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ABSTRACT

Heterogeneous Federated Learning enables collaborative training across devices
with diverse architectures and non-IID data. However, it struggles with effective
knowledge fusion, leading to personalized knowledge loss during aggregation and
client model divergence due to globally-guided updates misaligned with local data
or architectures. We propose FedFuse, a novel framework for adaptive, personalized
knowledge fusion via logits. FedFuse introduces a server-side Expert-guided Fusion
mechanism that facilitates adaptive knowledge fusion by dynamically gating and
weighting heterogeneous client knowledge contributions, moving beyond static
schemes. Complementarily, a selective knowledge distillation strategy allows
clients to assimilate global knowledge without blind imitation, preserving crucial
local features and mitigating model divergence. We provide rigorous convergence
analysis for FedFuse under heterogeneity. Extensive experiments, including up
to 500 clients, diverse heterogeneity settings, and ablation studies, demonstrate
our approach’s superiority. FedFuse significantly outperforms state-of-the-art
methods in test accuracy, particularly under high heterogeneity, while maintaining
competitive efficiency.

1 INTRODUCTION

Heterogeneous Federated Learning (HeteroFL) presents a compelling paradigm for collaborative
machine learning in diverse edge computing environments, such as the Artificial Intelligence of
Things Zhang et al. (2020), smart surveillance Pang et al. (2023), autonomous vehicles Nguyen et al.
(2022). It uniquely accommodates the reality of edge ecosystems where clients possess varying
computational resources, data distributions (statistical heterogeneity), and even distinct underlying
model architectures (architectural heterogeneity) tailored to local needs. While HeteroFL effectively
leverages the collective knowledge of the heterogeneous network, it introduces a critical issue:
the loss of personalized knowledge. This phenomenon, where discrepancies arise between local
objectives and global aggregation due to client heterogeneity significantly degrades the performance
of personalized models.

While many approaches offer valuable contributions, two key challenges remain. First, the primary
challenge is how to effectively fuse heterogeneous client knowledge while preserving personalized
features during aggregation. Conventional methods Sattler et al. (2021); Zhu et al. (2021b); Zhang
et al. (2024); Jang et al. (2022) typically produce a single homogenized global representation, which
makes it difficult to differentiate and preserve personalized knowledge, particularly for clients with
divergent data distributions. Consequently, valuable knowledge is often diluted or ignored, degrading
the performance of the fused global model. The second challenge is how to align global knowledge
with the local model without disrupting locally learned features, which are essential for maintaining
personalized performance. Traditional methods enforce uniform updates that may conflict with client
heterogeneity, forcibly diverting the local model from its optimized state.

To tackle these intertwined challenges of adaptive aggregation and compatible personalization, we
propose FedFuse, a novel HeteroFL framework built upon two synergistic insights: leveraging expert-
guided fusion and utilizing selective knowledge distillation. The choice of an expert-guided fusion
mechanism for server-side knowledge fusion is motivated by its potential to handle heterogeneity
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effectively, drawing inspiration from its success in large-scale modeling Shen et al. (2024); Shazeer
et al. (2017). We introduce a server-side MoE operating on uploaded logits Shazeer et al. (2017).
Unlike static aggregation, the MoE’s dynamic gating network learns to route and weight knowledge
contributions (represented by logits) from different clients to specialized experts. This allows
the server to adaptively capture relevant knowledge patterns from subsets of clients, preserving
personalized information while constructing a rich, diverse global representation.

Furthermore, FedFuse incorporates a selective knowledge distillation strategy designed for compati-
bility with local models. Instead of blindly applying global updates, clients selectively integrate only
the most relevant global knowledge, determined by the alignment between local and global feature
representations, minimizing negative transfer and preserving crucial local features. This selective
approach operates within the logits space Gou et al. (2021), further ensuring compatibility between
local and global updates and mitigating the risk of disrupting locally learned features.

The main contributions of this paper are therefore summarized as:

* We propose FedFuse, a framework enabling expert-guided fusion and selective knowledge
distillation across statistically and architecturally heterogeneous clients.

* We introduce a novel expert-guided fusion mechanism that dynamically captures and fuses
personalized knowledge from heterogeneous clients based on relevance between local
knowledge and global experts, mitigating personalization loss during aggregation.

* We introduce a selective knowledge distillation strategy that selects favorable global knowl-
edge for local model updates to preserve key local model features.

* We conduct extensive empirical validation across diverse benchmarks (CIFAR-100, Tiny-
ImageNet, Flower102), including large-scale scenarios with up to 500 clients and rigorous
ablation studies, demonstrating significant accuracy improvements over state-of-the-art
HeteroFL methods, particularly under high heterogeneity, while maintaining competitive
resource efficiency.

2 RELATED WORK

Federated learning under statistical and architectural heterogeneity (HeteroFL) has garnered signifi-
cant attention. Existing approaches primarily fall into three categories.

HeteroFL with Knowledge Distillation (KD). These methods Sattler et al. (2021); Zhu et al.
(2021a); Song et al. (2024); Yao et al. (2023); Gong et al. (2024); Li & Wang (2019); Ma et al.
(2022); Lin et al. (2020) leverage knowledge distillation, where clients typically train local models
and generate knowledge representations (e.g., soft labels, feature maps) from their private data Jeong
et al. (2018). These representations are aggregated by the server to guide the training of client models
(students) or a global model, avoiding direct parameter sharing. Examples include FedGKD Yao et al.
(2023) and FedIOD Gong et al. (2024). While effective for basic knowledge fusion, a key limitation
arises in personalization: the aggregation process often distills knowledge into a single, potentially
homogenized teacher model. This averaged knowledge may struggle to adequately capture or fuse
the specialized, personalized features required by clients with highly diverse data distributions or
functional roles within the HeteroFL network.

HeteroFL with Lightweight Representations. To reduce communication overhead and handle
architectural diversity, some methods employ lightweight representations instead of full model pa-
rameters for aggregation. One line of work uses prototypes Dai et al. (2023); Tan et al. (2022);
Zhang et al. (2024), where clients upload class prototypes derived from their local data, which are
then aggregated by the server. Another approach involves sharing intermediate feature representa-
tions Huang et al. (2022); Yi et al. (2023; 2024b), allowing clients to contribute learned features
rather than parameters. While these methods significantly reduce communication costs, relying on
such simplified or aggregated representations (prototypes or features) carries the risk of information
bottleneck, potentially losing the fine-grained details crucial for deep personalization on individual
clients. It remains challenging for these compact representations to fully encapsulate the diverse
functionalities and specificities present across a truly heterogeneous client network.

HeteroFL with Model Transformation. This category focuses on aligning heterogeneous model
structures for aggregation. Some methods split models into shared components (e.g., feature extrac-
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tors) and personalized components (e.g., predictors) Collins et al. (2021); Oh et al. (2021); Chen
et al. (2021); Pillutla et al. (2022); Liu et al. (2022); Jang et al. (2022); Liang et al. (2020). Others
attempt to standardize heterogeneous architectures into a common format before aggregation or
matching Diao et al. (2021); Wang et al. (2020; 2024). While enabling collaboration across different
architectures, model transformation often imposes structural constraints, such as requiring a uniform
feature extractor dimension or specific layer types. This can limit the flexibility needed for clients
with genuinely distinct hardware capabilities or highly specialized local tasks, potentially hindering
optimal local adaptation and personalization. The transformation or matching process itself might
also inadvertently discard valuable model-specific information pertinent to a client’s unique role.

