
Generalized Planning in PDDL Domains with
Pretrained Large Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent work has considered whether large language models (LLMs) can function
as planners: given a task, generate a plan. We investigate whether LLMs can serve
as generalized planners: given a domain and training tasks, generate a program
that efficiently produces plans for other tasks in the domain. In particular, we
consider PDDL domains and use GPT-4 to synthesize Python programs. We also
consider (1) Chain-of-Thought (CoT) summarization, where the LLM is prompted
to summarize the domain and propose a strategy in words before synthesizing
the program; and (2) automated debugging, where the program is validated with
respect to the training tasks, and in case of errors, the LLM is re-prompted with
four types of feedback. We evaluate this approach in seven PDDL domains and
compare it to four ablations and four baselines. Overall, we find that GPT-4 is
a surprisingly powerful generalized planner. We also conclude that automated
debugging is very important, that CoT summarization has non-uniform impact,
that GPT-4 is far superior to GPT-3.5, and that just two training tasks are often
sufficient for strong generalization.

1 Introduction

While some classes of sequential decision-making tasks are provably intractable [1], others can be
solved efficiently with a single domain-specific program. In the latter case, there is considerable
interest in automatically synthesizing these programs given a small number of training tasks. In AI
planning, several approaches to this generalized planning problem have been proposed, with programs
expressed as lifted decision lists, as finite state machines, or in domain-specific languages [2–5]. In
reinforcement learning, goal-conditioned policies and value functions can be understood as particular
kinds of programs learned with the same generalized planning objective [6–9]. Despite these efforts,
it remains challenging to efficiently synthesize programs from few training tasks that generalize to a
wide variety of held-out tasks.

Given the tremendous recent progress in large language models (LLMs) [10–12], especially in code
generation, this work asks a simple question: can pretrained LLMs be used for generalized planning?
In particular, we investigate whether GPT-4 [13] can be used to write a domain-specific Python
program that solves a set of tasks in a planning domain. For each domain, we prompt GPT-4 with
the domain and a small number of training tasks, all encoded in the Planning Domain Definition
Language (PDDL) [14]. We then ask GPT-4 to write a Python program that consumes a (parsed)
task description and outputs a plan. To prevent it from writing domain-general search-based code —
a natural inclination given the association between PDDL and search in its pretraining data — we
instruct GPT-4 to implement “a simple strategy that does not use search.”

Beyond this basic protocol, we consider two extensions. First, inspired by Chain-of-Thought
(CoT) [15, 16], we prompt GPT-4 to write a natural language summary of the PDDL domain. We
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Figure 1: Overview of pipeline for generalized planning with pretrained LLMs. See text for details.

then ask it to describe a solution strategy before finally implementing the strategy in Python. Second,
inspired by Inner Monologue [17] and Corrective Re-prompting [18], we automatically provide
feedback to GPT-4 in the case where it fails to solve training tasks. For example, if executing the
Python code results in an exception, we present GPT-4 with that exception and ask it to fix the code.
We repeat this automated debugging process up to four times or until all training tasks are solved.
See Figure 1 for an overview of this pipeline.

In our experiments, we evaluate this approach on seven PDDL domains: six from recent work in
generalized planning [19], and a seventh novel domain. We find that the approach is a strong baseline
compared to existing generalized planning approaches. This is an important finding that we expect to
inform further research in generalized planning. We also present a suite of ablations and additional
analyses to unpack the contributions of CoT summarization, automated debugging, names in the
PDDL, and GPT-4 vs. GPT-3.5. Our results suggest that automated debugging, PDDL names, and
GPT-4 are very important, while the impact of CoT is non-uniform. Finally, we provide qualitative
analyses of common failure cases, suggesting directions for future work. Altogether, we conclude
that GPT-4 is a surprisingly powerful generalized planner, when properly guided.

2 Related Work

LLMs for (PDDL) Planning. Generalized planning with LLMs can be seen as an alternative to
planning with LLMs [20–22, 18, 23]. Most relevant is work by Valmeekam et al. [24], Silver et al.
[25] who consider LLM-based planning in PDDL domains. There are several advantages to using
LLMs for generalized planning, rather than planning: (1) programs produced by the LLM can be
inspected and validated; (2) running a synthesized program can be much faster (and cheaper) than
querying the LLM for each new task; (3) synthesized programs can scale to arbitrarily large tasks,
whereas current LLMs are limited by context window size. Pallagani et al. [26] consider fine-tuning
an LLM to solve PDDL tasks. Other recent work has considered using LLMs for translating between
natural language and PDDL [27–30]. These efforts could be combined with our approach.

Generalized Planning. This work contributes to a growing literature on generalized planning [31, 4].
Prior work has considered synthesizing generalized plans in several ways: (1) performing a search
through a hypothesis class of generalized policies [32–35]; (2) using example plans to construct a
generalized plan, often represented with a finite-state machine [36–38]; and (3) discovering state
and action abstractions and then using them in a generalized plan [39]. One pervasive challenge is
that there are often many valid plans for any given task, and only some of these plans are consistent
with a simple generalized plan. PG3 addresses this challenge by using candidate generalized plans
(represented as lifted decision list goal-conditioned policies) to constrain the generation of example
plans [19]. We use PG3 as the main point of comparison in experiments.

