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a b s t r a c t

Domain adaptation aims to alleviate the shift between training and test distribution, where the DA
theory is crucial in understanding the success of domain adaptation algorithms. In this paper, we
reveal the incoherence between the empirical domain adversarial training and its generally assumed
theoretical counterpart based on H-divergence. Concretely, we find that H-divergence is not equivalent
to Jensen–Shannon divergence, the optimization objective in domain adversarial training. To this end,
we establish a new theoretical framework by directly proving the upper and lower target risk bounds
based on the joint distributional Jensen–Shannon divergence. We further derive bidirectional upper
bounds for marginal and conditional shifts. Our framework exhibits inherent flexibility for different
transfer learning problems, which is usable for various scenarios. From an algorithmic perspective, our
theory enables a generic guideline of the unified principles of semantic conditional matching, feature
marginal matching, and label marginal shift correction. We employ algorithms for each principle and
empirically validate the benefits of our framework.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

In many practical machine learning scenarios, the model is
rained on a fixed source but used for a different and related
arget. To alleviate the performance degradation caused by such
distribution, Domain adaptation (DA) [1] has been developed

n various fields such as computer vision [2], natural language
rocessing [3], and biomedical engineering [4].
Specifically, DA theory is crucial to the fundamental under-

tanding and practical development of practical algorithms. Con-
entionally, such theoretical guarantees were typically estab-
ished on the notion of H-divergence [5,6] and its subsequent
variants such as [7], where it requires a small H-divergence
between source–target and small joint risk. In the context of rep-
resentation learning, this quantity (H-divergence) is minimized
via the well-known domain adversarial training such as [2,8,9],
which is still a stimulating topic in current research.

Domain adversarial training is widely successful in various DA
problems such as open set DA [10–12] or conditional shift [4],
however, the general assumed theoretical counterpart
H-divergence itself is rather limited to explain these working
principles, which hampers the further practical advancement. It
has been noted that the inherent principle of domain adversar-
ial training is analogous to GANs [13], which is equivalent to
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minimize Jensen–Shannon divergence [14] between two distribu-
tions. Therefore, a DA theory established directly on the Jensen–
Shannon divergence would provide a thorough understanding of
adversarial training and help overcome the limitations imposed
by the use of H-divergence.

In this work, we reveal that H-divergence is not consistent
with the Jensen–Shannon divergence, indicating the improper
adoption of H-divergence theory to explain the domain adversar-
ial training practice. We further build a DA theoretical framework
directly based on Jensen–Shannon divergence. We establish that
the upper bound of the target risk is determined by the source
error and the Jensen–Shannon divergence of the two joint dis-
tribution (Section 3.1). Moreover, we derive the upper bounds of
bidirectional shifts (Section 3.2), including (a) Feature Marginal
Shift (T (x) ̸= S(x)) and Label Conditional Shift (T (y|x) ̸= S(y|x));
nd (b) Label Marginal Shift (T (y) ̸= S(y)) and Semantic (Feature)
onditional Shift (T (x|y) ̸= S(x|y)). The theory provides a unified
nderstanding of domain shifts, with covariate shift and label
hift being its special cases, which provides theoretic insights and
ffective practice guidelines:
Theoretical Insights Jensen–Shannon divergence enables us

o analyze the factors of label space that influence the transfer
rocedure, which remains elusive in the H-divergence. Specif-
cally, (I) we reveal that the intrinsic error of learning in the
arget-domain is controlled by the label-space size, the source
omain intrinsic error and the similarity of the two domains (Sec-
ion 3.3.1). (II) it also reveals why transfer learning is challenging
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Fig. 1. DJS(T (x) ∥ S(x)) cannot be viewed as the approximation of dH(S(x),T (x)): (a) for two uniform distributions with different supports, there exists
dH(T (x),S(x)) ≪ DJS(T (x) ∥ S(x)) if 0 < ξ ≪ 1; (b) while for two distributions with different probability mass, there exists DJS(T (x) ∥ S(x)) < dH(T (x),S(x))
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if the label space of source and target are not identical (a.k.a. open
set DA). We formally show that a smaller overlap over the label
space leads to a difficult transfer (Section 3.3.2).

Practical Implications Our theory motivates new DA practice
for representation learning, which is missing in H-divergence.
More concretely, we propose unified principles to control the
target risk (Section 4.2): (I) re-weighted semantic conditional
matching, to control the feature conditional shift DJS(T (x|y) ∥

S(x|y)); (II) label marginal shift correction, as the way to elimi-
nate the label marginal shift DJS(T (y) ∥ S(y)); (III) constraining
the feature marginal shift, an approach to prevent poor target
pseudo label predictions (i.e. predicted labels), a common phe-
nomena that can lead to negative transfer in semantic conditional
matching. The proposed guideline enables us to select existing al-
gorithms for each principle. The empirical results on real datasets
verify the benefits of unified principles (Section 5).

2. H-divergence based DA theory

In this paper, suppose we have the source distribution S
and target distribution T over the joint input and output space
X × Y . According to [5,6], if the data is generated by a marginal
distribution and underlying labeling function pair (D, h⋆), then
the upper bound of the target risk error w.r.t. ∀h ∈ H is:

RT (h) ≤ RS(h) + dH(T (x), S(x)) + β, (1)

where RD(h) = Ex∼D|h(x) − h⋆(x)|, dH denotes the H-divergence
for measuring the marginal distribution similarities between S(x)
and T (x) w.r.t. x, β is the optimal joint risk over the two domains.

As pointed out by [5], it is generally impossible to exactly esti-
mate the H-divergence. Hence, this measure is approximated as a
binary classification task where we are discriminating the source
and the target samples. More specifically, the H-divergence is
approximated by distance dA = 2(1 − 2ϵ), with ϵ correspond-
ing to the discrimination generalization error. Inspired by this
intuition, [2] and subsequent approaches empirically adopted
adversarial loss [13] between the domain classifier d and feature
extractor function g in the context of representation learning:

min
g

max
d

Ex∼S(x) log(d ◦ g(x)) + Ex∼T (x) log(1 − d ◦ g(x)),

= min
g

DJS(S(g(x)) ∥ T (g(x))),
(2)

where Eq. (2) is the dual term of Jensen–Shannon divergence [14].

2.1. JS divergence is not consistent with H-divergence

From Eq. (2), domain adversarial training is essentially in
learning representation to minimize the Jensen–Shannon diver-
gence. However a DJS is not equivalent to dH in Eq. (1). We
find these two metrics can be very different and present two
counterexamples to illustrate it, shown in Fig. 1.

For the sake of simplicity, we design all examples over one
dimensional space and use the threshold functions H = {ht : t ∈

R} as the hypothesis class. That is, for any t ∈ R, the threshold
function is defined by h (x) = 1 for x < t and h (x) = 0 otherwise.
t t R

2

Counterexample 1 We adopt the example of [15], showed in
Fig. 1(a), with a small fixed ξ ∈ (0, 1). Let the target T (x) be the
uniform distribution over {2kξ : k ∈ N, 2kξ ≤ 1} and the source
S(x) be the uniform distribution over {(2k + 1)ξ : k ∈ N, (2k +

1)ξ ≤ 1}. We can compute dH(T (x), S(x)) ≈ dA(T (x), S(x)) = ξ
while DJS(T (x) ∥ S(x)) = 1 since the two distributions have
disjoint supports. Then dH(T (x), S(x)) ≪ DJS(T (x) ∥ S(x)) when
ξ ≪ 1, indicating a small H-divergence can correspond to a very
large Jensen–Shannon divergence.

Counterexample 2 Fig. 1(b) further illustrates that Jensen–
Shannon divergence is not the upper bound of H-divergence.
We assume the source S(x) be the uniform distribution over
{1, 2, 3} and let the target T (x) be the distribution on the same
support with different probability mass {T (x = 1) = 1/4, T (x =

2) = 1/2, T (x = 3) = 1/4}. Then Jensen–Shannon divergence
can be even smaller than H-divergence: DJS(T (x) ∥ S(x)) <
dH(T (x), S(x)).

Due to these differences, H-divergence is not a proper theo-
retical tool for analyzing the practice that minimizes the Jensen–
Shannon divergence (e.g. domain adversarial training and its
variants such as [2]).

