
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDFUSE: SELECTIVE KNOWLEDGE DISTILLATION
WITH EXPERT-GUIDED FUSION FOR HETEROGENEOUS
FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Heterogeneous Federated Learning enables collaborative training across devices
with diverse architectures and non-IID data. However, it struggles with effective
knowledge fusion, leading to personalized knowledge loss during aggregation and
client model divergence due to globally-guided updates misaligned with local data
or architectures. We propose FedFuse, a novel framework for adaptive, personalized
knowledge fusion via logits. FedFuse introduces a server-side Expert-guided Fusion
mechanism that facilitates adaptive knowledge fusion by dynamically gating and
weighting heterogeneous client knowledge contributions, moving beyond static
schemes. Complementarily, a selective knowledge distillation strategy allows
clients to assimilate global knowledge without blind imitation, preserving crucial
local features and mitigating model divergence. We provide rigorous convergence
analysis for FedFuse under heterogeneity. Extensive experiments, including up
to 500 clients, diverse heterogeneity settings, and ablation studies, demonstrate
our approach’s superiority. FedFuse significantly outperforms state-of-the-art
methods in test accuracy, particularly under high heterogeneity, while maintaining
competitive efficiency.

1 INTRODUCTION

Heterogeneous Federated Learning (HeteroFL) presents a compelling paradigm for collaborative
machine learning in diverse edge computing environments, such as the Artificial Intelligence of
Things Zhang et al. (2020), smart surveillance Pang et al. (2023), autonomous vehicles Nguyen et al.
(2022). It uniquely accommodates the reality of edge ecosystems where clients possess varying
computational resources, data distributions (statistical heterogeneity), and even distinct underlying
model architectures (architectural heterogeneity) tailored to local needs. While HeteroFL effectively
leverages the collective knowledge of the heterogeneous network, it introduces a critical issue:
the loss of personalized knowledge. This phenomenon, where discrepancies arise between local
objectives and global aggregation due to client heterogeneity significantly degrades the performance
of personalized models.

While many approaches offer valuable contributions, two key challenges remain. First, the primary
challenge is how to effectively fuse heterogeneous client knowledge while preserving personalized
features during aggregation. Conventional methods Sattler et al. (2021); Zhu et al. (2021b); Zhang
et al. (2024); Jang et al. (2022) typically produce a single homogenized global representation, which
makes it difficult to differentiate and preserve personalized knowledge, particularly for clients with
divergent data distributions. Consequently, valuable knowledge is often diluted or ignored, degrading
the performance of the fused global model. The second challenge is how to align global knowledge
with the local model without disrupting locally learned features, which are essential for maintaining
personalized performance. Traditional methods enforce uniform updates that may conflict with client
heterogeneity, forcibly diverting the local model from its optimized state.

To tackle these intertwined challenges of adaptive aggregation and compatible personalization, we
propose FedFuse, a novel HeteroFL framework built upon two synergistic insights: leveraging expert-
guided fusion and utilizing selective knowledge distillation. The choice of an expert-guided fusion
mechanism for server-side knowledge fusion is motivated by its potential to handle heterogeneity

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

effectively, drawing inspiration from its success in large-scale modeling Shen et al. (2024); Shazeer
et al. (2017). We introduce a server-side MoE operating on uploaded logits Shazeer et al. (2017).
Unlike static aggregation, the MoE’s dynamic gating network learns to route and weight knowledge
contributions (represented by logits) from different clients to specialized experts. This allows
the server to adaptively capture relevant knowledge patterns from subsets of clients, preserving
personalized information while constructing a rich, diverse global representation.

Furthermore, FedFuse incorporates a selective knowledge distillation strategy designed for compati-
bility with local models. Instead of blindly applying global updates, clients selectively integrate only
the most relevant global knowledge, determined by the alignment between local and global feature
representations, minimizing negative transfer and preserving crucial local features. This selective
approach operates within the logits space Gou et al. (2021), further ensuring compatibility between
local and global updates and mitigating the risk of disrupting locally learned features.

The main contributions of this paper are therefore summarized as:

• We propose FedFuse, a framework enabling expert-guided fusion and selective knowledge
distillation across statistically and architecturally heterogeneous clients.

• We introduce a novel expert-guided fusion mechanism that dynamically captures and fuses
personalized knowledge from heterogeneous clients based on relevance between local
knowledge and global experts, mitigating personalization loss during aggregation.

• We introduce a selective knowledge distillation strategy that selects favorable global knowl-
edge for local model updates to preserve key local model features.

• We conduct extensive empirical validation across diverse benchmarks (CIFAR-100, Tiny-
ImageNet, Flower102), including large-scale scenarios with up to 500 clients and rigorous
ablation studies, demonstrating significant accuracy improvements over state-of-the-art
HeteroFL methods, particularly under high heterogeneity, while maintaining competitive
resource efficiency.

2 RELATED WORK

Federated learning under statistical and architectural heterogeneity (HeteroFL) has garnered signifi-
cant attention. Existing approaches primarily fall into three categories.

HeteroFL with Knowledge Distillation (KD). These methods Sattler et al. (2021); Zhu et al.
(2021a); Song et al. (2024); Yao et al. (2023); Gong et al. (2024); Li & Wang (2019); Ma et al.
(2022); Lin et al. (2020) leverage knowledge distillation, where clients typically train local models
and generate knowledge representations (e.g., soft labels, feature maps) from their private data Jeong
et al. (2018). These representations are aggregated by the server to guide the training of client models
(students) or a global model, avoiding direct parameter sharing. Examples include FedGKD Yao et al.
(2023) and FedIOD Gong et al. (2024). While effective for basic knowledge fusion, a key limitation
arises in personalization: the aggregation process often distills knowledge into a single, potentially
homogenized teacher model. This averaged knowledge may struggle to adequately capture or fuse
the specialized, personalized features required by clients with highly diverse data distributions or
functional roles within the HeteroFL network.

HeteroFL with Lightweight Representations. To reduce communication overhead and handle
architectural diversity, some methods employ lightweight representations instead of full model pa-
rameters for aggregation. One line of work uses prototypes Dai et al. (2023); Tan et al. (2022);
Zhang et al. (2024), where clients upload class prototypes derived from their local data, which are
then aggregated by the server. Another approach involves sharing intermediate feature representa-
tions Huang et al. (2022); Yi et al. (2023; 2024b), allowing clients to contribute learned features
rather than parameters. While these methods significantly reduce communication costs, relying on
such simplified or aggregated representations (prototypes or features) carries the risk of information
bottleneck, potentially losing the fine-grained details crucial for deep personalization on individual
clients. It remains challenging for these compact representations to fully encapsulate the diverse
functionalities and specificities present across a truly heterogeneous client network.

HeteroFL with Model Transformation. This category focuses on aligning heterogeneous model
structures for aggregation. Some methods split models into shared components (e.g., feature extrac-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tors) and personalized components (e.g., predictors) Collins et al. (2021); Oh et al. (2021); Chen
et al. (2021); Pillutla et al. (2022); Liu et al. (2022); Jang et al. (2022); Liang et al. (2020). Others
attempt to standardize heterogeneous architectures into a common format before aggregation or
matching Diao et al. (2021); Wang et al. (2020; 2024). While enabling collaboration across different
architectures, model transformation often imposes structural constraints, such as requiring a uniform
feature extractor dimension or specific layer types. This can limit the flexibility needed for clients
with genuinely distinct hardware capabilities or highly specialized local tasks, potentially hindering
optimal local adaptation and personalization. The transformation or matching process itself might
also inadvertently discard valuable model-specific information pertinent to a client’s unique role.

In a nutshell, while prior research has made significant strides, existing paradigms often face difficul-
ties in effectively balancing global knowledge fusion with local personalization. Methods based on
KD can risk generating overly generalized guidance, lightweight representations may lack sufficient
granularity for deep personalization, and model transformations can impose restrictive structural
constraints. These limitations hinder the ability to adaptively aggregate diverse personalized knowl-
edge without significant information loss and to subsequently compatibly disseminate relevant global
insights without disrupting local model specialization. These challenges collectively contribute to
the persistent problem of client heterogeneity. To overcome these specific shortcomings, FedFuse
introduces a different approach. Our expert-guided fusion mechanism directly tackles the adaptive
fusion challenge by dynamically identifying and weighting relevant client knowledge via expert gates,
moving beyond simplistic averaging or static representations. Moreover, the compatible personaliza-
tion challenge is addressed by our selective knowledge distillation strategy, specifically designed to
integrate this tailored global knowledge while respecting local model integrity and specificity.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Consider a federated learning setting with K clients, indexed by i = 1, . . . ,K. Each client i
possesses a private dataset Dri , which typically exhibits non-IID characteristics across clients, leading
to statistical heterogeneity. Furthermore, each client maintains a local model Mi, parameterized by
θi. These models Mi can vary significantly in terms of architecture, depth, or capacity (architectural
heterogeneity), reflecting diverse device capabilities and local requirements. The overarching goal
is collaborative training to enhance each client’s personalized model performance on its own data,
rather than converging to a single global model.

Formally, the ideal personalized objective can be conceptualized as minimizing a collective loss
function over the private datasets:

min
{θi}K

i=1

K∑
i=1

piFi(θi), where Fi(θi) = E(x,y)∼Dr
i
[L(Mi(θi;x), y)] (1)

Here, L is a loss function (e.g., cross-entropy), Mi(θi;x) is the prediction of client i’s model, and pi
is a weighting factor (e.g., proportional to |Dri | or 1/K).