LLMs for Code Generation. Our work builds on recent techniques that use LLMs for code
generation [11, 40]. CoT summarization is related to several techniques that ask the LLM to outline
its “thinking” before arriving at a final implementation [15, 16, 41]. A number of recent works also
use programs as prompts (i.e., a structured chain of thought) in an attempt to help LLMs perform
mathematical reasoning [42, 43]. Related to our automated debugging, Xia and Zhang [44], Chen
et al. [45] consider automated program repair by re-prompting the LLM with feedback from failed
validation checks. Chen et al. [46] consider a related paradigm, but where feedback comes from
humans, rather than automated checks. Also relevant are efforts to generate code that can be used for
robotic decision-making [47, 48]. Beyond LLMs, code generation has been studied extensively in
program synthesis [49, 50] and inductive logic programming [51, 52].
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3 Background and Problem Setting

PDDL Domains and Tasks. We consider deterministic, fully-observed planning tasks represented in
PDDL. In experiments, we use the STRIPS subset with types and negative preconditions. We describe
PDDL informally and refer the reader to other references for a formal treatment [14]. A PDDL
domain is characterized by a name, a set of types, a set of predicates, and a set of operators. For
example, in the Delivery domain, a robot must pick up newspapers from a home base and then deliver
them to certain locations. The domain has two types: loc and paper. One predicate is (at ?l -
loc), where ?l is a placeholder for a loc object. The domain has three operators: (pick-up ?p
- paper ?l - loc), (move ?from - loc ?to - loc), (deliver ?p - paper ?l - loc).
Each operator has preconditions and effects. For example, the pick-up operator is shown in Figure 2.

(:action pick-up
:parameters (?p - paper

?l - loc)
:precondition (and (at ?l)

(isHomeBase ?l)
(unpacked ?p))

:effect (and (carrying ?p)
(not (unpacked ?p))))

Figure 2: PDDL operator example.

A PDDL task is characterized by a domain, a set of objects,
an initial state, and a goal. An object has a name and a type,
e.g., paper1 - paper. A ground atom is a predicate and
a tuple of objects of the appropriate types, e.g., (unpacked
paper1). A state consists of a conjunction of ground atoms
that are true, assuming all other ground atoms to be false. A
goal is a conjunction of ground atoms that must be true in any
goal state. (More general goal expressions are also possible
in PDDL.) For example, in Delivery, the goal may include
(satisfied loc1) and (satisfied loc2).

An action is an operator and a tuple of objects of the appropriate types, e.g., (pick-up paper1
loc4). The operator’s preconditions determine whether the action is applicable and the effects define
what ground atoms would be added or deleted if the operator is executed. A plan is a finite sequence
of actions. The plan is valid for a task if all actions are applicable when executed in succession from
the initial state and if the final state is a goal state.

PDDL domains, types, predicates, operators, objects, and types often include human-readable names
like the ones shown above. These names are not important for standard AI planners or previous
generalized planning approaches. However, the names are very important for humans — and, we
expect, for LLMs — trying to make sense of the PDDL.

Generalized Planning in PDDL Domains. A generalized planning instance is characterized by a
PDDL domain and a distribution of tasks. A small set of training tasks (10 or fewer in experiments)
from the distribution is given at training time. At evaluation time, a set of held-out evaluation tasks —
typically involving many more objects — are used to measure performance. The objective is to use
the training tasks to synthesize a program that will produce valid plans for all of the evaluation tasks.
We consider an evaluation task solved if the program returns a valid plan within a fixed wall-clock
time budget (30 seconds in experiments). In other words, we are interested in satisficing, not optimal,
planning, and our primary concern is the efficiency of planning itself.

4 Generalized Planning with LLMs

We are interested in the extent to which pretrained large language models (LLMs) can be used for
generalized planning in PDDL domains. We assume familiarity with LLMs [10–13]. To use LLMs
for generalized planning, we need to define a protocol for prompting.

4.1 Prompting Protocol

Previous work on Chain-of-Thought (CoT) prompting has shown that asking an LLM to “think
step by step” can improve performance in reasoning tasks [15]. With these results in mind, we
hypothesized that decomposing generalized planning into three stages — domain summarization,
strategy proposal, and strategy implementation — would improve performance.

Domain: [PDDL Domain]
Example problems: [PDDL Training Tasks]
Write a short summary of this domain in words.

