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Abstract

Auto-regressive inference of transformers ben-001
efit greatly from Key-Value (KV) caching, but002
can lead to major memory bottlenecks as model003
size, batch size, and sequence length grow at004
scale. We introduce Multi-Layer Key-Value005
(MLKV) sharing, a novel approach extending006
KV sharing across transformer layers to reduce007
memory usage beyond what was possible with008
Multi-Query Attention (MQA) and Grouped-009
Query Attention (GQA). Evaluations on var-010
ious NLP benchmarks and inference metrics011
using uptrained Pythia-160M variants demon-012
strate that MLKV significantly reduces mem-013
ory usage with minimal performance loss, re-014
ducing KV cache size down to a factor of 6x015
compared to MQA. These results highlight016
MLKV’s potential for efficient deployment of017
transformer models at scale1.018

1 Introduction019

The transformer architecture (Vaswani et al., 2017)020

has brought about Large Language Models (LLMs)021

that excel in natural language processing, but due022

to its auto-regressive nature when doing inference,023

the decoder is bottlenecked by memory bandwidth024

when storing and loading keys and values at each025

time-step, also called KV caching. Because this026

cache scales linearly with model size, batch size,027

and context length, it can even exceed the memory028

usage of the model weights themselves (Pope et al.,029

2022).030

The most notable methods for handling large KV031

caches are the approaches that directly reduce the032

number of KV heads used, from here on referred to033

as KV sharing. Multi-Query Attention (MQA) by034

Shazeer (2019) uses only a single key and value pro-035

jection for all attention heads in a layer. It reduces036

memory bandwidth for KV cache by 1/n_heads,037

which is significant, but results in some degradation038

1We will release all the code implementation and experi-
mental results of our proposed architecture

Figure 1: Simplified overview of current KV sharing
methods, vanilla MHA (top left), MQA (bottom left),
and GQA (top right). All of them share KV heads
within the same layer. Our proposed KV sharing scheme
MLKV (bottom right) shares KV heads between layers.

in quality and stability. Grouped-Query Attention 039

(GQA) from Ainslie et al. (2023) addresses these 040

issues and introduces an intermediate solution of 041

sharing several KV heads to multiple groups of at- 042

tention heads. This effectively reduces KV cache 043

size by n_groups/n_heads. They also introduce 044

an uptraining scheme to convert any transformer 045

checkpoint to MQA or GQA. With a reasonable 046

number of heads, GQA can achieve near parity 047

on benchmarks with a vanilla model. However, 048

the reduction in KV cache size is still limited to 049

1/n_heads with MQA, which still might not be 050

enough for some applications. 051

To go beyond this limitation, we introduce Multi- 052

Layer Key-Value (MLKV) sharing. Taking KV 053

sharing one step further, MLKV not only shares 054

KV heads among attention heads in the same layer, 055

but also among heads in other layers. KV heads 056

can be used on groups of heads in the same layer 057

and groups of heads in the next layers too. At 058
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the most extreme, a single KV head can be used059

