To launch applications, we use ADB to start the desired app.

6Represented using all current windows; https://developer.android.com/reference/
android/view/accessibility/AccessibilityWindowInfo
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1 ACTION_TYPES = {
2 "CLICK": "click",
3 "DOUBLE_TAP": "double_tap",
4 "SCROLL": "scroll",
5 "SWIPE": "swipe",
6 "INPUT_TEXT": "input_text",
7 "NAVIGATE_HOME": "navigate_home",
8 "NAVIGATE_BACK": "navigate_back",
9 "KEYBOARD_ENTER": "keyboard_enter",

10 "OPEN_APP": "open_app",
11 "STATUS": "status",
12 "WAIT": "wait",
13 "LONG_PRESS": "long_press",
14 "ANSWER": "answer",
15 "UNKNOWN": "unknown"
16 }
17
18 @dataclasses.dataclass()
19 class JSONAction:
20 """Represents a parsed JSON action.
21
22 # Example
23 result_json = {’action_type’: ’click’, ’x’: %d, ’y’: %d}
24 action = JSONAction(**result_json)
25
26 Attributes:
27 action_type: The action type.
28 index: The index to click, if action is a click. Either an index or a <x, y>
29 should be provided. See x, y attributes below.
30 x: The x position to click, if the action is a click.
31 y: The y position to click, if the action is a click.
32 text: The text to type, if action is type.
33 direction: The direction to scroll, if action is scroll.
34 goal_status: If the status is a ’status’ type, indicates the status of the goal.
35 app_name: The app name to launch, if the action type is ’open_app’.
36 """
37 action_type: str
38 index: int = None
39 x: int = None
40 y: int = None
41 text: str = None
42 direction: str = None
43 goal_status: str = None
44 app_name: str = None

Listing 1: Pseudo-code representation of the action space.

B.3 MOBILEMINIWOB++

Authors manually completed all tasks in MiniWoB++ to verify solvability on a mobile interface.
MobileMiniWoB++ differs from MiniWoB++ due to the touch-based interface, which required dif-
ferent approaches for certain tasks. For instance, highlighting text from the highlight-text
tasks involves using Android’s long-press and cursor-moving functionalities. HTML5 <input> el-
ements are natively rendered with native Android UI widgets like the date-picker (see Figure 4).

Our implementation of MiniWoB++ contains 92 tasks in total. We exclude the following tasks:
chase-circle (requires near-realtime movement, unachievable by humans on emulators),
moving-items (too hard to click in emulator), drag-cube (drags will scroll the screen,
moving the task out of view), drag-items-grid (elements are not interactable on Android),
drag-items (elements are not interactable on Android), drag-shapes (drags will scroll the
screen, moving the task out of view), drag-sort-numbers (elements are not interactable on
Android), text-editor (cannot underline everything, weird glitch), number-checkboxes
(not correctly rendered: only three columns), use-slider-2 (slider implementation not work-
ing), use-spinner (slider implementation not working), and click-menu (the menu respon-
siveness breaks and the task does not behave as intended).

APPENDIX C ANDROIDWORLD BENCHMARK DETAILS

C.1 APP SELECTION

Our selection of apps (summarized in Table 4) was guided by three main factors: use case, popular-
ity, and the need for consistency and reproducibility.
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Figure 4: Native Android UI widget rendering for HTML5 <input> element.

Use case and categories We analyzed popular app categories in app stores, focusing on produc-
tivity, communication, and multimedia. Selected apps had to meet criteria such as not requiring a
login and storing data locally on the device. Additionally, we considered apps from categories that
the authors commonly used, ensuring the selection was representative of real-world Android usage.

Popularity We used download statistics from the Google Play Store to gauge app popularity, se-
lecting apps with over 1 million downloads. Most of the selected apps exceeded this threshold. Less
popular apps were also included if they featured common UI patterns and affordances, ensuring
they are indicative of typical Android app usage. For instance, Simple Calendar Pro, though less
downloaded, has a UI comparable to the widely-used Google Calendar app.