In a nutshell, while prior research has made significant strides, existing paradigms often face difficul-
ties in effectively balancing global knowledge fusion with local personalization. Methods based on
KD can risk generating overly generalized guidance, lightweight representations may lack sufficient
granularity for deep personalization, and model transformations can impose restrictive structural
constraints. These limitations hinder the ability to adaptively aggregate diverse personalized knowl-
edge without significant information loss and to subsequently compatibly disseminate relevant global
insights without disrupting local model specialization. These challenges collectively contribute to
the persistent problem of client heterogeneity. To overcome these specific shortcomings, FedFuse
introduces a different approach. Our expert-guided fusion mechanism directly tackles the adaptive
fusion challenge by dynamically identifying and weighting relevant client knowledge via expert gates,
moving beyond simplistic averaging or static representations. Moreover, the compatible personaliza-
tion challenge is addressed by our selective knowledge distillation strategy, specifically designed to
integrate this tailored global knowledge while respecting local model integrity and specificity.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Consider a federated learning setting with K clients, indexed by ¢ = 1,..., K. Each client ¢
possesses a private dataset D, which typically exhibits non-IID characteristics across clients, leading
to statistical heterogeneity. Furthermore, each client maintains a local model M;, parameterized by
;. These models M; can vary significantly in terms of architecture, depth, or capacity (architectural
heterogeneity), reflecting diverse device capabilities and local requirements. The overarching goal
is collaborative training to enhance each client’s personalized model performance on its own data,
rather than converging to a single global model.

Formally, the ideal personalized objective can be conceptualized as minimizing a collective loss
function over the private datasets:

K
{gl}i}(l Zpifi(@'), where  F;(0;) = E(; y)~pr [L(M;(0i57), y)] (1)
==

Here, L is a loss function (e.g., cross-entropy), M;(0;; ) is the prediction of client i’s model, and p;
is a weighting factor (e.g., proportional to |D}| or 1/K).

However, FedFuse does not directly optimize this ideal objective due to the challenges of heteroge-
neous knowledge fusion. Instead, our framework employs a three-stage approach with distinct loss
functions for different training phases:

Local Training: L., Server Fusion: £,, Personalization: £, 2)

The constituent loss terms L., L,, and £, correspond to client local training, server-side expert-
guided fusion, and client-side selective knowledge distillation, respectively. These will be elaborated
in Sections 3.3, 3.4, and 3.5.

A core challenge in HeteroFL is how to effectively fuse heterogeneous client knowledge preserving
personalized features during aggregation. The averaged fusion of global knowledge frequently leads
to dilution or loss of valuable information, consequently degrading the performance of integrated
global knowledge.
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Figure 1: Overview of FedFuse architecture. (I),@) Clients generate logits ¢! using public dataset and upload
them. @ Server’s global MoE model produces logits cl,. @, @ Fusion loss £, updates MoE parameters
using client and global logits. 6) Updated MoE generates refined global logits Ef,. M, ® Clients use 62 for
personalized updates via selective knowledge distillation.

Access to a small, publicly available dataset D? is assumed to facilitate model-agnostic knowledge
fusion (e.g., via logits) without compromising data privacy. This public dataset serves as a common
reference for knowledge representation and is a key enabler for our proposed mechanisms. While this
assumption may limit applicability in scenarios where no suitable public data exists, it is commonly
adopted in federated learning literature and reflects practical scenarios where public datasets (e.g.,
ImageNet for vision tasks) are available for the target domain.

3.2 THE OVERVIEW OF FEDFUSE FRAMEWORK

To address adaptive aggregation and compatible personalization challenges in HeteroFL, we propose
FedFuse. The overall architecture, illustrated in Figure 1, orchestrates cyclical knowledge flow:
from clients to server for fusion, then back to clients for personalized guidance. This framework
comprises three main stages per communication round: (1) Client Local Training and Knowledge
Representation: Clients perform local training on private data D;, then compute output logits on
public dataset D°. These model-agnostic logits, capturing current knowledge state, are sent to the
server. (2) Expert-guided Fusion: The server employs a Mixture-of-Experts (MoE) mechanism
on received client logits. A gating network dynamically selects and weights relevant experts to
process features from DP, producing aggregated global logits that adaptively fuse diverse knowledge
from heterogeneous clients. (3) Selective Knowledge Distillation: The server generates refined
global logits and distributes them to clients. Each client uses these global logits to guide local model
parameter updates via reverse KL divergence, integrating global insights while preserving local
model specificity. This design achieves effective knowledge sharing tailored to diverse client needs,
mitigating model divergence and enhancing personalized performance.

3.3 CLIENT LOCAL TRAINING AND KNOWLEDGE REPRESENTATION

In communication round ¢, each participating client ¢ (from a selected subset Ny C {1,..., K}) first
updates its local model parameters 6! using its private data D7. This local training typically involves
multiple steps of gradient descent:

0 0 = IV By Lol (@),9)] 3)

where fp, is the forward pass of model M;, L. is the cross-entropy loss, and 7 is the local learning
rate.

Subsequently, client i uses fy: to compute output logits on the public dataset D°. The raw output
logits ¢!, from client i for input 2 at round ¢:

¢ty = for €RC, )
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where C' is the number of classes in D”. We apply temperature scaling for better knowledge fusion:
et (x
¢t = softmax (ll()> , 3)
T

where 7 is the temperature parameter (7 = 2.0 in our experiments). The set of logits {ct|x € D"} for
client ¢ is uploaded to the server.

3.4 EXPERT-GUIDED FUSION

Upon receiving logits {ct};c, from participating clients, the server employs an MoE mechanism to
adaptively fuse this knowledge. The server maintains a global model M|, to learn the fusion function,
with the first fully connected layer(s) structured as the MoE layer.

Let 92 denote the parameters of the global model at round ¢. For an input 2 € DY, let 1p9; (z) € Rdin
be the output of the feature extractor 1/)9; of M. w% (z) is fed into the MoE layer, which consists of
E parallel experts (e; : R%» — RY) and a gating network g(-) : R%» — RE. The gating network
computes scores for each expert based on the input features:

9(Wor (x)) = Wytber () + by, (©6)

where W, € RF *din and by, € R¥ are parameters of the gating network. To achieve sparse
activation, which is often preferred in MoE for efficiency and specialization, we employ a top-k
gating strategy(top-k sensitivity experiments in the Appendix E). The gate selects the set £(x)
containing the indices of the k experts with the highest scores in g(¢g: (x)), where k < E. The

routing weights 7; are then computed via softmax over the scores of the selected experts:
exp(g; (Yot (2)))
T (w@t ((E)) — Zzgg(m) exp(gi ("/)95 (x)))’
g
0, otherwise.

if j € E(x), o

This dynamic, input-dependent selection allows the model to route different inputs from D to
potentially different subsets of experts, enabling specialized knowledge processing. Each selected
expert j € £(x) processes the input features:

e (o (x)) = Wjthe: (x) + b, (8)

where W; € RE*din b, € RY are the parameters of expert j. The final MoE output (pre-activation
global logits) is a weighted combination of the outputs from the selected experts:

MoB(vg: () = Y m;(ver (x))e; (Pa: (). ©)
je&(z)
Similar to the client-side processing, we apply temperature scaling to get the global logits:
(MoE(%; (7)) )

¢! = softmax

g (10)