3. DA theory with JS divergence and theoretical insights

3.1. Upper and lower bound

We assume the data (x, y) ∈ X × Y is generated from a joint
distribution D and denote the hypothesis and loss function as h :

X ×Y → R and L : R → R, where the hypothesis h ∈ H actually
outputs a score of an observation (x, y). We also denote RD(h) the
expected risk w.r.t. distribution D: RD(h) = E(x,y)∼D L(h(x, y)). The
complete proofs are demonstrated in Appendix A.

Theorem 1 (Upper Bound). Supposing the prediction loss L is
bounded within an interval G: G = max(L) − min(L), then for all
the hypothesis h the expected risk w.r.t. the target domain can be
upper bounded by:

RT (h) ≤ RS(h) +
G

√
2

√
DJS(T ∥ S),

where DJS(T ∥ S) =
1
2 [DKL(S ∥ M) + DKL(T ∥ M)] with

=
1
2 (T +S) is the Jensen–Shannon divergence between the joint

istribution S(x, y) and T (x, y).

Discussions The theoretical result seamlessly connects the
ell-known assumptions in DA. When the covariate shift assump-
ion holds (T (y|x) = S(y|x)), the upper bound can be expressed
s RT (h) ≤ RS(h) +

G
√
2

√
DJS(T (x) ∥ S(x)). Besides, when the label

hift assumption holds (T (x|y) = S(x|y)), the upper bound can be
lternatively expressed as RT (h) ≤ RS(h) +

G
√
2

√
DJS(T (y) ∥ S(y)).

heorem 2 (Lower Bound). If we assume the loss L as zero–one
inary loss, then for any h, we can prove the target risk is lower
ounded by:

(h) ≥ R (h) −
√
D (T ∥ S).
T S JS
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The lower bound provides the insights of the easy transfer [16]
scenario: learning the target domain can be easier than the source
domain, and the gap is controlled (smaller than) by their distri-
bution distance. For example, if we assume RS(h) = 0.2, DJS(T ∥

) = 2 × 10−4, then the target risk is also bounded: RT (h) ∈

0.186, 0.21]. This indicates RT (h) can be smaller than RS(h) but
ot an arbitrary large gap.

.2. Bi-directional marginal/conditional shifts

We can decompose the joint Jensen–Shannon divergence into
i-directional marginal and conditional shift upper bounds, ac-
ording to the information theoretical chain rule [17].

orollary 1. The upper bound in Theorem 1 can be further
ecomposed as:

T (h) ≤ RS(h) +
G

√
2

√
DJS(T (x) ∥ S(x))  

Feature Marginal Shift

+
G

√
2

√
Ex∼S(x)DJS(T (y|x) ∥ S(y|x))  

Label Conditional Shift

+
G

√
2

√
Ex∼T (x)DJS(T (y|x) ∥ S(y|x))  

Label Conditional Shift

(3)

RT (h) ≤ RS(h) +
G

√
2

√
DJS(T (y) ∥ S(y))  
Label Marginal Shift

+
G

√
2

√
Ey∼S(y)DJS(T (x|y) ∥ S(x|y))  
Semantic (Feature) Conditional Shift

+
G

√
2

√
Ey∼T (y)DJS(T (x|y) ∥ S(x|y))  
Semantic (Feature) Conditional Shift

(4)

In particular, Eq. (4) provides an alternative direction for un-
derstanding DA. The target risk bound is alternatively controlled
by the label marginal shift and the semantic (feature) conditional
distribution shift. Generally, the source and target label marginal
distribution, as well as the semantic (feature) conditional distri-
butions are both different. For example, in the classification of
different digit datasets (e.g., MNIST, USPS), when conditioning on
the certain digit Y = y, it is clear that S(x|Y = y) ̸= T (x|Y = y),
indicating the necessity of considering semantic information in
DA.

3.3. Theoretical applications

One fundamental challenge in DA is to discover the relations
and inherent properties of learning tasks, that ensure a successful
transfer [15]. Jensen–Shannon divergence enables us to analyze
the factor of label space that influences the transfer procedure,
illustrated in two concrete scenarios.

3.3.1. Application I: Target intrinsic error in DA
To characterize the inherent difficulty in the learning a task,

we adopt the conditional entropy H(YD|XD) = Ex∼D(x)H(Y |X = x)
as the intrinsic error, an error in predicting the labels given that
the underlying data distribution D is known [18,19]. For example,
if X does not provide any information for the label Y such that
Y ⊥⊥ X , then the conditional entropy arrives its maximum:
H(Y |X) = H(Y ), indicating the impossibility to guarantee a small
prediction error. However, in the context ofH-divergence [6], this
property cannot be analyzed since the label is determined by a
 b

3

fixed labeling function, such that H(Y |X) = Ex∼D(x)H(h⋆(x)|X =

x) ≡ 0.
Target Intrinsic Error: Upper Bound In the context of DA,

our goal is to ensure a small target risk, i.e., a small target
intrinsic error is necessary. However, we never have the full
target distribution T (x, y), indicating the impossibility to directly
estimate target intrinsic error H(Yt |Xt ). In contrast, we can have
the information of source distribution, as well as the relations
of source and target distribution. Then we can derive the target
intrinsic error is controlled by the label space size, as well as
the source intrinsic error and Jensen–Shannon divergence of two
distributions. This result is also consistent with our intuition and
the lower bound derived by Fano’s inequality [17]: a smaller label
space |Y| is generally easier to learn, if the other conditions are
identical.

Theorem 3. If we have: (1) Small source intrinsic error: H(Ys|Xs) ≤

ϵ; (2) Marginal distributions defined in Eq. (3) are close: DJS(S(x) ∥

T (x)) ≤ δ1; (3) Conditional distributions defined in Eq. (3) are close:
DJS(S(y|X = x) ∥ T (y|X = x)) ≤ δ2, ∀x, Then the target intrinsic
error can be upper bounded by:

H(Yt |Xt ) ≤ ϵ +

√
δ2

2
+

√
δ1

2
log |Y|.

3.3.2. Application II: Inherent difficulty in learning open set DA
Our theory also proposes the analysis to understand when and

what is difficult to transfer in Open Set DA, i.e., the source and
target domain share only a portion of label space [11,12].

The key observation is that supp{T (y)} ∩ supp{S(y)} ̸= ∅.
We suppose a small semantic conditional shift (∀y, DJS(S(x|y) ∥

T (x|y)) ≤ δ for a small δ > 0), and a uniform label distributions
over two different label spaces Y1 and Y2 such that S(y) ∼

Unif(Y1), T (y) ∼ Unif(Y2), |Y1| = |Y2| = N . We further assume
the number of shared classes is |Y1 ∩ Y2| = αN , 0 < α < 1. Then
if the loss is binary and based on Theorem 2 and Eq. (4), the target
risk can be bounded:

RS(h)−
(√

1 − α + 2
√

δ

)
≤ RT (h) ≤ RS(h)+

1
√
2

(√
1 − α + 2

√
δ

)
.

When α → 1, DJS(T (y) ∥ S(y)) → 0, the source risk is closed the
arget risk, then simply minimizing the source risk and further
emantic conditional matching (see Section 4) can effectively
ontrol the target risk. On the contrary, if α → 0, the gap between
arget and source risk is large, indicating that a small source risk
nd semantic conditional shift no more guarantee a small target
isk. From the practical perspective, less label overlapping means
hat it is harder to transfer the exact corresponding semantic
onditional information from the source to the target.

. Practical principles for unsupervised DA

In this section, we instantiate our theoretical framework with
ractical principles for designing unsupervised DA algorithms in
eep learning. We would like to point out that our theory is
nitially based on the labeled data information, but the practical
rinciple can be applied in the unsupervised scenario.
We introduce a feature embedding function g : X → Z and

enote latent variable (feature) z = g(x). Our objective is to find a
epresentation function g and classifier h, following the principles
n Table 1. We also denote Ŝ(x, y) = {(xis, y

i
s)}

Ns
i=1, T̂ (x) = {xit}

Nt
i=1

s the observed (empirical) distribution.

.1. Difficulty in controlling label conditional shift

In Eq. (3) in Corollary 1, it recovers the principles induced
y H-divergence. Specifically, the domain adversarial training is
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Table 1
Empirical methods for bi-directional marginal/conditional shifts.
Corollary 1 Source Marginal Shift Conditional Shift

Eq. (3) Term RS (h) DJS(T (z)∥S(z)) DJS(T (y|z)∥S(y|z))

Method ERM Feature Marginal Matching N/A

Eq. (4) Term RS (h) DJS(T (y)∥S(y)) DJS(T (z|y)∥S(z|y))

Method Label Marginal Shift Correction Semantic Distribution Matching
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equivalent to minimize the dual form of Jensen–Shannon diver-
gence [14].