Consistency and reproducibility All apps were sourced from F-Droid, an open-source Android
app repository. This allowed us to manage app versions precisely by selecting and distributing
specific APKs. We use the newest version of each app at the time of download.

C.2 TASK CLASSIFICATION AND GENERATION

We categorize tasks into two types: those with side-effects and those without. Tasks with side-effects
are those that modify the internal state of the device or applications, such as turning off Wi-Fi or
creating a calendar event. These tasks are implemented as distinct Python classes, each with its own
parameter generation, initialization, evaluation, and teardown methods.

Below we show an example of the task evaluation for a SendSms task, which involves sending
and validating a text message. The pseudocode illustrates the task initialization, success check, and
parameter generation methods. Each task has its own random parameter generation method and
success logic.

1 class SendSms(TaskEval):
2 """Task sending and validating a text message has been sent.
3
4 It checks the SMS telephony database, which is located at:
5 /data/data/com.android.providers.telephony/databases/mmssms.db."""
6
7 template = (
8 "Send a text message using Simple SMS Messenger to "
9 "{number} with message: {message}"

10 )
11
12 def initialize_task(self, env: interface.AsyncEnv) -> None:
13 """Sets up the initial state of the task."""
14 super().initialize_task(env)
15 clear_sms_database(env.base_env)
16
17 def is_successful(self, env: interface.AsyncEnv) -> float:
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Table 4: List of ANDROIDWORLD apps and number of tasks for each one.

App name Description # tasks
Simple Calendar Pro A calendar app for creating, deleting, and managing events and appoint-

ments.
17

Settings The Android system settings app for managing device settings such as
Bluetooth, Wi-Fi, and brightness.

15

Markor A note-taking app for creating, editing, deleting, and managing notes
and folders.

14

Broccoli - Recipe App A recipe management app for adding, deleting, and organizing recipes. 13
Pro Expense An expense tracking app for adding, deleting, and managing expenses. 9
Simple SMS Messenger An SMS app for sending, replying to, and resending text messages. 7
OpenTracks A sport tracking app for recording and analyzing activities, durations,

and distances.
6

Tasks A task management app for tracking tasks, due dates, and priorities. 6
Clock An app with stopwatch and timer functionality. 4
Joplin A note-taking app. 4
Retro Music A music player app. 4
Simple Gallery Pro An app for viewing images. 4
Camera An app for taking photos and videos. 3
Chrome A web browser app. 3
Contacts An app for managing contact information. 3
OsmAnd A maps and navigation app with support for adding location markers,

favorites, and saving tracks.
3

VLC A media player app for playing media files. 3
Audio Recorder An app for recording and saving audio clips. 2
Files A file manager app for the Android filesystem, used for deleting and

moving files.
2

Simple Draw Pro A drawing app for creating and saving drawings. 1

18 """Checks if the SMS was sent successfully."""
19 super().is_successful(env)
20 messages = get_messages(env.base_env)
21 return check_message_exists(
22 phone_number=self.params["number"],
23 body=self.params["message"],
24 )
25
26 def teardown(self, env: interface.AsyncEnv) -> None:
27 """Clears the SMS database."""
28 super().teardown(env)
29 clear_sms_database(env.base_env)
30
31 @classmethod
32 def generate_random_params(cls) -> dict[str, Any]:
33 number = generate_random_number()
34 message = generate_random_message()
35 return {
36 "number": number,
37 "message": message,
38 }

C.3 INFORMATION RETRIEVAL TASKS

Tasks without side-effects are Information Retrieval tasks, requiring the agent to answer a question
based on the device or app’s current state. For these tasks, instead of a Python class, we create a
protobuf structure to specify the prompt, parameter values, and initialization and validation logic.
We decided to use a structured data format with the belief that it would allow us to define new
information retrieval tasks by simply adding new entries, making it easier to scale up the number of
tasks without needing to write and maintain Python classes for each one.