for all heads in all layers. We adopt the uptrain-060

ing strategy of GQA to MLKV and uptrain from061

Pythia-160M checkpoints. We experiment with062

configurations that utilize both grouped queries in063

the same layer and among different layers, but also064

MLKV-only configurations that go beyond MQA,065

with KV head counts lower than the number of lay-066

ers. We show that these configurations provide a067

reasonable performance trade-off for the memory068

savings achieved, up to 2/n_layers the original069

KV cache size without a significant model degra-070

dation.071

2 Background072

2.1 Multi-Head Attention (MHA)073

The vanilla transformer introduced by Vaswani et al.074

(2017) uses an attention mechanism with multiple075

"heads". A head is a linear down-projection from076

the model dimension that is expected to each at-077

tend to different representation subspaces. Given078

h heads, each i-th head has a query, key, and value079

projection with weights WQ
i ∈ Rd×dq ,WK

i ∈080

Rd×dk ,W V
i ∈ Rd×dv that project from the model081

dimension d to a smaller size which is usually set082

to dq = dk = dv = d/h. In MHA, each query083

head has its own Key-Value (KV) head with unique084

weights. The l layers in a transformer receive a085

sequence of s embedded tokens x ∈ Rs×d and are086

defined as follows (normalization omitted for con-087

ciseness, concatenation of the last dimension of n088

tensors written as [x1; ...;xn]):089

qi = xWQ
i ; ki = xWK

i ; vi = xW V
i (1)090

αi = softmax(
qik

T
i√
dk

) (2)091

oi = Attention(qi, ki, vi) = αivi (3)092

MHA(x) = [o1; ...; oh]W
O (4)093

Ln(x) = x+MLP (x+MHA(x)) (5)094

Layers(x) = L1 ◦ · · · ◦ Ll(x) (6)095

2.2 Multi-Query Attention (MQA)096

Shazeer (2019) showed that it is possible and viable097

to share a single KV head for all query heads in the098

attention of a layer.099

qi = xWQ
i ; k = xWK ; v = xW V (7)100

oi = Attention(qi, k, v) (8)101

MQA(x) = [o1; ...; oh]W
O (9)102

2.3 Grouped-Query Attention (GQA) 103

Ainslie et al. (2023) then proposed to generalize 104

the KV sharing to groups of query heads. This 105

allows for a more flexible configuration and a better 106

performance trade-off. Given g groups of query 107

heads each having one KV head, GQA is defined 108

as follows with g < h: 109

qi = xWQ
i ; kj = xWK

j ; vj = xW V
j (10) 110

oi,j = Attention(qi, kj , vj) (11) 111

GQA(x) = [o1,1; oi,j ; ...; oh,g]W
O

with j = floor(
i− 1

h/g
) + 1

(12) 112

2.4 KV Caching 113

The reason why these KV sharing methods were 114

developed was to reduce the memory overhead of 115

the KV cache. KV caching is used to optimize 116

autoregressive inference by only keeping the key 117

and value activations of previous tokens. This way, 118

only the singular newest token needs to be passed 119

into the model to generate the next token in the 120

sequence. Given batch size b and sequence length 121

s, the KV cache has the dimensions [2, b, s, l, h, dk]. 122

Thus, it scales linearly with batch size, sequence 123

length, and model size, which means it can grow 124

indefinitely during inference. Taking OPT-175B 125

(Zhang et al., 2022) as an example, its parameters 126

require 325GB of memory. Yet when inferencing a 127

sequence length of 2048 and computing a batch of 128

128 generations at once, the KV cache can take up 129

to 950GB of memory (Liu et al., 2023). 130

2.5 Current Limitations 131

MQA and GQA both provide useful trade-offs in 132

memory overhead and performance over MHA, but 133

are fundamentally limited in how much memory 134

they can save. With MHA, the KV cache has the 135

size 2bslhdk following its dimensions. GQA re- 136

duces this to 2bslgdk with g < h, meanwhile MQA 137

goes down to 2bsldk. At most, the smallest number 138

of KV heads one can achieve is using MQA, where 139

h = 1 and the total number of KV heads mg = l 140

as the KV heads are only shared between heads in 141

the same layer. Every layer still must have one KV 142

head, and thus the KV cache can only be reduced 143

at most to 1
h of its original size. There is still room 144

to improve here to further decrease memory usage. 145
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Figure 2: Detailed illustration of attention using the different KV sharing mechanisms. Vanilla MHA (left) has a
key-value head for each query head. GQA (top middle) here with 2 groups of heads. MQA (bottom middle) only
has one key-value head for all query heads. MLKV (right) can share the one key-value head from the bottom layer,
to the query heads of some layer above it.