However, FedFuse does not directly optimize this ideal objective due to the challenges of heteroge-
neous knowledge fusion. Instead, our framework employs a three-stage approach with distinct loss
functions for different training phases:

Local Training: Lc, Server Fusion: La, Personalization: Lp (2)

The constituent loss terms Lc, La, and Lp correspond to client local training, server-side expert-
guided fusion, and client-side selective knowledge distillation, respectively. These will be elaborated
in Sections 3.3, 3.4, and 3.5.

A core challenge in HeteroFL is how to effectively fuse heterogeneous client knowledge preserving
personalized features during aggregation. The averaged fusion of global knowledge frequently leads
to dilution or loss of valuable information, consequently degrading the performance of integrated
global knowledge.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

...

Client 2

Client 1

Fusion Loss

Fused Global Logits

Expert 1
Expert 2

Expert 3

Expert n
...

Gate
Expert 4

k

output

MoE

①

①

②
③

④

⑤

⑥

Server
Raw Global Logits

⑦

⑧

⑧ Global Model
Feature

Extraction
Part

Feature
Classification

Part

...

...

Client i ①

⑧

...

Figure 1: Overview of FedFuse architecture. 1⃝, 2⃝ Clients generate logits cti using public dataset and upload
them. 3⃝ Server’s global MoE model produces logits ctg . 4⃝, 5⃝ Fusion loss La updates MoE parameters
using client and global logits. 6⃝ Updated MoE generates refined global logits c̃tg . 7⃝, 8⃝ Clients use c̃tg for
personalized updates via selective knowledge distillation.

Access to a small, publicly available dataset Db is assumed to facilitate model-agnostic knowledge
fusion (e.g., via logits) without compromising data privacy. This public dataset serves as a common
reference for knowledge representation and is a key enabler for our proposed mechanisms. While this
assumption may limit applicability in scenarios where no suitable public data exists, it is commonly
adopted in federated learning literature and reflects practical scenarios where public datasets (e.g.,
ImageNet for vision tasks) are available for the target domain.

3.2 THE OVERVIEW OF FEDFUSE FRAMEWORK

To address adaptive aggregation and compatible personalization challenges in HeteroFL, we propose
FedFuse. The overall architecture, illustrated in Figure 1, orchestrates cyclical knowledge flow:
from clients to server for fusion, then back to clients for personalized guidance. This framework
comprises three main stages per communication round: (1) Client Local Training and Knowledge
Representation: Clients perform local training on private data Dri , then compute output logits on
public dataset Db. These model-agnostic logits, capturing current knowledge state, are sent to the
server. (2) Expert-guided Fusion: The server employs a Mixture-of-Experts (MoE) mechanism
on received client logits. A gating network dynamically selects and weights relevant experts to
process features from Db, producing aggregated global logits that adaptively fuse diverse knowledge
from heterogeneous clients. (3) Selective Knowledge Distillation: The server generates refined
global logits and distributes them to clients. Each client uses these global logits to guide local model
parameter updates via reverse KL divergence, integrating global insights while preserving local
model specificity. This design achieves effective knowledge sharing tailored to diverse client needs,
mitigating model divergence and enhancing personalized performance.

3.3 CLIENT LOCAL TRAINING AND KNOWLEDGE REPRESENTATION

In communication round t, each participating client i (from a selected subset Nt ⊆ {1, . . . ,K}) first
updates its local model parameters θti using its private data Dri . This local training typically involves
multiple steps of gradient descent:

θti ← θt−1
i − η∇θt−1

i
E(x,y)∼Dr

i

[
Lc(fθt−1

i
(x), y)

]
, (3)

where fθi is the forward pass of model Mi, Lc is the cross-entropy loss, and η is the local learning
rate.

Subsequently, client i uses fθti to compute output logits on the public dataset Db. The raw output
logits cti,l from client i for input x at round t:

cti,l = fθti ∈ RC , (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where C is the number of classes in Db. We apply temperature scaling for better knowledge fusion:

cti = softmax

(
cti,l(x)

τ

)
, (5)

where τ is the temperature parameter (τ = 2.0 in our experiments). The set of logits {cti|x ∈ Db} for
client i is uploaded to the server.

3.4 EXPERT-GUIDED FUSION

Upon receiving logits {cti}i∈Nt
from participating clients, the server employs an MoE mechanism to

adaptively fuse this knowledge. The server maintains a global model Mg to learn the fusion function,
with the first fully connected layer(s) structured as the MoE layer.

Let θtg denote the parameters of the global model at round t. For an input x ∈ Db, let ψθtg (x) ∈ Rdin
be the output of the feature extractor ψθtg of Mg . ψθtg (x) is fed into the MoE layer, which consists of
E parallel experts (ej : Rdin → RC) and a gating network g(·) : Rdin → RE . The gating network
computes scores for each expert based on the input features:

g(ψθtg (x)) =Wgψθtg (x) + bg, (6)

where Wg ∈ RE×din and bg ∈ RE are parameters of the gating network. To achieve sparse
activation, which is often preferred in MoE for efficiency and specialization, we employ a top-k
gating strategy(top-k sensitivity experiments in the Appendix E). The gate selects the set E(x)
containing the indices of the k experts with the highest scores in g(ψθtg (x)), where k ≪ E. The
routing weights πj are then computed via softmax over the scores of the selected experts:

πj(ψθtg (x)) =


exp(gj(ψθtg

(x)))∑
l∈E(x) exp(gl(ψθtg

(x))) , if j ∈ E(x),

0, otherwise.
(7)

This dynamic, input-dependent selection allows the model to route different inputs from Db to
potentially different subsets of experts, enabling specialized knowledge processing. Each selected
expert j ∈ E(x) processes the input features:

ej(ψθtg (x)) =Wjψθtg (x) + bj , (8)

where Wj ∈ RC×din , bj ∈ RC are the parameters of expert j. The final MoE output (pre-activation
global logits) is a weighted combination of the outputs from the selected experts:

MoE(ψθtg (x)) =
∑
j∈E(x)

πj(ψθtg (x))ej(ψθtg (x)). (9)

Similar to the client-side processing, we apply temperature scaling to get the global logits:

ctg = softmax

(
MoE(ψθtg (x))

τ

)
. (10)

The core idea is to train the global MoE model (θg) such that its output distribution ctg optimally
reflects a fusion of the class distributions {cti}i∈Nt . We achieve this by minimizing the average
Kullback-Leibler (KL) divergence Kullback & Leibler (1951) from the client logits to the global
logits over the public dataset and participating clients. The choice of DK(P ∥ Q) aims to find a Q
(global logits) that is close to the average of P s (client logits) in terms of information content. The
fusion loss is:

La =
1

|Nt||Db|
∑
i∈Nt

∑
x∈Db

τ2DK(cti ∥ ctg). (11)

The KL divergence Hinton et al. (2015) is calculated as:

DK(P ∥ Q) =

C∑
c=1

Pc log
Pc
Qc

. (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Expert-Guided Fusion

Require: Current global model θt−1
g , local client logits {cti}i∈Nt , public dataset Db, server epochs

Es, global learning rate ηg .
1: Expert-Guided Fusion:
2: Let θt−1

g represents the global model parameters at round t− 1.
3: for server epoch e = 1, . . . , Es do
4: Compute global logits ctg = {ctg(x)|x ∈ Db} via Equation 10 using θt−1

g

5: Calculate fusion loss La via Equation 11 using {cti}i∈Nt
and ctg

6: Update θt−1
g using Equation 13: θtg ← θt−1

g − ηg∇θt−1
g
La

7: end for
8: Let θt−1

g ← θtg
9: Compute updated global logits c̃tg = {c̃tg|x ∈ Db} via Equation 14 using θtg

10: return c̃tg , θtg

The server updates the global model parameters θg using gradients from this aggregation loss:

θtg ← θt−1
g − ηg∇θt−1

g
La, (13)

where ηg is the server learning rate. Note that the server only needs the client logits cti, not the client
model parameters θti . This part is shown in Alogorithm 1.

3.5 SELECTIVE KNOWLEDGE DISTILLATION

After updating the global MoE model to θtg , the server uses it to generate a refined set of global logits
c̃tg for distribution back to the clients. These are computed using the updated parameters θtg on Db:

c̃tg = softmax

(
MoE(ψθtg (x))

τ

)
. (14)

Each client i receives this set of global logits c̃tg = {c̃tg|x ∈ Db}. The client then performs a
local update step aimed at incorporating the global knowledge encoded in c̃tg while retaining its
personalized features. This is achieved by minimizing a loss function that encourages the client’s
logits cti (computed using its current parameters θti) to align with the received global logits c̃tg. We
employ the reverse KL divergence for this purpose:

Lp =
1

|Db|
∑
x∈Db

DK(c̃tg ∥ cti). (15)

The choice of reverse KL divergence DK(Q ∥ P) is intentional and crucial for personalization.
MinimizingDK(Q ∥ P) encourages P (client logits) to have high probability whereQ (global logits)
has high probability, but allows P to maintain its own modes (preserving personalization) where
Q has low probability. This contrasts with minimizing the forward KL divergence DK(P ∥ Q),
which tends to force P to cover all modes of Q, potentially suppressing P ’s unique features that are
essential for local personalization. This update step modifies the client parameters:

θti ← θt−1
i − ηp∇θt−1

i
Lp, (16)

where ηp is the learning rate for the personalization update. θti becomes the starting point for the next
communication round’s local training on Dri . The complete process is summarized in Algorithm 2.