Initialization is defined per app, including only the state relevant to the prompt’s answer and exclu-
sion conditions for generating random states. This ensures that no random state contains information
that could alter the expected answer. The initial state and prompt are parameterized using random
values from the specified task parameters. For validation, we define the expected answer format
within the prompt and use a few supported functions (“count”, “sum”, “identity”) to generate the
answer from the initial state.
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Once an app and its specific logic are programmed, new tasks can be generated using an LLM to
generate the task’s protobuf. The process is not automatic and requires human review. Common
issues with LLM-generated tasks include missing fields, hallucinated fields, incompatible parame-
ter generation, insufficient parameter usage, and non-specific task prompts. We observed that the
complexity of the proto structure correlates with an increase in generated task issues. Despite these
challenges, we found that editing LLM-generated protobufs can be more efficient than writing a
complete task from scratch.

Below we show a simplified version of the task definition for the
SimpleCalendarEventsOnDate task which involves checking which events are on a
certain date. It specifies the relevant event, the exclusion conditions for any noisy event, how to
determine success, and possible parameter values to be chosen at random that will be used to fill
out the task definition.

1 tasks {
2 name: "SimpleCalendarEventsOnDate"
3 prompt: "What events do I have {date} in Simple Calendar Pro? Answer with the titles only. If there are

multiple titles, format your answer as a comma separated list."
4 complexity: 1
5 relevant_state {
6 // Defines information for the goal events.
7 state: {
8 calendar {
9 events {

10 start_date: "{date}"
11 start_time: "{time}"
12 duration: "{duration}"
13 title: "{title}"
14 }
15 }
16 }
17 // Non-goal events.
18 exclusion_conditions {
19 field: "start_date"
20 operation: EQUAL_TO
21 value: "{date}"
22 }
23 }
24 success_criteria {
25 expectations {
26 field_transformation {
27 operation: IDENTITY
28 field_name: "title"
29 }
30 match_type: STRING_MATCH
31 }
32 }
33
34 task_params {
35 name: "time"
36 possible_values: "11:00am"
37 // ...
38 }
39
40 task_params {
41 name: "date"
42 possible_values: "October 15 2023"
43 //...
44 }
45 task_params {
46 name: "duration"
47 possible_values: "30 m"
48 // ...
49 }
50 task_params {
51 name: "title"
52 possible_values: "Data Dive"
53 // ...
54 }
55 }

C.4 HUMANS FOR TASK ANALYSIS

During development, we recruited six volunteers with proficient programming skills to analyze task
difficulty, duration, and category. Each human was assigned an equal portion of tasks and tasked
with identifying bugs during this annotation phase. This process resulted in the discovery and reso-
lution of over 30 bugs.

To evaluate human performance, we enlisted two software engineers to complete the tasks using an
Android emulator. Participants were provided with task descriptions and attempted to achieve the
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goals based on their interpretations. Each participant had one attempt per task. The majority of errors
stemmed from misinterpretations or minor errors, such as entering an incorrect file extension. Other
errors occurred when participants encountered unfamiliar user interfaces, impeding their ability to
solve the tasks on their first attempt.

In both exercises, we informed participants about the intended use of the collected data. Participants
were not required to enter any personal information in the tested tasks.

C.5 TASK EXAMPLES

Table 5 lists some additional examples of tasks and highlights which task attributes can be parame-
terized in unlimited ways.

Table 5: Examples of ANDROIDWORLD tasks. We list the task nickname, the task template indi-
cating which task attributes can be parameterized, the initialization logic that is executed before the
task starts and pseudo code describing the success evaluation.