T

The core idea is to train the global MoE model (6,) such that its output distribution ctg optimally

reflects a fusion of the class distributions {c!};cn,. We achieve this by minimizing the average
Kullback-Leibler (KL) divergence Kullback & Leibler (1951) from the client logits to the global
logits over the public dataset and participating clients. The choice of D (P || @) aims to find a Q
(global logits) that is close to the average of Ps (client logits) in terms of information content. The

fusion loss is: .
L, = —— 2D (ct | ). 11
I 2 2T Pl ) "
? tx€D

The KL divergence Hinton et al. (2015) is calculated as:

< P
Dk (P || Q) ZZPCIOgaC- (12)
c=1 ¢
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Algorithm 1 Expert-Guided Fusion

Require: Current global model 93_1, local client logits {ct};e n,, public dataset DP, server epochs
E, global learning rate 7.
Expert-Guided Fusion:
Let 02‘1 represents the global model parameters at round ¢ — 1.
for serverepoche =1,..., F, do
Compute global logits ¢}, = {cf, (x)|z € D"} via Equation 10 using 6}~
Calculate fusion loss £, via Equation 11 using {c] };cx, and ¢}
Update 6" using Equation 13: 0! « 0 ~! — 19V gi-1La
end for
Let 07" « 6},
Compute updated global logits &, = {&} |z € D"} via Equation 14 using 6}

~t ot
return ¢, 99

A A A S i

,_
e

The server updates the global model parameters ¢, using gradients from this aggregation loss:
0} < 0" — 0y Vi La, (13)

where 74 is the server learning rate. Note that the server only needs the client logits ¢!, not the client
model parameters 6!, This part is shown in Alogorithm 1.

3.5 SELECTIVE KNOWLEDGE DISTILLATION

After updating the global MoE model to 9;, the server uses it to generate a refined set of global logits
6; for distribution back to the clients. These are computed using the updated parameters 9; on D?:

MEww) | 14

& = softmax (
g T

Each client i receives this set of global logits ¢, = {¢ |z € D'}. The client then performs a
local update step aimed at incorporating the global knowledge encoded in & while retaining its
personalized features. This is achieved by minimizing a loss function that encourages the client’s
logits ¢! (computed using its current parameters 6?) to align with the received global logits E;. We
employ the reverse KL divergence for this purpose'

L_\Db > Di(@ || ¢h). (15)
z€DY

The choice of reverse KL divergence Dx (Q || P) is intentional and crucial for personalization.
Minimizing Dk (@ || P) encourages P (client logits) to have high probability where @ (global logits)
has high probability, but allows P to maintain its own modes (preserving personalization) where
@ has low probability. This contrasts with minimizing the forward KL divergence D (P Q).
which tends to force P to cover all modes of ), potentially suppressing P’s unique features that are
essential for local personalization. This update step modifies the client parameters:

0 0 VL, 16)

where 7, is the learning rate for the personalization update. 6} becomes the starting point for the next
communication round’s local training on D] . The complete process is summarized in Algorithm 2.

3.6 THEORETICAL ANALYSIS

In this subsection, we provide theoretical insights into the proposed FedFuse framework. We establish
convergence guarantees for the algorithm under standard assumptions commonly used in federated
optimization, demonstrating its stability and convergence properties in the HeteroFL setting. Our
analysis considers both strongly convex and non-convex cases, accounting for the composite loss
structure involving client training (L.), server-side MoE fusion (L,), and personalization updates
(Lp). The detailed theorems, assumptions, and proofs for the convergence analysis are presented in
Appendix C.2.
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Theorem 1 (Convergence for Strongly Convex Case). Under Assumptions 1, 2, 3, and 4, with
appropriate learning rates, FedFuse satisfies:

BIFO) — F(O)) < 3RO — F)] + 22

S ST (L+B+7), a7

where L, B, v are smoothness parameters for L., L., L, respectively, | is the strong convexity
parameter, and o bounds the stochastic gradient variance.

Theorem 2 (Convergence for Non-Convex Case). Under Assumptions I and 3, FedFuse satisfies:

3nLo?

(F(0Y) — F(6%)) + Cp——

2
EIVEE)IT) < .7 (18)

(1=mnL)
4 EXPERIMENTS

Datasets. We evaluate on three CV datasets: CIFAR-100 Krizhevsky (2009), TinyImageNet Le &
Yang (2015), Flower102 Gogul & Kumar (2017), and one NLP dataset: AGNews. These represent
varying complexity levels and inter-class similarity. For statistical heterogeneity evaluation, we use
the Dirichlet distribution with parameter « to partition data among clients.

Model Architectures. To simulate architectural heterogeneity, we utilize eight diverse model
architectures ranging from CNNs to ResNets and MobileNets for CV tasks (Appendix E, Table 7),
and five Transformer architectures for NLP tasks (Appendix E, Table 8). Models are assigned
cyclically from this pool. For homogeneous baselines (HmFL), all clients use Model_1.

Baselines. We compare FedFuse against two groups of baselines: HmFL Baselines (adapted for
personalization): FedAvg McMabhan et al. (2017), Per-FedAvg Fallah et al. (2020), FedProx Yuan &
Li (2022), FedPer Arivazhagan et al. (2019). These are evaluated in the homogeneous setting to assess
personalization capability without architectural heterogeneity. HeteroF L Baselines: FedKD Jeong
et al. (2018), FedProto Tan et al. (2022), FedMRL Yi et al. (2024a), FedTGP Zhang et al. (2024).
These methods are designed to handle architectural and statistical heterogeneity.

Implementation Details. All experiments are implemented using PyTorch 2.1.0 and conducted on
NVIDIA 4090D GPUs. Key hyperparameters (learning rates, epochs, batch sizes, MoE configuration,
etc.) are detailed in Appendix E, Subsection E.2. Unless otherwise specified, results are averaged
over 3 runs with different random seeds. The reported accuracy is the average test accuracy across all
participating clients on their respective local test sets after the final communication round.

4.1 PERFORMANCE EVALUATION

4.1.1 PERSONALIZED ACCURACY COMPARISON

We first compare the final personalized test accuracy of FedFuse against baselines under both
HmFL and HeteroFL settings across varying client numbers (X = 10, 50, 100, 500). The results are
summarized in Table 1 (for K = 10) and Tables 9, 10 in Appendix E (for K = 50, 100, 500).

FedFuse consistently achieves higher average test accuracy compared to all baseline methods across
the three datasets and client scales in the HeteroFL setting. For instance, in the 10-client HeteroFL.
scenario (Table 1), FedFuse surpasses the best performing baseline by substantial margins: 111.1%
on CIFAR-100, 146.7% on Tiny-Imagenet, and 126.7% on Flower102. Similar significant gains are
observed for K = 50 and K = 100. Moreover, FedFuse’s advantage grows with data complexity.
For example, on CIFAR-100, FedFuse outperforms the second-best method by about 10%; on Tiny-
Imagenet, the improvement ranges from 20% to 40%; and on Flower102, it ranges from 10% to 40%.
This stems from FedFuse’s use of the Mixture-of-Experts (MoE) architecture to decouple knowledge
rather than simply aggregating it. By doing so, the model can fully absorb knowledge from different
clients, giving FedFuse a significant edge in complex tasks. We also evaluate the performance on
NLP datasets, where FedFuse achieves a significant improvement of 23.7%. Detailed experimental
results can be found in the Appendix (Table 11).
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Table 1: Comparison on three datasets with 10 clients. The best result is bold, the second is underlined.