3.6 THEORETICAL ANALYSIS

In this subsection, we provide theoretical insights into the proposed FedFuse framework. We establish
convergence guarantees for the algorithm under standard assumptions commonly used in federated
optimization, demonstrating its stability and convergence properties in the HeteroFL setting. Our
analysis considers both strongly convex and non-convex cases, accounting for the composite loss
structure involving client training (Lc), server-side MoE fusion (La), and personalization updates
(Lp). The detailed theorems, assumptions, and proofs for the convergence analysis are presented in
Appendix C.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 1 (Convergence for Strongly Convex Case). Under Assumptions 1, 2, 3, and 4, with
appropriate learning rates, FedFuse satisfies:

E[F (θt)− F (θ∗)] ≤ 1

2µηT
[F (θ1)− F (θ∗)] + ησ2

4µ
(L+ β + γ), (17)

where L, β, γ are smoothness parameters for Lc, La, Lp respectively, µ is the strong convexity
parameter, and σ2 bounds the stochastic gradient variance.

Theorem 2 (Convergence for Non-Convex Case). Under Assumptions 1 and 3, FedFuse satisfies:

E[∥∇F (θt)∥2] ≤ 2

ηT (1− ηL)
(F (θ1)− F (θ∗)) + 3ηLσ2

2− ηL
. (18)

4 EXPERIMENTS

Datasets. We evaluate on three CV datasets: CIFAR-100 Krizhevsky (2009), TinyImageNet Le &
Yang (2015), Flower102 Gogul & Kumar (2017), and one NLP dataset: AGNews. These represent
varying complexity levels and inter-class similarity. For statistical heterogeneity evaluation, we use
the Dirichlet distribution with parameter α to partition data among clients.

Model Architectures. To simulate architectural heterogeneity, we utilize eight diverse model
architectures ranging from CNNs to ResNets and MobileNets for CV tasks (Appendix E, Table 7),
and five Transformer architectures for NLP tasks (Appendix E, Table 8). Models are assigned
cyclically from this pool. For homogeneous baselines (HmFL), all clients use Model 1.

Baselines. We compare FedFuse against two groups of baselines: HmFL Baselines (adapted for
personalization): FedAvg McMahan et al. (2017), Per-FedAvg Fallah et al. (2020), FedProx Yuan &
Li (2022), FedPer Arivazhagan et al. (2019). These are evaluated in the homogeneous setting to assess
personalization capability without architectural heterogeneity. HeteroFL Baselines: FedKD Jeong
et al. (2018), FedProto Tan et al. (2022), FedMRL Yi et al. (2024a), FedTGP Zhang et al. (2024).
These methods are designed to handle architectural and statistical heterogeneity.

Implementation Details. All experiments are implemented using PyTorch 2.1.0 and conducted on
NVIDIA 4090D GPUs. Key hyperparameters (learning rates, epochs, batch sizes, MoE configuration,
etc.) are detailed in Appendix E, Subsection E.2. Unless otherwise specified, results are averaged
over 3 runs with different random seeds. The reported accuracy is the average test accuracy across all
participating clients on their respective local test sets after the final communication round.

4.1 PERFORMANCE EVALUATION

4.1.1 PERSONALIZED ACCURACY COMPARISON

We first compare the final personalized test accuracy of FedFuse against baselines under both
HmFL and HeteroFL settings across varying client numbers (K = 10, 50, 100, 500). The results are
summarized in Table 1 (for K = 10) and Tables 9, 10 in Appendix E (for K = 50, 100, 500).

FedFuse consistently achieves higher average test accuracy compared to all baseline methods across
the three datasets and client scales in the HeteroFL setting. For instance, in the 10-client HeteroFL
scenario (Table 1), FedFuse surpasses the best performing baseline by substantial margins: ↑11.1%
on CIFAR-100, ↑46.7% on Tiny-Imagenet, and ↑26.7% on Flower102. Similar significant gains are
observed for K = 50 and K = 100. Moreover, FedFuse’s advantage grows with data complexity.
For example, on CIFAR-100, FedFuse outperforms the second-best method by about 10%; on Tiny-
Imagenet, the improvement ranges from 20% to 40%; and on Flower102, it ranges from 10% to 40%.
This stems from FedFuse’s use of the Mixture-of-Experts (MoE) architecture to decouple knowledge
rather than simply aggregating it. By doing so, the model can fully absorb knowledge from different
clients, giving FedFuse a significant edge in complex tasks. We also evaluate the performance on
NLP datasets, where FedFuse achieves a significant improvement of 23.7%. Detailed experimental
results can be found in the Appendix (Table 11).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison on three datasets with 10 clients. The best result is bold, the second is underlined.

Acc(%) Algorithm CIFAR-100 Tiny-Imagenet Flower102

HmFL

FedAvg McMahan et al. (2017) 31.76 15.82 20.18
Per-FedAvg Fallah et al. (2020) 31.57 26.30 22.33

FedProx Yuan & Li (2022) 31.78 16.70 19.06
FedPer Arivazhagan et al. (2019) 39.94 31.12 44.31

FedFuse 43.71 (↑9.4%) 33.64 (↑8.1%) 49.16 (↑10.9%)

HeteroFL

FedKD Jeong et al. (2018) 35.90 21.95 39.24
FedProto Tan et al. (2022) 33.20 16.93 27.05
FedMRL Yi et al. (2024a) 37.98 22.10 37.68

FedTGP Zhang et al. (2024) 32.71 20.34 41.39
FedFuse 42.22 (↑11.1%) 32.43 (↑46.7%) 52.46 (↑26.7%)

Table 2: Evaluation under non-IID Data (Dirichlet α). The best result is bold, the second is underlined.

Cifar-100 Flower102Acc(%) Algorithm
α=0.05 α=0.1 α=0.5 α=0.05 α=0.1 α=0.5

HeteroFL
(100 clients)

FedKD Jeong et al. (2018) 26.36 16.75 10.88 21.74 18.42 9.5
FedProto Tan et al. (2022) 19.85 18.75 11.18 23.81 19.90 12.53
FedMRL Yi et al. (2024a) 36.28 23.97 14.01 20.95 26.87 13.07

FedTGP Zhang et al. (2024) 26.53 16.70 11.11 23.68 21.78 13.85
Ours 45.22 31.90 21.03 43.85 30.56 19.06

HeteroFL
(50 clients)

FedKD Jeong et al. (2018) 35.86 30.37 10.24 17.82 26.71 12.93
FedProto Tan et al. (2022) 33.62 25.61 13.39 24.65 12.74 14.30
FedMRL Yi et al. (2024a) 40.09 30.91 12.76 20.44 26.32 12.90

FedTGP Zhang et al. (2024) 31.14 25.93 13.64 12.59 27.87 14.33
Ours 44.32 36.53 21.52 53.98 39.48 23.67

HeteroFL
(10 clients)

FedKD Jeong et al. (2018) 41.38 35.90 23.35 40.73 39.24 22.91
FedProto Tan et al. (2022) 33.09 33.20 17.12 28.39 27.05 11.65
FedMRL Yi et al. (2024a) 45.30 37.98 24.06 39.26 37.68 22.23

FedTGP Zhang et al. (2024) 40.88 32.71 20.28 47.36 41.39 26.08
Ours 47.70 42.22 27.70 61.27 52.46 36.07

4.1.2 CONVERGENCE SPEED

Figure 5 presents the training curves (average test accuracy vs. communication rounds) for the Het-
eroFL setting. FedFuse generally demonstrates faster convergence compared to baselines, exhibiting
a rapid accuracy increase in the early training stages, followed by steady growth. It consistently
outperforms other methods throughout the training process, with its advantage often becoming more
pronounced in the later stages. For instance, observing the curves in Figure 5, on the Tiny-Imagenet
dataset with 50 clients (Figure 5e), FedFuse’s accuracy is significantly higher than others by the
middle of training and stabilizes later. Similarly, on the Flower102 dataset with 100 clients (Figure 5i),
it maintains the highest accuracy throughout, with its lead over other methods widening over time.
Overall, FedFuse exhibits excellent training speed and convergence properties in the HeteroFL setting.
The corresponding curves for the HmFL setting, showing similar trends of fast convergence for
FedFuse, are provided in Figure 6 (Appendix E).

4.1.3 ROBUSTNESS TO DATA HETEROGENEITY

We evaluate the impact of statistical heterogeneity using the Dirichlet distribution Dir(α) with
α ∈ {0.5, 0.1, 0.05}. Table 2 shows the performance under these conditions for K = 10, 50, 100.
FedFuse consistently achieves the highest accuracy across all settings, demonstrating superior
robustness. For instance, with 100 clients, FedFuse achieves the highest accuracy of 45.22% on
the CIFAR-100 dataset [for α = 0.05] and 43.85% on the Flower102 dataset [for α = 0.05], both
markedly outperforming other algorithms. This suggests that FedFuse possesses enhanced robustness
and superior performance when dealing with non-IID data. Its relative advantage often widens under
higher heterogeneity (e.g., α = 0.05), supporting the hypothesis that adaptive MoE aggregation is
particularly beneficial when client data differs significantly.

