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ABSTRACT
The recent advancements in cross-modal transformers have demon-
strated their superior performance in RGB-D segmentation tasks
by effectively integrating information from both RGB and depth
modalities. However, existing methods often overlook the varying
levels of informative content present in each modality, treating
them equally and using models of the same architecture. This over-
sight can potentially hinder segmentation performance, especially
considering that RGB images typically contain significantly more
information than depth images. To address this issue, we propose
PrimKD, a knowledge distillation based approach that focuses on
guided multimodal fusion, with an emphasis on leveraging the pri-
mary RGB modality. In our approach, we utilize a model trained
exclusively on the RGB modality as the teacher, guiding the learn-
ing process of a student model that fuses both RGB and depth
modalities. To prioritize information from the primary RGB modal-
ity while leveraging the depth modality, we incorporate primary
focused feature reconstruction and a selective alignment scheme.
This integration enhances the overall freature fusion, resulting in
improved segmentation results. We evaluate our proposed method
on the NYU Depth V2 and SUN-RGBD datasets, and the experimen-
tal results demonstrate the effectiveness of PrimKD. Specifically,
our approach achieves mIoU scores of 57.8 and 52.5 on these two
datasets, respectively, surpassing existing counterparts by 1.5 and
0.4 mIoU.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
RGB-D Segmentation, Multimodal Fusion, Knowledge Distillation

1 INTRODUCTION
Semantic segmentation has been a long-standing research topic
in the field of computer vision due to its wide application in au-
tonomous driving and intelligent transportation systems. Recent
advancements in modular sensors have paved the way for collecting
multimodal data, presenting a promising opportunity to achieve
significantly improved segmentation accuracy. For instance, RGB-D
data, which combines RGB color channel information with depth
information, has seen widespread use in semantic segmentation. By
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Figure 1: Comparison between single modal based meth-
ods [26], an existing multimodal fusion approach CMX [30],
and our proposed method on two datasets. Our primary
modality guided fusion yields significant improvements in
segmentation accuracy.

integrating this additional depth information, RGB-D segmentation
demonstrates significant improvements in distinguishing instances
and context.

While the introduction of an additional modality does indeed
offer more information, effectively harnessing and leveraging this
additional information still poses a significant challenge. Since
data from different modalities depict the scene in distinct manners,
they cannot be processed separately as with a single modality.
Therefore, achieving better multimodal fusion is significant for
attaining remarkable performance.

Within contemporary research, dominant paradigms for infor-
mation fusion in the context of multimodal segmentation can be
categorized into two classes: static fusion approaches and interac-
tive fusion approaches. In early static fusion methods, multimodal
inputs are fused, after which a single network is employed to extract
features from the fused inputs [3]. For example, Cao et al. [2] decom-
poses depth features into shape and base components, applies learn-
able weights to balance their importance, and performs convolution
on the re-weighted combination to enhance segmentation accuracy.
Alternatively, two backbones may perform feature extraction sepa-
rately from the RGB and depth modalities, followed by fusion of
these features for segmentation [4]. ACNet [9] combines RGB and
depth features using attention complementary modules and a multi-
branch architecture, allowing for selective feature gathering and
fusion while preserving original RGB-D features for improved se-
mantic segmentation performance. While these static fusion meth-
ods have achieved satisfactory performance, their straightforward
approach often lacks inter-modal interactions, potentially resulting
in inferior performance compared to single-modal methods [21].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Interactive fusion approaches have been proposed to enhance
multimodal fusion. These approaches involve the integration of
interactive fusion modules that link the RGB and depth features ex-
tracted by two parallel pretrained backbones, resulting in improved
performance. For instance, TokenFusion [22] and HiDANet [24]
dynamically fuse representations from RGB and depth encoders,
aggregating them in the decoder, thereby pushing the performance
boundaries in RGB-D scene parsing applications. Zhang et al. [30]
also introduced a unified fusion framework, CMX, for RGB-X se-
mantic segmentation. This framework incorporates a cross-modal
feature rectification module for feature calibration and a feature
fusion module for long-range context exchange and feature mix-
ing, achieving superior segmentation performance. However, most
existing interactive fusion approaches utilize identical backbone
architectures to extract features from both RGB and depth data
for fusion, overlooking potential differences between these two
modalities. As the two modalities contain information of varying
degrees, they may contribute differently to the final prediction. The
use of identical backbones may suppress the effect of the primary
modality, which contributes more to segmentation, while exag-
gerating the influence of the secondary one. Therefore, specialized
designs are necessary to balance the participation of RGB and depth
information for improved segmentation results.