3 Multi-Layer Key-Value (MLKV)146

Since the h dimension of the KV cache has been147

tackled by MQA and GQA by reducing the num-148

ber of KV heads in a layer, the next logical step149

would be to expand sharing to the l dimension,150

which is the number of layers. This expansion151

can be grounded by the recent exploration in the152

role of feed-forward layers in the computation of153

transformers, mainly by Geva et al. (2021). They154

propose that the feed-forward neural networks in155

transformer layers emulate key-value memories156

that process different levels of information. Most157

notably though are their findings which indicate158

that groups of successive layers compute similar159

things. More specifically, lower layers attend to160

shallow patterns and upper layers to more semantic161

ones. Thus, it can be also inferred that attention can162

be delegated to groups of layers, while retaining the163

needed computation in the feed-forward networks.164

Intuitively, KV heads can be shared among layers165

that are assumed to have similar purposes.166

Expanding upon those ideas, we propose Multi-167

Layer Key-Value sharing or MLKV. MLKV not168

only shares KV heads among query heads in the169

same layer, like in MQA or GQA, but also among170

heads in other layers. This allows the total number 171

of KV heads in the transformer to go below what 172

is possible with MQA, and thus allowing for an 173

even smaller KV cache. With m being the number 174

of layers that have their own KV heads, the KV 175

cache has the size 2bsmgdk using MLKV. If we 176

set g = 1 (like MQA) and m < l, this allows for a 177

KV cache that is m
l the original size. Figure 1 gives 178

an overview of MHA, MQA, GQA, and MLKV, 179

Figure 2 shows a more detailed view of each mech- 180

anism, and Table 1 summarizes the theoretical KV 181

cache sizes for each. Following the notation used 182

in Section 2, MLKV can be written as follows: 183

qi = xWQ
i ; kj,k = xWK

j,k; vj,k = xW V
j,k (13) 184

oi,j,k = Attention(qi, kj,k, vj,k) (14) 185

MLKVk(x) = [o1,1,1; oi,j,k; ...; oh,g,k]W
O

with j = floor(
i− 1

h/g
) + 1

(15) 186

Ln,k(x) = x+MLP (x+MLKVk(x)) (16) 187

Layers(x) = L1,1 ◦ Ln,k ◦ · · · ◦ Ll,m(x)

with k = floor(
n− 1

l/m
) + 1

(17) 188
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Method KV Cache Size
(# Elements)

Cache Size
of OPT-175B (GB)

MHA 2bslhdk 144.0
MQA 2bsldk 1.5
GQA 2bslgdk 36.0
MLKV 2bsmgdk 0.375

Table 1: Theoretical KV cache sizes by number of ele-
ments for each KV sharing method. b for batch size, s
for sequence length, l for number of layers, m for num-
ber of layers with their own KV heads, h for number of
(query) heads, g for number of KV head groups, and dk
for head dimension. Note that m < l and g < h. Fol-
lowing the example in 2.4, column 3 shows calculated
cache size of OPT-175B if KV shared, given b = 8,
s = 1024, g = 24 for GQA and g = 1, m = 24 for
MLKV, in float16 precision.