Task nickname Task template Initialization logic Success evaluation code
VlcCreatePlaylist Create a playlist in VLC, titled

“{playlist name}” with the following
files, in order: {files}

Create new mpeg files:
files + “noise” files that
should not be added.
Add them to VLC videos
folder.

execute sql(vlc query) ==
files

RecipeAddMultiple
RecipesFromImage

Add the recipes from recipes.jpg in Sim-
ple Gallery Pro to the recipe app.

Write a receipt file with
recipes to Simple Gallery.

sql rows exist(expected recipes)

MarkorEditNote Edit {file name} in Markor.
{file operation}.

Generate file with start-
ing content, along with
“noise” files not rele-
vant to goal. Note:
file operation can
be to add a footer, header,
or update note content.

file exists(file name,
content=expected content)

ExpenseAddSingle Add the following expenses into pro ex-
pense: {expense csv}

Add to the app’s SQLite
database the expense
that should be deleted,
along with “noise” ex-
penses that should not be
deleted.

sql rows exist(expense obj)

SimpleCalendarDelete
EventsOnRelativeDay

In Simple Calendar Pro, delete all events
scheduled for this {day of week}.

add to the app’s SQLite
database calendar events
on specified day, along
with “noise” events that
should not be deleted.

!sql rows exist(expected events)

FilesDeleteFile Delete the file {file name} from the An-
droid filesystem located in the {subfolder}
folder within the sdk gphone x86 64 stor-
age area.

Generate specified file,
along with “noise”
files that should not be
deleted.

!file exists(file name)

SportsTrackerActivities
CountForWeek

How many {category} activities did I do
this week in the OpenTracks app? Express
your answer as a single integer.

add to the app’s SQLite
database activities for the
specified category, along
with “noise” activities.

int(agent response) ==
expected count

APPENDIX D ANDROIDWORLD AGENT DETAILS

D.1 M3A OBSERVATIONS

ANDROIDWORLD consumes the raw screen pixels, the screen shot with Set-of-Mark (SoM) (Yang
et al., 2023a) annotations, and a list of UI elements on screen.

1 Here is a list of descriptions for some UI elements on the current screen:
2
3 UIelement0: UIElement(text="VLC", content_description=None, class_name="android.widget.EditText",
4 bbox_pixels=BoundingBox(x_min=98, x_max=886, y_min=146, y_max=311), ...)
5 UIelement1: UIElement(text=None, content_description="Clear search box", class_name="android.widget.

ImageButton",
6 bbox_pixels=BoundingBox(x_min=886, x_max=1023, y_min=160, y_max=297), ...)
7 UIelement2: UIElement(text="15:11", content_description="15:11", class_name="android.widget.TextView",
8 bbox_pixels=BoundingBox(x_min=50, x_max=148, y_min=1, y_max=128), ...)
9 ... More elements listed ...

10
11 ... Guidelines on action selection emitted ...
12
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13 Now output an action from the above list in the correct JSON format, following the reason why you do that.
Your answer should look like:

14
15 Reason: ...
16 Action: {"action_type":...}

Listing 2: The prompt format pertaining to screen representation with UI elements.

D.2 M3A ACTIONS

For the SoM prompting, the screen is annotated based on the UI elements extracted from the acces-
sibility tree, which form the agent’s action space. Figure 5 shows one example.

Figure 5: Set-of-marks overlaid on an Android screen.

D.3 ERROR ANALYSIS

We analyze M3A errors based on broader categories we observe during evaluation.

Perceptual errors Perceptual errors are caused when the model fails to recognize crucial elements
on the screen necessary for task completion.

For the task below, the model does not recognize that the “All-day” checkbox is currently not
checked (see Figure 6a):

In Simple Calendar Pro, create a recurring calendar event titled ’Review session
for Budget Planning’ starting on 2023-10-15 at 14h. The event recurs weekly,
forever, and lasts for 60 minutes each occurrence. The event description should
be ’We will understand software updates. Remember to confirm attendance.’

Reasoning errors Reasoning errors occur when the model misinterprets the task requirements or
the current state, leading to incorrect actions.