To tackle this challenge, we introduce PrimKD, a knowledge
distillation (KD)-based methodology, aimed at guiding multimodal
fusion in RGB-D semantic segmentation, with a focus on leverag-
ing the primary modality. Under the assumption of the varying
importance between RGB and depth modalities in segmentation
tasks, we employ a teacher model trained exclusively on data from
the primary modality to guide the learning process of the fusion
model. To enhance primarymodality guided fusion, we employ both
prediction-level and feature-level guidance strategies to attain supe-
rior results. Specifically, in addition to aligning final predictions, we
explore direct reconstruction of intermediate features, integrating
with an adaptive guidance scheme. In our experimental analyses,
we empirically observe that employing an RGB data-trained teacher
model leads to a notable enhancement in performance, thereby con-
firming the RGB data as the primary modality in RGB-D semantic
segmentation. Extensive experiments conducted on two widely rec-
ognized datasets, namely NYU Depth V2 [19] and SUN-RGBD [20],
validate the effectiveness of our proposed method. Specifically, our
PrimKD achieves mIoU scores of 57.8 and 52.5 on these two datasets,
respectively, outperforming the counterpart by a significant margin.
Our contributions can be summarized as follows:

• We identify the discrepancy in the contributions of the RGB
and depth modalities in RGB-D segmentation and propose a
KD-based approach to enhance multimodal fusion, guided
by the primary RGB modality, without altering the inference
model architecture.

• We consider both prediction-level and feature-level guid-
ance mechanisms for primary modality-guided fusion and
validate an effective configuration that yields satisfactory
multimodal fusion results.

• We conduct extensive experiments on two prominent RGB-D
segmentation datasets to showcase the superiority of our
proposed method, with ablation study demonstrating the
effectiveness of each module within our framework.

2 RELATEDWORKS
2.1 RGB-D semantic segmentation.
Semantic segmentation involves categorizing each pixel in an im-
age into a specific class or object. Traditional approaches typically
rely solely on RGB images for prediction. However, with the prolif-
eration of depth sensors in recent years, the availability of depth
data has increased significantly. This surge in data availability has
led to a growing interest among researchers and practitioners in
exploiting depth data to enhance RGB semantic segmentation. This
emerging field is known as RGB-D semantic segmentation.

RGB images primarily capture color and texture details, whereas
depth images predominantly convey spatial positional information.
Integrating these modalities can enrich the semantic information of
the original RGB images, leading to enhanced task performance to a
certain extent. However, the disparity in information between these
modalities presents a significant challenge in achieving effective
fusion. To bridge this gap, various methods have been proposed,
which can be categorized into two directions: developing dedicated
feature extraction architectures tailored for RGB and depth image
data [1–4, 6, 17, 28], and introducing innovative methods for feature
alignment fusion [9, 18, 22, 23, 25, 31, 34, 35].

The first category of methods focuses on designing novel net-
work architectures to better extract feature information from dif-
ferent modalities. For instance, Girdhar et al. [6] introduce a new
Transformer architecture capable of jointly pre-training classifica-
tion tasks across various modalities such as images, videos, and
single-view 3D data, thereby achieving cross-modal semantic fea-
ture extraction. Zhang et al. [28] suggest incorporating depth im-
ages during pre-training to facilitate improved extraction of depth
image features during fine-tuning.

The second category of methods involves designing innovative
feature fusion approaches to align features from differentmodalities,
thereby improving the semantic information of the RGB modality.
For instance, Wu et al. [25] introduces a transformer-based fusion
strategy to model context more effectively at the level of long-range
information dependencies. Zhang et al. [30] propose cross-modal
feature calibration modules and feature fusion modules to calibrate
features of the current modality in both spatial and channel dimen-
sions. They also utilize a cross-attention mechanism to globally
enhance features from both modalities.

While existing methods have achieved notable performance en-
hancements through multimodal fusion, they often process infor-
mation from different modalities using the same architecture. This
can inadvertently lead to the suppression of the more informative
modality, which we refer to as the primary modality, leading to a
decrease in performance.