However, domain adversarial training cannot guarantee a
mall upper bound in Corollary 1. To this end, we can prove that
erely minimizing DJS(T̂ (z) ∥ Ŝ(z)) can lead to an increase in the

abel conditional shift DJS(T̂ (y|z) ∥ Ŝ(y|z)), which is illustrated as
the following:

Ez∼T̂ (z)DJS(Ŝ(y|z) ∥ T̂ (y|z)) + Ez∼Ŝ(z)DJS(Ŝ(y|z) ∥ T̂ (y|z))

≥ 2
(√

DJS(T̂ (y) ∥ Ŝ(y)) −

√
DJS(Ŝ(z) ∥ T̂ (z))

)2

The aforementioned inequality indicates that the third term in
Eq. (3) is lower bounded by the gap between DJS(T̂ (y) ∥ Ŝ(y)) and
JS(Ŝ(z) ∥ T̂ (z)), then merely minimizing DJS(Ŝ(z) ∥ T̂ (z)) will be
roblematic if their label distributions are significantly different.
Moreover, controlling the label condition shift is practically

ifficult. Because it requires two identical continuous and high
imensional features such that zs = zt with zs ∈ Ŝ(z), zt ∈

T̂ (z), then minimizing DJS(T̂ (y|Z = zs) ∥ Ŝ(y|Z = zt )). Generally,
it is not trivial to find such feature pairs zs = zt from finite
observational samples.

4.2. Proposed practice

According to Eq. (4) in Corollary 1, the target risk can be
alternatively bounded by RS(h), label marginal shift DJS(T (y) ∥

S(y)), and semantic conditional shift i.e, DJS(T (z|y) ∥ S(z|y)),
which enable us to consider new principles in DA.

(I) Semantic Conditional Distribution Matching
Different from the controlling the label conditional shift
DJS(T̂ (y|Z = z) ∥ Ŝ(y|Z = z)), controlling the semantic (feature)
conditional shift DJS(T̂ (z|Y = y) ∥ Ŝ(z|Y = y)) is practically more
efficient, since labels are usually categorical variables with the finite
classes, comparing with continuous latent variable Z . However,
there are no ground truth labels on the target domain, inducing
the main issue in semantic conditional matching in DA. For ad-
dressing this, target pseudo labels Yp, estimated from the classifier,
are introduced as the approximation of the real target label.
Then following insights of the third term in Eq. (4), the semantic
conditional loss can be expressed as:∑
y

(Ŝ(y) + T̂p(y))DJS
(
T̂ (z|Yp = y) ∥ Ŝ(z|Y = y)

)
, (5)

where T̂p(y) is the target pseudo distribution predicted by the
neural network. We notice that [20] encoded the label prediction
information h◦g(x) as the conditional domain adversarial training,
to implicitly minimize the conditional distribution divergence.
However, semantic conditional matching requires relative good
pseudo-label prediction. Otherwise the incorrect semantic (fea-
ture) feature alignment will lead to a negative transfer procedure
for the target domain during the learning phase.

(II) Label Marginal Shift Correction Is the semantic conditional
matching sufficient to control the target risk? From Eq. (4), the
target risk is also controlled by label marginal shift. We can
further extend this conclusion in the representation learning: if
 m

4

the semantic conditional distribution is matched, then the target
risk is still controlled by the label marginal shift.

Theorem 4. If any classifier h, feature learner g, and label y ∈ Y =

{−1, +1} such that semantic conditional distribution is matched,
DJS(S(z|y), T (z|y)) = 0, then the target risk can be bounded:

RS(h ◦ g) − RT (h ◦ g)| ≤
√
2DJS(S(y), T (y)),

here RS(h ◦ g) = RS(h(g(x), y)) is the expected risk over the
lassifier h and feature learner g.

As Theorem 4 suggests, we need to control label marginal
hift DJS(T (y) ∥ S(y)). Therefore we adopt the popular label
e-weighted loss [21]:

ˆα
S(h ◦ g) =

∑
(xs,ys)∼Ŝ(x,y)

α(ys)L(h(g(xs), ys))

ith α(y) =
T (y)
S(y) . In addition, we can further prove the empirical

re-weighted loss converges to RT (h ◦ g), if DJS(S(z|y), T (z|y)) =

0 (see Appendix for details). As for estimating label weight α̂ from
the data, several approaches have been proposed, e.g. Black Box
Shift Learning (BBSL) [22].

(III) Feature Marginal Matching as a Constraint Although
the aforementioned principles are theoretically appealing, we
practically use the pseudo label Yp for the semantic conditional
matching DJS(T̂ (z|Yp = y) ∥ Ŝ(z|Y = y)), which can lead to neg-
ative transfer in the training loop if we face poor pseudo label
predictions.

Can we derive the principle to recognize poor pseudo label
prediction during learning? Theorem 5 reveals one consequence
of poor target pseudo label prediction: it can lead to a large em-
pirical feature marginal divergence DJS(Ŝ(z) ∥ T̂ (z)) (in Eq. (3)),
under mild conditions.

Theorem 5. We denote Ŝp(y), T̂p(y) as the prediction output
(pseudo-label) distributions. If we have such a ‘‘bad’’ pseudo label
prediction such that DJS(T̂ (y) ∥ T̂p(y)) = P, small source prediction
rror DJS(Ŝ(y) ∥ Ŝp(y)) ≤ ϵ1 and small label ground truth empirical
istribution divergence DJS(Ŝ(y) ∥ T̂ (y)) ≤ ϵ2, then the feature
arginal divergence on the latent space Z can be lower bounded by:

JS(Ŝ(z) ∥ T̂ (z)) ≥ (
√
P −

√
ϵ1 −

√
ϵ2)2.

Theorem 5 suggests that if P → 1 and ϵ1, ϵ2 are small,
JS(Ŝ(z) ∥ T̂ (z)) can be very large. Therefore we add the con-
traint DJS(Ŝ(z) ∥ T̂ (z)) ≤ κ as a broad adaptation step, to prevent
he poor pseudo-label prediction (a.k.a. large P). In practice, we
dopt Lagrangian relaxation as treating the constraint as a small
egularization term, where κ is the hyper-parameter.

Practical Guideline Based on these three principles, we pro-
ose a generic and iterative practical framework, where parame-
er optimization and pseudo-label prediction steps are conducted
teratively.

Moreover, we would like to emphasize that the realization of
ach principle is flexible. For example, the distribution matching
an be done through either adversarial training by introducing
he auxiliary domain discriminator d or parametric distribution
atching (e.g. statistical moment matching approach).
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.3. Training losses

Based on the theoretical analysis, we proposed the following
oss and algorithm in domain adaptation.

I. Semantic Conditional Distribution Matching As it is
emonstrated, the first component is to match the semantic con-
itional distribution divergence. According to the upper bound of
ensen–Shannon divergence, the second term is upper bounded
y

∑
y(Ŝ(y) + T̂p(y)) ∥ T̂ (·|y) − Ŝ(·|y) ∥2. We simply approxi-

ate the center of empirical distribution as the surrogate of the
onditional distribution. Then we have:

ˆ(g(xs)|y) ≈
1

|#ys = y|

∑
(xs,ys)

δ{ys=y}g(xs)

ˆ (g(xt )|y) ≈
1

|#ypt = y|

∑
(xt ,y

p
t )

δ
{ypt =y}g(xt )

herefore the conditional matching term can be approximated
sR̂cond(g) =

∑
y(Ŝ(Y = y) + T̂p(Y = y)) ∥ Ŝ(g(xs)|Y = y) −

ˆ (g(xt )|Yp = y) ∥
2
2

II. Labeling Marginal Shift Correction The theoretical results
lso suggest the correcting the source data distribution, thus in
he classification, we adopted the re-weighted cross-entropy:

ˆ α̂
S(f , g) = −

1
NS

∑
(xs,ys)∼Ŝ

α̂(ys) log(h ◦ (g(xs), ys))

As for estimating α̂, we follow the popular BBSL estimator [22].
We first construct a source prediction confusion matrix Ĉ ∈

|Y| × |Y| with Ĉ[i, j] = P(argmaxy h(g(xs), y) = i, ys = j). The
target pseudo-label yp and target pseudo-label distribution T̂p can
be directly estimated from the neural network. Then the label
re-weighting coefficient can be estimated as:

α̂ = Ĉ−1T̂p

III. Marginal Feature Distribution Matching as the Con-
straint Since the relative accurate pseudo-label estimation is im-
portant in the iterative algorithm, thus we introduce the marginal
feature distribution matching as the training constraint. The main
goal is to keep a good pseudo-label initialization. We just adopt
the most popular Jensen–Shannon domain adversarial training.

