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Abstract

Recently developed multimodal pretrained models can encode rich world knowl-
edge expressed in multiple modalities, such as text and images. However, the
outputs of these models cannot be integrated into algorithms to solve sequential
decision-making tasks. We develop an algorithm that utilizes the knowledge from
the pretrained models to construct and verify controllers for sequential decision-
making tasks and to ground these controllers to task environments through visual
observations. In particular, the algorithm constructs an automaton-based controller
that encodes the task-relevant knowledge extracted from the pretrained model. It
then verifies whether the knowledge encoded in the controller is consistent with
other independently available knowledge, which may include abstract informa-
tion on the environment or user-provided specifications. If this verification step
discovers any inconsistency, the algorithm automatically refines the controller to
resolve the inconsistency. Next, the algorithm leverages the vision and language
capabilities of pretrained models to ground the controller to the task environment.
We demonstrate the algorithm’s ability to construct, verify, and ground automaton-
based controllers through a suite of real-world tasks.

1 Introduction

The rapidly emerging capabilities of multimodal pretrained models, also known as foundation models,
in question answering, code synthesis, and image generation offer new opportunities for autonomous
systems. However, a gap exists between the text-and-image-based outputs of these models and
algorithms for solving sequential decision-making tasks. Additional methods are required to integrate
the outputs of these foundation models into autonomous systems that can perceive and react to
an environment in order to fulfill a task. Additionally, it is hard, if not impossible, to formally
verify whether autonomous systems implementing such foundation models satisfy user-provided
specifications.

Towards closing the gap between foundation models and sequential decision-making algorithms, we
develop a pipeline that integrates the outputs of foundation models into downstream design steps,
e.g., control policy synthesis or reinforcement learning, and provides a systematic way to ground the
knowledge from such models. Specifically, we first develop an algorithm named LLM2Automata to
construct automaton-based controllers representing the knowledge from the foundation models. It
queries the foundation model to obtain text-based task knowledge, parses the text to extract actions,
and defines a set of rules (grammar) to transform these actions into a finite state automaton (FSA).

The automaton-based representations can be formally verified against knowledge from other indepen-
dently available sources. This verification step ensures consistency between the knowledge encoded
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in the foundation model and the knowledge from other independent sources. If the verification
step fails, we present a procedure to automatically refine the controller to resolve any potential
inconsistencies. The independently available knowledge may be explicitly given by the user in an
automaton-based form that is compatible with the verification step, or it may be provided in textual
form (e.g., user manuals, online information, or natural-language descriptions). In the latter case, we
develop an algorithm Text2Model that automatically builds such automaton-based representations
encoding the text-based independently available knowledge.

We then propose a method Automata2Env that leverages the multimodal capabilities of the foundation
models, i.e., simultaneous vision and language understanding, to ground these controllers through
visual perception. Automata2Env collects visual observations and uses the vision and language
capabilities of the employed foundation model to evaluate the truth values of conditions from the
controller. The controller then uses these truth values to select its next action.

We demonstrate the algorithms’ capabilities on sequential decision-making tasks through a variety of
case studies (e.g., cross the road). The examples show the algorithms’ ability to construct verifiable
knowledge representations and to ground these representations in real-world environments through
visual perceptions.

2 Related Work

Formal Representations of Textual Knowledge. Many works have developed methods to construct
symbolic representations of task knowledge from natural language descriptions. Several works
construct knowledge graphs from textual descriptions of given tasks [West et al., 2022, Rezaei and
Reformat, 2022, He et al., 2022], or analyze causalities between the textual step descriptions and
build causal graphs [Lu et al., 2022]. However, the graphs resulting from these works are not directly
useful in algorithms for sequential decision-making, nor are they formally verifiable. Another work
builds automaton-based representations of task-relevant knowledge from text-based descriptions
of tasks Yang et al. [2022]. In contrast with Yang et al. [2022], we not only generate automaton-
based representations but also ground the generated representations to the task environment through
image-based perceptions.

Foundation Models in Sequential Decision-Making. A work [Lu et al., 2023] generates static
high-level plans and matches them to the closest admissible action. Some other works [Huang et al.,
2022, Lin et al., 2023, Liu et al., 2023a, Singh et al., 2023] generate zero-shot plans for sequential
decision-making tasks from querying generative language models. These works require a set of
pre-defined actions, which limit their generalization capability. Another work [Vemprala et al., 2023,
Ichter et al., 2022] uses multimodal foundation models to generate executable code or API for robots
based on visual perceptions from the environment. These works lack a procedure to ensure the
correctness or safety of their generated plans or executable actions. In contrast, the automaton-based
representation we constructed enables others to formally verify the plans against some mission or
safety specifications. Additionally, we provide automatic procedures to refine the plans to ensure the
specifications will eventually be satisfied.

3 Preliminaries

Multimodal Pretrained Models. Multimodal pretrained models, also known as foundation models,
are capable of processing, understanding, and generating data across multiple formats, such as images,
text, and audio. These models are pretrained on large training datasets, and they have demonstrated
strong empirical performance across a variety of tasks, such as question-answering and next-word
prediction, even without further task-specific fine-tuning Brown et al. [2020].