2.2 Knowledge Distillation.
Knowledge distillation (KD) is a technique used to transfer knowl-
edge from one ormore pretrained teacher models to amore compact
student model. Depending on the type of information utilized for
transferring, existing KD approaches can be broadly categorized
into two groups: those that leverage the final predictions of the
teacher and those that utilize intermediate features for distillation.

The vanilla KD method, as introduced by Hinton et al. [8], is the
first to adopt the final predictions for KD. In this method, the output
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distribution of the student classifier is required to mimic that of
the teacher classifier by minimizing the KL divergence between the
two distributions. Following the prior work, several enhancements
to prediction-based KD have been proposed. Zhao et al. [32] intro-
duced to decouple the original KL divergence into two separate
parts and adjust the impact of these parts using hyperparameters.
Huang et al. [10] focused on scenarios with large differences in
model capacity between the teacher and student models and de-
signed a Pearson correlation-based loss function. These improve-
ments have demonstrated significant performance enhancements
over the vanilla KD method.

In addition to using final predictions, intermediate features can
also be leveraged for knowledge transfer. Romero et al. [15] pro-
posed a method to directly align features of the teacher and the stu-
dent using an additional convolutional layer for channel alignment.
Apart from this straightforward design, various feature distillation
approaches have been explored. For instance, attention maps [29],
solution flow [5], and sample-level feature manifold representa-
tions [13, 14] are also viable knowledge formats. More recently,
inspired by the success of masked image modeling [7], approaches
introducing this idea into the KD field have emerged [27]. More-
over, integrating intermediate feature-based methods with final
prediction-based approaches enables a more comprehensive amal-
gamation of information, thereby augmenting model performance.

Many existing KD approaches are tailored for model compres-
sion, prioritizing enhancement of the performance of lightweight
student models. However, in this paper, we deviate from this norm
by employing the teacher model as an external regularization factor
to refine the multimodal fusion process of the student model.

3 METHOD
In this section, we provide an overview of existing RGB-D seg-
mentation approaches, noting that many of them utilize identical
architectures to process both modalities, inadvertently suppressing
the primary modality containing more useful information. To ad-
dress this limitation, we propose a KD-based approach. Our method
leverages the primary modality to guide the multimodal fusion
process, aiming to enhance segmentation performance.

3.1 Background
Semantic segmentation plays a crucial role in computer vision
by assigning each pixel in an image to its corresponding seman-
tic category. While models trained on RGB information excel in
differentiating between colors and textures, they often struggle
to capture geometric information, making it challenging to distin-
guish instances and contexts with similar visual characteristics [33].
To address this limitation, several studies have introduced depth
images to enhance model performance [30, 31].

Existing methods commonly utilize two separate backbone mod-
els to extract features from both RGB and depth modalities. Given
an input pair of RGB image 𝒙rgb ∈ R3×𝐻×𝑊 and depth image
𝒙depth ∈ R𝐻×𝑊 , where 𝐻 and𝑊 represent the height and width
of the images, their features are extracted as follows:

𝒇rgb = M(𝒙rgb, 𝜽rgb),
𝒇depth = M(𝒙depth, 𝜽depth),

(1)

where M is the backbone model, with 𝜽 rgb and 𝜽depth represent-
ing parameters of the corresponding backbones used for extracting
features from the RGB and depth modalities, respectively. Subse-
quently, these features are fused together by a modal fusion module,
which can be either statically or adaptively:

𝒇rgbd = Fuse(𝒇rgb,𝒇d) . (2)

Finally, a decoder module is employed to obtain the final prediction
by taking 𝒇rgbd as input:

�̂� = D(𝒇rgbd), (3)

where D is the decoder module,�̂� ∈ R𝐻×𝑊 represents the corre-
sponding segmentation result of 𝒙rgb.

3.2 Overlooked Modality Diversity
Integrating representations from both RGB and depth modalities
has been shown to enhance model performance. As depicted in
Equation 1, many current methods employ uniform architectures
for feature extraction from each modality independently, differing
only in parameters.

Since models with identical architectures share the same capac-
ity, utilizing identical backbones implies treating both RGB and
depthmodalities uniformly. However, due to potential differences in
information density betweenmodalities, this approachmay inadver-
tently suppress the primary modality containing richer information
while exaggerating the secondary modality with less information,
thus leading to suboptimal performance.