4 Experiments189

4.1 Setup190

We utilize the Pythia suite (Biderman et al., 2023)191

for our experiments, as it is open source and it192

provides a wide array of model sizes, even as low193

as 70M parameters. More specifically, we use the194

Pythia-160M model trained on a deduplicated The195

Pile dataset (pythia-160m-deduped) as our base-196

line. Pythia models use the same architecture as197

GPT-NeoX (Black et al., 2022). We modify the198

model definition to accommodate for KV sharing,199

i.e. MQA, GQA, and MLKV. We follow the same200

data, benchmarks, and hyperparameters as in the201

Pythia paper. All uptraining runs are done on 2x202

NVIDIA A100-SXM4-80GB GPUs. Meanwhile203

the test runs, both for the benchmarks and infer-204

ence metrics, are done on 1x NVIDIA RTX 3060205

12GB.206

4.2 Models207

To see how MLKV performs at different KV head208

numbers and how it compares to the other KV shar-209

ing methods, we uptrain 8 variants from the base-210

line Pythia-160M. The 9 models are detailed in211

Table 2. To obtain these variants, we convert the212

baseline model using a script that merges the KV213

head weights. We follow the findings in the GQA214

paper (Ainslie et al., 2023) which suggests averag-215

ing the KV head weights as the best method for216

merging. KV heads in the same group of the same217

layer, as well as the heads from subsequent lay-218

ers which do not have KV heads of their own, are219

merged by averaging. Crucially, for a fair compar-220

ison, we also make sure that each variant has the221

same number of total parameters. After merging, 222

naturally there are less parameters. We compensate 223

for this by upsizing the intermediate layer of the 224

MLPs in each layer. 225

4.3 Data 226

A deduplicated version of The Pile dataset was used 227

to train this particular Pythia model. For uptraining, 228

ideally a portion of the same data is used. Follow- 229

ing the results of the GQA paper (Ainslie et al., 230

2023), only 5% is needed. Deduplicated, The Pile 231

contains 134 million documents. For these experi- 232

ments, 6 million documents are used. Additionally, 233

we pack the data for efficiency. This means that 234

each row is filled to the maximum sequence length 235

(2048) with documents. To optimally do this, short 236

documents are first packed with each other, then 237

the long documents are truncated as needed. After 238

packing, the data becomes 2.46 million rows of 239

packed documents. We ensure that all uptraining 240

runs observe the same data in the same order. 241

4.4 Uptraining 242

The "uptraining" scheme proposed in the GQA pa- 243

per (Ainslie et al., 2023) is used to adapt existing 244

model checkpoints to a newly implemented KV 245

sharing scheme by continuing pre-training. They 246

also use the same hyperparameters from the pre- 247

training stage. We adopt this strategy. After con- 248

verting the base model weights and preparing 5% 249

of the original dataset, we continue training Pythia- 250

160M using the same hyperparameters as men- 251

tioned in the paper (Biderman et al., 2023) except 252

for batch size and GPU count. We use a learn- 253

ing rate of 6 × 10−4 with a cosine schedule and 254

a warm-up ratio of 0.2. We use the AdamW opti- 255

mizer with β1 = 0.9, β2 = 0.95, ϵ = 1×10−8 and 256

a weight decay of 0.01. The per device batch size 257

is set to 12, which on the 2 GPUs means a global 258

batch size of 24. Because all model variants have 259

around the same number of parameters, the total 260

uptraining FLOPs are nearly equivalent, with the 261

same runtime at around 22 hours of uptraining for 262

all model variants. The final recorded loss value of 263

each uptraining run is shown in Table 2. 264

4.5 Evaluation Method 265

EleutherAI’s LM Evaluation Harness (Gao et al., 266

2023) is used as the benchmarking platform since 267

it is convenient and was used by the Pythia paper 268

(Biderman et al., 2023) too. Some modifications 269

are done to load the custom model definition. We 270
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Model Name l h m g Total KV
Heads (mg) Num. Params Uptrain

Loss

Pythia-160M (baseline) 12 12 12 12 144 162,322,944 -
Pythia-160M-GQA-48 12 12 12 4 48 162,316,800 2.7082
Pythia-160M-MLKV-48 12 12 4 12 48 162,316,800 2.7656
Pythia-160M-MQA-12 12 12 12 1 12 162,332,940 2.7505
Pythia-160M-MLKV-12 12 12 4 3 12 162,332,940 2.8014
Pythia-160M-MLKV-6 12 12 6 1 6 162,332,556 2.8013
Pythia-160M-MLKV-4 12 12 4 1 4 162,320,132 2.8261
Pythia-160M-MLKV-2 12 12 2 1 2 162,326,152 2.8942
Pythia-160M-MLKV-1 12 12 1 1 1 162,319,940 3.3934

Table 2: Configurations and total KV head counts of each model variant for the experiments. l, h,m, g are number
of layers, number of (query) heads in a layer, number of layers with their own KV heads, and number of KV head
groups in a layer, respectively. Variance in number of parameters is caused by the intermediate MLP layer sizes
being only able to be increased by multiples of the model dimension. Uptrain loss is the final recorded loss of each
uptraining run.

Model ARC-e LAMBADA PIQA SciQ Average

Pythia-160M 43.94 33.63 61.37 72.2 52.79
Pythia-160M-GQA-48 41.92 29.38 60.77 68.6 50.17
Pythia-160M-MLKV-48 42.13 26.18 59.96 68.9 49.29
Pythia-160M-MQA-12 40.19 26.74 61.10 69.7 49.43
Pythia-160M-MLKV-12 41.08 23.44 60.28 70.3 48.78
Pythia-160M-MLKV-6 41.41 24.35 60.55 69.9 49.06
Pythia-160M-MLKV-4 40.03 23.64 60.17 65.4 47.31
Pythia-160M-MLKV-2 40.91 22.03 59.47 64.7 46.78
Pythia-160M-MLKV-1 38.26 8.56 59.25 58.4 41.12

Table 3: Benchmarking results of all model variants. All benchmarks report accuracy and bold denotes the highest
accuracy excluding the baseline Pythia-160M model.