The Generative Pretrained Transformer (GPT) series of models [OpenAI, 2023, Brown et al., 2020]
consists of the most well-known multimodal pretrained models that can generate natural language or
other data formats. In addition to GPT, pretrained models such as PaLM [Chowdhery et al., 2022],
BLOOM [Scao et al., 2022], Codex [Chen et al., 2021], and Megatron [Smith et al., 2022] also have
the capability of generating outputs in natural language or other formats. Language generation is
the core capability of these models, which we will use in the rest of the paper. Hence we explicitly
denote them as Large-scale generative language models (GLMs).
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Vision-language models such as CLIP [Radford et al., 2021] and the Segment Anything Model
[Kirillov et al., 2023] are another type of multimodal pretrained model. CLIP takes an image and a
set of texts as inputs and measures the image-text consistency. The Segment Anything Model can be
used for object detections, which take an image and a set of words that describe objects and classify
whether the objects appear in the image.

Finite State Automaton. A finite state automaton (FSA) is a tuple A = ⟨Σ,Γ, Q, q0, δ, ω⟩ where
Σ is the input alphabet (the set of input symbols), Γ is the output alphabet (the set of output symbols),
q0 ∈ Q is the initial state, δ : Q×Σ×Q→ {0, 1} is the transition function, and ω : Q×Σ×Q→ Γ
is the output function.

We use P to denote the set of atomic propositions, which we use to define the input alphabet, Σ := 2P .
In words, any given input symbol σ ∈ Σ consists of a set of atomic propositions from P that currently
evaluate to True. A propositional logic formula is based on one or more atomic propositions in P . A
transition from qi to qj exists if δ(qi, φ, qj) = 1, the current state is qi, and the propositional logic
formula φ is true. Note that we define the FSA transitions to possibly be non-deterministic—mulitple
transitions are possible under the same input symbol, from a given FSA state.

Controllers and Models In this work, we refer to the automaton-based representation of task
knowledge as a controller: a system component responsible for making decisions and taking actions
based on the system’s state. A controller is represented as mapping the system’s current state to
an action, which can be interpreted as a control input or a setpoint. Mathematically, we use an
FSA ⟨Σ,Γ, Q, q0, δ, ω⟩ to represent the controller, whose input alphabet Σ indicates all possible
observations of the environment and output alphabet Γ indicates all possible actions. We additionally
allow for a “no operation” action ϵ ∈ Γ.

The controller’s goal is to adjust the control input so that the system’s state evolves in a way that
satisfies externally provided requirements or properties. These requirements or properties are often
specified using formal languages, such as linear temporal logic (LTL) [Biggar and Zamani, 2020].

A model is a transition system that may represent either the dynamics of the task environ-
ment, or knowledge from other independent sources. We formally define a model as M :=
⟨ΣM,ΓM, QM, δM, ωM⟩, which consists of input alphabet ΣM := 2PM is a set of input symbols,
where PM is defined as the actions. QM is a finite set of states, δM : QM × ΣM ×QM → {0, 1}
is a non-deterministic transition function, and ωM : QM → ΓM is a labeling function, where
ΓM = 2P and P is a set of atomic propositions representing conditions of the environment.

4 Task Controller Construction, Refinement, and Grounding

We develop an algorithm, LLM2Automata, that takes a brief task description in textual form from
the task designer and returns an FSA representing the task controller that can be verified against
specifications given by the task designer.

We then design a verification-refinement procedure for the controller constructed through
LLM2Automata. We first obtain a model representing the dynamics of the task environment, or
other side information from external knowledge sources other than the GLM. This model could be
created by a human designer, or it can be automatically constructed from the textual information
contained in external knowledge sources such as websites, operation manuals, blog posts, or books.
We present the algorithm for such automatic construction in Section B.1 below. Next, we verify
whether the controller, when implemented against the model, satisfies the user-defined specifications.
If the verification step fails, we use the verification outcomes, e.g., counter-examples, to refine the
controller until the controller passes the verification step.

4.1 Controller Construction

The algorithm LLM2Automata takes a brief text description of a task and constructs an
FSA to represent the controller of the given task. Specifically, the algorithm sends
the text description as the input prompt (in blue) to a GLM and obtains the GLM’s
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Figure 1: Demonstration of constructing, verifying, and iteratively refining the FSA-based controller
of a given task.

response (in red), which is a list of steps for achieving the task in textual form:
1 Steps for task description
2 step_number_1. step description
3 step_number_2. step description
4 ...

The algorithm uses the semantic parsing method introduced in GLM2FSA [Yang et al., 2022] to
parse each step description into verb phrases (VP) and connective keywords. A list of pre-defined
keywords is provided in Table 1. A verb phrase consists of a verb and its noun dependencies. Each
step corresponds to a state in the FSA. Meanwhile, each verb phrase VP in the step description
represents an action, and the algorithm queries the GLM to extract the precondition and effect of this
action in the form of Planning Domain Definition Language (PDDL):

1 Define an action "action name" in PDDL
2 Action: action name
3 Precondition: a set of propositions
4 Effect: a set of propositions

We use the extracted verb phrase VPi to define the action name, and we use VPC
i and VPE

i to
denote the precondition and effect of the action, respectively. Then, the algorithm follows the rules
illustrated in Table 1 to transform natural language into propositions or automaton transitions. Each
step description is translated into a state in the FSA and a set of outgoing transitions from this state.