Domain Summarization. Our first prompt to the
LLM is shown on the right. To compensate for the
limited context window size of transformer-based
LLMs like GPT-4, we abbreviate the encoding of
the training tasks in two ways. First, we always use

3



only two training tasks, even when more are given. Second, within each training task, we limit the
number of objects and initial state ground atoms shown. For each object type, if the number of objects
of that type exceeds 10, we truncate the object set and add ellipses. Similarly, for each predicate,
if the number of ground atoms with that predicate exceeds 10, we truncate and add ellipses. The
fact that we only need to communicate the “gist” of the task distribution, rather than whole tasks, is
another advantage of generalized planning with LLMs versus planning with LLMs.

There is a simple strategy for solving all problems in this
domain without using search. What is that strategy?

Strategy Proposal. After the LLM re-
sponds to the first prompt, we ask for a
generalized planning strategy, as shown on
the right. In preliminary experiments, omit-
ting the phrase “without using search” would often lead the LLM to propose a search-based planning
strategy. We hypothesize that including this phrase together with the “simple” qualifier is enough to
guide the LLM toward efficient solutions. We test this hypothesis in experiments.

Strategy Implementation. Finally, we ask the LLM to implement the strategy as a Python program:

Implement the strategy as a Python function. The code should be of the form

def get_plan(objects, init, goal):
# Your code here
return plan

where

• objects is a set of (object name, type name) tuples

• init is a set of ground atoms represented as tuples of predicate names and
arguments (e.g., (‘predicate-foo’, ‘object-bar’, ...))

• goal is also a set of ground atoms represented in the same way

• plan is a list of actions, where each action is a ground operator represented as a
string (e.g., ‘(operator-baz object-qux ...)’)

In domains without object types, objects is instead just a set of object names.

4.2 Automated Interactive Debugging

After the LLM has proposed an implementation of get_plan, we use the training tasks to vali-
date the implementation. For each training task, we execute get_plan until it returns an output,

Given this task: [PDDL Training Task]
The code raised the following exception:

File "<file-name-omitted>", line 86
lift_at = {atom[1]: atom[2] ...}

~~~~^^^
IndexError: tuple index out of range

Fix the code.

Given this task: [PDDL Training Task]
The code raised the following exception:

File "<file-name-omitted>", line 23
while not any(span_loc[1] == ...:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
KeyboardInterrupt

The code was interrupted because it timed out (pos-
sible infinite loop).
Fix the code.

throws an exception, or reaches a timeout (30
seconds). If the output is a valid plan, we con-
tinue onto the next training task. Otherwise, we
re-prompt with one of four types of feedback.

Python Exceptions. If executing get_plan
results in a Python exception, we capture the
traceback and report it to the LLM along with
the input. An example is shown on the right,
with the traceback abbreviated for clarity. In
preliminary experiments, we found that includ-
ing the full traceback, rather than the exception
alone, can improve performance.

Timeout. If get_plan does not finish before
the timeout, we report to the LLM that the pro-
gram did not finish and suggest that an infinite
loop may be to blame. We also provide a trace-
back showing where the program was executing
when it was interrupted. An example is shown
on the right. The traceback is again abbreviated
for clarity. Note that the KeyboardInterrupt
is automatically thrown after 30 seconds. In
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practice, nearly all timeouts we observe are due to logic errors in the code, rather than inefficient but
correct implementations.

Given this task: [PDDL Training Task]
The code returned this plan:

['walk r0_c0 r0_c1', 'walk ...]

However, the action walk r0_c0 r0_c1 is invalid
at step 0. NOTE: the valid operators are: (climb
?from ?to) (walk ?from ?to).
Fix the code.

Plan Syntax. If get_plan returns an output, we
check its syntax: whether it is a list of strings,
whether each string is enclosed in parentheses
and space-separated, and whether the action
names, object names, and number of objects
per action are valid with respect to the domain
and task. If any of these checks fail, we report
the failure to the LLM. For this type of failure,
we also remind the LLM about the valid opera-
tors. An example is shown on the right. The full
plan is shown to the LLM but abbreviated in the example for clarity. The issue in this example is that
the actions are not enclosed in parentheses.

Given this task: [PDDL Training Task]
The code failed. It returned the following plan:

['(pick-up paper-1 loc-0)', ...].

NOTE: (pick-up paper-0 loc-0) has an unsat-
isfied precondition at time 3

(Set (at loc-0) to true)

Fix the code.

Plan Semantics. If all of the previous checks
pass, we use the VAL tool [53] to check whether
the get_plan output is a semantically valid
plan. If not, VAL provides “plan repair advice”,
e.g., if there is an action with invalid precon-
ditions. We extract this plan repair advice and
report it to the LLM. An example is shown on
the right. The full plan is again shown to the
LLM but abbreviated for clarity.

Additional Details. After re-prompting the
LLM, we repeat the process of checking the code and reporting any failures up to four times.
To handle rare cases where the LLM implements its own helper functions and then assumes during
debugging that the helper functions are still available, we append each new response from the LLM to
a growing Python file, rather than overwriting the previous responses. If a failure is still encountered
on the last attempt, the final response is used during evaluation.

5 Experiments and Results

Through experiments, we address these questions: 1. Can GPT-4 be used for generalized (PDDL)
planning? 2. Are the synthesized programs efficient? 3. Does CoT summarization help? 4. Does
automated debugging help? 5. To what extent does GPT-4 rely on names in the PDDL? 6. How does
GPT-4 compare to GPT-3.5? 7. Do each of the four error types help? 8. How many training tasks are
needed? We address each of these questions quantitatively and report qualitative observations.

5.1 Experimental Setup

We evaluate nine generalized planning approaches on seven PDDL domains over 10 random seeds.
Tasks are randomly generated for each seed.

Domains. The first six domains (and tasks) are taken directly from the previous work by Yang
et al. [19]. Of these, four (Gripper, Miconic, Ferry, Spanner) are standard planning benchmarks and
the other two (Delivery, Forest) were introduced by that work. The last domain (Heavy) is new to
this work. The pretraining data for GPT-4 is not publicly available, but it is likely that the domain
definitions for at least the four standard domains were included in that data. However, we believe
it is unlikely that generalized plans were included, and for the Heavy domain, we can guarantee
that neither the domain nor generalized plans were included. We now briefly describe each domain.
Unless otherwise specified, there are 10 training tasks and 30 evaluation tasks per domain and seed.

• Delivery: Newspapers at a home base must be delivered to multiple locations. There are five
training tasks with 9–17 objects; evaluation tasks have 70–100 objects.

• Forest: A hiker must navigate a 2D grid to reach a goal location while climbing hills and avoiding
water. A marked trail leads to the goal, but there are shorter paths through dirt. There are 4
training tasks with 64-100 objects; evaluation tasks have 100–144 objects.
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Domain GPT-4 No CoT No Debug No Names GPT-3.5 PG3 PE PC Random

Delivery 0.90 0.70 0.10 0.10 0.00 1.00 0.00 0.10 0.00
Forest 1.00 1.00 0.62 0.11 0.32 1.00 1.00 0.16 0.03

Gripper 0.90 0.80 0.50 0.10 0.00 1.00 0.00 0.20 0.00
Miconic 0.01 0.13 0.00 0.00 0.00 1.00 0.00 0.10 0.13

Ferry 0.80 0.20 0.26 0.00 0.00 1.00 0.00 0.90 0.00
Spanner 0.10 0.00 0.00 0.00 0.00 1.00 1.00 0.56 0.06
Heavy 0.60 1.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Fraction of evaluation tasks solved. All results are averaged over 10 random seeds and 30
evaluation tasks per seed. See Table 3 in the appendix for maximum performance over seeds.