4.2 ABLATION STUDIES

To dissect the contribution of the key components of FedFuse, we perform ablation studies on
CIFAR-100 with K=50, α = 0.1. We compare the full FedFuse framework against several variants:

w/o MoE: Replaces MoE aggregation with simple averaging of client logits, but keeps the Lp update.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CIFAR-100 Tiny-Imagenet Flowers102
Datasets

0

2

4

6

8

10

U
pl

oa
d

(M
B

)

2.03 2.03 2.03

0.39
0.78

0.39

2.80

11.24 11.14

0.39
0.78

0.39
0.02 0.15 0.02

FedKD
FedProto
FedMRL
FedTGP
Ours

(a) Upload

CIFAR-100 Tiny-Imagenet Flowers102
Datasets

0

2

4

6

8

10

D
ow

nl
oa

d
(M

B
)

2.03 2.03 2.03

0.39
0.78

0.39

2.80

11.24 11.14

0.39
0.78

0.39
0.02 0.15 0.02

FedKD
FedProto
FedMRL
FedTGP
Ours

(b) Download

Figure 2: Communication Overhead with 10-Client HeteroFL. Illustrates model-size independence.

w/o Lp: Uses MoE aggregation, but removes the final personalization update step (Equation 16).

FedGen Zhu et al. (2021b): A baseline employs a global generator to aggregate logits and cross-
entropy loss for client updates (no MoE, no specific Lp).

The results in Table 3 demonstrate the importance of both components. Removing either MoE or the
Lp update results in a noticeable performance drop of 0.56% and 7.2% percentage points, respectively,
compared to the full FedFuse. Both components are necessary to achieve the best performance,
outperforming the simpler LogitsAvg-KD (FedGen) baseline significantly. This validates the design
choices of using adaptive MoE for aggregation and the specific reverse KL loss for personalization.
Table 3: Ablation study on CIFAR100, 50 clients.

Method Variant α = 0.1. Accuracy (%)

FedFuse (Full) 36.53
w/o MoE Aggregation 35.97
w/o Personalized Update Lp 29.33
FedGen Zhu et al. (2021b) 14.92
FedKD Jeong et al. (2018) 30.37

Table 4: Computation study on CIFAR100

Method Avg. Client Time (s) Server Time (s)

FedFuse 1.98 1.76
FedKD 5.15 11.01
FedProto 1.18 40.33
FedTGP 1.56 42.87
FedMRL 1.16 8.56

Table 5: Time Complexity Analysis

Algorithm FedKD FedProto FedTGP FedMRL Ours
Complexity O(N × C) O(N × C) O(N × C2) O(N × C) O(N × C)

4.3 RESOURCE OVERHEAD ANALYSIS

We analyze the resource usage of FedFuse compared to baselines. Table 5 summarizes the communi-
cation time complexities, with detailed computational complexity analysis provided in Appendix C.1.

Communication Overhead. We measure the total data transferred per round (client uploads +
server downloads) in Megabytes (MB). Since FedFuse only transmits logits, its communication
cost is independent of client model sizes. Figure 2 illustrates the upload cost specifically for K=10.
Compared to other knowledge-fusion methods, FedFuse’s communication is determined by |Db| ×C.
We find that FedFuse requires lower communication volume than FedMRL and FedTGP.

Computation Overhead. We measure the average wall-clock time per round with 50 clients and
α = 0.1. Table 4 reports the average time from the client and the server side. Client time heavily
depends on Ec and local model complexity Li. Server time depends on Es and MoE complexity. We
observe that FedFuse’s server time is 1.76s, lower than the baselines.

5 CONCLUSION

In this work, we introduce FedFuse, a novel framework designed to tackle the critical issues of person-
alized knowledge loss in HeteroFL. By uniquely combining an Expert-guided Fusion mechanism for
adaptive knowledge aggregation with a selective knowledge distillation strategy for preserving per-
sonalization, FedFuse effectively addresses the limitations of prior methods. Extensive experiments
confirmed FedFuse’s significant accuracy improvements over state-of-the-art HeteroFL baselines,
particularly under high heterogeneity, while demonstrating favorable resource trade-offs. While
FedFuse’s effectiveness has been demonstrated in near-real-world settings, practical deployment on
physical devices and in environments with extremely large models remains untested due to resource
constraints. We will conduct practical deployment in the future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, sensitive data, or clear immediate paths to deployment in
high-risk applications. Therefore, we do not foresee significant ethical issues arising directly from
this work.

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have made the following efforts: 1) Detailed
hyperparameter settings and experimental configurations for each figure and table are provided in
Appendix E.2. 2) We use publicly available datasets (e.g., CIFAR-100, Tiny-ImageNet, Flower102
and AGNews).

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and Xueqi Cheng. FedMatch: Federated
learning over heterogeneous question answering data. In Proceedings of the 30th ACM international
conference on information & knowledge management, pp. 181–190, 2021.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
tations for personalized federated learning. In International conference on machine learning, pp.
2089–2099. PMLR, 2021.

Yutong Dai, Zeyuan Chen, Junnan Li, Shelby Heinecke, Lichao Sun, and Ran Xu. Tackling data
heterogeneity in federated learning with class prototypes. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 7314–7322, 2023.

Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL: Computation and communication efficient
federated learning for heterogeneous clients. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, 2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-learning approach. Advances in neural information
processing systems, 33:3557–3568, 2020.

I Gogul and V Sathiesh Kumar. Flower species recognition system using convolution neural networks
and transfer learning. In 2017 fourth international conference on signal processing, communication
and networking (ICSCN), pp. 1–6. IEEE, 2017.

Xuan Gong, Shanglin Li, Yuxiang Bao, Barry Yao, Yawen Huang, Ziyan Wu, Baochang Zhang,
Yefeng Zheng, and David Doermann. Federated learning via input-output collaborative distillation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 22058–22066,
2024.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10143–10153, 2022.

Jaehee Jang, Heoneok Ha, Dahuin Jung, and Sungroh Yoon. FedClassAvg: Local representation
learning for personalized federated learning on heterogeneous neural networks. In Proceedings of
the 51st International Conference on Parallel Processing, pp. 1–10, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation
under non-IID private data. arXiv preprint arXiv:1811.11479, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of Mathemati-
cal Statistics, 22(1):79–86, 1951.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Daliang Li and Junpu Wang. FedMD: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in neural information processing systems, 33:2351–2363,
2020.

Chang Liu, Yuwen Yang, Xun Cai, Yue Ding, and Hongtao Lu. Completely heterogeneous federated
learning. CoRR, 2022.

Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based
on knowledge distillation. In IJCAI, pp. 2182–2188, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Anh Nguyen, Tuong Do, Minh Tran, Binh X Nguyen, Chien Duong, Tu Phan, Erman Tjiputra, and
Quang D Tran. Deep federated learning for autonomous driving. In 2022 IEEE Intelligent Vehicles
Symposium (IV), pp. 1824–1830. IEEE, 2022.

Jaehoon Oh, SangMook Kim, and Se-Young Yun. FedBABU: Toward enhanced representation for
federated image classification. In International Conference on Learning Representations, 2021.

Yiran Pang, Zhen Ni, and Xiangnan Zhong. Federated learning for crowd counting in smart surveil-
lance systems. IEEE Internet of Things Journal, 2023.

Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin
Xiao. Federated learning with partial model personalization. In International Conference on
Machine Learning, pp. 17716–17758. PMLR, 2022.

Felix Sattler, Arturo Marban, Roman Rischke, and Wojciech Samek. CFD: Communication-efficient
federated distillation via soft-label quantization and delta coding. IEEE Transactions on Network
Science and Engineering, 9(4):2025–2038, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Barret
Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A winning
combination for large language models. In The Twelfth International Conference on Learning
Representations, 2024.

Changlin Song, Divya Saxena, Jiannong Cao, and Yuqing Zhao. FedDistill: Global model distillation
for local model de-biasing in non-iid federated learning. arXiv preprint arXiv:2404.09210, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. FedProto:
Federated prototype learning across heterogeneous clients. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8432–8440, 2022.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2020.

Jiaqi Wang, Xingyi Yang, Suhan Cui, Liwei Che, Lingjuan Lyu, Dongkuan DK Xu, and Fenglong
Ma. Towards personalized federated learning via heterogeneous model reassembly. Advances in
Neural Information Processing Systems, 36, 2024.

Dezhong Yao, Wanning Pan, Yutong Dai, Yao Wan, Xiaofeng Ding, Chen Yu, Hai Jin, Zheng Xu, and
Lichao Sun. FedGKD: Towards heterogeneous federated learning via global knowledge distillation.
IEEE Transactions on Computers, 2023.

Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han Yu. FedGH: Heterogeneous federated
learning with generalized global header. In Proceedings of the 31st ACM International Conference
on Multimedia, pp. 8686–8696, 2023.

Liping Yi, Han Yu, Chao Ren, Gang Wang, Xiaoxiao Li, et al. Federated model heterogeneous
matryoshka representation learning. Advances in Neural Information Processing Systems, 37:
66431–66454, 2024a.

Liping Yi, Han Yu, Zhuan Shi, Gang Wang, Xiaoguang Liu, Lizhen Cui, and Xiaoxiao Li. FedSSA:
Semantic similarity-based aggregation for efficient model-heterogeneous personalized federated
learning. In Kate Larson (ed.), Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, IJCAI-24, pp. 5371–5379. International Joint Conferences on Artificial
Intelligence Organization, 8 2024b. doi: 10.24963/ijcai.2024/594. URL https://doi.org/10.24963/
ijcai.2024/594. Main Track.