We note that in contrast to the GLM2FSA algorithm presented in Yang et al. [2022], we query the
GLM for the preconditions and effects of each action and encode them into the constructed controller.
These preconditions and effects are descriptions of the task environment prior to and after taking
some actions. This explicit representation of the actions’ preconditions and effects is required for the
subsequent methodology we propose to ground the constructed automaton-based controllers to their
task environments via image-based observations, described in Section 4.3.

4.2 Verification and Refinement

After constructing the controller, users can verify the controller against other independently available
knowledge, which may include abstract information on the environment or user-provided specifica-
tions. This verification provides a formal way of checking the “correctness" of the controller—whether
the knowledge encoded in the controller is consistent with the external knowledge. By doing so, we
use a model to encode the external knowledge.

A model is a transition system that encodes the dynamics of the task environment or the task-relevant
knowledge from external knowledge sources. If we obtain an automaton-based model, we can use
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Natural Language Grammar Formal Representation Example

VP1 and VP2
VP1∧ VP2 [green light] [and] [no car]

no/not VP1 ¬ VP1 [no] [car]
if VP1, VP2.
VP2 if VP1

qi qj
(VPC

2 , VP2)
(¬VPC

2 , ϵ)
[if] [green light], [cross]

wait VP1 VP2

VP2 after VP1
qi qi+1

(VPE
1 ,VP2)

(¬VPE
1 , ϵ) [wait] [green light] [cross]

VP1 qi qi+1
(VPC

1 ,VP1)(¬VPC
1 , ϵ)

[cross road]

Table 1: Rules to convert natural language grammar to formal representations. The keywords that
define the grammar are in bold. The complete grammar table is in the Appendix.

the model directly for the verification steps. However, in many cases, external knowledge is only
available in textual form, such as websites and operation manuals. Again, such textual information is
not formally verifiable. To address this problem, we develop an algorithm named TEXT2MODEL (as
presented in Algorithm 1 in the Appendix) that automatically constructs a model that encodes the
textual information from external sources.

Once we have the controller and the model, we use the model to formally verify whether the controller
satisfies user-provided specifications and design procedures to refine the controller if the verification
step fails. We additionally present an automatic refinement method that makes more explicit use of
the model.

Automated Verification. In the verification procedure, we build a product automaton P = M⊗C
describing the interactions of the controller C with the model M. We define the product automaton
in the Appendix.

Then, we obtain a specification Φ expressed in linear temporal logic from the task designer or
whoever wants to verify the controller. We run a model checker (e.g., NuSMV [Cimatti et al., 2002])
to verify if the product automaton satisfies the specification,

M⊗C |= Φ. (1)

We verify the product automaton against the specification for all its possible initial states. If the
verification fails, the model checker returns a counter-example, which is a sequence of states of the
product automaton (p1, q1), (p2, q2), ... where pi ∈ QM, qi ∈ Q.

If the verification fails, we iteratively refine the controller until the specification holds for all the initial
states. The refinement procedure starts from the counter-example returned by the model checker and
eventually produces a refined controller that will never violate the specification.

Automatic Refinement to Resolve Inconsistencies. Once we obtain a counter-example, we use
the model to synthesize a new FSA that represents a sub-controller. This automatic refinement is
designed to ensure the liveness of the controller, i.e., some goals will be achieved eventually.

Specifically, we run the model checker on the model against the negation of the specification and set
the initial state to the first state in the counter-example. Mathematically, the model checker verifies

M |= ¬Φ. (2)

The model checker returns a counter-example Q = {p1, ..., pn} to the negated specifications, which
may be interpreted as an example that satisfies the specification. This automatic refinement is feasible
only if the length of Q is finite. This counter-example is a sequence of states pi from the model. Such
state sequence can be converted into a trajectory T = (p1, a1), ..., (pn, an), where pi ∈ 2P are the
state labels and ai ∈ ΣM are the input symbols. We construct an FSA that has an identical number
of states as the number of steps in Q. The states for the new FSA are qi for i ∈ [0, ..., |Q|]. The
transition function of the FSA takes pi ∈ 2P as input symbols and adds a transition from qi−1 to qi.
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The label function takes the states and input symbols (qi−1, pi, qi) and outputs ai ∈ ΣM. We have
now constructed an FSA representing the desired sub-controller.

Next, we merge the new sub-controller into the original controller. We begin by creating a “no
operation" transition whose input symbols are the labels of the first state in the negated counter-
example. Then, we modify the input of the self-transition in the controller’s initial state to the
conjunction of the negations of the input symbols of its outgoing transitions. Finally, if the last state
of the sub-controller does not have any outgoing transitions, we add a “no operation" transition from
it to any of the sink states in the controller. Note that a sink state is a state that can only transit to
itself. Now, the controller and the sub-controller together form a refined controller.

The details of the refinement procedure are in Algorithm 2 in the Appendix. We iteratively repeat this
verification and refinement procedure until the specification is satisfied for all the initial states.

4.3 Grounding and Perception

We develop a method named Automata2Env to ground the controller to the real-world task environ-
ment. Automata2Env takes visual observations from the task environment and uses a vision-language
model to determine the truth values of the atomic propositions that are relevant to the conditions
specified in the controller.