R̂adv(d, g) = Exs∼Ŝ(x) log(d ◦ g(xs)) + Ext∼T̂ (x) log(1 − d ◦ g(xt ))

Proposed algorithm Based on this three losses, we proposed Al-
gorithm 1.

Complexity analysis Thanks for your thoughtful comment. In
terms of computational complexity, we should compute O(1)
time adversarial loss and O(1) time re-weighted prediction loss.
Besides, we should estimate the label ratio coefficient α to solve
a quadratic optimization O(|Y|) (|Y| is the number of classes)
through gradient descent. As a result, the total computational
complexity is O(|Y|).

In terms of memory complexity, it requires O(1) domain dis-
criminator and O(|Y|) class feature centroid. Because the feature
centroid is estimated in the embedding space z, the actual mem-
ory complexity can be much lower than that of the domain
discriminator.

5. Experiments

We validate the proposed guideline by realizing each principle.
We aim to show whether applying the unified principles is better
than merely considering only one or two of them.
5

Algorithm 1 Jensen–Shannon Principles in Unsupervised DA

Require: Labeled source Ŝ , Unlabelled Target T̂
Ensure: Label distribution ratio α̂. Feature embedding g , Classi-

fier h, Domain discriminator d, class centroid for source Cy
s and

target Cy (∀y ∈ Y).
1: ▷ ▷ ▷ DNN Parameter Training Stage (fixed α̂) ◁ ◁ ◁

2: for mini-batch of samples (xS, yS ) ∼ Ŝ , (xT ) ∼ T̂ do
3: Predict target pseudo-label

ȳT = argmaxyh(g(xT ), y)
4: Compute unnormalized source confusion matrix for each

batch.
CŜ = #[argmaxy′h(z, y′) = y, Y = k]

5: Compute the batched class centroid for source Cy
s and target

Cy.
6: Update source/target class centroid:
7: Source class centroid update

Cy
s = ϵ1 × Cy

s + (1 − ϵ1) × Cy
s

8: Target class centroid update
Cy

= ϵ1 × Cy
+ (1 − ϵ1) × Cy

9: Updating g, h, d to minimize R̂α̂
S(f , g)+ R̂cond(g)+ R̂adv(d, g)

10: end for
11: ▷ ▷ ▷ Estimation α̂ ◁ ◁ ◁

12: Compute the global or normalized source confusion matrix
CŜ = Ŝ[argmaxy′h(z, y′) = y, Y = k] (t = 1, . . . , T )

13: Solve α′
= C−1

Ŝ
T̂p.

14: Update α by moving average: α = ϵ1 × α + (1 − ϵ1) × α′

5.1. Experimental settings

We evaluate the proposed framework on two benchmarks.
Digits Recognition. It includes 3 domains: MNIST, SVHN [23]

nd USPS [24] dataset. MNIST is composed of gray images of size
8 × 28, USPS contains 16 × 16 gray digits; and SVHN consists of

32 × 32 color digits images, which are more challenging and can
contain more than one digit in each image. We randomly sample
7K samples for each task. We evaluate our method by using
the three typical adaptation tasks: USPS↔MNIST (two tasks) and
SVHN→MNIST (one task).

Office-31 dataset [25]. It consists of 4,652 images and 31
categories collected from three different domains: Amazon (A)
from amazon.com, Webcam (W) and DSLR (D), taken by web cam-
era and digital SLR camera in different environmental settings,
respectively.

ImageCLEF [26] This data is originally used for the ImageCLEF
014 domain adaptation challenge consists of twelve common
lasses from three domains: ImageNet ILSVRC 2012 (I), Pascal
OC 2012 (P), and Caltech-256 (C). Each domain has 600 images
n total and contains 50 images per class. We test 6 tasks by using
ll domain combinations.
Amazon Review [27] contains four domains with positive and

egative product reviews. We follow the strategies of [28] to form
5000-dimensional bag-of-words feature. Note that the label
istribution in the original dataset is uniform. To further show the
enefits of the proposed approach, we followed [29] by selecting
pecific domains (DVD, Electronics, and Kitchen) and creating a
abel distribution drifted task by randomly dropping 50% negative
eviews of all the sources while keeping the target unchanged.

We further visualize the label distribution of digits and Office-
1, showing in Fig. 2. We observe the non-uniform label distri-
utions over these two tasks. We implement the digits dataset
ased on the LeNet5 [30]. All digit images are resized to 28 × 28
or fair comparisons. As for Office-31 and Image CLEF task, we
mplement it on the Pre-trained AlexNet [31]. As for Amazon
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Table 2
Accuracy (%) on Office-31 Dataset.
Method A → D A → W D → W W → D W → A D → A Ave

Without DA 63.8 ± 0.5 61.6 ± 0.5 95.4 ± 0.3 99.0 ± 0.2 49.8 ± 0.4 51.1 ± 0.6 70.1
DANN [2] 72.3 ± 0.3 73.0 ± 0.5 96.4 ± 0.3 99.2 ± 0.3 51.2 ± 0.5 52.4 ± 0.4 74.1
CDAN [20] 76.3 ± 0.1 78.3 ± 0.2 97.2 ± 0.1 100.0±0.0 57.5 ± 0.4 57.3 ± 0.2 77.7

(I + III) 72.6 ± 0.4 73.5 ± 0.4 96.2 ± 0.2 99.3 ± 0.5 51.4 ± 0.2 52.8 ± 0.5 74.3
(I + II) 75.3 ± 0.7 79.4 ± 1.1 97.1 ± 0.5 97.5 ± 0.5 58.2 ± 0.9 61.8 ± 0.8 78.2
(II + III) 75.7 ± 0.1 79.2 ± 0.7 96.8 ± 0.1 99.8 ± 0.1 59.5 ± 0.4 58.7 ± 0.3 78.3

(I + II + III) 76.7±0.4 80.8±0.4 97.5±0.2 99.8 ± 0.1 59.8±0.4 62.3±0.2 79.5
Table 3
Accuracy (%) on digits dataset.
Method SVHN → MNIST MNIST → USPS USPS → MNIST

Without DA 62.1 ± 1.2 87.1 ± 0.9 78.1 ± 0.6
DANN [2] 73.8 ± 1.8 89.1 ± 0.6 83.0 ± 0.8
CDAN [20] 86.7 ± 0.8 93.2 ± 0.6 93.0 ± 0.5

(I + III) 76.7 ± 0.8 89.4 ± 0.7 84.6 ± 1.4
(I + II) 87.3 ± 0.6 94.6 ± 0.7 94.7 ± 0.5
(II + III) 88.6 ± 0.9 95.5 ± 0.8 95.5 ± 0.7

(I + II + III) 89.6±1.1 96.5±0.6 97.0±0.6
Table 4
Accuracy (%) on CLEF dataset.
Method I → C I → P C → I P → I C → P P → C Ave

Without DA 84.3 ± 0.2 66.2 ± 0.2 71.3 ± 0.4 70.0 ± 0.2 59.3 ± 0.5 84.5 ± 0.3 73.9
DANN [2] 89.0 ± 0.4 66.5 ± 0.3 79.8 ± 0.4 81.8 ± 0.3 63.5 ± 0.5 88.7 ± 0.3 78.2
CDAN [20] 91.8 ± 0.2 67.7 ± 0.3 81.5 ± 0.2 83.3 ± 0.1 63.0 ± 0.2 91.5 ± 0.3 79.8

(I + III) 89.3 ± 0.2 67.0 ± 0.6 80.0 ± 0.7 81.9 ± 0.3 62.9 ± 0.4 89.2 ± 0.2 78.4
(I + II) 90.2 ± 0.5 66.7 ± 0.6 80.3 ± 0.5 82.7 ± 0.7 62.5 ± 0.7 90.7 ± 0.6 78.8
(II + III) 91.5 ± 0.1 67.3 ± 0.3 81.7 ± 0.3 82.8 ± 0.2 63.5 ± 0.4 91.2 ± 0.2 79.9

(I + II + III) 92.1±0.2 68.2±0.2 82.1±0.2 84.0±0.2 64.2±0.2 91.9±0.1 80.4
Fig. 2. Label distribution on Digits and Office-31 dataset.

review, we followed the same network structure and adopted the
code from [29]. We use the same hyper-parameter training strat-
egy with DANN [2]. We update the neural network parameters
and α̂. We compare the baselines of merely considering feature
marginal [2], conditional matching [20], and our principles. We
repeat the experiments five times and report the average and std
(see Table 4).