To address this disparity, specialized designs tailored to each
modality are necessary. However, customizing model architecture
for each modality can be cumbersome. Therefore, we aim to explore
a simpler approach to calibrate the two modalities without modi-
fying the model architecture, ensuring compatibility with existing
RGB-D segmentation frameworks.

3.3 Primary Modality Guided Fusion
KD has been proven to be an effective approach for enhancing
model performance by transferring knowledge from a pretrained
teacher model to a student model. Drawing inspiration from its
success, we aim to leverage a teacher model trained on the primary
modality to guide the learning process of a fusion model incorpo-
rating both RGB and depth modalities. This approach allows us to
achieve calibrated multimodal fusion.

Figure 2 presents an overview of our proposed primary modality
guided multimodal fusion framework, termed PrimKD. Compared
with existing multimodal fusion approaches that involve only an in-
dividual model learning from RGB-D data, our PrimKD framework
incorporates an additional teacher model trained on the primary
modality, which inherently contains more useful information for
the segmentation task compared to the other modality. Building
upon existing approaches that fuse multimodal information at the
feature level, we further enhance the learning of the student model
by employing KD guided by the teacher model. This is motivated
by the assumption that the fused modality should resemble the
primary modality more closely, thereby leading to improved per-
formance. Our experiments demonstrate that RGB serves as the
primary modality in RGB-D semantic segmentation.
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Figure 2: Comparison of different multimodal fusion approaches for RGB-D semantic segmentation: (a) Multimodal fusion at
input: The two modalities are fused and then processed by a single backbone to extract features for prediction. (b) Multimodal
fusion at feature: Two individual backbones of the same architecture are used to extract features from each modality. These
features are then fused for prediction. (c) Primary modality guided multimodal fusion (Ours): A teacher model trained on the
primary modality, which contains more information, is used to distill a student model. Both prediction-level and feature-level
KD are considered. This process calibrates the fusion by directing the student to pay more attention to the primary modality.

3.3.1 Prediction-level guidance. Although the teacher and the stu-
dent are trained with different data, they share the same output
space. Therefore, we initially consider performing KD at the pre-
diction level.

The teacher model is trained on the primary modality, its pre-
diction process can be formulated as:

𝒇primary = M𝑇 (𝒙primary, 𝜽𝑇 ),
�̂�𝑇 = D𝑇 (𝒇primary),

(4)

where subscript𝑇 is used to indicate the teachermodel. Additionally,
we adopt �̂�𝑆 to represent the predictions of the student model,
which is obtained following the process depicted in Section 3.1.
Given that semantic segmentation involves classifying each pixel
in the image to determine its corresponding class, we can apply
KD at the prediction level, similar to traditional classification tasks.
Specifically, the distillation loss is defined as following:

Lpred = HKL (𝜓 (�̂�𝑇 ),𝜓 (�̂�𝑆 )), (5)

where HKL denotes the KL divergence, and 𝜓 : R𝐻×𝑊 → R𝐻𝑊

represents an operation that flattens the segmentation result into a
one-dimension vector.

Since the teacher model is trained exclusively using the primary
modality, its predictions rely entirely on information from this
modality. By training the student model to mimic these predictions,
the fusion process is encouraged to prioritize information from the
primary modality, resulting in improved fusion results.

3.3.2 Feature-level guidance. In addition to the final prediction,
intermediate features have also been widely utilized in existing
KD approaches. Therefore, we incorporate feature-level guidance

to transfer information from the primary modality. However, un-
like in many existing studies where the teacher and student share
the same model architecture, in our proposed PrimKD framework,
the teacher model follows a single-stream architecture, while the
student model adopts a dual-stream architecture. Considering our
aim to impart more knowledge to the student model regarding the
primary modality, it is reasonable to infer that the primary feature
can be derived from the fused feature. Consequently, KD is per-
formed using intermediate features of the teacher model and fused
features of the student model. A lightweight module is employed
to utilize fused features for reconstructing primary features, with
the reconstruction error serving as the loss function. To explore the
most suitable design, we consider several reconstruction schemes
as follows:

Direct reconstruction. The simplest way to reconstruct the pri-
mary feature is to directly adopt a learnable module to take the
fused features as input and output reconstructed features. This
process can be formulated as:

Lfeat = | |R(𝒇rgbd) − 𝒇primary | |2, (6)

where R is the learnable reconstruction module, which can consist
of only a single layer or a sequence of layers. We evaluate different
designs of this module in our experiments.