To operate in the task environment, an agent starts from the initial state of the controller. The
agent collects all the propositions P from the controller and gets an image observation from the
task environment. It then feeds the image and all the propositions into a vision-language model.
Automata2Env requires vision-language models that can output normalized scores indicating how
each proposition matches the image (e.g., CLIP [Radford et al., 2021]). We refer to such scores as
confidence scores, which are commonly provided as outputs of vision-language models. A higher
score means the vision-language model is more confident that the context of the proposition is
within the content of the image. The algorithm incorporates these confidence scores to evaluate the
propositions.

Specifically, the algorithm takes an atomic proposition in textual form, a vision-language model that
can return confidence scores, and numerical thresholds t as inputs. Recall that an input symbol is a
set of atomic propositions. Then, the algorithm evaluates an atomic proposition and assigns one of
the values true or false. Let the confidence score of an atomic proposition AP be c, and we assign
AP = true if c ≥ t and AP = false otherwise.

After evaluating the set of atomic propositions, the agent chooses one transition whose input sym-
bol (which itself is a logical formula over the atomic propositions) evaluates to true and takes
corresponding actions.

5 Empirical Demonstration

We illustrate the LLM2Automata algorithm and the grounding method Automata2Env with a proof-
of-concept example. We present the outputs of the algorithm step by step to show how it constructs,
verifies, and refines the task controller. We also collect image observations from real-world envi-
ronments to demonstrate the controller’s behaviors in realistic deployment settings. We use the
current state-of-the-art language model GPT-4 [OpenAI, 2023] and Grounded-Segment-Anything
(Grounded-SAM) [Kirillov et al., 2023, Liu et al., 2023b] to produce the results in this section.

5.1 Cross Road Example

We start the demonstration on a daily life task: cross the road. In this example, we construct a
controller that can handle the crossing-road task both at the traffic light and without a traffic light.

Controller Construction. First, we query GPT-4 for the steps of crossing the road at the traffic
light and obtain a list of steps in textual form:

1 Steps for "cross the road at a traffic light"
2 1. Approach the pedestrian crossing.
3 2. Wait for the traffic light to turn green.
4 3. Cross the road.
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000
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010

001

110
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ϵ
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ϵ
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ϵ

ϵ
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Figure 2: Transition system that represents the environment of the “crossing road at the traffic light"
task. Transitions in violet and orange represent the transitions with actions “approach pedestrian
crossing" and “cross-road," respectively. The label on the state indicates the value of propositions
(“at PC," “green," “at other side"). For instance, 000 indicates ¬at PC∧¬green∧¬at other side and
010 indicates ¬at PC ∧ green ∧ ¬at other side.

q1start q2

q3q4

(at PC, ϵ)

(¬ at PC,
“approach PC")

(¬ green, ϵ)

(g
re

en
, ϵ

)

(¬ green ∨¬ at PC, ϵ)

(green ∧ at PC,
“cross road")

(True, ϵ)

Automatic
Controller
Refinement

q1start q2 q3 q4

q5

(at PC ∧ other side, ϵ)

(¬ at PC,
“approach PC")

(¬ green, ϵ)

(green, ϵ)

(¬ green ∨¬ at PC, ϵ)

(green ∧ at PC,
“cross road")

(True,
ϵ)

(at PC ∧¬
green ∧¬

other side, ϵ)
(green ∧ at PC ∧¬ other side,

“cross road")

(¬ green ∨¬ at PC ∨ other side, ϵ)

(at PC ∧ green ∧¬ other side, “cross road")

Figure 3: Controllers for the “crossing the road at a traffic light" task before (left) and after (right) the
automated refinement procedure.

We parse the steps to extract the keywords and verb phrases and query GPT-4 again to define the verb
phrases in PDDL and extract the preconditions and effects:

1 Define an action "approach pedestrian crossing" in PDDL
2 Action: Approach_pedestrian_crossing
3 Precondition: (not (at_pedestrian_crossing))
4 Effect: (at_pedestrian_crossing)
5
6 Define an action "Traffic light turn green" in PDDL
7 Action: Traffic_light_turn_green
8 Precondition: (not (traffic_light_is_green))
9 Effect: (traffic_light_is_green)

10
11 Define an action "cross road" in PDDL
12 Action: Cross_road
13 Precondition: (traffic_light_is_green) (at_pedestrian_crossing)
14 Effect: (at other_side)

We follow the grammar in Table 1 to transform each step into a state and its outgoing transitions. We
get an FSA that represents the controller by connecting all the states with the transitions, which we
present in Figure 3 (left).

Verification and Automatic Refinement. We use a user-provided model (as presented in Figure 2)
to verify whether the controller satisfies a specification

ϕ = (♢ green → ♢ other side of road ) ∧□(¬ cross road ∨ green ).

We present the details of how to obtain the model in the Appendix.

Intuitively, we want the agent to eventually reach the other side of the road but never cross the road
when the traffic light is not green. We perform the verification step and get a counter-example. Hence
we need to refine the controller.
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Figure 4: A sequence of observations from the real-world environment, where red and green boxes
with confidence scores above are the object detection results from the Grounded-SAM.

q1start

q2 q3 q4

(¬ block on table, ϵ)

(block
on

table,
“targetone

block")

( ¬ targeted, ϵ)

(targeted,
“classify color")

( ¬ red ∧¬ yellow, ϵ)

(red,
“place block")

(yellow,
“leave block")

(True, ϵ)

100

110

101

010

001¬
cl

as
si

fy
co

lo
r

cla
ssif

y color

classify color

¬ place ∧¬ leave

place

leave

¬ place ∧¬ leave

place

leave

¬ target block

¬ target block

target block

Figure 5: The left figure is the controller for "removing all the red blocks on the table," and the
right figure is the model that encodes how the environment changes by the actions. The label on
the model’s state indicates the value of propositions (“block targeted," “red," “yellow"), where 1
indicates True and 0 indicates False.