• Gripper: Balls must be transported between rooms by a robot with two grippers. Training tasks
have 20–30 objects; evaluation tasks have 60–80 objects.

• Miconic: Passengers in multiple buildings, each with an elevator, must be picked up and dropped
off on different floors. Training tasks have 6–30 objects; evaluation tasks have 11–150 objects.

• Ferry: Cars must be sailed between islands using a ferry that can carry at most one car. Training
tasks have 13–20 objects; evaluation tasks have 30–50 objects.

• Spanner: Wrenches (spanners) and nuts are distributed along a one-way corridor. An agent must
move down the corridor, pick up wrenches, and tighten the nuts, using each wrench at most once.
Training tasks have 9–15 objects; evaluation tasks have 30–60 objects.

• Heavy: Items must be stacked into an empty box. An item can only be stacked on another item if
the latter is heavier. The weight relations are expressed via a (heavier ?x ?y) predicate. One
challenge is in determining which item to place into the box first, i.e., which item is the heaviest.
Training tasks have 3–10 objects; evaluation tasks have 100–250 objects.

Approaches. We evaluate the main approach, four ablations, and four baselines. The baselines are
taken from the work by Yang et al. [19]; see that work for details.

• GPT-4: Our main approach with CoT summarization and automated debugging.
• No CoT: An ablation of the main approach that does not use CoT summarization. The three

initial prompts are combined and “Write a short summary of this domain in words.” and “What is
that strategy?” are removed.

• No Debug: An ablation of the main approach that does not use automated debugging. The first
implementation of get_plan is used for evaluation.

• No Names: An ablation of the main approach where all names in the PDDL domains and tasks
are replaced with nondescriptive identifiers. For instance, predicates are renamed to predicate1,
predicate2, etc., operators are renamed to operator1, operator2, etc. Altogether, the names
of the domain, problem, predicates, operators, variables, types, and objects are ablated.

• GPT-3.5: GPT-3.5 with CoT summarization and automated debugging.
• PG3: The generalized planning approach proposed by Yang et al. [19]. The synthesized programs

are goal-conditioned policies implemented as lifted decision lists. Synthesis is performed via
heuristic search in policy space with their novel heuristic.

• Policy Evalulation (PE): An approach from Yang et al. [19] that is identical to PG3 except that
the heuristic used for policy search is sparse: each candidate policy is scored based on the number
of training tasks that is fully solves.

• Plan Compare (PC): Another approach from Yang et al. [19] that is identical to PG3 except for
the policy search heuristic: example plans for each training task are generated offline, and the
policy is scored based on its agreement with the example plans.

• Random: Valid actions are randomly sampled and executed until a dead-end is encountered, the
goal is reached, or a maximum horizon (default 1000, but see the previous work) is exceeded.

Experimental Details. We used a Macbook Pro laptop with an M1 chip and 64 GB RAM. Since
an API for GPT-4 is not publicly available, we used the ChatGPT browser interface for all experi-
ments (including the GPT-3.5 baseline). The pipeline is fully automated except that prompts and
responses are manually copied and pasted between the terminal and browser, with the clipboard
programmatically updated. To facilitate reproducibility, we have released all chat logs and code.
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Figure 3: GPT-4 synthesized program runtime compared to a state-of-the-art planner (Fast Downward).
Note the log-log axes. Each point is a median over 10 newly generated tasks, over all seeds where
generalized planning solved all evaluation tasks.

5.2 Results and Analysis

Main results are presented in Table 1. Examples of synthesized programs are presented in the
appendix. Overall, the performance of GPT-4 with CoT summarization and automated debugging
is strong in Delivery, Forest, Gripper, Ferry, and Heavy, and poor in Miconic and Spanner. Note
that the reported success rates are averaged over all LLM conversations. In practice, performance
could be boosted by restarting the conversation multiple times and using the best-found program [12].
The strong performance in Heavy is especially notable. The generalized planning baselines fail in
this domain because lifted decision lists are overly restrictive as program representations and cannot
discover a concept like “heaviest overall” from pairwise heavier relations. GPT-4’s ability to write
general Python code is one of its biggest advantages as a generalized planning approach.

We also observe that in nearly all cases, GPT-4 either (1) solves all of the training tasks and then
solves all of the evaluation tasks; or (2) fails to solve at least one training task and then fails to solve
all of the evaluation tasks. In other words, overfitting to the training tasks is very rare, and evaluation
performance is typically all-or-nothing. See Table 3 in the appendix for the maximum fraction of
evaluation tasks solved over seeds.

Miconic failures. GPT-4 has a number of consistent failure modes in Miconic. First, at the strategy
proposal level, it often fails to recognize that there can be multiple buildings, each with their own
elevator. This is admittedly difficult to recognize given the PDDL encoding: buildings exist only
implicitly based on the above relation between floor objects. For example, one would need to see
that neither (above f1_b1, f1_b2) nor (above f1_b2, f1_b1) are true and conclude that the
floors are in two different buildings. However, especially after automated debugging, GPT-4 can
realize that there are multiple buildings, and furthermore, that building names (e.g., b1, b2) can be
extracted from the floor names. But then other failures often occur, for example, attempting and
failing to create a total ordering of the floors from the above predicate. Overall, we believe that