Adaptive guidance. Feature-level guidance involves comparing
intermediate features from both the teacher and the student model.
For semantic segmentation tasks, backbones typically consist of
four stages, with each stage producing a feature map. These four
feature maps of different scales are then utilized in the decoder
module for prediction. Typically, reconstruction and comparison
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entail the utilization of four feature maps. However, in our PrimKD
scenario, the teacher and the student are trained using disparate
datasets, resulting in divergence within their respective feature
maps. Consequently, directly applying feature-level guidance across
all four feature maps may present challenges.

To facilitate the knowledge transfer process, we explore two
schemes. The first involves conducting feature-level guidance con-
sistently on one of the four feature maps. The second scheme in-
volves adaptive selection of features for reconstruction and com-
parison. Generally, this process can be formulated as follows:

select rule({Lfeat,𝑖 |𝑖 ∈ {1, 2, 3, 4}}), (7)

where Lfeat,𝑖 represents the feature-level guidance loss associated
with the 𝑖-th feature map. In our experiments, we will assess the im-
pact of varying fixed map choices and employing different adaptive
selection rules, including maximum- and minimum-based selection.

Discussion. Primary modality guided fusion mainly aims to uti-
lize the primary modality trained teacher model as an external
regularization to enhance the effectiveness of student learning of
multimodal fusion. Particularly in feature-level guidance, the fused
feature must encompass sufficient information from the primary
modality for accurate reconstruction. Additionally, the segmenta-
tion target encourages the student to extract useful information
from the secondary modality simultaneously. Ultimately, the stu-
dent model is expected to achieve enhanced performance through
a more balanced multimodal fusion.

3.4 Training and inference
The training of our PrimKD framework involves two stages. In the
first stage, we train a teacher model with a single-stream architec-
ture on the primary modality, identified as the RGB modality in our
experiments. Subsequently, in the second stage, the student model
is trained with the guidance of the frozen teacher. The total loss
function during training is defined as:

L = Lseg + 𝛼Lpred + 𝛽Lfeat, (8)

where Lseg represents the original RGB-D semantic segmentation
loss, and 𝛼 and 𝛽 are hyperparameters used to balance the two
distillation losses.

The student model learns multimodal fusion strategy that taking
more primary information into consideration. At inference time,
the primary teacher model becomes unnecessary, resulting in no
additional inference cost associated with our method.

4 EXPERIMENT
To assess the effectiveness of our proposed PrimKDmethod, we con-
duct experiments using two popular RGB-D segmentation datasets.
Additionally, we conduct ablation studies to verify the effectiveness
of each module within our framework. To initiate, we present our
experimental setup.

4.1 Experimental setup
4.1.1 Datasets. In our experiments, we utilize two commonly ref-
erenced RGB-D segmentation datasets: NYU Depth V2 [19] and
SUN-RGBD [20]. These datasets are frequently employed in existing
literature [28, 30], and their details are outlined below:

Table 1: Impact of different teachers on student performance
with MiT-B4 backbone on NYU Depth V2. Results are ob-
tained without multiscale testing. The RGBmodality trained
teacher achieves the highest student performance, showcas-
ing RGB as the primary modality in RGB-D segmentation.

Teacher training modality mIoU (%)

- 56.1
Depth 56.2
RGB 57.5

NYU Depth V2. NYU Depth V2 comprises 1449 RGB-D samples
covering 40 classes, with all RGB and depth images having a uniform
resolution of 480×640. Among these, 795 image-depth pairs are
allocated for training the RGB-D model, while the remaining 654
are reserved for testing.

SUN-RGBD.. SUN-RGBD includes 10,335 RGB-D images with a
resolution of 530×730, segmented into 37 categories. All samples in
this dataset are divided into 5,285 segments for training and 5,050
segments for testing.

In both datasets, the depth images are converted into HHA for-
mat following [30]. The HHA format represents images with hori-
zontal disparity, height above ground, and angle information.

4.1.2 Models. Given our primary goal of enhancing the multi-
modal fusion capability of existing dual-stream RGB-D seman-
tic segmentation architectures, we opt not to introduce a novel
model architecture. Instead, we adopt the dual-stream architec-
ture proposed by Zhang et al. [30], which incorporates two MiT
backbones[26]. In our experiments, we evaluate two different back-
bones: MiT-B2 and MiT-B4, both pre-trained on ImageNet-1K [16].