Xiaotong Yuan and Ping Li. On convergence of fedprox: Local dissimilarity invariant bounds, non-
smoothness and beyond. Advances in Neural Information Processing Systems, 35:10752–10765,
2022.

Jianqing Zhang, Yang Liu, Yang Hua, and Jian Cao. FedTGP: Trainable global prototypes with
adaptive-margin-enhanced contrastive learning for data and model heterogeneity in federated
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 16768–
16776, 2024.

Xinqian Zhang, Ming Hu, Jun Xia, Tongquan Wei, Mingsong Chen, and Shiyan Hu. Efficient
federated learning for cloud-based aiot applications. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 40(11):2211–2223, 2020.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International conference on machine learning, pp. 12878–12889. PMLR,
2021a.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International conference on machine learning, pp. 12878–12889. PMLR,
2021b.

12

https://doi.org/10.24963/ijcai.2024/594
https://doi.org/10.24963/ijcai.2024/594

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

USE OF LLM

We used a Large Language Model (LLM) for grammar proofreading and language polishing in this
paper.

A ALGORITHM

Algorithm 2 FedFuse: Selective Knowledge Distillation with Expert-Guided Fusion

Require: Communication rounds T , client participation fraction p, private datasets {Dri }Ki=1, public
dataset Db, initial client models {θ0i }Ki=1, initial global model θ0g , local epochs Ec, server epochs
Es, learning rates η, ηg, ηp, temperature τ .

1: for each round t = 1, 2, . . . , T do
2: Select a subset of clients Nt ⊆ {1, . . . ,K}, |Nt| = max(1, ⌊p ·K⌋)
3: Client Local Training and Knowledge Representation (in parallel for i ∈ Nt):
4: Let θ′i ← θt−1

i
5: for local epoch e = 1, . . . , Ec do
6: Update θ′i using Equation 3 on Dri
7: end for
8: Compute local logits cti = {cti(x)|x ∈ Db} via Equation 4 and Equation 5 using θ′i
9: Send cti to server

10: Let θti ← θ′i
11: Call Algorithm 1 with θt−1

g , {cti}i∈Nt
, Db, Es, ηg to get c̃tg and θtg

12: Distribute c̃tg to clients in Nt
13: Selective Knowledge Distillation (in parallel for i ∈ Nt):
14: Receive c̃tg
15: Compute personalized loss Lp via Equation 15 using c̃tg and logits from current θti
16: Update local model via Equation 16: θti ← θti − ηp∇θtiLp
17: end for
18: return Final personalized client models {θTi }Ki=1 (or {θTi }i∈NT

if only a subset has the final
update)

B NOTATION

Table 6 summarizes the main notations used throughout the paper.

C THEORETICAL ANALYSIS

This section provides supplementary details for the theoretical analysis discussed in Section 3.6.

C.1 COMPLEXITY ANALYSIS DETAILS

As mentioned in the main text, the time complexity of FedFuse in each communication round t
involves several components:

1. Client-Side Computation:

• Local Training: Each of the |Nt| participating clients performs Ec local epochs. Within
each epoch, it processes |Dri | samples. Let Li be the average complexity (forward +
backward pass) for one sample on client i’s model Mi. The total complexity for local
training across selected clients is approximately O(|Nt| · Ec ·maxi(|Dri | · Li)).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Notations

Symbol Description
K Total number of clients.
i Index for clients.
Nt Set of clients participating in round t.
T Total number of communication rounds.
Dri The client i’s private dataset.
Db The public dataset shared across clients and server.
Mi, θi Local model and its parameters for client i.
Mg, θg Global MoE model and its parameters on the server.
fθi(·) Forward pass function for client model i.
ψθg (·) Feature extractor part of the global model Mg .
C Number of classes in the classification task (dimension of logits).
cti,l(x) Raw output logits from client i for input x at round t.
cti Temperature-scaled logits (probability distribution) from client i for input x at round t.
ctg Aggregated global logits from server MoE model for input x at round t.
c̃tg Updated global logits distributed from server to clients at round t.
τ Temperature parameter for scaling logits.
η, ηg, ηp Learning rates for local training, server aggregation, and local personalization update.
λ L2 regularization coefficient for local training.
Ec Number of local training epochs per round.
Es Number of server training epochs per round.
E The total number of experts in the MoE layer.
k The number of active experts selected by the Top-k gating mechanism.
E(x) Set of indices for the top-k active experts for input x.
πj(·) Gating weight for expert j.
ej(·) Output function for expert j.
din Input dimension for the MoE layer (output dimension of ψ).
Li Computational complexity of one forward/backward pass for client i.
Leg Computational complexity of the global model’s feature extractor ψ.
Lc Cross-Entropy loss function.
La Server-side aggregation loss (based on KL divergence).
Lp Client-side personalization loss (based on reverse KL divergence).
DK(P ∥ Q) Kullback-Leibler divergence from distribution P to Q.

• Logits Generation: Each client computes logits on the public dataset Db. This involves one
forward pass per sample. Complexity is O(|Nt| · |Db| · Lfwdi), where Lfwdi is the forward
pass complexity.

• Personalization Update: Each client computes the loss Lp and performs one gradient
update. This involves one forward pass on Db and one backward pass. Complexity is
O(|Nt| · |Db| · Li).

2. Server-Side Computation:

• Aggregation Training: The server performs Es epochs to update the global MoE model. In
each epoch, it processes |Db| samples. Let Lg be the complexity of the global model (Mg)
pass. Lg includes the feature extractor (ψ, complexity Leg) and the MoE layer. The MoE
layer involves computing gating weights (O(dinE)), selecting top-k experts, and computing
weighted expert outputs (O(kCdin) for linear experts). The backward pass has similar
complexity. Total server training complexity is O(Es · |Db| · Lg).

• Global Logits Generation: Computing c̃tg involves one forward pass over Db, complexity
O(|Db| · Lfwdg).

3. Communication:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Upload: |Nt| clients upload logits for |Db| samples, dimension C. Total size O(|Nt| · |Db| ·
C).

• Download: Server broadcasts global logits c̃tg to |Nt| clients. Total size O(|Nt| · |Db| · C).

Assuming Li ≈ Lfwdi + Lbwdi and Lg ≈ Lfwdg + Lbwdg , and often Ec ≫ 1, Es ≥ 1. The overall
per-round complexity depends heavily on the relative sizes of datasets, local vs server epochs, and
model complexities. The simplified complexity O(N × C) mentioned in the original draft likely
refers only to the communication cost under specific assumptions and neglects computational costs,
which can be substantial, especially local training.

C.2 CONVERGENCE ANALYSIS OF FEDFUSE

In this subsection, we provide a formal convergence guarantee for the proposed FedFuse framework
under standard assumptions commonly used in federated optimization.
Assumption 1 (Smoothness). F is L-smooth: for all vector θ1 and θ2,

∥∇F (θ1)−∇F (θ2)∥ ≤ L∥θ1 − θ2∥.
Another form:

F (θ1) ≤ F (θ2)+ < θ1 − θ2,∇F (θ2) > +
L

2
∥θ1 − θ2∥2.

Assumption 2 (Convexity). Assume F is strongly convex with parameter µ. For any vector θ1, θ2,
we have:

F (θ1) ≥ F (θ2)+ < θ1 − θ2,∇F (θ2) > +
µ

2
∥θ1 − θ2∥2.

Assumption 3 (Stochastic Gradient Variance Bounded).
E[∥∇F (θ;x, y)−∇F (θ)∥2] ≤ σ2.

Assumption 4 (MoE Boundedness). The gating weights {πj} sum to 1 (over the selected k experts),
and each expert’s outputs and gradients are uniformly bounded.

C.3 KEY LEMMAS

We establish several lemmas to facilitate the convergence proofs.

Lemma 1. Assume Assumption 1, 2, 3 hold, if learning rate η ≤ 2µ2

L3 . Then the local update on the
client side satisfies:

E[Lc(θ
t+1
i)] ≤ E[Lc(θ

t
i)]− µ2ηE[∥θti − θ∗i ∥2] +

η2Lσ2

2
. (19)

Lemma 2. Assume Assumption 1, 2, 3, 4 hold, if learning rate ηg ≤ 2µ2

β3 . Then:

E[La(θ
t+1
g)] ≤ E[La(θ

t
g)]− µ2ηgE[∥θtg − θ∗g∥2] +

η2gβσ
2

2
. (20)

Lemma 3. Assume Assumption 1, 2, 3, when ηp ≤ 2
γ ,

E[∥θ̃t+1
i ∥] ≤ E[Lp(θ̃

t
i)]− µ2ηpE[∥θ̃ti − θ̃∗i ∥2] +

γη2pσ
2

2
. (21)

Lemma 4. Assume Assumption 1 and 3, it follows:

E[∇Lc(θt+1
i)] ≤ E[∇Lc(θti)]− η(1−

ηL

2
)E[∥∇Lc(θti)∥2] +

η2Lσ2

2
. (22)

Lemma 5. Assume Assumption 1, 3, 4, it follows:

E[∇Lp(θ̃t+1
i)] ≤ E[∇Lp(θ̃ti)]− ηp(1−

ηpL

2
)E[∥∇Lp(θ̃ti)∥2] +

η2pLσ
2

2
. (23)

Lemma 6. Assume Assumption 1, 3, it follows:

E[∇La(θt+1
g)] ≤ E[∇La(θtg)]− ηg(1−

ηgL

2
)E[∥∇La(θtg)∥2] +

η2gLσ
2

2
. (24)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.4 CONVERGENCE ANALYSIS FOR STRONGLY CONVEX CASE

Proof. We start by defining the combined loss function as:

F (θ) = Lc(θ) + La(θ) + Lp(θ). (25)

Based on Lemma 1, Lemma 2, and Lemma 3, we can infer that the learning rates are equal, i.e.,
η = ηp = ηg . This allows us to combine the results from the individual lemmas.