For example, in the task below, the model mistakenly believes the note name has already been
entered, so it types the note text into the “Name” field and cannot recover from this error (see
Figure 6b):
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(a) Perceptual error. Red square
highlights issue.

(b) Reasoning error. The agent’s
next action is to start entering the
note’s contents, which is incorrect
because it needs to enter the note’s
name first.

(c) Missing knowledge error. To
delete all notes, the agent mistak-
enly looks for an option to delete all
the notes at once, rather than trying
to do it note-by-note.

Figure 6: Screens illustrating perceptual, reasoning and missing knowledge errors.

Create a new note in Markor named ipsum mNcKd36pDq.txt with the following
text: ...

Here is the agent’s reasoning trace:

The user wants to create a new note with a specific name and text. The name of
the note has already been entered, so all that needs to be done is to enter the text
and click on the OK button.

Missing knowledge errors Missing knowledge errors occur when the model lacks the necessary
understanding of the application’s UI to complete a task efficiently.

For example, in the task below, the agent does not know how to delete all files at once. It looks for
an option to do that instead of deleting each file one by one (see Figure 6c):

Delete all files in the current directory.

Grounding errors Grounding errors occur when the model fails to correctly interact with the UI
elements based on their spatial or contextual positioning.

For the task below, the agent needs to update the Markor note by prepending text to the existing
text. Figure 7 illustrates the errors the agent makes. It clicks the entire text field area, highlighted
in green, which automatically places the cursor after the current text, resulting in the new text being
appended after the current content.
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(a) Error on initial click. (b) Error with text entered and saving.

Figure 7: Screens illustrating grounding errors.

Update the Markor note ‘2023 08 10 neat wolf.txt‘ by adding the fol-
lowing text, along with a new blank line before the existing content:
”ETBM2jAP6vXqhbpUsfVm”, and rename it to ‘sure ocean uRnI.txt‘.

Then, in the next screen, the text has been entered after the existing content, and the agent clicks the
save button.

D.4 AGENT ROBUSTNESS EXPERIMENTS

We ran the agent on the following tasks (the nicknames shown in the figures in parentheses):

• MarkorEditNote (EditNote)

• ExpenseAddSingle (AddExpense)

• SimpleCalendarDeleteEventsOnRelativeDay (DeleteEvent)

• FilesDeleteFile (DeleteFile)

• SportsTrackerActivitiesCountForWeek (CountActivities)

More details about these tasks can be found in Table 5.

D.5 SEEACT DETAILS

We modify the SeeAct prompt (Zheng et al., 2024a) to reflect that the environment is Android by
inputting elements from the accessibility tree and supporting additional actions (e.g., scrolling).
Below we include the updated prompt. We annotate the system, user, and assistant roles that are
each provided to the OpenAI API.

1
2 > Role: SYSTEM
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3 Imagine that you are imitating humans operating an Android device for a task step by step. At each stage, you
can see the Android screen like humans by a screenshot and know the previous actions before the current
step decided by yourself through recorded history. You need to decide on the first following action to
take. You can tap on an element, long-press an element, swipe, input text, open an app, or use the
keyboard enter, home, or back key. (For your understanding, they are like ‘adb shell input tap’, ‘adb
shell input swipe’, ‘adb shell input text’, ‘adb shell am start -n’, and ‘adb shell input keyevent’).
One next step means one operation within these actions. Unlike humans, for typing (e.g., in text areas,
text boxes), you should try directly typing the input or selecting the choice, bypassing the need for an
initial click. You should not attempt to create accounts, log in or do the final submission. Terminate

when you deem the task complete or if it requires potentially harmful actions.
4
5 > Role: USER
6 You are asked to complete the following task: <GOAL>
7
8 Previous Actions:
9 <PREVIOUS ACTIONS>

10
11 The screenshot below shows the Android screen you see. Follow the following guidance to think step by step

before outlining the next action step at the current stage:
12
13 (Current Screen Identification)
14 Firstly, think about what the current screen is.
15
16 (Previous Action Analysis)
17 Secondly, combined with the screenshot, analyze each step of the previous action history and their intention

one by one. Particularly, pay more attention to the last step, which may be more related to what you
should do now as the next step. Specifically, if the last action involved a INPUT TEXT, always evaluate
whether it necessitates a confirmation step, because typically a single INPUT TEXT action does not make
effect. (often, simply pressing ’Enter’, assuming the default element involved in the last action,
unless other clear elements are present for operation).