5.2. Results and analysis

We report the empirical performances in Tables 2, 3 and 5. The
mpirical results indicate the improved performance on the uni-
ied principles, comparing with merely one or two principles. We
6

observe the empirical benefit of semantic conditional matching
(II) is relative more notable.

Fig. 3 further reveals the properties of the proposed principles.
Specifically, Fig. 3(a) shows the evolution of each principle (loss)
during the training, which is exact coherent with the goals in
the guideline. The semantic conditional shift (Principle II) and
the weighted source classification error (Principle I) gradually
diminish and DJS(T̂ (z) ∥ Ŝ(z)) (Principle III) restricts within a
small value. In addition, we trace the target domain prediction
accuracy of different principles combinations in Fig. 3(b), for
demonstrating the impact of each principle. The results indicate
the importance of considering semantic (feature) conditional dis-
tribution matching (II), with a significant performance influence
(∼ 4.2%). On the other hand, the influences of principle (I) and
(III) are relatively modest (∼ 1.3%). Fig. 3(c) revealed estimated
α̂ and its ground truth value, which verified the correctness
of the proposed principle. In Amazon review dataset Table 5,
the conditional matching and marginal matching have signifi-
cant performance drop, because label distributions in the source
are different from the target. This observation is also consistent
with [29].

Ablation Study: Label-drifted DA To further elaborate the role
of proposed principles, we simulate a significant label drifted in
DA.

In Office-31 (A→ W dataset), we randomly drop out 25%
samples in the first half of classes within source, and 25% samples
in latter half of classes in target. We visualize result in Fig. 4(b),
which verifies the strong practical benefits of semantic condi-
tional matching (principle II, with improvement ∼ 5.8 − 9.4%).
Besides, principle (III) empirically offers a coarse adaptation step
to improve pseudo-label prediction. E.g., in Fig. 4(b), introducing
principle (III) improves the prediction performance by ∼ 1.1% In
Digits dataset (SVHN → MNIST), based on [4], we randomly drop
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Fig. 3. Analysis of proposed principles. (a) Office-31, Domain A→D. Evolution of each loss during the training. (b) Office-31, Domain A→D. Evolution of accuracy
uring the training. (c) In digits dataset, we visualize the estimated α̂ (red dot curve) and ground truth value (bar plot).
Table 5
Accuracy (%) on label-shifted Amazon Review.
Method E → D K → D D → E K → E D → K E → K Ave

Without DA 80.3 ± 0.3 73.4 ± 0.2 81.8 ± 0.3 71.8 ± 0.3 76.3 ± 0.1 76.5 ± 0.2 76.1
DANN [2] 70.3 ± 0.7 70.6 ± 0.9 69.1 ± 2.4 65.2 ± 1.7 77.9 ± 0.3 59.9 ± 3.4 68.8
CDAN [20] 71.7 ± 0.5 65.8 ± 1.4 82.3 ± 0.5 61.0 ± 2.1 73.9 ± 0.7 74.9 ± 0.5 71.6

(I + III) 80.5± 0.4 70.7 ± 0.6 80.5 ± 0.3 66.1 ± 0.7 76.6 ± 0.4 78.4 ± 0.7 75.5
(II + III) 79.9 ± 0.4 68.6 ± 1.4 81.7 ± 0.5 70.8 ± 0.7 77.7 ± 0.8 79.5 ± 0.6 76.4

(I + II + III) 80.4 ± 0.6 74.1 ± 0.8 82.0 ± 0.8 72.3 ± 0.4 77.3 ± 0.5 79.4 ± 0.6 77.6
Fig. 4. Ablation Study: Label-drifted DA. (a) Office-31. Label distribution of drifted A→W. (b) Label drifted A→W. Evolution of accuracy of different principles during
the training. (c) Label drifted Digits, SVHN → MNIST. Evolution of accuracy under different label drifts.
m
t
l
a
T

Table 6
Ablation Study: The performance (%) with and without label shift
correction (component I) in CLEF dataset.
Method (II + III) (I + II + III)

C → I 77.1 ± 0.1 79.3 ± 0.4
I → C 87.7 ± 0.3 89.3 ± 0.2
I → P 63.9 ± 0.2 67.1 ± 0.3
P → I 78.2 ± 0.2 81.2 ± 0.3
C → P 58.8 ± 0.2 60.8 ± 0.2
P → C 86.6 ± 0.4 88.9 ± 0.2

Average 75.4 77.8

out different portion % of samples in latter half of classes (i.e digits
5−9) in source domain. To show the role of label shift correction,
e visualize the results in Fig. 4(c). We observe that in a relative

arge label drift, the re-weighted loss (principle I) improves ∼ 3%
performance.

Besides, in CLEF dataset, we also randomly drop out 25%
samples in the first half of classes within source, and 25% samples
in latter half of classes in target. The empirical result is shown
in Table 6, which suggested a significant improvement in the
label-shift correction term.
 d

7

6. Related work

DA theory An important aspect in DA is to establish the proper
theory to understand how it influences the target risk. The most
popular approach is based on H-divergence [6], which is set on
the deterministic labeling function and binary loss. Then, variants
of hypothesis based discrepancy have been proposed such as dis-
tribution discrepancy [32], Margin disparity discrepancy [33], etc.
However, these theoretical results mainly focus on the relation of
feature marginal discrepancy d(S(x) ∥ T (x)) and the difficulty to
analyze various scenarios such as target shift, open-set DA, etc.

An alternative is to adopt the statistical divergence. [34] pro-
posed Rényi-α divergence to measure the feature marginal dis-
crepancy. Then [35,36] analyzed Rényi divergence on the joint
source target distribution, with binary and cross entropy loss,
respectively. However, they generally focus on covariate shift
settings by assuming S(y|x) = T (y|x). Moreover, the afore-
entioned theories did not discuss the inspired practice under

he representation learning, which restricts its utility in deep
earning. Another popular choice is the Wasserstein distance such
s [37], but still focus on the feature marginal distance W1(S(x) ∥

(x)), since the chain rule generally does not hold on Wasserstein
istance.
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A principles for the representation learning Deriving principles
or DA problems in the representation learning is crucial for the
eal-world applications. From the conventional DA theories such
s [6,15,38–40], a small joint optimal risk β is important to ensure
small target risk. Therefore, different empirical approaches have
peculated various ideas to control a small β . From the theoretical
rospective, [41] adopted Jensen–Shannon divergence to derive
he lower bound of β , indicating necessarily of considering the
arget shift. However, it is still not clear how the algorithms ex-
licitly guarantee a small β . Indeed, our work can further extend
his by proving a new theoretical upper bound through target
hift and feature conditional shift, which enable the possible
ractice to explicitly control the target risk.
We also notice that [42,43] analyzed feature conditional shift

rom the causal prospective in RKHS space, which is generally
ifficult to adapt in the large-scale dataset. From empirical as-
ects, [4,44–49] proposed various strategies for eliminating con-
itional shift, which speculated one or two principles to improve
he prediction performance. We formally demonstrate the unified
hree principles, as a way to control the target risk. In addition,
ur DJS analysis provides justifications to explain these empirical
uccess e.g., [49], which in fact are not particularly focused on
revious theories but already achieved meaningful results for current
eep DA problems.

. Conclusion

We proposed a new theoretical framework based on Jensen–
hannon divergence for analyzing DA problems. Our theory es-
ablished bi-directional marginal/conditional shifts for the target
isk bound. We further demonstrated its flexibility in various
heoretical and algorithmic applications. It is worth mentioning
hat our theoretical framework is not only suitable for DA, but
lso extendable to analyzing the real shift problems such as
air representation learning [50,51], individual treatment effect
stimation [52]. We anticipate that our theory can open up a
athway towards new algorithm designs for DA, driven by the
dvantages of fundamental understanding.
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ppendix A. H-divergence v.s. Jensen–Shannon divergence

.1. Counterexample one

We take the example proposed by [15] (Example 6), which
as already computed the dH(S(x), T (x)) = ξ . However, since

supp(S(x)) ∩ supp(T (x)) = ∅, D (S(x) ∥ T (x)) = 1.
JS

8

A.2. Counterexample two

We have S = Unif{1, 2, 3} and T = {P(X = 1) =
1
4 ,P(X =

) =
1
2 ,P(X = 3) =

1
4 }.