also use the same benchmarks that were reported271

in the Pythia paper, but remove the ones that re-272

ceived near random accuracy. There are a total of273

4 benchmarks used. We evaluate on the easy set of274

the AI2 Reasoning Challenge (ARC-e) (Clark et al.,275

2018), LAMBADA (Paperno et al., 2016), specifi-276

cally the OpenAI variant, PIQA (Bisk et al., 2019),277

and SciQ (Welbl et al., 2017). All 4 benchmarks278

report accuracy.279

Aside from benchmark performance, inference280

time metrics are also measured for each model.281

Specifically, we evaluate memory usage and282

throughput. This is done by a script that loads283

and runs the models up to their limits and measures284

the metrics at the same time. A dummy KV cache285

with length 2000 is initialized, then the model is286

autoregressively run token by token for 48 tokens,287

up to the sequence length limit. This process is288

timed to obtain tokens/second. Right after exit-289

ing the forward pass, memory usage is measured 290

via the NVIDIA System Management Interface 291

(SMI). The output is the VRAM usage measured in 292

megabytes. We deduct the background and model 293

memory usage from this reading. Note that due 294

to this, the measurement results might seem to go 295

out-of-memory prematurely, because the memory 296

taken for tensor computations are not considered. 297

5 Results 298

5.1 Benchmarks 299

Table 3 contains the results of each model variant 300

on the benchmarks. Firstly, for the models that 301

compare between GQA/MQA and MLKV, MLKV 302

mostly underperforms at the same KV head count. 303

At 48 heads, GQA-48 performs better in all bench- 304

marks but SciQ compared to MLKV-48. Mean- 305

while at 12 heads, MLKV-12 does better in ARC-e 306
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Figure 3: Line plots to visualize the inference time memory measurements in terms of the batch sizes that can be
achieved by each model. The red ’X’ indicates that beyond that batch size, an out-of-memory error will occur.

but is worse in others compared to MQA-12. This307

is also reflected in the average accuracy.308

Overall, there is a clear trend of decreasing ac-309

curacy as the KV head count goes down. At the310

most extreme, MLKV-1 significantly degrades the311

model, rendering it basically unusable, as indicated312

by LAMBADA. However, other head counts show313

much more promising results. Looking at the aver-314

age accuracy, KV head counts at 48, 12, and 6 are315

very close to each other, indicating that it is still316

worth it to cut down to a head count lower than the317

layer count. Accuracy goes down more noticeably318

for MLKV-4 and MLKV-2, but not by a drastic319

amount. These head counts can still be considered320

for the accuracy/memory trade-off it provides.321

5.2 Inference Time Measurements322

We evaluate memory usage while generating var-323

ious batch sizes up to each model’s limit, as can324

be seen in Figure 3. Most obvious is the way each325

KV head count scales in memory as batch size in-326

creases. They scale linearly at rate that matches327

each KV head count. This is expected given the328

theoretical KV cache tensor sizes shown in Tabel 1.329

The visual clearly shows how significant the mem-330

ory benefits are as KV is shared. The incline of331

each line plot determines the maximum batch size332

possible of each model variant. The baseline can333

only go up to 48 on our setup, meanwhile at the334

most extreme, MLKV-2 and MLKV-1 go up to 940335

and 1100 respectively. Importantly though, these336

measurements would also apply for increasing se- 337

quence length, as it scales in the same way as batch 338

size. If we set a fixed batch size, and replace the 339

X axis with sequence length, it would generate the 340

exact same plots. 341

We also plot the average accuracy reported from 342

benchmarks and the memory usage of all model 343

variants in Figure 3. Ideally, we want high accuracy 344

with low memory usage. The variants GQA-48, 345

MLKV-48, and MLKV-12 show logical departures 346

of both accuracy and memory compared to base- 347

line. However, it can be seen that the most Pareto 348

optimal models are MQA-12 and MLKV-6, both 349

being in the upper left side of the curve. These 350

variants provide the most favorable trade-off in ac- 351

curacy/memory, according to the data. Accuracy 352

goes down a small amount as we go to MLKV-4 353

and MLKV-2, but they do not degrade the same 354

way as MLKV-1 and still display a reasonable ex- 355

change between accuracy and memory benefits. 356

Lastly, the measured throughput of each model 357

at batch size 8 is shown in Figure 5. Emperically, 358

we do not see any significant speed-up through 359

MLKV. Theoretically, fetching KV cache at every 360

layer requires the same overhead, may it be a shared 361

KV head or not. This might be improved through 362

a more custom, optimized implementation. Our 363

implementation is generalized to accommodate for 364

GQA/MQA configurations. 365
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Figure 4: Average accuracy vs lowest recorded memory
usage (this is at a minimum batch size but memory
scales the same way as it increases). Pareto optimality
resides in the left upper corner of the plot.