First, we consider the sum of the expected differences in the loss function over all iterations:
T∑
t=1

E[F (θt)−F (θt+1)] ≥ µ2η

T∑
t=1

E[∥θti−θ∗i ∥2+∥θtg−θ∗g∥2+∥θ̃ti− θ̃∗i ∥2]−
η2σ2T

2
(L+β+γ).

(26)
This inequality provides a lower bound on the sum of the expected differences in the loss function.

Next, we observe that the sum of the expected differences can also be written as:
T∑
t=1

E[F (θt)− F (θt+1)] = E[F (θ1)− F (θT+1)] ≤ F (θ1)− F (θ∗). (27)

This follows from the fact that the expected value of the loss function at the final iteration is less than
or equal to the loss function at the initial iteration.

Combining the two inequalities, we obtain:

µ2η

T∑
t=1

E[∥θti − θ∗i ∥2 + ∥θtg − θ∗g∥2 + ∥θ̃ti − θ̃∗i ∥2] ≤ F (θ1)−F (θ∗) +
η2σ2T

2
(L+ β + γ). (28)

This inequality provides a bound on the sum of the squared differences between the current parameters
and the optimal parameters.

Next, we use the strong convexity property of the individual loss functions to get:
µ

2
∥θti − θ∗i ∥2 ≤ Lc(θti)− Lc(θ∗i). (29)

µ

2
∥θ̃ti − θ̃∗i ∥2 ≤ Lp(θ̃ti)− Lp(θ̃∗i). (30)

µ

2
∥θtg − θ∗g∥2 ≤ La(θtg)− La(θ∗g). (31)

Summing these inequalities, we get:
µ

2
[∥θti − θ∗i ∥2 + ∥θtg − θ∗g∥2 + ∥θ̃ti − θ̃∗i ∥2] ≤ F (θt)− F (θ∗). (32)

This inequality provides a bound on the combined squared differences in terms of the combined loss
function.

Using this result, we can bound the sum of the expected differences in the loss function as:
T∑
t=1

E[F (θt)− F (θ∗)] ≤ 1

2µη
[F (θ1)− F (θ∗)] + ησ2T

4µ
(L+ β + γ). (33)

Finally, dividing both sides by T , we obtain the desired result:

E[F (θt)− F (θ∗)] ≤ 1

2µηT
[F (θ1)− F (θ∗)] + ησ2

4µ
(L+ β + γ). (34)

This inequality provides a bound on the expected difference in the loss function at each iteration.

C.4.1 PROOF OF LEMMA 1

Proof. Firstly, we leverage the strong convexity of Lc with parameter µ. This implies that the gradient
norm has a lower bound as follows:

∥∇Lc(θti)∥ ≥ µ2∥θti − θ∗i ∥2. (35)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Next, by Assumption 3, we can get an upper bound for the expected squared gradient norm:

E[∥∇L(θ;x, y)∥2] ≤ L2E[∥θ − θ∗∥] + σ2. (36)

Then, considering the update rule θt+1
i = θti − η∇Lc(θti) and the L-smoothness of Lc, we have the

following inequality:

Lc(θ
t+1
i) ≤ Lc(θti) + ⟨θt+1

i − θti ,∇Lc(θti)⟩+
L

2
∥θt+1
i − θti∥2 (37)

≤ Lc(θti)− η∥∇Lc(θti)∥2 +
η2L

2
∥∇Lc(θti)∥2. (38)

Taking the expectation on both sides, we obtain:

E[Lc(θ
t+1
i)] ≤ E[Lc(θ

t
i)]− ηE[∥∇Lc(θti)∥2] +

η2L

2
E[∥∇Lc(θti)∥2] (39)

≤ E[Lc(θ
t
i)]− µ2ηE[∥θti − θ∗i ∥2] +

η2Lσ2

2
. (40)

To ensure the desired inequality holds, we need the coefficient of E[∥θti − θ∗i ∥2] to be non-negative,
which leads to the condition µ2 − L3η

2 ≥ 0. Solving this inequality, we get η ≤ 2µ2

L3 .

C.4.2 PROOF OF LEMMA 2

Proof. We start by considering the gradient of the aggregated loss La for the server parameters θg . It
is known that:

E[∥∇La∥2] ≤ β2E[∥θtg − θ∗g∥2] + σ2. (41)
This inequality provides an upper bound for the expected squared gradient norm of the aggregated
loss.

Next, we analyze the update rule for θg. Given the update rule θt+1
g = θtg − ηg∇La(θtg) and the

β-smoothness of La, we have:

La(θ
t+1
g) ≤ La(θtg) + ⟨θt+1

g − θtg,∇La(θtg)⟩+
β

2
∥θt+1
g − θtg∥2 (42)

≤ La(θtg)− ηg∥∇La(θtg)∥2 +
η2gβ

2
∥∇La(θtg)∥2. (43)

Taking the expectation on both sides, we obtain:

E[La(θ
t+1
g)] ≤ E[La(θ

t
g)]− ηgE[∥∇La(θtg)∥2] +

η2gβ

2
E[∥∇La(θtg)∥2] (44)

≤ E[La(θ
t
g)]− µ2ηgE[∥θtg − θ∗g∥2] +

η2gβσ
2

2
. (45)

To ensure the desired inequality holds, we need the coefficient of E[∥θtg − θ∗g∥2] to be non-negative.

This leads to the condition µ2 − β3ηg
2 ≥ 0. Solving this inequality, we get ηg ≤ 2µ2

β3 .

C.4.3 PROOF OF LEMMA 3

Proof. We begin by applying the update rule and the smoothness property of the loss function.
Specifically, for the local update on the client side, we have:

Lp(θ̃
t+1
i) ≤ Lp(θ̃ti) + ⟨θ̃t+1

i − θ̃ti ,∇Lp(θ̃ti)⟩+
γ

2
∥θ̃t+1
i − θ̃ti∥2 (46)

≤ Lp(θ̃ti)− ηp∥∇Lp(θ̃ti)∥2 +
η2pγ

2
∥∇Lp(θ̃ti)∥2. (47)

Here, the first inequality follows from the γ-smoothness of Lp, and the second inequality follows
from the update rule θ̃t+1

i = θ̃ti − ηp∇Lp(θ̃ti).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Next, we use the strong convexity property of the loss function, which implies that:

∥∇Lp(θ̃ti)∥2 ≥ µ2∥θ̃ti − θ̃∗i ∥2. (48)

Taking the expectation on both sides of the inequalities in Equation(47) and using the result from
Equation(48), we get:

E[Lp(θ̃
t+1
i)] ≤ E[Lp(θ̃

t
i)]− ηpE[∥∇Lp(θ̃ti)∥2] +

η2pγ

2
E[∥∇Lp(θ̃ti)∥2] (49)

≤ E[Lp(θ̃
t
i)]− µ2ηpE[∥θ̃ti − θ̃∗i ∥2] +

η2pγσ
2

2
. (50)

To ensure the desired inequality holds, we need the coefficient of E[∥θ̃ti − θ̃∗i ∥2] to be non-negative.
This leads to the condition µ2 − µ2γηp

2 ≥ 0. Solving this inequality, we obtain ηp ≤ 2
γ .

C.5 CONVERGENCE ANALYSIS FOR NON-CONVEX CASE

Proof. We start by defining the total loss function as the sum of the client, global, and personal losses:

F (θ) = Lc(θ) + La(θ) + Lp(θ). (51)

Based on Lemma 4, Lemma 5, and Lemma 6, we can infer that the learning rates are equal, i.e.,
η = ηp = ηg .

Next, we combine the results from the individual lemmas to derive an inequality for the total loss
function:

E[F (θt+1)] ≤ E[F (θt)]− η(1− ηL

2
)E[∥∇Lc(θti)∥2 + ∥∇La(θtg)∥2 + ∥∇Lp(θ̃ti)∥2] +

3η2Lσ2

2
.

(52)
This inequality provides a bound on the expected decrease in the total loss function at each iteration.

Summing this inequality over all iterations, we get:
T∑
t=1

E[F (θt)− F (θt+1)] ≥ η(1− ηL

2
)

T∑
t=1

E[∥∇F (θt)∥2]− 3Tη2Lσ2

2
. (53)

This inequality provides a lower bound on the sum of the expected differences in the total loss
function over all iterations.

Rearranging the terms, we obtain:
T∑
t=1

E[∥F (θt)∥2] ≤ F (θ1)− F (θ∗)
η(1− ηL

2)
+

3TηLσ2

2(1− ηL
2)

(54)

≤ 2

η(1− ηL)
(F (θ1)− F (θ∗)) + 3TηLσ2

2− ηL
. (55)

Finally, dividing both sides by T , we get the desired result:

E[∥F (θt)∥2] ≤ 2

ηT (1− ηL)
(F (θ1)− F (θ∗)) + 3ηLσ2

2− ηL
. (56)

This inequality provides a bound on the expected squared norm of the total loss function at each
iteration.