Computing dH It is also related to the optimal classification error.

err(h) =

⎧⎨⎩
1/2 if t < 1, t > 3
11/24 if 1 < t < 2
13/24 if 2 < t < 3

Then the H divergence is dH(T (x), S(x)) = 1 − 2minh[err(h)] =
1
12 ≈ 0.0833

Computing DJS(T (x) ∥ S(x)) Since the two distributions hold the
ame support, we can compute the mixture distribution M =

P(X = 1) =
7
24 ,P(X = 2) =

5
12 ,P(X = 3) =

7
24 }, We

can compute the Jensen–Shannon divergence with D(S ∥ M) ≈

.02110 and D(T ∥ M) ≈ 0.02032.
Then DJS(T (x) ∥ S(x)) =

1
2 (0.0211+0.02032) = 0.0207. In this

scenario, the DJS(T (x) ∥ S(x)) < dH(T (x), S(x)), therefore, the DJS
cannot be viewed as an upper bound of dH.

Appendix B. Domain adaptation: Upper bound

We first prove an intermediate lemma:

Lemma 1. Let Z ∈ Z be the real valued integrable random variable,
let P and Q are two distributions on a common space Z such that
Q is absolutely continuous w.r.t. P. If for any function f and λ ∈ R
such that EP [eλf (z)−EP (f (z))] < ∞, then we have:

λ(EQ f (z) − EP f (z)) ≤ DKL(Q ∥ P) + logEP [eλf (z)−EP (f (z))]

Where DKL(Q ∥ P) is the Kullback–Leibler divergence between
distribution Q and P, and the equality arrives when f (z) = EP f (z)+
1
λ
log( dQdP ).

Proof. We let g be any function such that EP [eg(z)] < ∞, then
e define a random variable Zg (z) =

eg(z)

EP [eg(z)]
, then we can verify

that EP (Zg ) = 1. We assume another distribution Q such that Q
(with distribution density q(z)) is absolutely continuous w.r.t. P
(with distribution density p(z)), then we have:

EQ [log Zg ] = EQ [log
q(z)
p(z)

+ log(Zg
p(z)
q(z)

)]

= DKL(Q ∥ P) + EQ [log(Zg
p(z)
q(z)

)]

≤ DKL(Q ∥ P) + logEQ [
p(z)
q(z)

Zg ]

= DKL(Q ∥ P) + logEP [Zg ]

Since EP [Zg ] = 1 and according to the definition we have
EQ [log Zg ] = EQ [g(z)]−EQ logEP [eg(z)] = EQ [g(z)]− logEP [eg(z)]
(since EP [eg(z)] is a constant w.r.t. Q ) and we therefore have:

EQ [g(z)] ≤ logEP [eg(z)] + DKL(Q ∥ P) (6)

Since this inequality holds for any function g with finite moment
generation function, then we let g(z) = λ(f (z)−EP f (z)) such that
EP [ef (z)−EP f (z)] < ∞. Therefore we have ∀λ and f we have:

EQλ(f (z) − EP f (z)) ≤ DKL(Q ∥ P) + logEP [eλf (z)−EP f (z)]

Since we have EQλ(f (z) − EP f (z)) = λEQ (f (z) − EP f (z)) =

λ(EQ f (z) − EP f (z)), therefore we have:

λ(EQ f (z) − EP f (z)) ≤ DKL(Q ∥ P) + logEP [eλ(EQ f (z)−EP f (z))]

As for the attainment in the equality of Eq. (6), we can simply
set g(z) = log( q(z) ), then we can compute E [eg(z)] = 1 and the
p(z) P
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quality arrives. Therefore in Lemma 1, the equality reaches when
(f (z) − EP f (z)) = log( dQdP ). □

In the classification problem, we define the observation pair
= (x, y). We also define the loss function ℓ(z) = L ◦ h(z) with

deterministic hypothesis h and prediction loss function L. Then
or abuse of notation, we simply denote the loss function ℓ(z) in
his part.

Supposing the prediction loss L is bounded with interval G
ith G = max(L) − min(L), then the expected risk in the target
omain can be upper bounded by:

T (h) ≤ RS(h) +
G

√
2

√
DJS(T ∥ S)

here DJS =
1
2

(
D(T ∥

1
2 (T + S)) + D(S ∥

1
2 (T + S))

)
is the joint

ensen–Shannon divergence.

roof. According to Lemma 1, ∀λ > 0 we have:

Q f (z) − EP f (z) ≤
1
λ
(logEP e[λ(f (z)−EP f (z))] + DKL(Q ∥ P)) (7)

nd ∀λ < 0 we have:

Q f (z) − EP f (z) ≥
1
λ
(logEP e[λ(f (z)−EP f (z))] + DKL(Q ∥ P)) (8)

Then we introduce an intermediate distribution M(z) =
1
2 (S(z) + T (z)), then supp(S) ⊆ supp(M) and supp(T ) ⊆

upp(M), and let f = ℓ. Since the random variable ℓ is bounded
through G = max(L) − min(L), then according to [53](Chapter
2.1.2), ℓ − EPℓ is sub-Gaussian with parameter at most σ =
G
2 , then we can apply Sub-Gaussian property to bound the log
moment generation function:

logEP e[λ(ℓ(z)−EP ℓ(z))]
≤ log e

λ2σ2
2 ≤

λ2G2

8
.

In Eq. (7), we let Q = T and P = M, then ∀λ > 0 we have:

ET ℓ(z) − EM ℓ(z) ≤
G2λ

8
+

1
λ
DKL(T ∥ M) (9)

In Eq. (8), we let Q = S and P = M, then ∀λ < 0 we have:

ES ℓ(z) − EM ℓ(z) ≥
G2λ

8
+

1
λ
DKL(S ∥ M) (10)

In Eq. (9), we denote λ = λ0 > 0 and λ = −λ0 < 0 in Eq. (10).
Then Eq. (9), Eq. (10) can be reformulated as:

ET ℓ(z) − EM ℓ(z) ≤
G2λ0

8
+

1
λ0

DKL(T ∥ M)

M ℓ(z) − ES ℓ(z) ≤
G2λ0

8
+

1
λ0

DKL(S ∥ M)
(11)

dding the two inequalities in Eq. (11), we therefore have:

T ℓ(z) ≤ ES ℓ(z)+
1
λ0

(
DKL(S ∥ M)+DKL(T ∥ M)

)
+

λ0

4
G2 (12)

Since the inequality holds for ∀λ0, then by taking λ0 =
2
G

√
DKL(S ∥ M) + DKL(T ∥ M) we finally have:

T ℓ(z) ≤ ES ℓ(z) +
G

√
2

√
DJS(T ∥ S) □ □ (13)

B.1. Extension to unbounded loss

The advantage of proposed theory can be naturally extended
to the unbounded loss.