Miconic is just beyond the limit of GPT-4’s current capabilities and would likely be solved by the
next generation of LLMs, or by GPT-4 with additional guidance.

Spanner failures. GPT-4 consistently fails in Spanner during strategy proposal. In particular, GPT-4
does not appear to realize that locations in Spanner are connected in a one-way chain. The strategy
proposed is often “first collect all of the spanners, then tighten all of the nuts” or similar. A correct
strategy would instead be to “move to each location in the chain, picking up any spanners and
tightening any nuts at each location.” Recognizing the existence of the one-way chain requires
examining the link atoms in the training problems. Even after automated debugging, GPT-4 often
assumes, incorrectly, that links are commutative.

Program efficiency. Although we prompt the LLM to implement a “simple” program that does not
use search, it is still possible in theory for the LLM to produce a program that does use search or
is slow for other reasons (e.g., poor algorithmic complexity). To check whether this is the case, we
measure synthesized program runtime. As a baseline for our comparison we use a state-of-the-art
domain-independent PDDL planner LAMA [54] via Fast Downward [55], stopping after the first plan
is found.1 In Figure 3, we plot wall-clock runtimes as a function of problem size (number of objects).

1Our intention is not to compare planners, but rather to provide a frame of reference for runtime.
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Error Type All Success Failure

Python Exception 40.0 28.9 42.5
Plan Semantics 34.0 44.7 31.4
Plan Syntax 13.0 18.4 11.7
Timeout 13.0 8.0 14.4

Table 2: Percentages of error types encountered by GPT-4 in training tasks over all domains and
seeds. “All” is the breakdown for all training tasks; “Success” is the breakdown for trials where all
evaluation tasks were subsequently solved; “Failure” is the breakdown for the non-Success trials.

Overall, we see that the synthesized programs not only scale favorably with respect to the planner, but
also consistently beat the planner in absolute runtime by large margins. This is notable given that the
LLM synthesizes Python programs, while the PDDL planner uses a highly optimized combination of
Python and C++ code. The bottleneck for Fast Downward is often operator grounding. The LLM’s
programs do not need to ground operators — they can go directly from task to plan.

The role of CoT. Comparing GPT-4 to No CoT, we see that the impact of CoT summarization is
mixed: it seems to help in most cases, but hurt in Miconic and Heavy. Miconic is an especially
interesting case. When using CoT summarization, GPT-4 nearly always proposes a “sweep” strategy,
where the elevator(s) are first moved to the bottom floor; then moved up one floor at a time until
the top floor, picking up and dropping off passengers along the way; then moved down one floor at
a time, again picking up and dropping off passengers. This strategy would work in theory, but it
requires finding a total ordering of floors within buildings. Without CoT, GPT-4 often attempts a
different strategy: pick up, move, and drop off each passenger, one at a time. The latter strategy does
not require a total ordering over floors and is arguably simpler to implement in Python. This example
shows that CoT can influence the strategy proposed by GPT-4. Moreover, strategies that are “simple”
to describe in natural language may not be simple to implement in code. In Heavy, there is not a clear
difference in strategies with and without CoT. Since a good strategy is evidently discernible from the
PDDL alone, it is possible that CoT “distracts” GPT-4 during implementation.

Figure 4: Fraction of evaluation tasks solved by GPT-
4 vs. number of debugging steps averaged over all
domains. The shaded region is standard error.

The role of automated debugging. Compar-
ing GPT-4 to No Debug, we see that auto-
mated debugging generally improves perfor-
mance dramatically. Figure 4 shows that even
one step of automated debugging helps sub-
stantially, and further steps exhibit diminish-
ing marginal improvements. Table 2 reports
the fraction of error types encountered during
training across. Python exceptions are most
common, followed closely by errors in plan se-
mantics, then errors in plan syntax, and finally
timeouts. We also see that the error types are
well-distributed within successful trials, sug-
gesting that each of the four types of feedback
given during automated debugging are bene-
ficial. In general, GPT-4 tends to make small,
local corrections to code during automated de-
bugging. If the code is structurally flawed and
requires a significant rewrite, restarting the dialogue from the beginning may be required.

The role of PDDL names. Examining the results for the No Names ablation, we see performance
overall is very poor. This confirms our hypothesis that the terms present in the PDDL domains and
tasks are helpful to the LLM, as they would be to a human. Note that planners like Fast Downward
and generalized planners like PG3 would be unaffected by name changes. However, there are a few
cases where the No Names ablation does succeed, suggesting that the LLM has some capacity for
purely syntactic generalized planning.

GPT-3.5 vs. GPT-4. Examining the results for GPT-3.5, we see that it performs much worse than
GPT-4. This is consistent with other reports [13, 56] that GPT-4 is far superior on reasoning and
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coding tasks. Qualitatively, the programs proposed by GPT-3.5 are flawed in myriad ways and do not
usually appear “close”. They also do not seem to improve with automated debugging.

Figure 5: Data efficiency of GPT-4. The reported
fractions are over all trials, over all domains.

Data efficiency. Figure 5 shows the num-
ber of training tasks used in successful trials.
A training task is used if it appeared in the
prompt and/or triggered feedback during au-
tomated debugging. Since two training tasks
are always used in the prompt, the minimum
used is two. Interestingly, in the vast major-
ity of cases, only those two training tasks are
used. During automated debugging, these two