6 Discussion366

The experiments show a clear trade-off between367

memory and accuracy. It is left to architecture de-368

signers to choose how much to sacrifice for the369

memory benefits, with multiple things to consider.370

For KV head counts above or equal to the num-371

ber of layers, i.e. mg ≥ l, given the performance372

shown, it is still better to use GQA/MQA instead of373

MLKV. We theorize that this is because having KV374

heads in multiple layers is more important than hav-375

ing multiple KV heads in the same layer. In other376

words, designers should sacrifice KV heads in-layer377

first (via GQA/MQA) and cross-layer second (via378

MLKV). For use cases with tighter memory re-379

quirements that require mg < l, then MLKV is380

the only way. We show that this design decision is381

still very much viable. We find that mg = l/2 with382

MLKV performs very near MQA, which means it383

should be a relatively easy decision if a KV cache384

is needed that is half the size of what is provided385

by MQA. For requirements below that, we find386

mg = l/3 and even mg = l/6 to still be usable,387

without drastic degradation. Anything below that388

becomes questionable. It is clear that mg = 1 is389

too extreme and results in complete model collapse.390

The transformer benefits from the multiple recom-391

putations of key-values from layer-to-layer, but can392

still compromise some level of it for the benefit of393

memory.394

7 Related Work395

KV cache optimization methods on dimensions396

other than h and l have also been done. Approaches397

Figure 5: Measured throughput of each model in to-
kens/second, recorded at a batch size of 8.

in reducing the sequence length s of the cache do 398

it by compressing information in the context. At- 399

tention mask variations like sliding windows (Za- 400

heer et al., 2020), dilated sliding windows (Belt- 401

agy et al., 2020), and attention sinks (Xiao et al., 402

2023) attempt to limit the receptive field of tokens 403

to some length smaller than the actual sequence 404

length, with the assumption that the information of 405

the tokens before will be compressed to some other 406

positions. A more concrete compression-based so- 407

lution is SCISSORHANDS (Liu et al., 2023) which 408

only keeps pivotal tokens with the assumption of 409

persistence of importance, such that the KV cache 410

length can be kept short. FastGen (Ge et al., 2024) 411

employs an adaptive KV cache compression strat- 412

egy based on specific policies on special tokens, 413

punctuation, locality, and frequency of different 414

positions to determine which KV heads to prune. 415

Moreover, we are aware of the contemporane- 416

ous work on Cross-Layer Attention (CLA) (Bran- 417

don et al., 2024), published when we were near- 418

ing the end of finishing our work on MLKV. CLA 419

was experimented on larger models trained from 420

scratch, instead of the uptraining practice in our 421

work, which utilizes available model checkpoints. 422

Additional ablations were done with CLA, includ- 423

ing non-uniform layer sharing patterns, but miss- 424

ing more extreme configurations like MLKV-2 425

and MLKV-1. The ablations are also based on 426

a KV cache memory budget equivalence, instead 427

of matching parameter counts in MLKV. 428

8 Conclusion 429

Our proposed KV sharing method Multi-Layer 430

Key-Value (MLKV) provides the option to further 431
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reduce KV cache size in transformers beyond what432

was possible with GQA and MQA. By sharing KV433

heads not only inside a layer but also between lay-434

ers, we can reduce the total KV head count to lower435

than the number of layers in the transformer. We436

show through experiments that reductions of a fac-437

tor up to 6x in cache size compared to MQA are438

possible and provide a fair accuracy/memory trade-439

off. We recommend sharing to every second layer440

(KV head count equal to half the number of layers)441

for 2x reduction from MQA with very minimal re-442

duction in accuracy, but ultimately give the option443

to architecture designers to decide if even lower444

number of KV heads is needed for more memory445

constrained use cases.446

Limitations447

We only evaluated MLKV on decoder-only mod-448

els, while encoder-decoder transformers could also449

benefit from this KV sharing method on their de-450

coders. Additionally, the scale of our experiments451

was relatively small, conducted on models with452

160 million parameters. However, models at the453

billion-parameter scale are becoming much more454

common, and MLKV has yet to be tested at such455

scales. Due to the relatively small size of the model456

we tested, the number and variety of downstream457

tasks that can be reliably used to compare perfor-458

mance is limited. Therefore, the impact of MLKV459

on other tasks remains to be seen. Furthermore,460

we did not train models from scratch and thus do461

not know how MLKV performs on models that are462

natively imbued with this KV sharing scheme from463

the pre-training phase.464
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