4.1.3 Optimization. Our training process consists of two stages. In
the first stage, we train the teacher model using only the primary
modality. Subsequently, in the second stage, we train the student
model using both modalities with KD. Both stages share the same
optimization configurations.

For the NYU Depth V2 dataset, we train models for 500 epochs
with a batch size of 8. The initial learning rate is set to 6×10−5 with
a polynomial decay scheme. We employ AdamW [11] as the opti-
mizer with a weight decay of 0.01. Data augmentation techniques
including random flipping and random cropping are utilized. Exper-
iments on the SUN-RGBD dataset follow a similar setting, with the
only differences being the number of epochs, batch size, and initial
learning rate, which are set to 300, 128, and 8 × 10−5, respectively.
The hyperparameters 𝛼 and 𝛽 are set to 1 and 0.05, respectively, by
default. All experiments are conducted using NVIDIA Tesla V100
GPUs. For the NYU Depth V2 dataset, we utilized 2 GPUs, while
for the SUN-RGBD dataset, we employed 8 GPUs.

4.1.4 Evaluation. For evaluation, we employ the mean Intersection
over Union (mIoU) metric. While many existing works typically
report results obtained under multiscale testing, we employ this
technique solely for comparison with these works. Our ablation
experiments, in contrast, are conducted without multiscale testing.
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Table 2: Comparison of various multimodal fusion approaches for RGB-D segmentation, with all results obtained using
multiscale testing. ‘-’ indicates that corresponding results are not provided by the original paper.

Model Backbone Params NYU Depth v2 SUN-RGBD

Input size FLOPs mIoU Input size FLOPs mIoU

ACNet [9] ResNet-50 116.6M 480×640 126.7G 48.3 530×730 163.9G 48.1
SGNet [3] ResNet-101 64.7M 480×640 108.5G 51.1 530×730 151.5G 48.6
SA-Gate [4] ResNet-101 110.9M 480×640 193.7G 52.4 530×730 250.1G 49.4
GEN [23] ResNet-101 118.2M 480×640 118.2G 51.7 530×730 790.3G 50.2
ShapeConv [2] ResNext-101 86.8M 480×640 124.6G 51.3 530×730 161.8G 48.6
ESANet [18] ResNet-34 31.2M 480×640 31.2G 50.3 480×640 34.9G 48.2
TokenFusion [22] MiT-B3 45.9M 480×640 94.4G 54.2 - - -
TransD-Fusion [25] Swin-B 84.0M 480×640 - 55.5 530×730 - 51.9
Omnivore [6] Swin-B 95.7M 480×640 95.7G 54.0 - - -
CMX [30] MiT-B2 66.6M 480×640 67.6G 54.4 530×730 86.3G 49.7
CMX [30] MiT-B4 139.9M 480×640 134.3G 56.3 530×730 173.8G 52.1
CMNext [31] MiT-B4 119.6M 480×640 131.9G 56.9 - - -
PrimKD (Ours) MiT-B2 66.6M 480×640 67.6G 54.7 530×730 86.3G 50.6
PrimKD (Ours) MiT-B4 139.9M 480×640 134.3G 57.8 530×730 173.8G 52.5

RGB HHA Segformer-B4 Ours LabelCMX-B4

Figure 3: Visualization of segmentation results on the NYU Depth v2 dataset with the MiT-B4 backbone. Our proposed PrimKD
method outperforms the single-stream method SegFormer [26] and the two-stream method CMX [30], which do not utilize
primary modality guidance.

4.2 Identification of the primary modality
In our analysis, we hypothesize that there exists a discrepancy in
the significance of the RGB and depth modalities for the segmen-
tation task, with one modality potentially providing more crucial

information and thus serving as the primary modality. To ascertain
the primary modality, we conduct experiments using teacher mod-
els trained on either modality to guide the learning of the student.
We then compare these results with a non-KD baseline.
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The comparison results are presented in Table 1. Without adopt-
ing any teacher, the student model achieves a test mIoU of 56.1 on
the NYU Depth V2 dataset. When the model pretrained solely on
the depth modality is adopted as the teacher, the student shows only
a marginal improvement in performance, with a 0.1 mIoU increase.
In contrast, when the RGB modality is used for teacher training,
the student achieves a mIoU of 57.5, significantly outperforming its
counterparts. These results demonstrate that constraining the fused
features to contain more information from RGB data is beneficial.
As a result, RGB is identified as the primary modality, and it will
serve as the primary modality in all our subsequent experiments.