Acc(%) Algorithm CIFAR-100 Tiny-Imagenet Flower102

FedAvg McMahan et al. (2017) 31.76 15.82 20.18
Per-FedAvg Fallah et al. (2020) 31.57 26.30 22.33
HmFL FedProx Yuan & Li (2022) 31.78 16.70 19.06
FedPer Arivazhagan et al. (2019) 39.94 31.12 44.31

FedFuse 43.71 (19.4%) 33.64 (18.1%)  49.16 (110.9%)
FedKD Jeong et al. (2018) 35.90 21.95 39.24
FedProto Tan et al. (2022) 33.20 16.93 27.05
HeteroFL FedMRL Yi et al. (2024a) 37.98 22.10 37.68
FedTGP Zhang et al. (2024) 32.71 20.34 41.39

FedFuse 42.22 (111.1%) 32.43 (146.7%) 52.46 (126.7%)

Table 2: Evaluation under non-IID Data (Dirichlet ). The best result is bold, the second is underlined.

. Cifar-100 Flower102
Ace(%) Algorithm =005 a=01 a=05 a=005 a=01 =05
FedKD Jeong et al. (2018) 26.36 16.75 10.88 21.74 18.42 9.5
FedProto Tan et al. (2022) 19.85 18.75 11.18 23.81 19.90 12.53

(lf(l)f)tif;fl]t“s) FedMRL Yi et al. (2024a) 3628  23.97 1401 2095 26.87 13.07
FedTGP Zhang et al. (2024) 2653 1670 11.11 2368 2178 13.85

Ours 4522 3190 21.03 4385  30.56 19.06

FedKD Jeong et al. (2018) 3586 3037 1024  17.82 2671 12.93

Heteropr,  FedProtoTanetal. 2022) 3362 2561 1339 2465 1274 1430
(50 clients)  FedMRL Yietal.2024a) 4000 3091 1276 2044 2632 1290
FedTGP Zhang et al. (2024)  31.14 2593 13.64 1259 27.87 14.33

Ours 4432 3653 2152 5398 3948 23.67

FedKD Jeong et al. (2018) 4138 3590 2335  40.73  39.24 2201

Heterop,  FedProtoTanetal. 2022) 3309 3320 1712 2839  27.05 11.65
(10 clients)  FeAMRL Yietal.2024a) 4530 3798 2406 3926 3768 2223

FedTGP Zhang et al. (2024)  40.88 3271 20.28 47.36 41.39  26.08
Ours 4770 4222 27770 61.27 5246  36.07

4.1.2 CONVERGENCE SPEED

Figure 5 presents the training curves (average test accuracy vs. communication rounds) for the Het-
eroFL setting. FedFuse generally demonstrates faster convergence compared to baselines, exhibiting
a rapid accuracy increase in the early training stages, followed by steady growth. It consistently
outperforms other methods throughout the training process, with its advantage often becoming more
pronounced in the later stages. For instance, observing the curves in Figure 5, on the Tiny-Imagenet
dataset with 50 clients (Figure Se), FedFuse’s accuracy is significantly higher than others by the
middle of training and stabilizes later. Similarly, on the Flower102 dataset with 100 clients (Figure 51),
it maintains the highest accuracy throughout, with its lead over other methods widening over time.
Overall, FedFuse exhibits excellent training speed and convergence properties in the HeteroFL setting.
The corresponding curves for the HmFL setting, showing similar trends of fast convergence for
FedFuse, are provided in Figure 6 (Appendix E).

4.1.3 ROBUSTNESS TO DATA HETEROGENEITY

We evaluate the impact of statistical heterogeneity using the Dirichlet distribution Dir(«) with
a € {0.5,0.1,0.05}. Table 2 shows the performance under these conditions for K = 10, 50, 100.
FedFuse consistently achieves the highest accuracy across all settings, demonstrating superior
robustness. For instance, with 100 clients, FedFuse achieves the highest accuracy of 45.22% on
the CIFAR-100 dataset [for « = 0.05] and 43.85% on the Flower102 dataset [for « = 0.05], both
markedly outperforming other algorithms. This suggests that FedFuse possesses enhanced robustness
and superior performance when dealing with non-IID data. Its relative advantage often widens under
higher heterogeneity (e.g., « = 0.05), supporting the hypothesis that adaptive MoE aggregation is
particularly beneficial when client data differs significantly.

4.2 ABLATION STUDIES

To dissect the contribution of the key components of FedFuse, we perform ablation studies on
CIFAR-100 with K=50, @ = 0.1. We compare the full FedFuse framework against several variants:

w/o MoE: Replaces MoE aggregation with simple averaging of client logits, but keeps the £, update.
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Figure 2: Communication Overhead with 10-Client HeteroFL. Illustrates model-size independence.
w/o L,: Uses MoE aggregation, but removes the final personalization update step (Equation 16).

FedGen Zhu et al. (2021b): A baseline employs a global generator to aggregate logits and cross-
entropy loss for client updates (no MoE, no specific £,,).

The results in Table 3 demonstrate the importance of both components. Removing either MoE or the
L, update results in a noticeable performance drop of 0.56% and 7.2% percentage points, respectively,
compared to the full FedFuse. Both components are necessary to achieve the best performance,
outperforming the simpler LogitsAvg-KD (FedGen) baseline significantly. This validates the design
choices of using adaptive MoE for aggregation and the specific reverse KL loss for personalization.

Table 3: Ablation study on CIFAR100, 50 clients. Table 4: Computation study on CIFAR100
Method Variant oo = 0.1. Accuracy (%) Method  Avg. Client Time (s)  Server Time (s)
FedFuse (Full) 36.53 FedFuse 1.98 1.76
w/o MoE Aggregation 35.97 FedKD 5.15 11.01
w/o Personalized Update £,, 29.33 FedProto 1.18 40.33
FedGen Zhu et al. (2021b) 14.92 FedTGP 1.56 42.87
FedKD Jeong et al. (2018) 30.37 FedMRL 1.16 8.56

Table 5: Time Complexity Analysis

Algorithm FedKD FedProto FedTGP FedMRL Ours
Complexity | OON xC) O(NxC) ONxC? ONxC) O(N xO)

4.3 RESOURCE OVERHEAD ANALYSIS

We analyze the resource usage of FedFuse compared to baselines. Table 5 summarizes the communi-
cation time complexities, with detailed computational complexity analysis provided in Appendix C.1.

Communication Overhead. We measure the total data transferred per round (client uploads +
server downloads) in Megabytes (MB). Since FedFuse only transmits logits, its communication
cost is independent of client model sizes. Figure 2 illustrates the upload cost specifically for K=10.
Compared to other knowledge-fusion methods, FedFuse’s communication is determined by |D°| x C.
We find that FedFuse requires lower communication volume than FedMRL and FedTGP.

Computation Overhead. We measure the average wall-clock time per round with 50 clients and
o = 0.1. Table 4 reports the average time from the client and the server side. Client time heavily
depends on E, and local model complexity L;. Server time depends on Es and MoE complexity. We
observe that FedFuse’s server time is 1.76s, lower than the baselines.