18
19 (Screenshot Details Analysis)
20 Closely examine the screenshot to check the status of every part of the screen to understand what you can

operate with and what has been set or completed. You should closely examine the screenshot details to
see what steps have been completed by previous actions even though you are given the textual previous
actions. Because the textual history may not clearly and sufficiently record some effects of previous
actions, you should closely evaluate the status of every part of the screen to understand what you have
done.

21
22 (Next Action Based on Android screen and Analysis)
23 Then, based on your analysis, in conjunction with human phone operation habits and the logic of app design,

decide on the following action. And clearly outline which element on the Android screen users will
operate with as the first next target element, its detailed location, and the corresponding operation.

24
25 To be successful, it is important to follow the following rules:
26 1. You should only issue a valid action given the current observation.
27 2. You should only issue one action at a time
28 3. For handling the select dropdown elements on a screen, it’s not necessary for you to provide completely

accurate options right now. The full list of options for these elements will be supplied later.
29
30 > Role: ASSISTANT
31 <AGENT RESPONSE TO ABOVE>
32
33 > Role: USER
34 (Reiteration)
35 First, reiterate your next target element, its detailed location, and the corresponding operation.
36
37 (Multichoice Question)
38 Below is a multi-choice question, where the choices are elements on the screen. All elements are arranged in

the order based on their height on the screen, from top to bottom (and from left to right). This
arrangement can be used to locate them. From the screenshot, find out where and what each one is on the
screen, taking into account both their text content and details. Then, determine whether one matches
your target element. Please examine the choices one by one. Choose the matching one. If multiple options
match your answer, choose the most likely one by re-examining the screenshot, the choices, and your

further reasoning. If you would like to perform a swipe action, you can optionally select the choice
where you will swipe.

39
40 A. "Home" icon
41 B. "Phone" icon
42 C. "Messages" icon
43 D. "Chrome" icon
44 E. "Search" icon
45 ...
46 If none of these elements match your target element, please select Z. None of the other options match the

correct element.
47
48 (Final Answer)
49 Finally, conclude your answer using the format below. Ensure your answer is strictly adhering to the format

provided below. Please do not leave any explanation in your answers of the final standardized format
part, and this final part should be clear and certain. The element choice, action, and value should be
in three separate lines.

50
51 Format:
52
53 ELEMENT: The uppercase letter of your choice. (No need for TERMINATE, KEYBOARD ENTER, WAIT, ANSWER, OPEN APP,

NAVIGATE HOME, NAVIGATE BACK; and optional for SWIPE.)
54
55 ACTION: Choose an action from {CLICK, INPUT TEXT, LONG PRESS, NAVIGATE BACK, TERMINATE, KEYBOARD ENTER, SWIPE,

WAIT, ANSWER, OPEN APP, NAVIGATE HOME}.
56
57 VALUE: Provide additional input based on ACTION.
58
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59 The VALUE means:
60 If ACTION == INPUT TEXT, specify the text to be typed.
61 If ACTION == SWIPE, specify the direction: up, down, left, right.
62 If ACTION == OPEN APP, provide the name of the app to be opened.
63 If ACTION == ANSWER, specify the text of your answer to respond directly to a question or request for

information.
64 For CLICK, LONG PRESS, KEYBOARD ENTER, NAVIGATE HOME, NAVIGATE BACK, WAIT, and TERMINATE, write "None".
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