In the first iteration of refinement, we get a counter-example whose trajectory starts from [at Pedestrian
Crossing ∧¬ green ∧¬ the other side of the road], which is the “100" state in Figure 2. This counter-
example means that if the agent is already at the pedestrian crossing when the controller is instantiated,
it will get trapped in the initial state. This is because the precondition for the outgoing transition is
“not at the pedestrian crossing". We follow Algorithm 2 to refine the controller before verifying it
against the model again.

In the second iteration, we get another counter-example whose trajectory starts from [at Pedestrian
Crossing ∧ green ∧¬ the other side of the road], which is the “110" state. We apply the refinement
algorithm again and obtain the final controller that satisfies all the specifications. We present the final
controller as the bottom automaton in Figure 3. The top and bottom branches of the final controller
are synthesized during the first and second iterations, respectively.

Grounding to Task Environment. We use the Grounded-SAM to evaluate the input symbols
and implement the control logic in the real-world task environment. The VLM takes an image and
a set of propositions in textual form as inputs and classifies which propositions match the image.
A proposition matches an image if the object or scenario described by the proposition appears in
the image and is detected by the VLM with a confidence score above 0.45. We provide a visual
demonstration in Figure 4.

5.2 Robot Arm Manipulation

We now use LLM2Automata to construct a controller for the task “use a robot arm to remove all
the red blocks off the table". We show how we use the Grounded-SAM to perceive the operating
environment and make decisions accordingly.
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Figure 6: The figures show the object detection results from the VLM in red and green boxes, the
proposition evaluation results, and the state transitions and actions that are taken under the evaluated
propositions.

Controller Construction and Verification. In this example, we assume the user has some prior
knowledge of the task, such as some basic knowledge of the environment and the admissible actions
of the robot arm. The user thus queries GPT-4 with the following prompt:

1 Task: place all the red blocks off the table.
2 Environment: there are unknown numbers of red blocks and yellow blocks on

the table initially. Someone may randomly add a red block or yellow
block to the table.

3 Steps for achieving the task:
4 1. Target one block on the table.
5 2. Classify the color of the targeted block.
6 3. If the block is red , place it from the table to an off -table location

(B). If the block is yellow , leave it on the table.
7 4. Go to step 1.

The complete queries and responses are presented in the Appendix. We construct the controller and
present it in Figure 5.

Next, we verify whether the controller, when implemented in a model (right figure in Figure 5),
satisfies the provided specification Φ = ¬place∧ yellow. As an added task specification, we want to
guarantee the robot arm never accidentally places a yellow block outside the table. We also present
the details of obtaining the model in the Appendix. The verification result shows that the controller
satisfies Φ. Hence no refinement is required.

Grounding and Perception. We again use Grounded-SAM as the perception model to ground the
controller from Figure 5 to the operating environment. We set the threshold t to 0.45. Figure 6 shows
a full iteration of the controller (q1 → q2 → q3 → q4). The robot arm grabs a block and places it
outside the table only if the Grounded-SAM returns a confidence score above 0.45 on a red block.

We present more examples in the Appendix.

6 Conclusion

We provide a proof-of-concept for the automatic construction of an automaton-based task controller
of task knowledge from GLMs and the grounding of the controller to physical task environments.
We propose an algorithm that uses foundation models for sequential decision-making in the aspects
of synthesis, verification, grounding, and perception. The algorithm synthesizes automaton-based
controllers from the text-based descriptions of task-relevant knowledge that are obtained from a
GLM. Such automaton-based controllers can be verified against user-provided specifications over
models representing the task environments or task knowledge from other independent sources. The
algorithm provides a method to iteratively refine the controller until all the specifications are satisfied.
Additionally, we develop a grounding method Automata2Env that grounds the automaton-based
controllers to physical environments, uses vision-language models to interpret visual perceptions, and
implements control logic based on the perceptions. Experimental results demonstrate the capabilities
of LLM2Automata and Automata2Env on synthesis, verification, grounding, and perception.
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A Additional Definitions

Product Automata Let M := ⟨QM,ΣM,ΓM, δM, ωM⟩ be a model and let C :=
⟨Q,Σ,Γ, q0, δ, ω⟩ be a controller, we define the product automaton as an FSA P = M ⊗ C :=

⟨QP, δP, q
P
init, ωP⟩ as follows:

QP := QM ×Q

δP((p, q)) := {(p′, q′) ∈ QP|δ(q, c, q′) = 1 ∧ δM(p, a, p′) = 1}
where a = ω(q, σ, q′) and c = ωM(p)

qPinit := (p, q0) where p can be any state in M
ωP((p, q)) := ωM(p) ∪ ω(q, ωM(p), q′) where q′ ∈ Q and δ(q, ωM(p), q′) = 1.

The trajectories from P are in the form (2PM∪P )∗, i.e. ψ0, ψ1, ψ2 . . . where ψi = ωP(qi, pi).