5 CONCLUSION

In this work, we introduce FedFuse, a novel framework designed to tackle the critical issues of person-
alized knowledge loss in HeteroFL. By uniquely combining an Expert-guided Fusion mechanism for
adaptive knowledge aggregation with a selective knowledge distillation strategy for preserving per-
sonalization, FedFuse effectively addresses the limitations of prior methods. Extensive experiments
confirmed FedFuse’s significant accuracy improvements over state-of-the-art HeteroFL baselines,
particularly under high heterogeneity, while demonstrating favorable resource trade-offs. While
FedFuse’s effectiveness has been demonstrated in near-real-world settings, practical deployment on
physical devices and in environments with extremely large models remains untested due to resource
constraints. We will conduct practical deployment in the future work.
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Appendix

USE OF LLM

We used a Large Language Model (LLM) for grammar proofreading and language polishing in this
paper.

A ALGORITHM

Algorithm 2 FedFuse: Selective Knowledge Distillation with Expert-Guided Fusion

Require: Communication rounds 7', client participation fraction p, private datasets {D? } X |, public
dataset DY, initial client models {69} X, , initial global model 92, local epochs E., server epochs
E, learning rates 7, )4, 7, temperature 7.

1: for eachroundt =1,2,...,7T do

2:  Select a subset of clients Ny C {1,..., K}, |[N;| = max(1, |p- K])

3 Client Local Training and Knowledge Representation (in parallel for i € N,):
4 Let@ « 971

5. forlocalepoche =1,...,E. do

6: Update 0, using Equation 3 on D}

7:  end for

8:  Compute local logits ¢! = {ct(x)|z € D} via Equation 4 and Equation 5 using ¢’

9:  Send ¢! to server

10:  Let 6! « 6]

11:  Call Algorithm 1 with 0°~*, {c! }ien,. D, Es, 1y to get & and 6,

12:  Distribute 5tg to clients in IV,

13:  Selective Knowledge Distillation (in parallel for i; € N;):

14:  Receive ¢

15:  Compute personalized loss £, via Equation 15 using E_f] and logits from current 6!

16:  Update local model via Equation 16: 0} < 0} —1,V: L,

17: end for

18: return Final personalized client models {67 } X, (or {67 };cn, if only a subset has the final
update)

B NOTATION

Table 6 summarizes the main notations used throughout the paper.

C THEORETICAL ANALYSIS

This section provides supplementary details for the theoretical analysis discussed in Section 3.6.

C.1 COMPLEXITY ANALYSIS DETAILS
As mentioned in the main text, the time complexity of FedFuse in each communication round ¢
involves several components:
1. Client-Side Computation:
* Local Training: Each of the | Ny| participating clients performs FE. local epochs. Within
each epoch, it processes |Df| samples. Let L; be the average complexity (forward +

backward pass) for one sample on client i’s model M;. The total complexity for local
training across selected clients is approximately O(|Ny| - E.. - max;(|D}| - L;)).

13



Under review as a conference paper at ICLR 2026

Table 6: Notations

Symbol Description

K Total number of clients.

i Index for clients.

N Set of clients participating in round t.

T Total number of communication rounds.

Dy The client 4’s private dataset.

Db The public dataset shared across clients and server.

M;, 0; Local model and its parameters for client 4.

Mg, 0, Global MoE model and its parameters on the server.

fo. (") Forward pass function for client model 4.

Yo, (+) Feature extractor part of the global model M.

C Number of classes in the classification task (dimension of logits).

¢ () Raw output logits from client ¢ for input x at round ¢.

ct Temperature-scaled logits (probability distribution) from client 7 for input x at round ¢.
c Aggregated global logits from server MoE model for input x at round ¢.
65 Updated global logits distributed from server to clients at round ¢.

T Temperature parameter for scaling logits.

7, 7g, Mp Learning rates for local training, server aggregation, and local personalization update.
A L2 regularization coefficient for local training.

E. Number of local training epochs per round.

E, Number of server training epochs per round.

E The total number of experts in the MoE layer.

k The number of active experts selected by the Top-k gating mechanism.
E(x) Set of indices for the top-k active experts for input x.

7 (+) Gating weight for expert j.

e;(-) Output function for expert j.

din Input dimension for the MoE layer (output dimension of /).

L; Computational complexity of one forward/backward pass for client i.
Lg Computational complexity of the global model’s feature extractor ).
Le Cross-Entropy loss function.

La Server-side aggregation loss (based on KL divergence).

L, Client-side personalization loss (based on reverse KL divergence).
Dg(P || Q) Kullback-Leibler divergence from distribution P to Q.

* Logits Generation: Each client computes logits on the public dataset D°. This involves one

forward pass per sample. Complexity is O(|N;| - |D°| - Lifwd), where Lifwd is the forward
pass complexity.

* Personalization Update: Each client computes the loss £, and performs one gradient

update. This involves one forward pass on D® and one backward pass. Complexity is
O(INe| - [D°] - Ly).

2. Server-Side Computation:

* Aggregation Training: The server performs E epochs to update the global MoE model. In
each epoch, it processes |D| samples. Let L, be the complexity of the global model (M)
pass. L, includes the feature extractor (1, complexity Lg) and the MoE layer. The MoE
layer involves computing gating weights (O(d;,, E)), selecting top-k experts, and computing
weighted expert outputs (O(kCd;,,) for linear experts). The backward pass has similar
complexity. Total server training complexity is O(Es - |D| - L,).

* Global Logits Generation: Computing EZ involves one forward pass over D°, complexity
O(D" - L),

3. Communication:

14
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» Upload: | V| clients upload logits for |D°| samples, dimension C. Total size O(|N| - |D?| -
C).

* Download: Server broadcasts global logits &, to | N¢| clients. Total size O(| V| - |Db| - C).

Assuming L; ~ Lf“’d + Lbwd and L, =~ Lf“’d + Lb“’d and often F. > 1, E; > 1. The overall
per-round complex1ty depends heav11y on the relatlve sizes of datasets, local vs server epochs, and
model complexities. The simplified complexity O(N x C') mentioned in the original draft likely
refers only to the communication cost under specific assumptions and neglects computational costs,
which can be substantial, especially local training.

C.2 CONVERGENCE ANALYSIS OF FEDFUSE

In this subsection, we provide a formal convergence guarantee for the proposed FedFuse framework
under standard assumptions commonly used in federated optimization.

Assumption 1 (Smoothness). F' is L-smooth: for all vector 01 and 65,
IVE(61) — VF(02)|| < L|61 — 02]|.
Another form:
F(61) < F(f2)+ < 01 — 05, VF(62) > +§||¢91 — 0>°.

Assumption 2 (Convexity). Assume F is strongly convex with parameter . For any vector 01, 0,
we have:

F(91) > F(92)+ <6 — 927VF(92) > +%H91 — 92”2.
Assumption 3 (Stochastic Gradient Variance Bounded).

B[|VF(0;2,y) - VF(0)|* < o?
Assumption 4 (MoE Boundedness). The gating weights {m;} sum to I (over the selected k experts),
and each expert’s outputs and gradients are uniformly bounded.

C.3 KEY LEMMAS

We establish several lemmas to facilitate the convergence proofs.