4.3 Primary Modality Guided Segmentation
To evaluate the effectiveness of our proposed method, we compare
it with several recently proposed approaches on the NYU Depth v2
and SUN-RGBD datasets. Baseline results are obtained from [28].
Since our method primarily focuses on enhancing multimodal fu-
sion performance for two-stream architectures, we do not include
single-stream methods for comparison.

Table 2 presents the comparison results. On the NYU Depth v2
dataset, our PrimKD achieved an mIoU of 54.7 with the MiT-B2
backbone and 57.8 with the MiT-B4 backbone, surpassing the base-
line CMX [30] without primary modality-guided multimodal fusion
by 0.4 and 1.5 mIoU points, respectively. Similar performance im-
provements are observed on the SUN-RGBD dataset, with increases
of 0.9 and 0.4 mIoU points using the MiT-B2 and MiT-B4 back-
bones, respectively. For clearer illustration of these improvements,
we provide a bar plot in Figure 1. Furthermore, our method only
incorporates the primary modality-trained teacher model during
training, without modifying the architecture of the student model.
This indicates that the performance improvements are achieved
without sacrificing inference efficiency.

Visualization. To provide a qualitative comparison between our
primary modality guided multimodal fusion method and existing
approaches, we present visualization of several samples from NYU
Depth v2 in Figure 3. From the results, model trained using our
method is able to achieve more accurate segmentation results, fur-
ther demonstrating the effectiveness of our design.

4.4 Ablation study
To further investigate the effectiveness of each module in our
PrimKD framework, we conduct extensive ablation experiments.
All ablation experiments are performed using the MiT-B4 backbone
on the NYU Depth v2 dataset, with results reported without the
use of multiscale testing.

4.4.1 Prediction-level guidance and feature-level guidance. We em-
ploy both prediction-level and feature-level guidance to direct the
multimodal fusion process of the student model. To assess the effec-
tiveness of each guidance method, we compare all possible combi-
nations and present the corresponding results in Table 3. From the
results, the introduction of either prediction-level or feature-level
guidance improves performance, with enhancements of 0.5 and 0.4
mIoU, respectively. Furthermore, combining both forms of guidance
yields the highest mIoU of 57.5, demonstrating the effectiveness of
both approaches.

Table 3: Impact of prediction-level and feature-level guidance
onmultimodal fusion results using theMiT-B4 backbone and
the NYU Depth V2 dataset. Models trained with both types
of guidance exhibit the best performance.

Prediction guidance Feature guidance mIoU (%)
× × 56.1
✓ × 56.6
× direct 56.5
✓ direct 57.5

Table 4: Assessing the effectiveness of adaptive guidance
with the MiT-B4 backbone on the NYU Depth V2 dataset.
Dynamically selecting the stage with the highest loss value
for alignment yields the best performance.

Select rule hint mIoU (%)

× stage 1 57.3
× stage 2 57.1
× stage 3 56.9
× stage 4 56.7

average stage 1-4 56.8
minimum stage 1-4 56.5
maximum stage 1-4 57.5

4.4.2 Adaptive guidance. In segmentation tasks, backbones typi-
cally output features of four different scales, referred to as features
of stages 1 to 4. To identify which stage benefits the most from
feature-level guidance and to evaluate the effectiveness of different
adaptive stage selection rules, we conduct experiments and present
the results in Table 4. When using features from a single stage, we
observe a trend of decreasing performance as the model progresses
to deeper stages, with the best performance achieved by utilizing
features from stage 1 for guidance. Contrarily, averaging the loss
values of all four stages does not lead to performance improvement.
Moreover, adaptively selecting the stage with the maximum loss
values for each sample yields the best performance, without the
need for manual selection of where to apply guidance.

4.4.3 Alignment architecture. To reconstruct features of the teacher
model, we utilize lightweight alignment modules. We examine dif-
ferent designs by comparing single-layer and multilayer architec-
tures. The single-layer architecture consists of only a convolutional
layer with a 1×1 kernel, while the multilayer architecture further
incorporates a Conv-ReLU-Conv structure with a 3×3 kernels based
on the single-layer aligner. The results, presented in Table 5, demon-
strate superior performance of the multilayer architecture.