prompting tasks are always checked first, and
most of the time, they are sufficient to identify
issues. In a small number of cases, a third task
is also used during automated debugging. This
result speaks to the strong few-shot learning
capabilities of GPT-4. We expect that in many
cases, even one training task would suffice, al-
though we did witness a drop in performance
in preliminary experiments with one task.

6 Discussion and Future Work

In this work, we showed that GPT-4 with CoT summarization and automated debugging is a sur-
prisingly strong generalized planner in PDDL domains. We conclude with limitations of this work,
reflections about the implications of our findings, and opportunities for future work.

Limitations. A major limitation of this work and previous work on generalized planning is that it is
easy enough to hand-design generalized plans for all of the domains considered. Nonetheless, we
expect this line of work to be practically useful for at least three reasons. (1) In some cases, it may be
considerably easier to specify PDDL domain and problem descriptions than it is to directly specify
a generalized plan. (2) In a fully autonomous system, where operators and predicates are learned
in association to natural language, we would want the system to also synthesize generalized plans
autonomously. (3) Beyond PDDL, generalized planning with LLMs would be an even more attractive
option, since other approaches rely strongly on formal specifications. Another limitation of this work
is our use of training tasks to communicate the task distribution of interest to the LLM. In general,
a few example tasks may be insufficient to express the full distribution. Other representations like
natural language or procedural generation code may be better, but would require more human input.

Is (generalized) planning now obsolete? No. First, there remains a performance gap between
GPT-4 and PG3, and other generalized planners may be even better. However, even if this gap is
closed by the next generation of LLMs, we would still say no. Planning remains essential in domains
where no simple program exists. An interesting direction for future work would be automatically
detecting whether a simple program might exist before attempting to synthesize one.2 Generalized
planning without LLMs remains important in cases where domain and problem descriptions are not
human-readable, e.g., because the predicates and operators are learned (e.g., [57]). Even with natural
language descriptions, combining “classical” approaches with LLMs may be best.

What if we gave the LLM access to a planner? Giving an LLM access to APIs is a very powerful
idea [58] and one such API could be a PDDL planner [30]. An LLM could potentially use such
a planner for generalized planning, especially given that approaches like PG3 rely on access to a
planner to generate example plans. In some domains, generating example plans naively would likely
confuse the LLM. For example, plans generated in the Forest domain would follow arbitrary paths
through the dirt rather than following the slightly longer marked trail. In other cases, though, example
plans could be very useful, especially if the LLM generates them in a targeted way.

2We tried the Sokoban domain and found that GPT-4 correctly indicates that no simple program exists.
However, this property of Sokoban is well-known, so it is likely parroting pretraining data.
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Domain GPT-4 No CoT No Debug No Names GPT-3.5

Delivery 1.00 1.00 1.00 1.00 0.00
Forest 1.00 1.00 1.00 0.93 1.00

Gripper 1.00 1.00 1.00 1.00 0.00
Miconic 0.07 0.00 0.00 0.00 0.00

Ferry 1.00 1.00 1.00 0.00 0.00
Spanner 1.00 1.00 0.00 0.00 0.00
Heavy 1.00 1.00 1.00 0.00 0.00

Table 3: Max (over seeds) fraction of evaluation tasks solved.

A Additional Results

Table 3 reports the maximum fraction of evaluation tasks solved over seeds. In most cases, the LLM
either solves all or none of the evaluation tasks. This suggests that the LLM does not overfit to the
training tasks, even though only a very small number of them are used (see main text).

B Example Programs

Examples of programs synthesized by GPT-4 with CoT summarization and automated debugging are
shown in Listings 1, 2, 3, 4, 5, 6, and 7. Any comments in the code are added by GPT-4 itself.

def get_plan(objects, init, goal):
locs = [obj[0] for obj in objects if obj[1] == "loc"]
papers = [obj[0] for obj in objects if obj[1] == "paper"]

home_base = next(loc for loc in locs if ("ishomebase", loc) in init)
safe_locs = [loc for loc in locs if ("safe", loc) in init]
wants_paper = [loc for loc in locs if ("wantspaper", loc) in init]

plan = []

for loc in wants_paper:
if loc in safe_locs:

# Pick up a newspaper at the home base
paper = papers.pop()
plan.append(f"(pick-up {paper} {home_base})")

# Move to the safe location that wants a newspaper
plan.append(f"(move {home_base} {loc})")

# Deliver the newspaper to the location
plan.append(f"(deliver {paper} {loc})")

# Move back to the home base
plan.append(f"(move {loc} {home_base})")

return plan

Listing 1: Delivery domain example synthesized program (success)
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def get_plan(objects, init, goal):
def find_location(init):

for atom in init:
if atom[0] == "at":

return atom[1]
return None

def find_adjacent_trail(current_loc, init):
for atom in init:

if atom[0] == "ontrail" and atom[1] == current_loc:
return atom[2]

return None

def is_hill(loc, init):
for atom in init:

if atom[0] == "ishill" and atom[1] == loc:
return True

return False

current_loc = find_location(init)
goal_loc = find_location(goal)
plan = []

while current_loc != goal_loc:
next_loc = find_adjacent_trail(current_loc, init)

if is_hill(next_loc, init):
action = f"(climb {current_loc} {next_loc})"

else:
action = f"(walk {current_loc} {next_loc})"

plan.append(action)
current_loc = next_loc

return plan

Listing 2: Forest domain example synthesized program (success)
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def get_plan(objects, init, goal):
def get_objects_of_type(type_name):