C.5.1 PROOF OF LEMMA 4

Proof. We start by applying the update rule and the smoothness property of the loss function.
Specifically, for the local update on the client side, we have:

Lc(θ
t+1
i) ≤ Lc(θti) + ⟨∇Lc(θti), θt+1

i − θti⟩+
L

2
∥θt+1
i − θti∥2. (57)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Given the update rule θt+1
i = θti − η∇Lc(θti ;x, y), we substitute this into the above inequality:

Lc(θ
t+1
i) ≤ Lc(θti) + η⟨∇Lc(θti),∇Lc(θti ;x, y)⟩+

η2L

2
∥∇Lc(θti ;x, y)∥2. (58)

Next, we analyze the expected squared gradient norm. By the definition of the gradient and the noise
term, we have:

E[∥∇Lc(θti ;x, y)∥2] = E[∥∇Lc(θti)∥2] + E[∥∇Lc(θti ;x, y)∥ − ∥∇Lc(θti)∥2] (59)

≤ E[∥∇Lc(θti)∥2] + σ2. (60)

Taking the expectation on both sides of the inequality in Equation(58) and using the result from
Equation(60), we get:

E[∇Lc(θt+1
i)] ≤ E[Lc(θ

t
i)]− ηE[∥∇Lc(θti)∥2] +

η2L

2
(E[∥∇Lc(θti)∥2] + σ2) (61)

≤ E[∇Lc(θti)]− η(1−
ηL

2
)E[∥∇Lc(θti)∥2] +

η2Lσ2

2
. (62)

C.5.2 PROOF OF LEMMA 5

Proof. The proof for Lemma 5 follows a similar structure to Lemma 4, focusing on the personal loss
function Lp. We start by applying the update rule and the smoothness property of the loss function.
Specifically, for the personal update on the client side, we have:

Lp(θ̃
t+1
i) ≤ Lp(θ̃ti) + ⟨∇Lp(θ̃ti), θ̃t+1

i − θ̃ti⟩+
L

2
∥θ̃t+1
i − θ̃ti∥2. (63)

Given the update rule θ̃t+1
i = θ̃ti − ηp∇Lp(θ̃ti ;x, y), we substitute this into the above inequality:

Lp(θ̃
t+1
i) ≤ Lp(θ̃ti) + ηp⟨∇Lp(θ̃ti),∇Lp(θ̃ti ;x, y)⟩+

η2pL

2
∥∇Lp(θ̃ti ;x, y)∥2. (64)

Next, we analyze the expected squared gradient norm. By the definition of the gradient and the noise
term, we have:

E[∥∇Lp(θ̃ti ;x, y)∥2] = E[∥∇Lp(θ̃ti)∥2] + E[∥∇Lp(θ̃ti ;x, y)∥ − ∥∇Lp(θ̃ti)∥2] (65)

≤ E[∥∇Lp(θ̃ti)∥2] + σ2. (66)

Taking the expectation on both sides of the inequality in Equation(64) and using the result from
Equation(66), we get:

E[∇Lp(θ̃t+1
i)] ≤ E[Lp(θ̃

t
i)]− ηpE[∥∇Lp(θ̃ti)∥2] +

η2pL

2
(E[∥∇Lp(θ̃ti)∥2] + σ2) (67)

≤ E[∇Lp(θ̃ti)]− ηp(1−
ηpL

2
)E[∥∇Lp(θ̃ti)∥2] +

η2pLσ
2

2
. (68)

C.5.3 PROOF OF LEMMA 6

Proof. The proof for Lemma 6 focuses on the aggregated loss function La. We start by applying the
update rule and the smoothness property of the loss function. Specifically, for the global update on
the server side, we have:

La(θ
t+1
g) ≤ La(θtg) + ⟨∇La(θtg), θt+1

g − θtg⟩+
L

2
∥θt+1
g − θtg∥2. (69)

Given the update rule θt+1
g = θtg − ηg∇La(θtg;x, y), we substitute this into the above inequality:

La(θ
t+1
g) ≤ La(θtg) + ηg⟨∇La(θtg),∇La(θtg;x, y)⟩+

η2gL

2
∥∇La(θtg;x, y)∥2. (70)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Next, we analyze the expected squared gradient norm. By the definition of the gradient and the noise
term, we have:

E[∥∇La(θtg;x, y)∥2] = E[∥∇La(θtg)∥2] + E[∥∇La(θtg;x, y)∥ − ∥∇La(θtg)∥2] (71)

≤ E[∥∇La(θtg)∥2] + σ2. (72)

Taking the expectation on both sides of the inequality in Equation(70) and using the result from
Equation(72), we get:

E[∇La(θt+1
g)] ≤ E[La(θ

t
g)]− ηgE[∥∇La(θtg)∥2] +

η2gL

2
(E[∥∇La(θtg)∥2] + σ2) (73)

≤ E[∇La(θtg)]− ηg(1−
ηgL

2
)E[∥∇La(θtg)∥2] +

η2gLσ
2

2
. (74)

D DISCUSSION

In this work, we address the challenge of client heterogeneity in heterogeneous federated learning.
To overcome these limitations, we propose FedFuse. FedFuse introduces a server-side Expert-
guided Fusion mechanism that uniquely facilitates adaptive knowledge fusion by dynamically gating
and weighting heterogeneous client knowledge contributions, moving beyond prior static schemes.
Complementarily, an elaborately designed selective knowledge distillation strategy allows clients to
assimilate global knowledge without blind imitation, thereby preserving crucial local model features
and mitigating detrimental model divergence. The effectiveness of our approach is supported by
theoretical analysis and extensive experiments conducted on various datasets and models for computer
vision tasks.

The limitations still remain. While FedFuse’s effectiveness has been demonstrated in near-real-world
settings, practical deployment on physical devices and in environments with extremely large models
remains untested due to resource constraints. Real-world implementation may uncover additional
challenges or limitations, providing further insights into the system’s scalability and efficiency.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 MODEL SETTINGS

Under the model-heterogeneous (HeteroFL) setting, we employ eight distinct model architectures for
collaborative training across clients, simulating diverse device capabilities. The specific architectures
assigned to clients depend on the total number of clients K. For experiments with K = 10, 50, 100,
models are assigned cyclically from the list below. In the model-homogeneous (HmFL) baseline
experiments, all clients utilize the ‘Model 1’ architecture for fair comparison of personalization
algorithms without architectural confounding. The detailed model configurations used in the HeteroFL
setting are provided in Table 7.

Table 7: Model Configurations used in Heterogeneous Experiments for CV Tasks.

Name Base Architecture Key Features Layers Params.
Model 1 Simple CNN 2 Conv layers, 3 FC layers 5 ≈3.2M
Model 2 ResNet18 BasicBlock, [2,2,2,2] layers 18 ≈11.2M
Model 3 ResNet34 BasicBlock, [3,4,6,3] layers 34 ≈21.3M
Model 4 ResNet50 Bottleneck, [3,4,6,3] layers 50 ≈23.5M
Model 5 ResNet101 Bottleneck, [3,4,23,3] layers 101 ≈42.5M
Model 6 ResNet152 Bottleneck, [3,8,36,3] layers 152 ≈58.2M
Model 7 GoogleNet Inception modules 22 ≈6.8M
Model 8 MobileNetV2 Linear Bottlenecks, Depthwise Separable Conv 53 ≈3.5M
Homo. Simple CNN 2 Conv layers, 3 FC layers 5 ≈3.2M

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Model Configurations used in Heterogeneous Experiments for NLP Tasks.

Name Model Architecture Key Features Params.
Model 1 Transformer 1-head self-attention, 1 FFN ≈4.12M
Model 2 Transformer 2-head self-attention, 2 FFN ≈4.14M
Model 3 Transformer 4-head self-attention, 4 FFN ≈4.18M
Model 4 Transformer 8-head self-attention, 8 FFN ≈4.26M
Model 5 Transformer 16-head self-attention, 16 FFN ≈4.42M

Table 9: Comparison with the SOTA methods on three datasets in 50 clients.

Acc(%) Algorithm CIFAR-100 Tiny-Imagenet Flower102

HmFL

FedAvg 17.57 14.38 22.81
Per-FedAvg 28.08 25.49 41.52

FedProx 18.11 14.18 21.66
FedPer 30.51 26.42 47.86

FedFuse 35.33 (↑15.7%) 32.11 (↑21.5%) 48.95 (↑2.3%)

HeteroFL

FedKD 30.37 18.58 26.71
FedProto 25.61 15.46 12.74
FedMRL 30.91 16.12 26.32
FedTGP 25.93 25.13 27.87
FedFuse 36.53 (↑18.2%) 32.68 (↑26.8%) 39.48 (↑41.6%)

E.2 IMPLEMENTATION DETAILS

All experiments were conducted using PyTorch version 2.1.0 on NVIDIA 4090D GPUs with CUDA
12.1. Key hyperparameters included:

• Optimizer: Adam for both client and server updates.