Planning Domain Definition Language. A PDDL [Haslum et al., 2019] is a formal language used
in artificial intelligence and automated planning to define a planning problem. We use PDDL to
describe the possible initial states of a problem, the desired goal, and the actions that can be taken to
transform the initial state into the goal state. PDDL provides a standardized syntax for specifying a
set of predicates—atomic propositions—describing the states of the task, the actions, and the goal
specification.

Each action a in PDDL has a name, a precondition that must be satisfied before the action can be
performed, and an of effect that describes how the state of the environment will change after the
action is performed. The preconditions and effects are expressed as sets of atomic propositions.

B Algorithms and Grammar Rules

Natural Language Grammar Formal Representation Example

VP1 and VP2
VP1∧ VP2 [green light] [and] [no car]

VP1 or VP2 VP1∨ VP2 [traffic light] [or] [crosswalk]
no/not VP1 ¬ VP1 [no] [car]

VP1 [step number j] qi qj
(True, ϵ)

[go to step] [1]

if VP1, VP2.
VP2 if VP1

qi qj
(VPC

2 , VP2)
(¬VPC

2 , ϵ)
[if] [green light], [cross]

if VP1, VP2. if VP3, VP4.
qi qjqk

(VPC
2 ,VP2)

(¬VPC
4 ,VP4)

(¬VPC
2 ∧ ¬VPC

4 , ϵ)

[if] [car], [stay]. [if] [no car],
[cross].

if VP1, VP2 else VP3.
VP2 if VP1, else VP3

qi qjqk
(VPC

2 ,VP2)

(¬VPC
2 ,VP3)

[if] [car], [stay], [else] [cross].

wait VP1 VP2

VP2 after VP1
qi qi+1

(VPE
1 ,VP2)

(¬VPE
1 , ϵ) [wait] [green light] [cross]

VP2 until VP1
qi qi+1

(VP1, ϵ)
(¬VP1,VP2) [not cross] [until] [green light]

VP1 qi qi+1
(VPC

1 ,VP1)(¬VPC
1 , ϵ)

[cross road]

Table 2: Rules to convert natural language grammar to formal representations (propositions or FSA
transitions). The keywords that define the grammar are in bold.
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B.1 Automated Model Extraction from External Knowledge

A model is a transition system that encodes the dynamics of the task environment or the task-relevant
knowledge from external knowledge sources. If we obtain an automaton-based model, we can use
the model directly for the verification steps. However, in many cases, external knowledge is only
available in textual form, such as websites and operation manuals. Again, such textual information
is not formally verifiable. To address this problem, we develop an algorithm that automatically
constructs a model that encodes the textual information from external sources. The algorithm takes
natural language sentences as inputs, extracts propositions corresponding to actions and effects, and
returns a transition system representing the model. Note that the algorithm automates the procedure
for model construction. However, we do allow users to modify the constructed models to represent
additional information.

Extracting Actions and Effects from Text-Based Information Sources Given text-based encod-
ings of externally available knowledge, we apply semantic parsing again to extract all the verb phrases
from the text. We consider each verb phrase as an action. Note that some of these verb phrases may
have identical meanings, such as “cross the road" and “walk across the road." We align these verb
phrases to the output symbols (actions) from the controller by querying GLM in the following format:

1 Do the actions "action 1" and "action 2" lead to the same effect?
2 Yes/No.

If the response is “yes," we align the action extracted from the textual information to the controller’s
output symbol. In other words, we consider them as one action. Since we already obtained the effects
of the controller’s actions (output symbols), we have a list of aligned actions and corresponding
effects.

If an extracted action is not aligned with any of the controller’s output symbols, we consider it as a
new action and query the GLM to obtain the PDDL definition. The result of this process is a list of
new actions and the corresponding effects from their PDDL definitions, which we merge with the
aligned actions and effects to get a complete list.

Constructing the Model from the Actions and their Effects We design an algorithm named
TEXT2MODEL (as presented in Algorithm 1). The algorithm takes the lists of actions and effects as
inputs. Recall that the model consists of states, input and output symbols, a transition function, and a
label function. The algorithm works as follows:

The algorithm builds 2M states, where M is the number of atomic propositions in the set of effects.
Each state S ∈ QM is associated with a unique label ωM(S) that is a conjunction of all the atomic
propositions or their negations from the set of effects. For instance, if effects={A,B}, then there will
be four states with labels A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B.

Definition 1. Let S1, S2 ∈ QM be the states from the model. We make pairwise comparisons of
each atomic proposition in the labels of the two states ωM(S1) and ωM(S2). If only one of the
atomic propositions differs, then states S1, S2 are considered neighbors.

Mathematically, we use the symbol ⊕ to denote this elementwise XOR operation. If only one
proposition in ωM(S1)⊕ ωM(S2) is evaluated to true, then states S1, S2 are considered neighbors.

For any two states S1 and S2, if there is an action whose effect fills the gap between the labels
ωM(S1) and ωM(S2), then the algorithm builds a transition between them with this action as the
input symbol. For example, suppose S1 has a label A ∧ ¬B and S2 has a label A ∧B, if there exists
an action α whose effect is B, then the algorithm builds a transition δ(S1, α) = S2. Next, it builds
self-transitions with the action “no operation" for every state and builds transitions with the action
“no operation" between every two neighbor states if no other transition between them already exists.