Lemma 1. Assume Assumption 1, 2, 3 hold, if learning rate n < < 2L Then the local update on the
client side satisfies:
1 n*Lo*
B[Lc(6;")] < B[Le(65)] — p*nE[)|6f — 67 ]*] + 5 (19)
Lemma 2. Assume Assumption 1, 2, 3, 4 hold, if learning rate ng < QBL; Then:
t+1 ¢ 2 t 2 7736‘72
BILL(05)] < BILa(63)] ~ wn, B0 - 6517 + 7 0)
Lemma 3. Assume Assumption I, 2, 3, when 1, < %
- - - yn2o?
B0 ] < BILy(0)] = w*np EL107 = 071*] + —5— @1
Lemma 4. Assume Assumption I and 3, it follows:
nL L02
EIVL(0:) < BIVL(0)] - (1 — ) BV Lo(64) ) + 57 22)
Lemma 5. Assume Assumption 1, 3, 4, it follows:
27,2
N - nyL ~ nsLo
E[VL,(6;"))] < E[VL,(6})] — np(1 - pT)E[IIVLp(%)HQ] + pT (23)
Lemma 6. Assume Assumption 1, 3, it follows:
L n2Lo?
EVL.(6,")] < EIVL(0)] - n,(1 = B EIVL @017 + 57 e
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C.4 CONVERGENCE ANALYSIS FOR STRONGLY CONVEX CASE
Proof. We start by defining the combined loss function as:
F(0) = Le(6) + La(0) + Lp(0). (25)

Based on Lemma 1, Lemma 2, and Lemma 3, we can infer that the learning rates are equal, i.e.,
1 = 1p = 1)¢. This allows us to combine the results from the individual lemmas.

First, we consider the sum of the expected differences in the loss function over all iterations:

2
oL (L5,

(26)
This inequality provides a lower bound on the sum of the expected differences in the loss function.

ZE F(O"H] > p nZEIIGt 07117 + 1165 — 511> + 1167 — 67 11°] —

t=1

Next, we observe that the sum of the expected differences can also be written as:
Z E[F F(0")] = E[F(0") — F(6"*")] < F(6') — F(6). 27)

This follows from the fact that the expected value of the loss function at the final iteration is less than
or equal to the loss function at the initial iteration.

Combining the two inequalities, we obtain:
2 2

T
* * N N* * o°T
1y Bl10F = 0117 + 116} — 03117 + 1161 — 6;11%] < F(6") — F(6") + 5 (L+B+7). (28)
t=1

This inequality provides a bound on the sum of the squared differences between the current parameters
and the optimal parameters.

Next, we use the strong convexity property of the individual loss functions to get:

EI16 = 6717 < Lo(8)) — Le(67). (29)
S8 = 071> < Ly(01) — Ly(8). (30)
M * *

105 = 05117 < La(0) = La(65). (31)

Summing these inequalities, we get:
M * * N N* *
S U0 = 0711 + 105 — 0511 + 116 — 071|*] < F(6") = F(67). (32)

This inequality provides a bound on the combined squared differences in terms of the combined loss
function.

Using this result, we can bound the sum of the expected differences in the loss function as:

1 no?T
E[F F(0")] < —[F(0*) — F(6")] + L+B+7). (33)
}j ) < g PO = PO + T )
Finally, dividing both sides by 7', we obtain the desired result:
BIF(9") - F(67)] < ——[F(6") - F(6")] + no” (L+B+7) (34)
= 2unT 4p v

This inequality provides a bound on the expected difference in the loss function at each iteration. [J

C.4.1 PROOF OF LEMMA 1

Proof. Firstly, we leverage the strong convexity of L. with parameter p. This implies that the gradient
norm has a lower bound as follows:

IVL(60)] > p2||6F — 07|12 (35)
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Next, by Assumption 3, we can get an upper bound for the expected squared gradient norm:
E(|[VL(0;2,)|*) < L2E[0 - 0[] + 0. (36)

Then, considering the update rule 0t = 0! — 7V L.(0}) and the L-smoothness of L., we have the
following inequality:

L(071) < Lo(0) + (07 — 6,V LL(00) + 51057 — 0P G7)
t w2, L )12
Lo(08) = 1|V Lo(64) | + T2V Lo(681). (38)
Taking the expectation on both sides, we obtain:
2
L

B[L(0;71)] < BIL6)] — nE[|V Le(0)1I°] + 77TE[IIVLC(QDIIQ} (39)

172L0'2

< B[Lc(67)] — 1?0 E[|10F — 07117 +

; (40)

To ensure the desired inequality holds, we need the coefficient of E[||0! — 67]|?] to be non-negative,
which leads to the condition ;% — LTB" > 0. Solving this inequality, we get n < QLL;
O

C.4.2 PROOF OF LEMMA 2

Proof. We start by considering the gradient of the aggregated loss L, for the server parameters ¢,. It
is known that:

E[IVLa?) < BE[0; — 0,1%] + o*. (41)
This inequality provides an upper bound for the expected squared gradient norm of the aggregated
loss.

Next, we analyze the update rule for 6. Given the update rule %! = 0! — 1,V L,(6!) and the
(B-smoothness of L,, we have:

B

La(057) < La(0) + (05" = 05, VLa(65)) + 51165 = 0] (42)
o, TP 2
< La(03) = nllVLa(05)1” + == 1V La(0)1*. (43)
Taking the expectation on both sides, we obtain:
2
g5
E[La(65")] < E[La(8)] = 1o EllIV La(65) %] + == [V La(05)[1%] (44)
1y B0

< E[Lq(8))] — g E[||6F — 03117 + (45)

To ensure the desired inequality holds, we need the coefficient of E[||0; —0; |?] to be non-negative.

3
This leads to the condition ;1 — ﬂ—;“ > 0. Solving this inequality, we get 7y < %2 O

C.4.3 PROOF OF LEMMA 3

Proof. We begin by applying the update rule and the smoothness property of the loss function.
Specifically, for the local update on the client side, we have:

Ly(B™) < Ly(8)) + (B — 6, VL, (8D)) + 11657 - )2 (46)

2
~ ~ ’I’] ’y ~
< Ly(07) = mplVIp (DI + =S IV Ln (0] (47)

Here, the first inequality follows from the y-smoothness of L,,, and the second inequality follows
from the update rule 6! ™' = 6t — 1, VL, (6}).
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Next, we use the strong convexity property of the loss function, which implies that:
IV Ly (BN = 12116} — 67 . (48)

Taking the expectation on both sides of the inequalities in Equation(47) and using the result from
Equation(48), we get:

BIL, (0] < EILy(0)] - mp BUIVL, (8] + % B[V Ly (6] (49)
ﬂ%@%—ﬁ%ﬂ%}ﬁmﬂ+@%,

To ensure the desired inequality holds, we need the coefficient of E[||6! — 87||2] to be non-negative.

This leads to the condition p? — “J7& > 0. Solving this inequality, we obtain 7, < %

(50)

O

C.5 CONVERGENCE ANALYSIS FOR NON-CONVEX CASE

Proof. We start by defining the total loss function as the sum of the client, global, and personal losses:
F(0) = Le(0) + La(6) + Lp(0). (51)

Based on Lemma 4, Lemma 5, and Lemma 6, we can infer that the learning rates are equal, i.e.,

n="mnp="Ng-.

?Iext,‘ we combine the results from the individual lemmas to derive an inequality for the total loss

unction:

nL

BIF(0*)] < BIF(@)] — (1~ “VBIV L6 + [V La (617 + VL, @17 +

(52)
This inequality provides a bound on the expected decrease in the total loss function at each iteration.

Summing this inequality over all iterations, we get:

T

T 27 2
S EIF(OY) - F(0')] > r«—z IvEE P - 2R (53)

This inequality provides a lower bound on the sum of the expected differences in the total loss
function over all iterations.