Corollary 2 (Sub-Gaussian Upper Bound). If the loss function satis-
fies σ -Sub Gaussian property: logE e[λ(ℓ(z)−EP ℓ(z))]

≤
λ2σ2

, then the
P 2

9

expected risk in the target domain can be upper bounded by:

RT (h) ≤ RS(h) + σ
√
2DJS(T ∥ S)

Proof. The proof is trivial by simply plugging in the Sub-Gaussian
condition in the moment generation function. □

Corollary 3 (Sub-Gamma Upper Bound). If the loss function satisfies
(σ , a)-Sub Gamma property: logEP e[λ(ℓ(z)−EP ℓ(z))]

≤
λ2σ

2(1−a|λ|) , for
0 < |λ| < 1

a . Then the expected risk in the target domain can be
pper bounded by:

T (h) ≤ RS(h) + (σ + 1)
√
2DJS(T ∥ S) + 2aDJS(T ∥ S)

Proof. For the same step for the moment generation function, by
taking λ0 ∈ (0, 1

a ), then analogously we have:

ET ℓ(z) − EM ℓ(z) ≤
λ0σ

2(1 − aλ0)
+

1
λ0

DKL(T ∥ M)

EM ℓ(z) − ES ℓ(z) ≤
λ0σ

2(1 − aλ0)
+

1
λ0

DKL(S ∥ M)

Therefore we have

ET ℓ(z) − ES ℓ(z) ≤
λ0σ

(1 − aλ0)
+

1
λ0

(DKL(T ∥ M) + DKL(S ∥ M))

=
λ0σ

(1 − aλ0)
+

1
λ0

(
2DJS(T ∥ S)

)
We let λ0 =

√
2DJS(T ∥S)

σ+a
√

2DJS(T ∥S)
∈ (0, 1

a ) and we can simplify the upper

ound as:

T ℓ(z) − ES ℓ(z) ≤ (σ + 1)
√
2DJS(T ∥ S) + 2aDJS(T ∥ S) □

The extended upper bounds can be much tighter than the
onclusion in Theorem 1, particularly when the loss is in a large
ange with a small variance.

ppendix C. Domain adaptation theory: Lower bound

We firstly introduce several information theoretical tools:

emma 2 (Pinsker’s Inequality).If P and Q are two probability
istribution on the measurable space (Ω,F), then

V(P,Q ) ≤

√
2DKL(P ∥ Q )

here D(P ∥ Q )KL is the Kullback–Leibler divergence between
istribution P and Q and TV (P ∥ Q ) =

∑
z |P(z) − Q (z)|

Lemma 3 ([17]). [f -divergence data processing inequality] Consider
a channel that produces Y given X on the deterministic function g.
If PY is the distribution of Y when X is generated by PX and QY
is the distribution of Y when X is generated by QX , then for any
f -divergence Df (· ∥ ·):

Df (PY ∥ QY ) ≤ Df (PX ∥ QX )

If we restrict the zero–one loss L ∈ {0, 1}, then we can prove
the target risk be lower bounded by:

RT (h) ≥ RS(h) −
√
DJS(T ∥ S)

Proof. Again we denote the observation pair z = (x, y). For abuse
of notation, we simply denote the loss function ℓ = L ◦ h with
ℓ ∈ {0, 1}.

According to f -divergence data processing inequality, if we set
the deterministic function g as g(Z) = 1 (Z) for any event E, then
E
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is Bernoulli distribution with parameter P(E) or Q (E) and the
data processing inequality becomes:

Df (Bern(P(E)) ∥ Bern(Q (E))) ≤ Df (PZ ∥ QZ )

f we define the event E as we make an error in the pre-
iction (a.k.a l(z) = 1), then P(E) = P(making an error) =

EP1{making an error} = EP [ℓ(z)]. Therefore we have:

Df (Bern(EP [ℓ(z)]) ∥ Bern(EQ [ℓ(z)])) ≤ Df (PZ ∥ QZ )

Again we introduce the intermediate distribution M =
1
2 (S +T ).

According to the data processing inequality on the expectation
of random variables, if we adopt KL divergence by letting f (t) =

log(t), then we have:

KL(Bern(ET [ℓ(z)]) ∥ Bern(EM[ℓ(z)])) ≤ DKL(T ∥ M)
DKL(Bern(ES[ℓ(z)]) ∥ Bern(EM[ℓ(z)])) ≤ DKL(S ∥ M)

We notice ET (ℓ(z)) ∈ [0, 1], ES(ℓ(z)) ∈ [0, 1]. Then we can
adopt Pinsker’s inequality by treating the expected value as the
Bernoulli distribution parameters. Then we can compute their
Total Variation (TV) distance.

TV(Bern(p), Bern(q)) = |p − q| + |1 − p − 1 + q| = 2|p − q|

Then we have:
2|ET [ℓ(z)] − EM[ℓ(z)]| = TV(Bern(p), Bern(q))

≤

√
2DKL(Bern(ET [ℓ(z)]) ∥ Bern(EM[ℓ(z)]))

≤

√
2DKL(T ∥ M)

Similarity we have 2|ES[ℓ(z)] − EM[ℓ(z)]| ≤
√
2DKL(S ∥ M).

We add these two item together. Then We adopt the inequality
√
a +

√
b ≤

√
2(a + b) with a ≥ 0 and b ≥ 0, then we have√

DKL(T ∥ M) +

√
DKL(S ∥ M) ≤ 2

√
DJS(T ∥ S).

We also have
|ES[ℓ(z)] − EM[ℓ(z)]| + 2|ET [ℓ(z)] − EM[ℓ(z)]|
≥ 2|ES[ℓ(z)] − EM[ℓ(z)] − ET [ℓ(z)] + EM[ℓ(z)]|
= 2|ES[ℓ(z)] − ET [ℓ(z)]|

Given the aforementioned results, we have the following the two
side inequality:

|ES[ℓ(z)] − ET [ℓ(z)]| ≤
√
DJS(T ∥ S)

e have −
√
DJS(T ∥ S) ≤ ET [ℓ(z)] − ES[ℓ(z)] ≤

√
DJS(T ∥ S)

and finally we have the lower bound:

ET [ℓ(z)] ≥ ES[ℓ(z)] −
√
DJS(T ∥ S)

Remark We should point out the derived upper bound is looser
and restrictive than that we derived from Theorem 1, with a scale
1

√
2

when we restrict the loss in {0, 1} and Theorem 1 can be
xtended to any bounded loss while this proof cannot. □

ppendix D. Joint JS divergence decomposition

In this section, we will provide an upper bound of the chain
ule in Jensen–Shannon divergence. According to the definition of
ensen–Shannon divergence and the chain rule of KL divergence
e have:
DJS(T (x, y) ∥ S(x, y))
= DKL(T (x, y) ∥ M(x, y)) + DKL(S(x, y) ∥ M(x, y))
= DKL(T (x) ∥ M(x)) + Ex∼T (x)DKL(T (y|x) ∥ M(y|x))
+ DKL(S(x) ∥ M(x)) + Ex∼S(x)DKL(S(y|x) ∥ M(y|x))
= 2DJS(T (x) ∥ S(x)) + Ex∼T (x)DKL(T (y|x) ∥ M(y|x))

+ Ex∼S(x)DKL(S(y|x) ∥ M(y|x))

10
In general, for continuous random variable, the DKL divergence
does not exist an exact upper bound. While we can simple upper
bound these by adding two complementary terms.

Ex∼T (x)DKL(T (y|x) ∥ M(y|x))
≤ Ex∼T (x)DKL(T (y|x) ∥ M(y|x)) + Ex∼T (x)DKL(S(y|x) ∥ M(y|x))
= 2Ex∼T (x)DJS(T (y|x) ∥ S(y|x))

Appendix E. Target intrinsic error upper bound

If H(Ys|Xs) ≤ ϵ, the source target marginal and conditional
distribution are close DJS(S(x) ∥ T (x)) ≤ δ1, ∀x, we have
DJS(S(y|x) ∥ T (y|x)) ≤ δ2. Then the target distribution conditional
entropy can be upper bounded by:

H(Yt |Xt ) ≤ ϵ +

√
δ2

2
+

√
δ1

2
log |Y|

roof. Since 1
2TV(P,Q )2 ≤ DJS(P ∥ Q ) ≤ TV (P,Q ) [54], then for

∀x we have:

∥ S(y|x) − T (y|x) ∥1≤
√
2δ2

Then for conditional entropy for the target distribution, we have:

H(Yt |Xt ) = Ex∼T (x)H(Yt |Xt = x)
= Ex∼T (x)(H(Yt |X = x) − H(Ys|X = x)) + Ex∼T (x)H(Ys|X = x)
≤ Ex∼T (x)|H(Yt |X = x) − H(Ys|X = x)| + Ex∼T (x)H(Ys|X = x)

Since the Entropy function is 1
2 Lipschitz w.r.t. L1 norm, then we

have

Ex∼T (x)|H(Yt |X = x) − H(Ys|X = x)|

≤ Ex∼T (x)
1
2

∥ T (y|x) − S(y|x) ∥1≤

√
δ2

2
Then we need to bound Ex∼T (x)H(Ys|X = x),

Ex∼T (x)H(Ys|X = x) = Ex∼S(x)H(Ys|X = x)+

x∼T (x)H(Ys|X = x) − Ex∼S(x)H(Ys|X = x)
≤ ϵ + Ex∼T (x)H(Ys|X = x) − Ex∼S(x)H(Ys|X = x)