The “no operation" transitions capture potential environmental changes that are not caused by
the controller’s behaviors. These transitions provide a conservative approximation of what could
potentially happen in the environment. During the verification procedure, these transitions will lead
to more failures. We can decide whether to add the “no operation" transitions depending on the
stability of the environment and the task requirement.
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Algorithm 1: Model Construction from Side Information

1: procedure TEXT2MODEL(Set[String] actions, Set[String] effects)
2: QM = every combination of effects
3: ωM := QM → 2effects

4: ΣM = [VP for VP in actions]
5: δM = []
6: for VP in actions do
7: for each pair of states (S1, S2) do
8: Prop = ωM(S1)⊕ ωM(S2) ▷ ⊕ is XOR operation
9: if VPE ∈ 2Prop and VPE = ωM(S2) over the symbols 2Prop then

10: δM.append(S1 × VP → S2)
11: end if
12: end for
13: end for
14: for each pair of neighbor states (S1, S2) do ▷ Optional
15: if there is no transition between S1, S2 then
16: e = ωM(S1)⊕ ωM(S2)
17: if e /∈ effects and ¬e /∈ effects then
18: δM.append(S1 × ϵ→ S2)
19: δM.append(S2 × ϵ→ S1)
20: end if
21: end if
22: end for
23: for S in QM do
24: δM.append(S × ϵ→ S)
25: end for
26: return QM,ΣM, δM, ωM
27: end procedure

Algorithm 2: Controller Refinement through Synthesizing from the Model

1: procedure REFINE(Controller C, Model M, Specification Φ) ▷ C = ⟨Σ,Γ, Q, q0, δ, ω⟩,
M = ⟨QM,ΣM, δM, ωM⟩

2: if C ⊗M |= Φ then
3: return C
4: end if
5: find a counter-example Q = {(p1, q1), (p2, q2), ...|pi ∈ ΣM, qi ∈ Σ} for M |= ¬Φ
6: convert Q to a trajectory T = {(σ1 ∧ a1), ((σ2 ∧ a2), ...|σi ∈ ωM, ai ∈ ω)}
7: Construct a new state q1, Q.append(q1)
8: δ.append((qinit, σ1) → q1)
9: ω.append((qinit, σ1) → a1)

10: for i in [2, n] do
11: Q.append(qi)
12: δ.append((qi−1, σi) → qi)
13: ω.append((qi−1, σi) → ai)
14: end for
15: δ.append((qn, T rue) → qn)
16: ω.append((qn, T rue) → ϵ)
17: δ.replace((qinit,¬c1 ∧ ... ∧ ¬ck) → qinit)
18: return C
19: end procedure
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C Additional Empirical Demonstrations

C.1 Cross Road Example

Model Construction After constructing the controller, we want to check whether the knowledge
from GPT-4 encoded by the controller is consistent with external knowledge. To do so, we collect
information for crossing the road at the traffic light from a tutorial blog [Ali, 2023]. The information
is in textual form:

1 1. Reach painted lines on the roadway that indicate a safe crosswalk.
2 2. Cross the road only when the traffic light turns green.

We extract two verb phrases “reach painted lines indicating crosswalk" and “cross the road when the
light turns green" from the external textual information. Next, we check whether the extracted verb
phrases are aligned with the existing actions by querying GPT-4:

1 Are the actions "reach painted lines indicating crosswalk" and "approach
pedestrian -crossing" lead to the same effect?

2 Yes. Both actions lead to reaching one side of the crosswalk.
3 Are the actions "cross the road when the light turns green" and "cross

road" lead to the same effect?
4 Yes. Both actions lead to reaching the other side of the road.

In practice, we ask for every pair of combinations. However, we only present the aligned pairs for
brevity. Note that both verb phrases extracted from the external information are aligned with the
controller’s output symbols (actions). Hence the model we will construct shares the same set of
vocabularies with the controller.

Since the two verb phrases are aligned with two of the actions from the controller, we directly use the
aligned actions and their effects. We send a set of actions {cross road, approach pedestrian-crossing}
and a set of corresponding effects {at pedestrian-crossing, at other side of road } as input to Algo-
rithm 1 to construct a model representing the external information, which we present in Figure 2.
The Text2Model algorithm builds a model that preserves all the possible environment dynamics
and possible actions the agent can take. Some of the actions and environment dynamics may be
nonsensical and can be manually pruned by users.

C.2 Robot Arm Manipulation

The complete queries and responses:

1 Task: place all the red blocks off the table.
2 Environment: there are unknown numbers of red blocks and yellow blocks on

the table initially. Someone may randomly add a red block or yellow
block to the table.

3 Steps for achieving the task:
4 1. Target one block on the table.
5 2. Classify the color of the targeted block.
6 3. If the block is red , place it from the table to an off -table location

(B). If the block is yellow , leave it on the table.
7 4. Go to step 1.
8
9 1. Define an action "target one block" in PDDL.