Rearranging the terms, we obtain:

T
F(0Y) — F(6* 3TnLo?
S mire e < LT STike 64
— n(l— 7) 2(1 - )
2 3TnLo?
< — " (F(0") — F(6")) + ——. (35
T O - e+ 5
Finally, dividing both sides by 7', we get the desired result:
2 3nLo?
E[|F(6)]?] € —=———=(F(8") — F(* : 56
IFEIP) < g oy (FO) — FO) + 570 (56)
This inequality provides a bound on the expected squared norm of the total loss function at each
iteration. O

C.5.1 PROOF OF LEMMA 4

Proof. We start by applying the update rule and the smoothness property of the loss function.
Specifically, for the local update on the client side, we have:

L
Le(0;71) < Le(07) + (VLe(07), 0,71 = 0) + S 10,7 — 6] (57)
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Given the update rule 011 = 07 — nV L.(6; x, y), we substitute this into the above inequality:

2
L
Lo(0011) < Le(6)) + n{VLe(0)), VLe(0); 3, y)) + 77TIIVLC(%;JJ, y)|1?. (58)

Next, we analyze the expected squared gradient norm. By the definition of the gradient and the noise
term, we have:

E[IVL(Ois 2, )1*) = E[IVL(O)I°] + ElIVLA0}; 2, y)l| — I VL0))]] (59)
< E[IVLe(0)IP] + 0. (60)

Taking the expectation on both sides of the inequality in Equation(58) and using the result from

Equation(60), we get:
2
L

E[VL(07)] < BIL(0)] — nEIVL0)) ) + L2 (BIVLOD)IP + o) (1)

’172[/0'2
5

< BIVL.(0%)] - n(1 - B[V L.6))?) +

5 (62)

O

C.5.2 PROOF OF LEMMA 5

Proof. The proof for Lemma 5 follows a similar structure to Lemma 4, focusing on the personal loss
function L,,. We start by applying the update rule and the smoothness property of the loss function.
Specifically, for the personal update on the client side, we have:

N _ I L - N
Lp(0;1) < Lp(07) + (VLp(09), 07" = 07) + 107+ = 07 (63)
Given the update rule 8! = 0% — 1,V L, (6%; z,y), we substitute this into the above inequality:

2
2

Next, we analyze the expected squared gradient norm. By the definition of the gradient and the noise
term, we have:

E[|VL, (0% 2,9)|*] = E[|IVLy(09)]%] + E(IV Ly (0% 2, )| — VL, (61)]1?] (65)
< E[|VL,(0D)]°] + o> (66)

Ly(0;"") < Ly(07) + mp{V Ly (67), VLp(05; 2,9)) + —2= IV Ly (053 2, ). (64)

Taking the expectation on both sides of the inequality in Equation(64) and using the result from
Equation(66), we get:

~ ~ ~ 2T ~
EIVL05)] < BlLy 0] - BV L, @) + 2= (BIVL, @)% + %) (6]
< BIVL ()] - ny(1 - L) B9 L, @)+ 2T (68)
O

C.5.3 PROOF OF LEMMA 6

Proof. The proof for Lemma 6 focuses on the aggregated loss function L,. We start by applying the
update rule and the smoothness property of the loss function. Specifically, for the global update on
the server side, we have:

L
La(05™") < La(0)) + (VLa(65), 05" — 05) + 511057 — 0] (69)
Given the update rule 6! = 0! — 1,V L, (6!; z,y), we substitute this into the above inequality:
t41 t ¢ t L t 2
La(05") < La(05) + 19V La(0g), VLa (b 2,y)) + =51V La(b; 2, y) I (70)
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Next, we analyze the expected squared gradient norm. By the definition of the gradient and the noise
term, we have:

B[V La(0g; 2, y)[I*)

E[|VLa(0)11?] + E[IVLa(0%: 2, y) || — |V La(65)]|%] (71)
< E[[VLa(6)]1%] + o°. (72)

Taking the expectation on both sides of the inequality in Equation(70) and using the result from
Equation(72), we get:

2
BV Lo(05)) < EILo(0l)] — ny BV @] + "2 (VL0 4 0%) 73)
2 0.2
< BIVL0)] 1,1~ 22y v 0)7) + T 74

O

D DISCUSSION

In this work, we address the challenge of client heterogeneity in heterogeneous federated learning.
To overcome these limitations, we propose FedFuse. FedFuse introduces a server-side Expert-
guided Fusion mechanism that uniquely facilitates adaptive knowledge fusion by dynamically gating
and weighting heterogeneous client knowledge contributions, moving beyond prior static schemes.
Complementarily, an elaborately designed selective knowledge distillation strategy allows clients to
assimilate global knowledge without blind imitation, thereby preserving crucial local model features
and mitigating detrimental model divergence. The effectiveness of our approach is supported by
theoretical analysis and extensive experiments conducted on various datasets and models for computer
vision tasks.

The limitations still remain. While FedFuse’s effectiveness has been demonstrated in near-real-world
settings, practical deployment on physical devices and in environments with extremely large models
remains untested due to resource constraints. Real-world implementation may uncover additional
challenges or limitations, providing further insights into the system’s scalability and efficiency.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 MODEL SETTINGS

Under the model-heterogeneous (HeteroFL) setting, we employ eight distinct model architectures for
collaborative training across clients, simulating diverse device capabilities. The specific architectures
assigned to clients depend on the total number of clients K. For experiments with i = 10, 50, 100,
models are assigned cyclically from the list below. In the model-homogeneous (HmFL) baseline
experiments, all clients utilize the ‘Model_1" architecture for fair comparison of personalization
algorithms without architectural confounding. The detailed model configurations used in the HeteroFL.
setting are provided in Table 7.

Table 7: Model Configurations used in Heterogeneous Experiments for CV Tasks.

Name  Base Architecture Key Features Layers Params.
Model-1  Simple CNN 2 Conv layers, 3 FC layers 5 ~3.2M
Model 2 ResNetl8 BasicBlock, [2,2,2,2] layers 18 ~11.2M
Model_3 ResNet34 BasicBlock, [3,4,6,3] layers 34 ~21.3M
Model 4 ResNet50 Bottleneck, [3,4,6,3] layers 50 ~23.5M
Model.5 ResNetl01 Bottleneck, [3,4,23,3] layers 101 ~42.5M
Model_ 6 ResNetl152 Bottleneck, [3,8,36,3] layers 152 ~58.2M
Model 7  GoogleNet Inception modules 22 ~6.8M
Model 8 MobileNetV2 Linear Bottlenecks, Depthwise Separable Conv 53 ~3.5M

Homo.  Simple CNN 2 Conv layers, 3 FC layers 5 ~3.2M
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Table 8: Model Configurations used in Heterogeneous Experiments for NLP Tasks.

Name  Model Architecture Key Features Params.
Model_1  Transformer 1-head self-attention, 1 FEN ~4.12M
Model.2 Transformer 2-head self-attention, 2 FFN ~4.14M
Model_3 Transformer 4-head self-attention, 4 FFN ~4.18M
Model 4 Transformer 8-head self-attention, 8 FFN ~4.26M
Model 5 Transformer 16-head self-attention, 16 FFN  ~4.42M

Table 9: Comparison with the SOTA methods on three datasets in 50 clients.

Acc(%) Algorithm CIFAR-100 Tiny-Imagenet Flower102

FedAvg 17.57 14.38 22.81
Per-FedAvg 28.08 25.49 41.52
HmFL FedProx 18.11 14.18 21.66
FedPer 30.51 26.42 47.86
FedFuse 35.33 (115.7%) 32.11 (121.5%) 48.95 (12.3%)
FedKD 30.37 18.58 26.71
FedProto 25.61 15.46 12.74
HeteroF.  FedMRL 3091 16.12 26.32
FedTGP 25.93 25.13 27.87

FedFuse 36.53 (118.2%) 32.68 (126.8%) 39.48 (141.6%)

E.2 IMPLEMENTATION DETAILS

All experiments were conducted using PyTorch version 2.1.0 on NVIDIA 4090D GPUs with CUDA
12.1. Key hyperparameters included:

e Optimizer: Adam for both client and server updates.