We still adopt the conclusion when we proof Theorem 1, i.e the
transport inequality of the gaps of same function under different
marginal distribution measures by assuming z = x. We can
compute G = H(Ys|X = x) ≤ H(Ys) ≤ log |Y|, then we have:

x∼T (x)H(Ys|X = x) ≤ ϵ +
log |Y|
√
2

√
DJS(T (x) ∥ S(x))

≤ ϵ +

√
δ1

2
log |Y|

utting all them together we have the aforementioned
onclusion. □

ppendix F. Inherent difficulty for controlling label condi-
ional shift

.1. Lower bound of label conditional shift

We can prove the label-conditional shift can be lower bounded
y:

z∼T̂ (z)DJS(Ŝ(y|z) ∥ T̂ (y|z)) + Ez∼Ŝ(z)DJS(Ŝ(y|z) ∥ T̂ (y|z))

≥ 2
(√

DJS(T̂ (y) ∥ Ŝ(y)) −

√
DJS(Ŝ(z) ∥ T̂ (z))

)2
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We notice the square form of Jensen–Shannon divergence is
the valid statistical distance. Then we have:√
DJS(T̂ (y) ∥ Ŝ(y)) =

√
DJS(

∑
z

T̂ (y|z)T̂ (z) ∥

∑
z

Ŝ(y|z)Ŝ(z))

≤

√
DJS(

∑
z

T̂ (y|z)Ŝ(z) ∥

∑
z

Ŝ(y|z)Ŝ(z))+

DJS(
∑
z

T̂ (y|z)Ŝ(z) ∥

∑
z

T̂ (y|z)T̂ (z))

≤

√
Ez∼Ŝ(z)DJS(Ŝ(y|z) ∥ T̂ (y|z)) +

√
DJS(Ŝ(z) ∥ T̂ (z))

e derive the inequality according to (1) Jensen–Shannon dis-
ance is a valid statistical metric; (2) The convex property of the
ensen–Shannon divergence w.r.t. the empirical distribution; (3)
he f -divergence data-processing inequality. Then we have the

following the results:

Ez∼Ŝ(z)DJS(Ŝ(y|z) ∥ T̂ (y|z)) ≥(√
DJS(T̂ (y) ∥ Ŝ(y)) −

√
DJS(Ŝ(z) ∥ T̂ (z))

)2

e can analogously derive:

z∼T̂ (z)DJS(Ŝ(y|z) ∥ T̂ (y|z)) ≥(√
DJS(T̂ (y) ∥ Ŝ(y)) −

√
DJS(Ŝ(z) ∥ T̂ (z))

)2

y combining these two terms we finally derive the lower bounded
Which exactly recovers the result of [41]: over-matching the
arginal distribution divergence to zero can increase this lower
ound of the third term.

ppendix G. New practical principles

In this section, we firstly prove the lower bound in context
f conditional distribution matching. We demonstrate that in the
resence of conditional distribution matching, we still need to
ontrol the label shift term to control a small lower bound.

.1. Necessity of considering label shift

In this section, we suppose there exist a more general stochas-
ic representation learning function g with a conditional prob-
bility distribution g(z|x). Then the marginal distribution and
onditional distribution w.r.t. latent variable can be reformulated
s S(z) =

∫
x g(z|x)S(x)dx and S(z|y) =

∫
x g(z|x)S(x|Y = y)dx.

If ∀ classifier h, feature function g , and label y ∈ Y =

−1, +1} such that semantic conditional distribution is matched:
JS(S(z|y), T (z|y)) = 0, then the target risk can be bounded:

S(h ◦ g) −
√
2DJS(S(y), T (y)) ≤ RT (h ◦ g)

≤ RS(h ◦ g) +
√
2DJS(S(y), T (y))

Where RS(h ◦ g) = RS(h(g(x), y)) the expected risk over the
classifier h and feature learner g .

Proof. For simplifying the analysis, we only focus on the binary
classification with margin style loss with L(h(z), y) = L(yh(z)),
ncluding 0 − 1 loss, hinge loss, logistic loss, etc.). Throughout
he whole analysis, we will simply adopt the 0 − 1 loss. We
 D
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additionally define the following distributions:

µS(z) = S(Y = 1, Z = z) = S(Y = 1)S(Z = z|Y = 1)
πS(z) = S(Y = −1, Z = z) = S(Y = −1)S(Z = z|Y = −1)
µT (z) = T (Y = 1, Z = z) = T (Y = 1)T (Z = z|Y = 1)
πT (z) = T (Y = −1, Z = z) = T (Y = −1)T (Z = z|Y = −1)

Then in the source distribution and target distribution for the
common feature extractor Q and hypothesis h, we have:

RS(h ◦ g) = ES1{yh(z) ≤ 0}

RT (h ◦ g) = ET 1{yh(z) ≤ 0}

According to [55], the risk can be reformulated as

RS(h ◦ g) =

∑
z

1{h(z) ≤ 0}µS(z) + 1{h(z) > 0}πS(z)

RT (h ◦ g) =

∑
z

1{h(z) ≤ 0}µT (z) + 1{h(z) > 0}πT (z)

Then we have:

RT (h ◦ g) − RS(h ◦ g) ≥

∑
z

min{µT (z) − µS(z), πT (z) − πS(z)}

If we define the conditional distribution matching as there
exists a distribution ∃g⋆ such that S(z|y) = T (z|y) = D(z|y), then
we can simplify as∑

z

min{µT (z) − µS(z), πT (z) − πS(z)}

≥ −|S(y = 1) − T (y = 1)|
∑
z

max{D(z|y = 1),D(z|y = −1)}

= −
1
2
dTV(S(y), T (y))

1
2
1 + dTV(D(z|y = 1),D(z|y = −1))

≥ −
1
2
dTV(S(y), T (y))

1
2
(1 + 1) = −

1
2
dTV(S(y), T (y))

≥ −
√
2DJS(S(y), T (y))

As for the upper bound, since we have:

T (h ◦ g) − RS(h ◦ g) ≤

∑
z

max{µT (z) − µS(z), πT (z) − πS(z)}

Given the conditional shift, we have:∑
z

max{µT (z) − µS(z), πT (z) − πS(z)}

≤ |S(y = 1) − T (y = 1)|
∑
z

max{D(z|y = 1),D(z|y = −1)}

=
1
2
dTV(S(y), T (y))

1
2
(1 + dTV(D(z|y = 1),D(z|y = −1)))

≤
1
2
dTV(S(y), T (y))

1
2
(1 + 1) =

1
2
dTV(S(y), T (y))

≤
√
2DJS(S(y), T (y))

Finally we have the two side bound. □

G.2. Detecting poor pseudo-label

We can prove if we have poor pseudo-label, the marginal
divergence can be very large. If we assume DJS(T̂ (y) ∥ T̂p(y)) = P ,
and small source prediction error DJS(Ŝ(y) ∥ Ŝp(y)) ≤ ϵ1 and small
ource target ground truth distribution DJS(Ŝ(y) ∥ T̂ (y)) ≤ ϵ2,
hen we can prove

(Ŝ(z) ∥ T̂ (z)) ≥ (
√
P −

√
ϵ −

√
ϵ )2
JS 1 2
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roof. Since in the DA, we adopt the same classifier h to predict
oth domains, the empirical label prediction output distribution
pseudo-label distribution) is defined as:

ˆp(y) =

∑
z

h(y|z)Ŝ(z) T̂p(y) =

∑
z

h(y|z)T̂ (z)

According to the f -divergence data-processing inequality, we
have:

DJS(Ŝ(z) ∥ T̂ (z)) ≥ DJS(Ŝp(y) ∥ T̂p(y))

Since Jensen–Shannon distance is a valid statistical distance,
then we have:√
DJS(Ŝp(y) ∥ T̂p(y)) +

√
DJS(Ŝp(y) ∥ Ŝ(y))

+

√
DJS(Ŝ(y) ∥ T̂ (y)) ≥

√
DJS(T̂ (y) ∥ T̂p(y)) =

√
P

ince we have a small source prediction error, a small empirical
abel shift, then we have:

DJS(Ŝp(y) ∥ T̂p(y)) ≥
√
P −

√
ϵ1 −

√
ϵ2

ombining together we have DJS(Ŝ(z) ∥ T̂ (z)) ≥ (
√
P −

√
ϵ1 −

√
ϵ2)2 □
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