4.4.4 Hyperparameters. In our framework, there are two hyperpa-
rameters corresponding to the loss weight of prediction-level and
feature-level guidance, respectively. We compare different config-
urations of these two hyperparameters and present the results in
Table 6 and Table 7. From the results, the optimal combination of
these two hyperparameters is 𝛼 equal to 1 and 𝛽 equal to 0.05.
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Table 5: Comparison of alignment architecture designs with
the MiT-B4 backbone on the NYU Depth V2 dataset. A
multiple-layer architecture demonstrates superior perfor-
mance compared to a single-layer design.

Architecture Single layer Multiple layers

mIoU (%) 57.2 57.5

Table 6: Comparison of different choices of hyperparameter
𝛼 with the MiT-B4 backbone on the NYU Depth V2 dataset.

Weight of Lpred (𝛼) 0.01 0.1 1

mIoU (%) 56.5 56.9 57.5

Table 7: Comparison of different choices of hyperparameter
𝛽 with the MiT-B4 backbone on the NYU Depth V2 dataset.

Weight of Lfeat (𝛽) 0.01 0.05 0.1 1

mIoU (%) 57.2 57.5 56.7 56.2

4.5 Analysis of guided fusion
To delve deeper into the impact of our proposed primary modality
guided fusion, we analyze features of the trained fusion model.
Specifically, we compare feature similarity using centered kernel
alignment (CKA) [12] and feature value distribution through his-
togram analysis.

CKA analysis. To examine the feature similarity between dual
modality trained models and single modality trained models, we
utilize CKA as the measurement. CKA takes two feature maps as
input and returns their similarity, ranging from 0 to 1, where a
larger value indicates greater similarity.

We adopt the MiT-B4 as the backbone model and evaluate using
the test set of NYU Depth V2. Table 8 presents the results. When
guided fusion is not used, the features of the model trained us-
ing CMX achieve similar similarity compared to the single-stream
model trained by either RGB or depth modality. Additionally, as
the model goes deeper, the similarity also increases. After incor-
porating our primary modality guided fusion, the RGB modality
trained teacher model is used to modulate the fusion of the student.
Although the similarity to RGB modalities remains similar, there is
a noticeable decrease in similarity of the trained model compared
to the depth model, especially at the early stages of the model.
This demonstrates that modulating the beginning stages is more
significant, which is consistent with the result in Table 4.

Feature value distribution analysis. We further compare the dis-
tribution of intermediate feature values and present the histogram
plot in Figure 4. The teacher model trained with the RGB modality
extracts features with more concentrated values, while the CMX
trained model without guidance presents scattered feature values.
Equipped with our proposed method, the distribution of feature
values shifts toward that of the teacher model, demonstrating that
more information from the RGB modality is considered.

Table 8: Comparison of feature similarity between our
PrimKD trained fusion model and CMX with respect to RGB
and depth modalities, using the CKA metric.

stage 1 stage 2 stage 3 stage 4

Compare to RGB modality
CMX [30] 0.60 0.63 0.71 0.91
PrimKD (Ours) 0.60 0.67 0.83 0.90

Compare to Depth modality
CMX [30] 0.44 0.50 0.61 0.88
PrimKD (Ours) 0.24 0.42 0.63 0.78
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40k
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Figure 4: Comparison of feature value distributions among
models trained with CMX, our PrimKDmethod, and the RGB
modality trained teacher model.

5 CONCLUSION
Due to the recent advancements in depth sensors, the availability of
depth images has significantly increased. Consequently, integrating
these images with RGB images to enhance segmentation results has
become increasingly appealing. Current methods often utilize two
parallel backbones of the same architecture to extract features from
each modality, followed by fusion modules for prediction. However,
employing identical backbones overlooks the differences between
these modalities, potentially resulting in suboptimal performance.
To address this limitation, we introduce PrimKD, which employs
a teacher model pretrained on the more informative modality to
guide the multimodal fusion process of the student model under the
KD framework. Both prediction-level and feature-level guidance
are utilized in this approach. To enhance feature-level guidance, we
further introduce adaptive guidance design. In our experiments, we
identify that the RGB modality provides more information for the
segmentation task, thus using it to train the teacher model.With our
primary modality-guided multimodal fusion, the trained student
model achieves an mIoU of 57.8 on the NYU Depth V2 dataset
and 52.5 on the SUN-RGBD dataset, respectively, surpassing its
counterparts by a significant margin while incurring no additional
inference cost.
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