* Client Local Training Learning Rate (n): 0.001

* Server Aggregation Learning Rate (7),): 0.001

* Client Personalization Update Learning Rate (n,,): 0.001

e Local Epochs (E.): 1

» Server Epochs (E;): 1

* Batch Size (Local Training): 64

» Batch Size (Server Aggregation / Local Update on DY): 64

* Temperature (7): 2.0

* MoE Experts (£): 100 for K=100, 50 for K=50, 10 for K=10
* MoE top-k (k): 40 for K=100, 20 for K=50, 4 for K=10

¢ Communication Rounds (77): 100

* Client Participation Rate (p): 0.1 for K=100, 0.2 for K=50, 1.0 for K=10
* Public Dataset (D?): A subset of the corresponding dataset

» Data Heterogeneity (« for Dirichlet): As specified in Table 2 (0.05, 0.1, 0.5). For IID
experiments, data was shuffled and distributed uniformly.

Baseline implementations were based on publicly available codebases where possible, adapted to the
HeteroFL setting.

E.3 ADDITIONAL RESULTS FOR ACCURACY COMPARISON

Tables 9 and 10 present the detailed accuracy comparisons on the three datasets for scenarios with 50
and 100 clients, respectively, complementing Table 1 in the main text. Figure 6 illustrates the training
convergence curves under the model-homogeneous setting, serving as a baseline comparison for
the heterogeneous results shown in Figure 5. As a supplement to the experimental results, Table 11
provides detailed outcomes on NLP datasets.
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Table 10: Comparison with the SOTA methods on three datasets in 100 clients.

Ace(%) Algorithm CIFAR-100 Tiny-Imagenet Flower102

FedAvg 11.30 10.44 14.15
Per-FedAvg 20.38 20.18 35.14
HmFL FedProx 11.23 13.10 14.53
FedPer 28.40 23.15 38.05
FedFuse  29.80 (14.9%) 33.44 (144.4%) 41.95 (110.2%)
FedKD 16.75 13.28 18.42
FedProto 18.75 12.04 19.90
HeteroFL  FedMRL 23.97 11.39 26.87
Fed TGP 16.70 26.88 21.78

FedFuse  31.90 (133.1%) 30.98 (122.5%) 30.56 (113.7%)

Table 11: Comparison with the SOTA methods on AGNews in 50 clients.

Algorithm FedKD FedProto FedMRL FedTGP Ours
Acc(%) 94.80 77.68 94.82 94.76 96.11(123.7%)

E.4 ADDITIONAL RESULTS FOR ABLATION STUDIES

The absolute accuracy improvement from MoE may appear marginal, but the primary contribution of
MOoE resides in dynamic fusion and selective integration of heterogeneous knowledge, rather than
direct enhancement of global accuracy (Table 12). Its advantages manifest in: 1) Stability under
high heterogeneity: In extreme non-IID settings (o« = 0.1), MoE reduces inter-client variance by
40.36% compared to average aggregation (w/o MoE Aggregation). 2) Accuracy improvement for
low-frequency clients: MoE enhances accuracy by 13.59% for clients with infrequent aggregation
participation.

Table 12: Performance Comparison.

Model Client Accuracy Variance Low-frequency Client Accuracy(%)
FedFuse 18.03 (140.36) 29.49 (113.59)
w/o MoE 30.23 25.96

E.5 ADDITIONAL RESULTS FOR RESOURCE OVERHEAD

We have conducted additional quantitative analysis comparing our method (Ours) with its ablated
version that removes the MoE component (denoted as w/o MoE). The FLOPs incurred by the MoE
module are modest, largely due to our use of a top-k routing mechanism that activates only a subset
of experts per forward pass (Table 13). Memory consumption remains well within feasible limits,
even with increasing model size or expert count(Table 14).

E.6 SENSITIVITY EXPERIMENTS

We conducted a sensitivity analysis on the top-k hyperparameters, with detailed visualizations
provided in Figure 3.

We set the total number of experts to match the number of clients, and set the top-k is equal to the
40% of experts number, which offers the maximum personalization capacity—each client can, in
theory, have a dedicated expert. However, to ensure computational and memory efficiency, our gating
network adopts a top-k sparse routing strategy, where only a subset of experts is activated for each
client in each round. As illustrated in Figure 3, activating 40% of the total experts per round (i.e., k =
0.4 x total experts) achieves the best trade-off between performance and efficiency.

We have also conduct an additional sensitivity analysis on the distillation temperature parameter 7
used in the reverse KL divergence loss (Table 15). Specifically, we vary 7 in a reasonable range
e.g.,0.5,1.0,2.0,5.0 and measure the resulting performance across multiple client models.
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Table 13: Memory Comparison.

Methods | FLOPs  Memory
FedFuse 100G 808.08MB
w/o MoE | 99.1G  726.41MB

Table 14: Memory-client Numbers Results.

Client Numbers 10 20 50 100 200 500
Memory(MB) 680.2 707.23 808.08 864.95 902.43 1958.63

Difference Value

3 9 10

) Nursnber :Jf Ex7pert '
Figure 3: Difference Accuracy on different number of selected experts

Table 15: Time Complexity Analysis

Temperature 0.5 1 2 3 4 5
Accuracy(%) | 33.56 40.35 4222 3922 38.84 3475

The performance of our method remains stable over a broad range of 7 values, indicating robustness
to calibration variations. When 7 is set to a moderate value (e.g., 7 = 2.0), the global logits are
sufficiently softened, reducing the impact of overconfidence and improving the alignment with
personalized local distributions. Lower 7 values tend to retain sharper (and potentially overconfident)

global predictions, slightly degrading performance, while excessively high 7 values dilute the
knowledge transfer.

These findings suggest that our reverse KL-based distillation mechanism is not overly sensitive to
global model calibration, and that appropriate temperature tuning (e.g., 7 € [1.0, 2.0]) can mitigate
overconfidence issues in global logits.

E.7 SCALABILITY WITH CLIENT NUMBERS.
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s FedProto = FedProto
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o
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(a) CIFAR-100 (b) Flower102

Figure 4: Scalability: Accuracy vs. Number of Clients (K) on CIFAR-100 and Flower102 (HeteroFL Setting).

Figure 4 illustrates how the final average accuracy of different HeteroFL algorithms scales as the
number of clients increases from K = 10 to K = 500. FedFuse exhibits greater robustness compared
to baselines. For instance, on CIFAR-100, while other algorithms show a decline in accuracy with
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more clients, FedFuse exhibits a more gradual decrease. On Flower102, FedFuse consistently
achieves the highest accuracy across all client numbers. This highlights the robustness and scalability

of FedFuse in federated learning scenarios.
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Figure 5: Training accuracy curves for various algorithms in heterogeneous federated learning (HeteroFL) across
datasets and client numbers K.
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Figure 6: Training accuracy curves for various algorithms under the homogeneous federated learning setting
(HmFL) across different datasets and client numbers (K). These serve as a baseline for evaluating personalization
methods when architectural heterogeneity is absent.
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