return [obj for obj in objects if obj.startswith(type_name)]

def get_location(state, ball):
for atom in state:

if atom[0] == 'at' and atom[1] == ball:
return atom[2]

return None

balls = get_objects_of_type('ball')
rooms = get_objects_of_type('room')
grippers = get_objects_of_type('gripper')

robby_location = None
for atom in init:

if atom[0] == 'at-robby':
robby_location = atom[1]
break

plan = []
for ball in balls:

initial_location = get_location(init, ball)
goal_location = get_location(goal, ball)

if goal_location is None:
continue

if initial_location != goal_location:
plan.append(f'(move {robby_location} {initial_location})')
robby_location = initial_location

plan.append(f'(pick {ball} {initial_location} {grippers[0]})')

plan.append(f'(move {robby_location} {goal_location})')
robby_location = goal_location

plan.append(f'(drop {ball} {goal_location} {grippers[0]})')

return plan

Listing 3: Gripper domain example synthesized program (success)

16



def get_plan(objects, init, goal):
floors_by_building = {}
passengers_by_building = {}

for obj, obj_type in objects:
if obj_type == "floor":

building = obj.split("_")[-1]
if building not in floors_by_building:

floors_by_building[building] = []
floors_by_building[building].append(obj)

elif obj_type == "passenger":
building = obj.split("_")[-1]
if building not in passengers_by_building:

passengers_by_building[building] = []
passengers_by_building[building].append(obj)

for building in floors_by_building:
floors_by_building[building] = sorted(floors_by_building[building])

origins = {p: f for p, f in (atom[1:] for atom in init if atom[0] == "origin")}
destins = {p: f for p, f in (atom[1:] for atom in init if atom[0] == "destin")}
lift_at = {atom[1]: atom for atom in init if atom[0] == "lift-at"}

plan = []
boarded = set()

for building, floors in floors_by_building.items():
passengers = passengers_by_building[building]
current_lift_at = lift_at[building]

for floor in floors + list(reversed(floors)):
if current_lift_at != floor:

if current_lift_at < floor:
plan.append(f"(up {current_lift_at} {floor})")

else:
plan.append(f"(down {current_lift_at} {floor})")

current_lift_at = floor

for passenger in passengers:
if origins.get(passenger) == floor:

plan.append(f"(board {floor} {passenger})")
boarded.add(passenger)

if destins.get(passenger) == floor and passenger in boarded:
plan.append(f"(depart {floor} {passenger})")
boarded.remove(passenger)

return plan

Listing 4: Miconic domain example synthesized program (failure)
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def get_plan(objects, init, goal):
plan = []

# Helper function to find a car's location
def get_location(car, state):

for atom in state:
if atom[0] == 'at' and atom[1] == car:

return atom[2]
return None

cars = [obj for obj in objects if obj.startswith('c')]
ferry_location = [atom[1] for atom in init if atom[0] == 'at-ferry'][0]

for car in cars:
initial_location = get_location(car, init)
goal_location = get_location(car, goal)

# Sail to the car's initial location
if ferry_location != initial_location:

plan.append(f'(sail {ferry_location} {initial_location})')
ferry_location = initial_location

# Board the car onto the ferry
plan.append(f'(board {car} {initial_location})')

# Sail to the car's goal location
if ferry_location != goal_location:

plan.append(f'(sail {ferry_location} {goal_location})')
ferry_location = goal_location

# Debark the car at the goal location
plan.append(f'(debark {car} {goal_location})')

return plan

Listing 5: Ferry domain example synthesized program (success)
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def get_plan(objects, init, goal):
plan = []
bob_location = get_bob_location(init)
spanner_locations = get_spanner_locations(init)
nuts_to_tighten = {n for pred, *args in goal if pred == 'tightened' for n in args}

while nuts_to_tighten:
closest_spanner = None
min_distance = float('inf')

for loc, spanner in spanner_locations.items():
distance = get_shortest_path(init, bob_location, loc)
if distance < min_distance:

min_distance = distance
closest_spanner = spanner
closest_spanner_loc = loc

# Move Bob to the closest spanner
path_to_spanner = get_path(init, bob_location, closest_spanner_loc)
for next_location in path_to_spanner:

plan.append(f'(walk {bob_location} {next_location} bob)')
bob_location = next_location

# Pick up the spanner
plan.append(f'(pickup_spanner {closest_spanner_loc} {closest_spanner} bob)')

# Move Bob to the gate
gate = 'gate'
path_to_gate = get_path(init, bob_location, gate)
for next_location in path_to_gate:

plan.append(f'(walk {bob_location} {next_location} bob)')
bob_location = next_location

# Tighten a nut using the spanner
nut = nuts_to_tighten.pop()
plan.append(f'(tighten_nut {gate} {closest_spanner} bob {nut})')

# Remove the used spanner from the available spanners
if closest_spanner_loc in spanner_locations:

del spanner_locations[closest_spanner_loc]

return plan

def get_path(init, start, end):
paths = [start]
while paths[-1] != end:

for pred, l1, l2 in init:
if pred == 'link' and paths[-1] == l1 and l2 not in paths:

paths.append(l2)
break

return paths[1:]

Listing 6: Spanner domain example synthesized program (failure)
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def extract_heavier_relations(init):
heavier_relations = set()
for atom in init:

if atom[0] == 'heavier':
heavier_relations.add(atom)

return heavier_relations

def sort_objects_by_weight(objects, heavier_relations):
sorted_objects = []
while len(objects) > 0:

for obj in objects.copy():
if all(('heavier', other, obj) not in heavier_relations for other in objects):

sorted_objects.append(obj)
objects.remove(obj)

return sorted_objects

def get_plan(objects, init, goal):
heavier_relations = extract_heavier_relations(init)
sorted_objects = sort_objects_by_weight(set(objects), heavier_relations)

plan = []
first_object = sorted_objects.pop(0)
plan.append(f"(pack-first {first_object})")

for obj in sorted_objects:
plan.append(f"(stack {first_object} {obj})")
first_object = obj

return plan

Listing 7: Heavy domain example synthesized program (success)
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