10 Action: target -one -block
11 Parameters: ()
12 Precondition: (block_on_table)
13 Effect: (and (block_targeted))
14
15 2. Define an action "classify the color of the targeted block" in PDDL.
16 Action: classify -color
17 Parameters: ()
18 Precondition: (block_targeted)
19 Effect: (or (block_red) (block_yellow))
20
21 3. Define an action "place the block" in PDDL.
22 Action: place -block
23 Parameters: ()
24 Precondition: (and (block_targeted) (block_red))
25 Effect: (not (block_targeted))
26
27 3. Define an action "leave the block" in PDDL.
28 Action: leave -block
29 Parameters: (?b - block ?t - table)
30 Precondition: (and (block_targeted) (block_yellow))
31 Effect: (not (block_targeted))
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p1 : TBstart p2 : opened

p3 : ¬ found

p4 : found p5 : restored

¬ open Trash

open Trash

¬ view Trash

view Trash

view Trash

(True, ϵ)

¬ restore folder

restore folder
(True, ϵ)

Figure 7: A model that captures information obtained from an external source—a tutorial on restoring
files from Trash.

q1start q2 q3 q4

( ¬ trash bin, ϵ)

(trash bin,
“open Trash")

(¬ trash opened , ϵ)

(trash opened,
“view Trash")

(¬ folder selected, ϵ)

(folder found,
“restore folder")

(True, ϵ)

Figure 8: Controllers of the task “restoring a folder from Trash." The top automaton is the original
controller constructed from the GLM’s outputs. The middle automaton is the refined controller after
the automatic refinement procedure. The bottom automaton is the controller manually refined through
interpreting counter-examples.

For model construction, we begin by following Algorithm 1: We send the set of all actions (target
block, classify color, leave, place) and the subset of effects (targeted, red, yellow) as the parameters
for constructing the model. Then, we manually remove the states that are not reachable by any single
action (i.e., the state label is not equal to the effect of any action) and obtain a model as presented in
the right figure of Figure 5.

C.3 Computer System Operation

In this example, we demonstrate our algorithms’ capabilities on tasks involving interfacing with a
computer system. The task is to restore a folder from the trash bin in the Apple MacOS operating
system.

Controller and Model Construction. We start constructing a controller for the task “restoring a
folder from the trash in MacBook" by querying GPT-4 and get responses as follows:

1 Steps for restoring one folder from Trash in MacBook:
2 1. Open Trash.
3 2. View Trash.
4 3. Restore folder.
5
6 1. Define an action "Open Trash" in PDDL.
7 Action: open -trash
8 Parameters: ()
9 Precondition: (trash_bin)

10 Effect: (trash_opened)
11
12 2. Define an action "View Trash" in PDDL.
13 Action: view -trash
14 Parameters: ()
15 Precondition: (trash_opened)
16 Effect: (or (folder_found) (not (folder_found)) )
17
18 3. Define an action "Restore folder" in PDDL.
19 Action: restore -folder
20 Parameters: ()
21 Precondition: (folder_found)
22 Effect: (folder_restored)

We get a list of steps and a set of actions with preconditions from the responses. Then, we follow
the grammar and transition rules defined in Table 1 to construct an automaton-based controller, as
presented in Figure 8.
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Figure 9: The figure shows the object detection results returned by the Grounded-SAM, the cor-
responding transitions of the controller we take based on the detection results, and the terminal
commands corresponding to the actions outputted by the controller.

After we construct the controller, we want to verify whether this controller is consistent with
information from another knowledge source. We collect external information from a MacOS tutorial
blog [Morelo, 2022]:

1 1. Navigate to the Trash folder.
2 2. View the content of the Trash folder.
3 3. Move a specific folder to your home folder.

We extract verb phrases “navigate to Trash folder," “View the content of Trash folder," and “Move
a folder to home folder" from the external information. Then, we align these verb phrases to the
controller’s actions:

1 Are the actions "navigate to Trash folder" and "open Trash" lead to the
same effect?

2 Yes.
3 Are the actions "Move a folder to home folder" and "recover folder" lead

to the same effect?
4 Yes.

We align “navigate to Trash folder" to “open Trash" and “Move a folder to home folder" to “recover
folder." Now we have a list of actions [“open Trash," “view Trash," “recover folder"] and their
corresponding effects. We build a model accordingly following Algorithm 1. Note that we are not
adding “no operation" transitions in this example.

Verification and Refinement. We obtain a product automaton of the controller and the model and
verify the product automaton against a specification

Φ = ♢(trash bin ∧ ¬trash opened ∧ folder found) → ♢ folder restored.

The model-checking procedure passes, and hence there is no refinement required.

A Step Toward Low-Level Control. We have constructed an automaton-based controller that
satisfies the provided specifications. However, the controller only encodes high-level task knowl-
edge. Therefore, we move a step forward to connect high-level knowledge to low-level control
implementations, such as to an API or terminal commands that can directly control the system.

We again take advantage of the rich knowledge encoded in the GLM and ask the terminal command
for each action from the controller:

1 Give the command line on MacBook for each of the following actions:
2 1. Open Trash
3 2. View Trash
4 3. Restore folder
5 1. open ~/. Trash
6 2. ls -al ~/. Trash
7 3. mv ~/. Trash/folder_name destination_path
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We then ground the controller to the MacOS by using the Grounded-SAM to perceive the task
environment, i.e., images of the OS GUI. Once we determine the transition to take based on the
observation, we execute the terminal command corresponding to the action of this transition. This
example indicates the potential of our algorithm to connect abstract representations or high-level
control logic to system-operable commands. However, this potential has not been fully developed yet,
as we currently only use knowledge from the language model to connect high-level actions to operable
commands. This approach is incapable if the language model does not encode the knowledge of the
operable commands, e.g., unique APIs of a particular robot.
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