• Client Local Training Learning Rate (η): 0.001

• Server Aggregation Learning Rate (ηg): 0.001

• Client Personalization Update Learning Rate (ηp): 0.001

• Local Epochs (Ec): 1

• Server Epochs (Es): 1

• Batch Size (Local Training): 64

• Batch Size (Server Aggregation / Local Update on Db): 64

• Temperature (τ): 2.0

• MoE Experts (E): 100 for K=100, 50 for K=50, 10 for K=10

• MoE top-k (k): 40 for K=100, 20 for K=50, 4 for K=10

• Communication Rounds (T): 100

• Client Participation Rate (p): 0.1 for K=100, 0.2 for K=50, 1.0 for K=10

• Public Dataset (Db): A subset of the corresponding dataset

• Data Heterogeneity (α for Dirichlet): As specified in Table 2 (0.05, 0.1, 0.5). For IID
experiments, data was shuffled and distributed uniformly.

Baseline implementations were based on publicly available codebases where possible, adapted to the
HeteroFL setting.

E.3 ADDITIONAL RESULTS FOR ACCURACY COMPARISON

Tables 9 and 10 present the detailed accuracy comparisons on the three datasets for scenarios with 50
and 100 clients, respectively, complementing Table 1 in the main text. Figure 6 illustrates the training
convergence curves under the model-homogeneous setting, serving as a baseline comparison for
the heterogeneous results shown in Figure 5. As a supplement to the experimental results, Table 11
provides detailed outcomes on NLP datasets.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: Comparison with the SOTA methods on three datasets in 100 clients.

Acc(%) Algorithm CIFAR-100 Tiny-Imagenet Flower102

HmFL

FedAvg 11.30 10.44 14.15
Per-FedAvg 20.38 20.18 35.14

FedProx 11.23 13.10 14.53
FedPer 28.40 23.15 38.05

FedFuse 29.80 (↑4.9%) 33.44 (↑44.4%) 41.95 (↑10.2%)

HeteroFL

FedKD 16.75 13.28 18.42
FedProto 18.75 12.04 19.90
FedMRL 23.97 11.39 26.87
FedTGP 16.70 26.88 21.78
FedFuse 31.90 (↑33.1%) 30.98 (↑22.5%) 30.56 (↑13.7%)

Table 11: Comparison with the SOTA methods on AGNews in 50 clients.

Algorithm FedKD FedProto FedMRL FedTGP Ours
Acc(%) 94.80 77.68 94.82 94.76 96.11(↑23.7%)

E.4 ADDITIONAL RESULTS FOR ABLATION STUDIES

The absolute accuracy improvement from MoE may appear marginal, but the primary contribution of
MoE resides in dynamic fusion and selective integration of heterogeneous knowledge, rather than
direct enhancement of global accuracy (Table 12). Its advantages manifest in: 1) Stability under
high heterogeneity: In extreme non-IID settings (α = 0.1), MoE reduces inter-client variance by
40.36% compared to average aggregation (w/o MoE Aggregation). 2) Accuracy improvement for
low-frequency clients: MoE enhances accuracy by 13.59% for clients with infrequent aggregation
participation.

Table 12: Performance Comparison.

Model Client Accuracy Variance Low-frequency Client Accuracy(%)
FedFuse 18.03 (↑40.36) 29.49 (↑13.59)
w/o MoE 30.23 25.96

E.5 ADDITIONAL RESULTS FOR RESOURCE OVERHEAD

We have conducted additional quantitative analysis comparing our method (Ours) with its ablated
version that removes the MoE component (denoted as w/o MoE). The FLOPs incurred by the MoE
module are modest, largely due to our use of a top-k routing mechanism that activates only a subset
of experts per forward pass (Table 13). Memory consumption remains well within feasible limits,
even with increasing model size or expert count(Table 14).

E.6 SENSITIVITY EXPERIMENTS

We conducted a sensitivity analysis on the top-k hyperparameters, with detailed visualizations
provided in Figure 3.

We set the total number of experts to match the number of clients, and set the top-k is equal to the
40% of experts number, which offers the maximum personalization capacity—each client can, in
theory, have a dedicated expert. However, to ensure computational and memory efficiency, our gating
network adopts a top-k sparse routing strategy, where only a subset of experts is activated for each
client in each round. As illustrated in Figure 3, activating 40% of the total experts per round (i.e., k =
0.4 × total experts) achieves the best trade-off between performance and efficiency.

We have also conduct an additional sensitivity analysis on the distillation temperature parameter τ
used in the reverse KL divergence loss (Table 15). Specifically, we vary τ in a reasonable range
e.g.,0.5,1.0,2.0,5.0 and measure the resulting performance across multiple client models.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 13: Memory Comparison.

Methods FLOPs Memory
FedFuse 100G 808.08MB
w/o MoE 99.1G 726.41MB

Table 14: Memory-client Numbers Results.

Client Numbers 10 20 50 100 200 500
Memory(MB) 680.2 707.23 808.08 864.95 902.43 1958.63

2 3 4 5 6 7 8 9 10

Number of Expert

0.0

0.2

0.4

0.6

0.8

D
iff

er
en

ce
 V

al
ue

0.30

0.90 0.91

0.39

0.19

0.00
0.02

0.27

0.56

Figure 3: Difference Accuracy on different number of selected experts

Table 15: Time Complexity Analysis

Temperature 0.5 1 2 3 4 5
Accuracy(%) 33.56 40.35 42.22 39.22 38.84 34.75

The performance of our method remains stable over a broad range of τ values, indicating robustness
to calibration variations. When τ is set to a moderate value (e.g., τ = 2.0), the global logits are
sufficiently softened, reducing the impact of overconfidence and improving the alignment with
personalized local distributions. Lower τ values tend to retain sharper (and potentially overconfident)
global predictions, slightly degrading performance, while excessively high τ values dilute the
knowledge transfer.

These findings suggest that our reverse KL-based distillation mechanism is not overly sensitive to
global model calibration, and that appropriate temperature tuning (e.g., τ ∈ [1.0, 2.0]) can mitigate
overconfidence issues in global logits.

E.7 SCALABILITY WITH CLIENT NUMBERS.

10 clients 50 clients 100 clients 500 clients
Number of Clients

0
5

10
15
20
25
30
35
40

Ac
cu

ra
cy

(%
) 35.90

30.37

16.75

12.90

33.20

25.61

18.75

10.71

37.98

30.91

23.97

15.62

32.71

25.93

16.70

12.50

42.22

36.53

31.90

23.27

FedKD
FedProto
FedMRL
FedTGP
Ours

(a) CIFAR-100

10 clients 50 clients 100 clients 500 clients
Number of Clients

0

10

20

30

40

50

Ac
cu

ra
cy

(%
)

39.24

26.71

18.42

13.54

27.05

12.74

19.90

10.28

37.68

26.32 26.87

14.66

41.39

27.87

21.78

12.74

52.46

39.48

30.56

15.15

FedKD
FedProto
FedMRL
FedTGP
Ours

(b) Flower102

Figure 4: Scalability: Accuracy vs. Number of Clients (K) on CIFAR-100 and Flower102 (HeteroFL Setting).

Figure 4 illustrates how the final average accuracy of different HeteroFL algorithms scales as the
number of clients increases fromK = 10 toK = 500. FedFuse exhibits greater robustness compared
to baselines. For instance, on CIFAR-100, while other algorithms show a decline in accuracy with

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

more clients, FedFuse exhibits a more gradual decrease. On Flower102, FedFuse consistently
achieves the highest accuracy across all client numbers. This highlights the robustness and scalability
of FedFuse in federated learning scenarios.

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(a) CIFAR-100, K = 10

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(b) CIFAR-100, K = 50

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(c) CIFAR-100, K = 100

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(d) Tiny-Imagenet, K = 10

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y
FedProto
FedKD
FedTGP
FedMRL
Ours

(e) Tiny-Imagenet, K = 50

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(f) Tiny-Imagenet, K = 100

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(g) Flower102, K = 10

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(h) Flower102, K = 50

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

FedProto
FedKD
FedTGP
FedMRL
Ours

(i) Flower102, K = 100

Figure 5: Training accuracy curves for various algorithms in heterogeneous federated learning (HeteroFL) across
datasets and client numbers K.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(a) CIFAR-100, K = 10

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(b) CIFAR-100, K = 50

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(c) CIFAR-100, K = 100

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(d) Tiny-Imagenet, K = 10

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(e) Tiny-Imagenet, K = 50

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(f) Tiny-Imagenet, K = 100

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(g) Flower102, K = 10

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(h) Flower102, K = 50

0 20 40 60 80 100

Round

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
Per-FedAvg
FedProx
FedPer
Ours

(i) Flower102, K = 100

Figure 6: Training accuracy curves for various algorithms under the homogeneous federated learning setting
(HmFL) across different datasets and client numbers (K). These serve as a baseline for evaluating personalization
methods when architectural heterogeneity is absent.

25

	Introduction
	Related Work
	Methodology
	Problem Formulation
	The Overview of FedFuse Framework
	Client Local Training and Knowledge Representation
	Expert-guided Fusion
	Selective Knowledge Distillation
	Theoretical Analysis

	Experiments
	Performance Evaluation
	Personalized Accuracy Comparison
	Convergence Speed
	Robustness to Data Heterogeneity

	Ablation Studies
	Resource Overhead Analysis

	Conclusion
	Algorithm
	Notation
	Theoretical Analysis
	Complexity Analysis Details
	Convergence Analysis of FedFuse
	Key Lemmas
	Convergence analysis for strongly convex case
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Convergence analysis for non-convex case
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Discussion
	Additional Experimental Details
	Model Settings
	Implementation Details
	Additional Results for Accuracy Comparison
	Additional Results for Ablation Studies
	Additional Results for Resource Overhead
	Sensitivity Experiments
	Scalability with Client Numbers.

